
The elementary computable functions over the real

numbers: Applying two new techniques

Manuel L. Campagnolo
D.M./I.S.A., Lisbon University of Technology and SQIG/IT

mlc@math.isa.utl.pt

Kerry Ojakian
SQIG - IT and IST, Portugal

ojakian@math.ist.utl.pt

July 6, 2007

Abstract

The basic motivation behind this work is to tie together various computational complexity
classes, whether over different domains such as the naturals or the reals, or whether defined
in different manners, via function algebras (Real Recursive Functions) or via Turing Machines
(Computable Analysis). We provide general tools for investigating these issues, using two tech-
niques we call approximation and lifting. We use these methods to obtain two main theorems.
First we provide an alternative proof of the result from Campagnolo, Moore and Costa [3],
which precisely relates the Kalmar elementary computable functions to a function algebra over
the reals. Secondly, we build on that result to extend a result of Bournez and Hainry [1], which
provided a function algebra for the C2 real elementary computable functions; our result does not
require the restriction to C2 functions. In addition to the extension, we provide an alternative
approach to the proof. Their proof involves simulating the operation of a Turing Machine using
a function algebra. We avoid this simulation, using a technique we call lifting, which allows us
to lift the classic result regarding the elementary computable functions to a result on the reals.
The two new techniques bring a different perspective to these problems, and furthermore appear
more easily applicable to other problems of this sort.

1 Introduction

This paper improves, corrects, and extends the ideas in our earlier paper [4]. We will study classes
of functions with respect to their computational complexity, showing connections between different
models of computation. The classic case is concerned with classes of functions whose domain and
range are the natural numbers, N, where the functions are defined via Turing Machines or an
equivalent model of computation. In this case, there is one agreed upon concept of computation
and computational complexity with different models yielding the same set of functions. More
recent work has extended computational complexity to classes of functions over the real numbers,
R, but in this case there is not one agreed upon notion of computation. We will concentrate
on two models of computation over the reals, “The Real Recursive Functions” and “Computable
Analysis.” The former originated with Moore [8] (with some problems corrected by Costa and
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Mycka in [9] and [10]) and the latter with Grzegorczyk [6]. In Computable Analysis, Turing
Machines are used to characterize various classes of functions over the reals, with the idea being
that a real function is computable by a Turing Machine if it can be approximated to the appropriate
level of precision from approximations to the input of the function. In the case of Real Recursive
Functions, classes of functions are defined using function algebras in which the discrete operations
of recursion are replaced by operations which find solutions to differential equations. Our goal is
to study connections between these three different kinds of function classes, the classic ones over
the naturals, the ones arising from Computable Analysis, and the ones arising from Real Recursive
Functions.

There have been a number of results tieing together these three different models of computation.
Campagnolo, Moore and Costa [3] describe a class of real functions (they call L), defined via a
function algebra in which the principle operation is to obtain the solution of a system of linear
differential equations. They show that the “discrete part” (definition 4.1) of L is exactly the usual
Kalmar elementary computable functions on the naturals. Building on this, Bournez and Hainry [1]
show that L extended by a certain limit operation is the class of C2 elementary computable functions
on R. In section 4, we provide an alternative proof of the result of [3]. In sections 5 and 6 we extend
the result from [1]; in particular, we show that L augmented by any of a number of limit operations
yields exactly the elementary computable functions on R, without a restriction to the C2 functions.

The novelty we bring to these problems are two new techniques, which we call “approximation”
and “lifting.” The first technique is used throughout the paper. The basic idea of this technique is
to define a general kind of approximation relation that can hold between two classes of functions
A and B. Roughly speaking we will say that B approximates A, if for any required precision, any
function of A can be approximated to that precision with a function from B; this will be written,
roughly, as A ¹ B. Our approach to both the theorems of this paper is to first show that two classes
of functions approximate each other, and then derive the desired equality from the sufficiently close
approximation. Under the right conditions, the approximation relation will in fact be a transitive
relation, thus allowing us to break down an approximation into a series of smaller and more natural
tasks. Using approximation, our alternative proof of the result from [3] follows more closely the
inductive definitions of the function algebras in question (discussed in more detail in section 4).

The second technique, lifting, is the main tool used in sections 5 and 6 to provide a function
algebra for the elementary computable functions on R. The lifting process begins with a known
complexity result on N, such as the fact that the elementary time functions defined via Turing
Machines are exactly the functions given by a particular function algebra. The lifting can be seen
as a two step process (discussed in detail in section 5). First we lift the result on N to an analogous
result on the rationals, Q, where the model essentially treats the rationals as pairs of natural
numbers. The second step (the most involved one) is to lift this to a result on R. In the work of
[1], the proof involves coming up with a new Turing Machine simulation of the class of elementary
computable functions on R; we manage to avoid using a new Turing Machine simulation, by re-
using a classic result on N (which of course involves a Turing Machine simulation) and lifting this
to R.

We would like to claim that the advantages of these techniques are twofold. First, they provide a
different approach to some of these problems, which seems to facilitate working on these problems,
especially when dealing with function algebras. Second, the techniques appear to be more amenable
to generalization and wider application than some of the earlier approaches. We claim this based
on other work in progress, and based on the character of the development. While some of lemmas
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are general, not specific to the elementary computable functions, a number of others could (with
some adaptation) be stated in a more general way. The wider vision for this approach is a collection
of general tools with broad application. We present the beginning of such a development.

The paper is organized as follows. In section 2 we define the main concepts that are going to be
used throughout the paper. In section 3 we discuss how those concepts can be used with function
algebras. In section 4 we consider the elementary computable functions and prove our first main
result. In section 5 we establish links with computable analysis and present our second main result.
To improve readability we leave the more technical discussion to section 6. Finally, we point out
some directions for further research.

2 Approximation

To develop formally the definition of approximation we will need to be able to talk about functions
and their arguments in a precise way. If a function f(x1, . . . , xk) is defined on exactly Xk and
takes values in X, we say it is an X−function, or equivalently, that it has universe X; we do not
consider vector valued functions. We always assume the universe is a subset of R, and in fact the
only particular cases we consider in this paper will be N, Q, and R. To refer to function arguments
precisely we will sometimes need to speak more formally about the variables of a function. We use
lower case letters to refer to variables and put a bar over the letter, such as x̄, to refer to a finite
list of variables (if not stated or implied by context, a list may be empty). When we write lists
of variables separated by comas, within a function, such as f(x̄, ȳ), we intend that the variables
are all distinct. If we have lists of variables or numbers ā and b̄, the same lengths as x̄ and ȳ,
respectively, then by f(ā, b̄) we mean to substitute ā, b̄ for x̄, ȳ in order. The key point is that given
two functions, the notion of variables allows us to associate the arguments of two different functions
in any way we wish. Any classes of functions we work with will be sufficiently strong that we can
freely manipulate variables in typical ways. For the approximation relation we will use functions
to translate between different universes.

Definition 2.1 Suppose A,B ⊆ R. An interpretation from A to B is a (possibly partial) injec-
tion from A to B.

Notice that an interpretation is a function of one argument; if ω is an interpretation and we write
ω((a1, . . . , ak)), we mean (ω(a1), . . . , ω(ak)). For a ∈ A, we call ω(a) ∈ B the code of a, and
conversely, for b ∈ B, we say that b codes ω−1(b) ∈ A. We will now define the approximation
notion between classes of functions, building on the notion of approximation between two single
functions. Some examples follow the definitions.

Definition 2.2 Suppose A,B ⊆ R. Suppose f(x̄) is a function, on universe A, and h(x̄, ȳ) is a
function on universe B. Suppose ε(x̄, ȳ) is a function on universe R. Suppose ω : A → B is an
interpretation. By

f ¹ε,[ω] h,

we mean that for all x, y ∈ Domain(ω), h(ω(x), ω(y)) is in the domain of ω−1, and the following
holds:

|f(x)− ω−1 ◦ h(ω(x), ω(y))| ≤ ε(x, y).
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Definition 2.3 Let A, B, and E be classes of functions with universes A, B, and R, respectively,
such that A,B ⊆ R. Suppose ω : A → B is an interpretation.

• We write

A ¹E,[ω]
− B

to mean that for any f(x̄) ∈ A and ε(x̄) ∈ E, there is h(x̄) ∈ B, such that f ¹ε,[ω] h.

• We write

A ¹E,[ω]
+ B

to mean that for any f(x̄) ∈ A and ε(x̄, ȳ) ∈ E, there is h(x̄, ȳ) ∈ B, such that f ¹ε,[ω] h.

Note that in the definition of approximation, the approximation condition is required to hold for
any precision ε ∈ E ; in many applications it would suffice to just have one ε ∈ E , yet it appears
easier to inductively prove approximations for the stronger notion we use. At the end of this section
we comment more on this particular approximation compared to other possibilities. Recalling that
lists of variables may be empty, the approximation with the “+” is stronger than the one with the
“−”. Consider some useful conventions regarding the approximation notation.

Remark 2.4 Suppose A and B are sets of functions on universes A and B respectively. Consider
A ¹E,[ω]

+/− B.

• If ω is missing we mean for ω = idA∩B (the identity function on A ∩B).

• When it is clear that something is an interpretation, we may omit the square brackets.

• If E is missing, we assume E = Zero, where Zero is the set of all R−functions that have value
0 everywhere (i.e. the “approximation” must have no error).

• If we leave out “+” and “−”, we mean “−”.

• If we use “+/−” in a statement we mean that it holds for “+” substituted everywhere for
“+/−”, or for “−” substituted everywhere for “+/−”.

• For classes of functions Ai with universe A, we write A1, . . . ,Ak ¹E,[ω]
+/− B to mean

A1 ¹E,[ω]
+/− B, . . . ,Ak ¹E,[ω]

+/− B.

For a simple example consider the expression A ¹ B, where A and B are classes of functions on
universes A and B, respectively. By convention it abbreviates A ¹Zero,[idA∩B ]

− B. If A = B, then
it just means A ⊆ B. If A ⊆ B then the expression means any function of A can be extended to
a function in B so that their values coincide on A. If B ⊆ A then the expression means that B
contains the restriction to B of any function from A.

We now introduce the interpretation and related functions that we will work with throughout
this paper.

Definition 2.5
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• Let pair(a, b) = (1/2)(a + b + 1)(a + b) + a (a bijection from N× N to N).

• When we say that a rational is presented in lowest terms we mean that it is given to us
as (−1)s(a/b), where either a = b = s = 0, or a, b ∈ N, s ∈ {0, 1}, with a, b > 0 and a and b
relatively prime.

• We define an interpretation λ : Q→ N. For any rational (−1)sa/b presented in lowest terms,
let λ((−1)sa/b) = 2pair(a, b) + s.

Definition 2.6 We define some functions on universe N.

• parity(n) =
{

0, if n even;
1, if n odd.

• gcd(a, b) = the greatest common divisor of a and b (we let gcd(a, b) = 0 if a or b is zero)

• top and bot are the unique functions from N to N such that for any rational (−1)sa/b presented
in lowest terms, top(λ((−1)sa/b)) = a, and bot(λ((−1)sa/b)) = b.

• code(a, b, s) = 2pair( a
gcd(a,b) ,

b
gcd(a,b)) + s = λ((−1)sa/b), where we take “x/0” to be 0 (this

function is motivated in the following example).

We will now work out a more involved example which we will in fact use later (in lemma 4.11).

Example 2.7 Consider the function mult(x, y) = xy, on Q. Suppose we want a function mult∗(n,m)
on N, such that it interprets mult (via λ), i.e. mult ¹λ mult∗, which by our convention means
mult ¹Zero,[λ]

− mult∗, and, in this case, amounts to the property:

λ(mult(x, y)) = mult∗(λ(x), λ(y)), for x, y ∈ Q.

Given 2 rationals presented in lowest terms as (−1)k(p/q), and (−1)c(a/b), their product is ar-
rived at by multiplying the tops of the fractions together, dividing by the product of the bottoms,
and taking account of the sign, to attain (−1)k+cpa/qb, where the presentation may no longer be
in lowest terms. To define mult∗ we carry out the same kind of procedure, but on the natural
numbers n and m which code rationals. Thus the top should be top(n)top(m), the bottom should
be bot(n)bot(m), and the sign should be s(n,m) = delta(n)delta(m)parity(parity(n) + parity(m)),
where delta(x) = 0 if x = 0 and 1 otherwise. Not only does mult∗ receive codes (n and m) as
input, but it must output a code, thus the output should be λ((−1)s(n,m) top(n)top(m)

bot(n)bot(m)), so we de-
fine mult∗(n,m) = code(top(n)top(m), bot(n)bot(m), s(n,m)), which works by the property of code
noted above.

Here and throughout the paper, we will use the important technical idea of linearizing a
function defined on Z, that is extending it to domain R, by basically connecting the values on Z
by straight lines; by bxc we mean the greatest integer less than or equal to x, and by dxe we mean
the smallest integer greater than or equal to x.
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Definition 2.8 Suppose the domain of f(x1, . . . , xk) contains Z (its codomain may be R), and
r ≤ k. We define an operation which outputs an R−function h(x1, . . . , xk) = LinR(f ; x1, . . . , xr) =

f(bx1c, . . . , bxrc, xr+1, . . . , xk)(bx1c+ 1− x1) . . . (bxrc+ 1− xr)
+ f(dx1e, bx2c, . . . , bxrc, xr+1, . . . , xk)(x1 − bx1c)(bx2c+ 1− x2) . . . (bxrc+ 1− xr)

...
+ f(dx1e, . . . , dxre, xr+1, . . . , xk)(x1 − bx1c) . . . (xr − bxrc),

where the intention is to range over all 2r combinations of b·c and d·e applied to the xi; corresponding
to whether bxc or dxe is applied, we multiply f by (bxc + 1 − x) or (x − bxc), respectively. We
write f̂ to indicate the full linearization, LinR(f ; x1, . . . , xk).

We write LinQ to indicate exactly the same operation, except that the input function must have
codomain Q, and the function, h, that is output is only defined on Q.

Note that the values of f off of Z have no effect on f̂ . When we write just Lin it will be clear from
context whether we mean to linearize with respect to R (i.e. use LinR), linearize with respect to Q
(i.e. use LinQ), or refer to both simultaneously.

Proposition 2.9 Suppose f(x1, . . . , xk) is a function with a domain containing Z, and we consider
linearization with respect to R or Q.

• For x ∈ Z, f̂(x) = f(x).

• f̂ is continuous.

• For any x̄ (in R or Q depending on which case we are considering), let

X (x̄) = {f(bx1c, . . . , bxkc), . . . , f(dx1e, . . . , dxke)},
where we range over all 2k combinations of b·c and d·e. The following holds:

min(X (x̄)) ≤ f̂(x̄) ≤ max(X (x̄))

We now come to some definitions that for the purpose of this paper we could avoid. However,
they facilitate some discussion and are are important for our goal of developing generally applicable
techniques. We will define the concepts of “bounding class” and “error class.” Intuitively, a class
of functions is a bounding class if it can be used to measure the growth rate of some other class
of functions. A class of functions is an error class, if it can be used to measure the error when one
class of functions approximates another.

Definition 2.10 Suppose f(y, x̄) is a function on universe A. We say it converges uniformly
to infinity in y if for every n > 0 there is m0 > 0 such that for any m, x̄ ∈ A, m ≥ m0, we have
f(m, x̄) ≥ n.

Definition 2.11 For f : N→ N, let f̃ : Z→ N be defined by f̃(a) =
{

f(a), if a ≥ 0;
f(−a), if a < 0.
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Definition 2.12 Suppose B∗ is a class of functions on universe N, such that for any f(x̄), g ∈ B∗:
1. f > 0

2. f is increasing in any variable.

3. f converges uniformly to infinity in any of its variables.

4. For any variables ȳ disjoint from x̄, there is f∗(x̄, ȳ) ∈ B∗ such that f(x̄) ≤ f∗(x̄, ȳ).

5. There are h1, h2 ∈ B∗ such that f + g ≤ h1 and f ◦ g ≤ h2.

Then B = { ˆ̃
f | f ∈ B∗} is a bounding class.

We will be interested in a bounding class T W which contains functions that grow like towers of 2,
that is at the speed of the elementary functions.

Definition 2.13 Let T W∗ be the set of N−functions of the form 2(2(...)x1+...+xk ), where there is at
least one power of 2 and we can choose any number of variables.

Let T W = { ˆ̃
f | f ∈ T W∗}.

Proposition 2.14 T W is a bounding class.

There is some flexibility in how we could have defined the idea of a bounding class; though the use
of linearization could be avoided, we use linearization in other places anyway and it makes some of
the technical development easier. We will form error classes by taking the reciprocal of a bounding
class, i.e. for a set of functions F , 1/F = {1/f | f ∈ F}.

Definition 2.15 An error class is either the set of functions Zero or the set of functions 1/B
where B is a bounding class.

Now we justify the approximation notation by showing it is a partial order under the right
conditions, that is it satisfies transitivity; when we reference “transitivity” in this paper we mean
some application of the following lemma.

Lemma 2.16 (Transitivity) Suppose A, B, and C are classes of functions on universes A, B,
and C, respectively, E is an error class, and ω : B → C is an interpretation.

1. If A ¹E+ B ¹E+ C then A ¹E,idA∩B∩C
+ C

2. If Domain(ω) ⊆ A and A ¹E+ B ¹ω C then A ¹E,ω
+ C

3. If γ : A → B is an interpretation such that domain(ω) ⊂ range(γ), and A ¹γ B ¹ω C then
A ¹ω◦γ C.

Proof
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1. Let f(x̄) ∈ A, α(x̄, ȳ) ∈ E and we need h(x̄, ȳ) ∈ C such that |f(x) − h(x, y)| ≤
α(x, y) for x, y ∈ A ∩ B ∩ C. Since E is an error class there is α∗(x̄, ȳ) ∈ E such
that α∗(x̄, ȳ) ≤ (1/2)α(x̄, ȳ). Let g(x̄, ȳ) ∈ B such that |f(x)− g(x, y)| ≤ α∗(x, y)
for all x, y ∈ A ∩ B. Let h(x̄, ȳ) ∈ C such that |g(x, y) − h(x, y)| ≤ α∗(x, y) for
x, y ∈ B ∩ C. Thus |f(x) − h(x, y)| ≤ α∗(x, y) + α∗(x, y) ≤ α(x, y), as required.
Note that we need “+” for the first approximation, but “+” or “−” works for the
second one.

2. Let f(x̄) ∈ A and α(x̄, ȳ) ∈ E and we need h(x̄, ȳ) ∈ C such that |f(x) − ω−1 ◦
h(ω(x), ω(y))| ≤ α(x, y) for all x, y ∈ Domain(ω). Let g(x̄, ȳ) ∈ B such that |f(x)−
g(x, y)| ≤ α(x, y) for all x, y ∈ A ∩ B. Let h(x̄, ȳ) ∈ C such that |g(x, y) − ω−1 ◦
h(ω(x), ω(y))| ≤ 0 for all x, y ∈ Domain(ω). Thus |f(x) − ω−1 ◦ h(ω(x), ω(y))| ≤
α(x, y) for all x, y ∈ A∩B ∩Domain(ω), which is enough since Domain(ω) ⊆ A,B.
Note that the condition Domain(ω) ⊆ A also ensures that A ¹E,ω

+ C makes sense.

3. Similar to others.

¥

A useful shorthand is the following “approximate equality.”

Definition 2.17 We write A ≈E+/− B to mean that both A ¹E+/− B and B ¹E+/− A hold.

Note that with the definition of approximation (with its particular quantifiers) it is important to
read the definition in the right order. We use B ºE+/− A as another way to writeA ¹E+/− B. Another
important kind of relationship between classes of functions will be that of one class dominating
another.

Definition 2.18 Suppose A and B are classes of functions on universes A and B, respectively.
We write A ≤ B if for every function f(x) ∈ A there is a function h(x) ∈ B such that |f(x)| ≤ h(x)
for all x ∈ A ∩B.

Much of the paper will consist of showing claims like “A ¹1/T W
+ B”, for various classes of

functions A and B. As indicated earlier, such claims and the rest of the work of this paper would
in fact work fine with other notions of approximation. Another possibility would be to define
approximation so that for f∗(x̄, ȳ) to approximate f(x̄) we only require |f(x̄) − f∗(x̄, ȳ)| ≤ α(ȳ),
for some error function α(ȳ), which has no variables x̄, but only “parameter” variables. Or going
further in this direction, we could require α to be exactly the function 1/y with f∗ only having one
extra parameter variable y. For the purposes of this paper, the notions would work in the same
manner because if, for example, f(x̄) ¹1/t f∗(x̄, t), then f(x̄) ¹1/α(x̄,t) f∗(x̄, α(x̄, t)). Thus if the
classes of functions we work with are strong enough we can start with a function which approximates
another one and improve the approximation by composition. Without going into the details, each
approach seems to have advantages and disadvantages. We choose the particular definition we use
since it both appears generalizable and facilitates some of the technical development.

3 Function Algebras

We will use function algebras to define most of our classes of functions. They are defined by giving
some basic functions and closing the class under operations on functions.

8



Definition 3.1 Suppose A is a class of functions on universe A ⊆ R. An operation with uni-
verse (A, A) is a function which takes as input some functions from A, and outputs a single
function from A. If A is all the functions with universe A, we say the operation has universe A.

Note that we require the universe of an operation to consist of functions which all have some fixed
universe A; this A may not always be referred to explicitly. As an example, we could define the
typical operation (with universe N) of bounded sum, denoted by

∑
. The operation

∑
takes a

function f(y, x̄) as input and returns g(z, x) =
∑z

y=0 f(y, x). Note that technically the operation
should have some way of knowing which variable to carry out the summation upon, but we will
ignore this minor issue here and for other operations.

Definition 3.2 Suppose B is a set of functions (called basic functions), and O is a set of oper-
ations. Then FA[B;O] is called a function algebra, and it denotes the smallest set of functions
containing B and closed under the operations in O. For ease of readability, we often list the elements
of B or O simply as a list separated by commas.

An example of a function algebra we will use is the elementary computable functions defined via
bounded sums and bound products. Let

∏
be the operation (called bounded products) on

universe N which takes a function f(y, x̄) and returns g(z, x̄) =
∏z

y=0 f(y, x̄). Let comp be the
operation which takes some functions (with any universe) and composes them.

Definition 3.3 Let basicN be the following functions with universe N: +, . ,P, 0, 1, where P is
the set of all projection functions on N and . is the usual cut-off subtraction, defined by

x . y =

{
x− y if x ≥ y

0 otherwise
.

Thus FA[basicN; comp,
∑

,
∏

] is the elementary computable functions.

Definition 3.4 Let the function algebra FA[basicN; comp,
∑

,
∏

] be abbreviated by FAN.

Notice that for a function algebra, there can be 2 distinct ways to construct the same function.
This highlights the syntactic side of a function algebra, which will become an issue in section 6.

Definition 3.5 Given a function algebra F , and f ∈ F , by a construction tree of f we mean a
tree which describes a construction of f in the function algebra. The leaves of this tree are labeled
by various basic functions in the algebra, and internal nodes are labeled by operations in the algebra.
Thus, we can think of the tree as specifying how to build a function, starting with the leaves and
moving up the tree, so each node specifies a function in the algebra. For the tree to be associated
to f , means that f is the function associated with the root of the tree.

To compare function algebras it will be useful to talk about a class of functions, B, approximating
an operation; intuitively this means that if any functions are approximated by B then applying the
operation maintains this approximation by B.

Definition 3.6 Suppose op is an arity k operation with universe (A, A), B is a class of functions
with universe B, and ω : A → B is an interpretation. We write op ¹E,ω

+/− B to mean:
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For any f1, . . . , fk ∈ A, if f1, . . . , fk ¹E,ω
+/− B then op(f1, . . . , fk) ¹E,ω

+/− B

The notational conventions for approximation (remark 2.4) continue to apply for the approximation
of operations; recall that by convention we can choose “+” throughout or “−” throughout in the
above definition. It will be useful here and later to define the notion of restricting an operation to
certain functions.

Definition 3.7 Suppose op is an operation on universe F and G ⊆ F . Furthermore, suppose that
op applied to functions in G yields a function in G. Then by op|G we mean the same operation as
op, except that its universe is G. We use a subset X of R in place of G if we mean for G to be all
the functions with universe X.

To make the definition more concrete consider “interpreting” composition.

Proposition 3.8 Suppose A,B ⊆ R and ω : A → B is an interpretation. Suppose B is any class
of functions with universe B, closed under composition. Then comp|A ¹[ω] B.

Proof

Suppose f(t, x̄) and g(ȳ) are functions on universe A and fω(t, x̄) and gω(ȳ) are func-
tions in B such that f ¹ω fω and g ¹ω gω. Since B is closed under composition,
fω(gω(ȳ), x̄) ∈ B and it suffices to show that f(g(ȳ), x̄) ¹ω fω(gω(ȳ), x̄). Consider any
x̄, ȳ ∈ A and the following calculation finishes the proof:

ω−1 ◦ fω(gω(ω(y)), ω(x)) = ω−1 ◦ fω(ω ◦ g(y), ω(x))
= ω−1 ◦ ω ◦ f(g(y), x)
= f(g(y), x)

The first equality follows by g ¹ω gω and the second by f ¹ω fω.

¥

The following is an easy but repeatedly used lemma.

Lemma 3.9 Suppose B1 and B2 are classes of functions with universes U1 and U2, respectively,
and ω : U1 → U2 is an interpretation. Suppose O1 and O2 are sets of operations whose universes
are (F1, U1) and (F2, U2), respectively, for some F1 and F2.

If B1 ¹E,[ω]
+/− FA[B2;O2] and for every op ∈ O1 we have op ¹E,[ω]

+/− FA[B2;O2] then

FA[B1;O1] ¹E,[ω]
+/− FA[B2;O2].

Proof

We show inductively on f ∈ FA[B1;O1] that f ¹E,[ω]
+/− FA[B2;O2]. For the basic functions

B1 we are given that fact. For any other function op(f1, . . . , fk) ∈ FA[B1;O1], we induc-
tively assume f1, . . . , fk ¹E,[ω]

+/− FA[B2;O2], so by the definition of op ¹E,[ω]
+/− FA[B2;O2],

we have op(f1, . . . , fk) ¹E,[ω]
+/− FA[B2;O2].

¥
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The previous lemma demonstrates the utility of approximating an operation. The straightforward
approach to showing that some function algebra contains another (or approximates another) is to
work inductively on the particular function algebra in question. For another related claim, the
same process is carried out, typically starting from scratch. With the concept of approximating
an operation we can show once and for all the resources needed to approximate an operation and
then this fact can be re-used in different contexts (e.g. proposition 3.8 is a simple case showing
that the interpreting class only needs to be closed under composition). This technical point fits in
with our vision of developing a collection of generally applicable tools, within the context of our
method of approximation. However, in many cases, to keep the work simpler, we have not worried
about limiting the resources to the least necessary.

We will want to show how composition can be approximated in a general way (in this paper it
will be used for two special cases). The approximation will use the concept of modulus functions,
which will appear throughout the paper. These functions enforce a strong notion of continuity.
It is well-known that the functions of Computable Analysis are continuous on their domain, but
they have a stronger property of having modulus functions, which witness the continuity. We
modify the usual notion to allow the input x to function f(x) to also be input to the modulus
function, in addition to the usual “accuracy parameter” (Ko [7], for example, usually works over a
compact domain and so the modulus function for f(x) is a function m(z) with just one argument,
an accuracy parameter).

Definition 3.10

• |b̄− ā| abbreviates |b1 − a1|+ . . . + |bn − an|.
• Suppose f(x) and m(x, z) are functions in which the universe of f is contained in the universe

of m. Then m is a modulus for f if the following two conditions hold:

– m is decreasing and m(x̄, z) > 0.

– For all x̄ and ȳ in the universe of f , and z > 0 in the universe of m, |x̄− ȳ| ≤ m(x̄, z)
implies |f(x̄)− f(ȳ)| ≤ 1/z.

• A class of functions M is a modulus for the class of functions F if for any f ∈ F , there is
m ∈M such that m is a modulus for f .

The particular definition of a modulus function is motivated by the following definition.

Definition 3.11 We say a function on universe Q is continuous if it can be extended to a con-
tinuous function on universe R.

From the definitions we can conclude the following.

Proposition 3.12 If f is a Q−function which has a modulus, then f is continuous.

Now we show how the composition operation can be approximated.

Lemma 3.13 Let H and F be a classes of functions closed under composition and let B be a
bounding class.

If H ≤ B and H has a 1/B modulus then comp|H ¹1/B
+ F .

11



Proof

Suppose f(u), g(x) ∈ H (one variable for simplicity) and h(x) = f(g(x)). For r(x, y) ∈
B, we need h∗(x, ȳ) ∈ F such that h ¹1/r h∗. We will choose α1,α2 ∈ B and let
f∗, g∗ ∈ F such that f ¹1/α1 f∗ and g ¹1/α2 g∗, and define h∗ by composing them.

Suppose the modulus of f(u) is 1/m(u, z) for m ∈ B. Suppose |g(x)| ≤ b(x) for
b ∈ B. Let α1(u, x, ȳ) ∈ B such that 2r(x, ȳ) ≤ α1(u, x, ȳ). Let α2(x, ȳ) ∈ B such
that m(b(x), 2r(x, ȳ)) ≤ α2(x, ȳ). Note that α1, α2 ∈ B by the properties of bounding
classes.

Suppose |g(x) − g∗(x, ȳ)| ≤ 1/α2(x, ȳ) and |f(u) − f∗(u, x, ȳ)| ≤ 1/α1(u, x, ȳ). Let
h∗(x, ȳ) = f∗(g∗(x, ȳ), x, ȳ). Now we show h ¹1/r h∗.

|h(x)− h∗(x, ȳ)| ≤ |f(g(x))− f(g∗(x, ȳ))|+ |f(g∗(x, ȳ))− f∗(g∗(x, ȳ), x, ȳ)|
≤ 1

2r(x, ȳ)
+

1
α1(g∗(x, ȳ), x, ȳ)

≤ 1
r(x, ȳ)

Note that we obtain the second inequality by using the modulus on f and the definitions
of α1 and α2.

¥

4 The Elementary Computable Functions:
Applying Approximation

In this section we apply the ideas of approximation to reprove a result from [3], which says that
the “discrete part” of L, a set of R−functions, is exactly the elementary computable functions on
N.

Definition 4.1 (from [3]) Suppose F is a class of functions on R. We let

dp(F) = {f|N | f ∈ F and f|N has codomain N},

calling this the discrete part of F .

The key analog operation on R is the operation of obtaining a solution to a linear differential
equation.

Definition 4.2 LI is the operation which takes any g1(x̄), . . . , gn(x̄), s11(y, x̄), . . . , snn(y, x̄), and
returns h1(y, x̄) where we have the following defining equations:

h1(0, x̄) = g1(x̄)
...

hn(0, x̄) = gn(x̄)

12



∂
∂yh1(y, x̄) = s11(y, x̄)h1(y, x̄) + . . . + s1n(y, x̄)hn(y, x̄)

...
∂
∂yhn(y, x̄) = sn1(y, x̄)h1(y, x̄) + . . . + snn(y, x̄)hn(y, x̄)

Note that technically LI is not an operation in our sense because it does not have a fixed arity; we
can simply view it as a convenient way to refer to a set of operations, each having a fixed arity.
For k ∈ N, by Ck we mean the k−times continuously differentiable functions on R. The following
basic functions are all C2.

Definition 4.3 Let basicR be the following functions with universe R: 0, 1, −1, π, P, θ3, where
P is the set of all projection functions on R (note that independent of the universe, we use the
same notation for projection functions), π is the famous constant, and for any k ∈ N (k > 0),

θk(x) =
{

0, x < 0;
xk, x ≥ 0.

, a Ck−1 version of the discontinuous function which indicates whether a

number is to the left or right of zero.

The function algebra on the reals that we will now be concerned with is the following (using the
notation L from earlier papers).

Definition 4.4 Let L abbreviate the function algebra FA[basicR; comp, LI].

The goal we are now aiming for is theorem 4.26:

dp(L) = FAN.

The proof in [3] proceeds by showing the two inclusions. The inclusion “⊇” (proposition 4.8 of
[3]) is proved inductively on the construction of the functions in FAN, using the operations of L at
each step. The inclusion “⊆” (proposition 4.4 of [3]) is again proved by induction, this time on
the functions in L, but rather than using the operations of FAN at each step, a Turing Machine is
constructed, and it is shown how in elementary time an appropriately close approximation can be
carried out; of course this relies on the well-known fact that the function algebra FAN corresponds to
the elementary time computable functions. We will give an alternative proof of this inclusion using
our method of approximation. Other than using the fact that FAN contains a few useful functions
(being a well known and powerful class), the proof will proceed naturally using the operations of the
function algebra itself, without reference to the elementary computable functions. Furthermore, we
re-use the main approximation results of this section (namely corollaries 4.14 and 4.25) in proving
the main theorem of the next section.

If one were to begin thinking about a proof along these lines, an apparent problem presents itself.
A function f ∈ dp(L) is in there due to some associated construction tree (recall definition 3.5).
While f (the function associated with the root of the construction tree) is required to have natural
number values on natural number inputs, there is no such constraint on the functions associated
with other nodes in the construction tree (they may be real valued). To inductively show that f is in
FAN, requires that we deal with these non-root nodes in FAN; however, it is unclear how to deal with
real number values in FAN. The way we get around this issue is to introduce an intermediary function
algebra with universe Q. This function algebra will naturally approximate L (corollary 4.25). Then
we can naturally interpret this function algebra on Q into FAN (corollary 4.14). The theorem then
follows, using the transitivity of the approximation relation.
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The main operations of the function algebra on Q will be a kind of bounded sum (line
∑

) and
bounded product (line

∏
) on the rationals. They are defined so that they preserve continuous

functions when applied to continuous functions. This property is important for the next section,
and while not important for this section, presents little complication for it. We call the operation
a line sum because it is defined as the linearization of summation. For the definition, given a
Q−function f(y, x̄), we understand g(z, x̄) =

∑z
y=0 f(y, x̄) to be defined in the natural way for

negative z ∈ Z, e.g.
∑−2

y=0 f(y, x̄) = f(0, x̄) + f(−1, x̄) + f(−2, x̄). Furthermore, we understand
g(z, x̄) to be a function with values in Q where z ∈ Z and x̄ ∈ Q. The discussion for products is
similar.

Definition 4.5 We define operations line
∑

and line
∏

with universe Q. Suppose f(y, x̄) is a
function on universe Q.

• line
∑

(f) = Lin(
∑z

y=0 f(y, x̄); z)

(which = (1 + bzc − z)
∑bzc

y=0 f(y, x̄) + (z − bzc) ∑dze
y=0 f(y, x̄))

• line
∏

(f) = Lin(
∏z

y=0 f(y, x̄); z).

We sometimes write line
∑

(f) as line
∑z

y=0 f(y, x̄) to express how we use variables, and likewise
for line

∏
.

Definition 4.6 Let basicQ be the following functions with universe Q: 0, 1, −1, P, ∗, +, div, θ1,
where P is the set of projection functions, θ1 is understood as a function with universe Q (though

it was originally defined for R in definition 4.3), and div(x) =
{

1/x, if x ≥ 1;
1, otherwise.

Definition 4.7 Let the function algebra FA[basicQ; comp, line
∑

, line
∏

] be abbreviated by FAQ(ctn).

Notice that all the functions in this class are continuous as indicated by “ctn”. We explicitly
indicate this because in the next section we will define an extension of this function algebra which
contains discontinuous functions (it will be called FAQ(disctn)).

If it appears to you that the basic functions are redundant, you are probably correct. We should
be able to derive ∗ and + in the class, as is typically done for these functions in FAN. However, for
us the classes on the rationals are merely a means to an end, so we include possible redundancy to
simplify the technical development. We define some functions contained in FAQ(ctn).

Definition 4.8 We define some functions with universe Q.

• Let sgn(x) =





0, if x ≤ 0;
x, if 0 < x < 1;
1, if x ≥ 1.

• Let δ(x) =





1− x, 0 ≤ x ≤ 1;
1 + x, −1 ≤ x ≤ 0;
0, |x| ≥ 1.

• Let δu(x) = δ(x− u)

14



Since sgn(x) = θ1(x) − θ1(x − 1), it is in FAQ(ctn). We could continue to show various simple
functions (like δ) are in FAQ(ctn), but if we only care about the values on N, the following simple
proposition will be useful. It says in words, that FAQ(ctn) can exactly capture FAN, when restricted
to N.

Proposition 4.9 FAN ¹ FAQ(ctn)

Proof

Note that we can define cut-off subtraction in FAQ(ctn) by x . y = sgn(x − y)(x − y);
the other basic functions can likewise be evaluated, thus we have basicN ¹ FAQ(ctn).
Immediately from the definitions of line sums and line products, we have

∑
,
∏ ¹

FAQ(ctn), thus by lemma 3.9 we are done.

¥

Since we can essentially work with Z using N we will sometimes reference the previous proposition
for functions with universe Z. We can now conclude that FAQ(ctn) contains a function that looks
like δ on Z; to get exactly δ, we can linearize (recall definition 2.8), which is allowed in FAQ(ctn)
by the next lemma.

Lemma 4.10 FAQ(ctn) is closed under Lin.

Proof

Suppose f(x1, . . . , xk) is in FAQ(ctn). Note that Lin has the following property (follows
by writing out the definition):

Suppose r < k. Then Lin(Lin(f ;x1, . . . , xr);xr+1) = Lin(f ;x1, . . . , xr+1).

Due to this property it suffices to just show that Lin(f ; x1) is in FAQ(ctn). Thus we just
note that Lin(f ; x1) = line

∑x1
y=0 f(y, x2, . . . , xk)δx1(y).

¥

Now we point out a series of facts, leading to corollary 4.14, which states that FAQ(ctn) can
be interpreted in FAN. Example 2.7 in fact shows how multiplication in basicQ can be interpreted
(via λ) in FAN; the other functions of basicQ can be handled similarly, thus we have the following
lemma.

Lemma 4.11 basicQ ¹λ FAN

Lemma 4.12 line
∏ ¹λ FAN

Proof

Suppose f(y) is a function (we ignore arguments other than y) with universe Q and
h(z) =

∏bzc
y=0 f(y). Assuming we have fλ(y) ∈ FAN such that f ¹λ fλ, we will find

hλ(z) ∈ FAN such that h ¹λ hλ, i.e. h(z) = λ−1 ◦ hλ(λ(z)). To interpret line
∏

then
involves interpreting

∏dze
y=0 f(y) (which is similar to finding hλ) and then putting this
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interpretation together with hλ. Defining hλ will be similar to interpreting multiplica-
tion in example 2.7 (we will again use the functions from definition 2.6). To find the
bounded product, we will find what the top and bottom of the resulting fraction should
be, along with its sign and put this together properly.

Consider the following N−functions:

TOP(w) =
∏w

y=0 top ◦ fλ ◦ λ|N(y)

BOT(w) =
∏w

y=0 bot ◦ fλ ◦ λ|N(y)

SIGN(w) = parity{ ∑w
y=0 parity ◦ fλ ◦ λ|N(y) }

Note that
h(z) = SIGN(bzc)TOP(bzc)

BOT(bzc) ,

for z > 0 (we are ignoring the case of z < 0, which could be handled by using a function
which chooses the case depending on the sign of z). Since λ|N, fλ ∈ FAN, so are TOP,
BOT, and SIGN. Let b ∈ FAN such that b(λ(z)) = bzc, so

h(z) = SIGN(b(λ(z)))
TOP(b(λ(z)))
BOT(b(λ(z)))

.

We let hλ(u) = code(TOP(b(u)), BOT(b(u)), SIGN(b(u))) ∈ FAN, and thus hλ(λ(z)) is
the code of h(z) and λ−1 ◦ hλ(λ(z)) is as desired.

¥

The proof for sums is similar, though finding the “top” is a bit more technically involved.

Lemma 4.13 line
∑ ¹λ FAN

Corollary 4.14 FAQ(ctn) ¹λ FAN

Proof

By lemma 3.9, it suffices to show that basicQ ¹λ FAN, and that FAN interprets the 3
operations in FAQ(ctn). The last two lemmas showed that both line sums and products
can be interpreted. Proposition 3.8 shows that composition can be interpreted.

¥

The rest of the section is mostly devoted to the goal of proving corollary 4.25, which states
that we can approximate L by FAQ(ctn). Approximating the basic functions of L is relatively
straightforward, as is the following bound.

Proposition 4.15 T W ≤ FAQ(ctn).

Lemma 4.16 basicR ¹1/T W
+ FAQ(ctn)

Proof
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Except for θ3 and the constant π, all the functions and constants of basicR are extensions
of something in basicQ and so we approximate them with zero error on Q. We can
approximate θ3 with zero error since θ3 = θ1 ∗ θ1 ∗ θ1. For π we carry out a sufficiently
long Taylor series approximation, which is simulated using line

∑
and other simple

functions from FAQ(ctn); notice the importance of div to express the Taylor sum. The
necessary length of the series will be a function from T W, which we can dominate in
FAQ(ctn), by proposition 4.15.

¥

We will want to use Euler’s Method in FAQ(ctn) to approximate solutions to differential equa-
tions; to carry this out, linear recursion will be a useful tool (we begin with the definition on
N).

Definition 4.17 LR is the operation which takes any functions on universe N, g1(x̄), . . . , gn(x̄),
s11(y, x̄), . . . , snn(y, x̄), t1(y, x̄), . . . , tn(y, x̄) and returns h1(y, x̄), where we have the following equa-
tions:

h1(0, x̄) = g1(x̄)
...

hn(0, x̄) = gn(x̄)

h1(y + 1, x̄) = s1n(y, x̄)h1(y, x̄) + . . . + s1n(y, x̄)hn(y, x̄) + t1(y, x̄)
...

hn(y + 1, x̄) = sn1(y, x̄)h1(y, x̄) + . . . + snn(y, x̄)hn(y, x̄) + tn(y, x̄)

Special cases of LR yield the operations
∑

and
∏

. It is relatively straightforward to see that we
can also obtain LR with

∑
and

∏
.

Proposition 4.18 FAN is closed under LR.

We define a linearized version of linear recursion for the rationals, as we did with sums and products.

Definition 4.19 lineLR is the operation with universe Q which takes some input functions f1, f2, . . .
and returns:

h(y, x) = Lin(LR∗(f1, f2, . . .); y),

where y is the recursion variable and we understand LR∗ to be defined just like LR except that the
functions fi can have values in Q, and for y < 0 (where the result of LR would not be defined) we
simply define the result of LR∗ to be zero.

The following lemma can be seen as a kind of “lifting” of proposition 4.18 to an analogous claim
on the rationals.
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Lemma 4.20 FAQ(ctn) is closed under lineLR.

Proof

We will use the following technical claim (note that we restrict to λ|N since it is not
possible for the discontinuous function λ to be in FAQ(ctn)):

FAQ(ctn) contains extensions (to Q) of λ−1 and λ|N.

For the claim, note the following:

• λ|N ∈ FAN, so by proposition 4.9 we have an extension in FAQ(ctn).

• For λ−1, it suffices to show we can compute top and bot (recall definition 2.6).
Consider the main part of top, showing that the bijection p : N → N, defined by
p((1/2)(a + b + 1)(a + b) + a) = a can be extended to FAQ(ctn). The following
extension to Q works in FAQ(ctn):

p(z) = line
z∑

x=0

line
z∑

y=0

yδz((y + x + 1)(y + x) + y).

Now for the lemma, suppose f1, . . . , fk ∈ FAQ(ctn) and let h = lineLR(f1, . . . , fk). By
corollary 4.14, we have interpretations fλ

1 , . . . , fλ
k ∈ FAN. By proposition 4.18, we can

use LR in FAN, and show that hλ ∈ FAN and so by proposition 4.9 we have an extension of
it in FAQ(ctn). By the above claim, we have λ|N, λ−1 ∈ FAQ(ctn) and so on the naturals,
h = λ−1 ◦ hλ ◦ λ|N ∈ FAQ(ctn); to finish we linearize, allowed by proposition 4.10.

¥

To apply Euler’s Method we will need appropriate bounds on the functions used.

Definition 4.21 Suppose F is a class of differentiable functions. Then F ′ = {h′ | h ∈ F}, where
by h′ we mean that h is differentiated with respect to any one variable.

The following is proved inductively (observed in proposition 4.3 of [3]).

Proposition 4.22 L,L′ ≤ T W
The last proposition allows us to conclude the following (since if the derivative of a function is
bounded by T W, there is a 1/T W modulus).

Corollary 4.23 L has a 1/T W modulus.

Since we are concerned with LI in L, restricting our attention to LI|L is fine; in fact to prove the
next lemma, we could replace L by any class of C2 functions F satisfying F ,F ′ ≤ T W.

Lemma 4.24 LI|L ¹1/T W
+ FAQ(ctn)

Proof
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Suppose f1, f2, g1, g2 ∈ L and we use LI to define h1 via the following linear differential
equations (for ease of readability, we just consider 2 equations):

∂
∂xh1(x, ȳ) = f1(x, ȳ)h1(x, ȳ) + f2(x, ȳ)h2(x, ȳ) = F1(x, h1, h2)
∂
∂xh2(x, ȳ) = g1(x, ȳ)h1(x, ȳ) + g2(x, ȳ)h2(x, ȳ) = F2(x, h1, h2)

Suppose that 1/α(x, ȳ, z̄) ∈ 1/T W is the desired approximation accuracy, and we need
to find h∗1(x, ȳ, z̄) ∈ FAQ(ctn) such that h1 ¹1/α h1.

The function h∗1 will be defined by essentially simulating Euler’s method, using suffi-
ciently good approximations f∗1 , f∗2 , g∗1, and g∗2 of f1, f2, g1, and g2, respectively. The
simulation will be carried out on the interval [0, x], using the partition 0 = x0 < x1 <
. . . < xn = x, where |xi+1 − xi| = δ(x, ȳ, z̄) = 1/b(x, ȳ, z̄), for a function δ ∈ FAQ(ctn)
that goes to 0 quickly enough (b is a fast growing function in FAQ(ctn), larger than 1, so
that δ = div(b) ∈ FAQ(ctn)). Note that we only consider x > 0, but for x < 0, we would
be able to carry out the same procedure and we could then use a function in FAQ(ctn)
to choose the procedure, depending on the sign of x. To carry this out we use lineLR to
obtain h∗1 from the following system of equations (we drop the parameters ȳ, z̄).

h∗1(u + 1) = h∗1(u) + δ(x){f∗1 (uδ(x))h∗1(u) + f∗2 (uδ(x))h∗2(u)}
h∗2(u + 1) = h∗2(u) + δ(x){g∗1(uδ(x))h∗1(u) + g∗2(uδ(x))h∗2(u)}

Notice that we use a new variable u to keep track of the steps in Euler’s Method. The
function δ keeps x as its input since to obtain the desired accuracy, the partition depends
on the final point, x. The other functions have appropriate parameters substituted, so
that the value of h∗1(u) is the approximation of h1(xu). Thus h∗1(x · b(x, ȳ, z̄)) approx-
imates h1(x). Note that the arithmetic functions +, ∗, and div are sufficient to define
these equations (in particular, div is essential).

To check that the error really is bounded by 1/T W, we follow the standard error analysis
for Euler’s method. Consider some fixed x, ȳ, z̄ and the partition of [0, x] discussed
above. In the usual way we write

h1(xi+1) = h1(xi) + δF1(xi, h1, h2) + δτ

h2(xi+1) = h2(xi) + δF2(xi, h1, h2) + δτ,

where the local error τ can be bound by δd, where d is a bound on h′′1(x) and h′′2(x).
Since the fi and gi from which h1 and h2 are defined have T W bounds, so do h′′1(x) and
h′′2(x). Because F1 and F2 are defined in terms of fi and gi with T W bounds, there is
L(x, ȳ, z̄) ∈ T W which is a Lipshitz function for F1 and F2, i.e. for u ∈ [0, x], we have
|F1(u, h

(2)
1 , h

(2)
2 )− F1(u, h

(1)
1 , h

(1)
2 )| ≤ L(|h(2)

1 − h
(1)
1 |+ |h(2)

2 − h
(1)
2 |), and likewise for F2.

The global error can then be calculated recursively in the usual way (i.e. the error ei+1

at step i + 1 is calculated in terms of the error at step i, ei = |h1(xi) − h∗1(i)|). We
arrive at the error bound of exL(|e0| + δd + r), where r is the error incurred by using
the approximation to the derivative at each step in Euler’s method, as opposed to the
exact derivative (i.e. we use f∗i and g∗i rather than fi and gi to define the h∗i ). We now
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see that we can make this error less than 1/α because starting with T W bounds on L
and d, we can choose arbitrarily good 1/T W bounds on r, δ, and |e0|.
¥

Corollary 4.25 L ¹1/T W
+ FAQ(ctn)

Proof

By lemma 3.9, it suffices to note that basicR ¹1/T W
+ FAQ(ctn) (by lemma 4.16), and that

FAQ(ctn) approximates the 2 operations LI|L and comp|L. Lemma 4.24 shows we can
approximate LI|L. For composition, we can apply lemma 3.13, since we know L ≤ T W
(proposition 4.22) and L has a 1/T W modulus (corollary 4.23) .

¥

We can now finish the alternative proof of the theorem from [3].

Theorem 4.26 dp(L) = FAN

Proof

• ⊇: This direction is carried out inductively in proposition 4.8 of [3] (we make no
modification to the existing proof).

• ⊆: By corollaries 4.25 and 4.14, respectively, we have:

L ¹1/T W
+ FAQ(ctn) ¹λ FAN.

By transitivity we have L ¹1/T W,λ
+ FAN. Let f(x) ∈ dp(L), and take any α(x, y) ∈

1/T W, so we have f∗(x, y) ∈ FAN such that f ¹α,λ f∗. By fixing y to a large
enough number, we have α(x, y) ≤ 1/3 for all x and can obtain h(u) ∈ FAN
such that for x ∈ N, |f(x) − λ−1 ◦ h ◦ λ(x)| ≤ 1/3. Since f(x) ∈ N for x ∈ N,
f(x) = nearest(h(λ(x))) ∈ FAN, where nearest(a) returns the closest natural to the
rational coded by a. The last function is in FAN because both nearest and λ|N are
in FAN.

¥

Consider again our alternative proof of dp(L) ⊆ FAN. Despite the fact that we were liberal in
assuming that FAN contained certain functions, our approach allowed us to work more naturally
with the function algebra itself, avoiding the characterization of FAN as the elementary computable
functions. In fact our methods could be used in a natural way for function algebras which do not
have any known corresponding computational classes, highlighting a particular advantage of our
approach when working with function algebras.

5 Connection to Computable Analysis: Applying Lifting

We will begin by introducing the technical framework, and then we discuss explicitly the idea of
lifting in the proofs of the theorems. We will use standard notions from Computable Analysis, as
described in Ker-I Ko [7] and Weihrauch [12], though following more closely the former. For the
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most part Ker-I Ko restricts his attention to functions defined on a finite interval, while we consider
functions defined on all of R. Thus in this work, the main difference is that a number of notions
will depend on both the input value to the function, as well as the usual accuracy parameter (as
in, for example, the case of the modulus functions). We will be concerned with the elementary
computable functions over N,Q, and R.

Let E(N) be the usual elementary computable functions on N, defined via Turing Machines.
By E(R) we mean the total R−functions f(x) which can be computed to accuracy 1/n (n ≥ 1)
in time t(x, n), where t ∈ T W. The real input x is given by an oracle which gives x to any
demanded precision as a dyadic rational (the set of dyadic rationals is denoted D); the precision
1/n is given by putting n on the input tape (we call this the accuracy input). Note that we use
the approximation of the form 1/n rather than 1/2n, since for elementary computable functions
such distinctions have no effect. For Q we will define a class of functions E(Q) which essentially
treats rationals as pairs of integers. The following definitions of a kind of denominator, numerator,
and sign function will be convenient.

Definition 5.1 We define functions from Q to Z.

• For a rational (−1)sa/b presented in lowest terms, let:

D((−1)sa/b) = (−1)sb

N((−1)sa/b) = (−1)sa

(note that D(0) = N(0) = 0)

• Let sign(x) =
{

0, if x ≤ 0;
1, if x > 0.

, a discontinuous version of sgn from definition 4.8.

A Q−function f(x) is in E(Q) if there is an elementary time Turing Machine on N that computes
it in the following sense: On input x ∈ Q the machine is given the triple (|N(x)|, |D(x)|, sign(x)),
and it computes the triple (|N(f(x))|, |D(f(x))|, sign(f(x))); note that the time allowed depends on
the length of the representation of x as a triple of natural numbers (for a sequence of inputs x we
use a sequence of triples). Note that E(R) contains only continuous functions, while E(Q) contains
discontinuous functions (recall definition 3.11 and the surrounding discussion). In general, if a class
of functions contains only continuous functions we call it a continuous class and otherwise we
call it a discontinuous class.

We introduce the technique of lifting in this section and apply it to extend a result of Bournez
and Hainry [1]. The lifting can be viewed as a two step process which is pictured in the figure on
page 24. We begin with the classic result of Grzegorczyk stating that E(N) = FAN. The first step
is to lift this to an equality on the rationals, for which we will use an extension of FAQ(ctn) to a
discontinuous class FAQ(disctn). It is defined by simply adding D to the basic functions of FAQ(ctn)
(we indicate this addition to the basic functions by placing D after the existing basic functions with
a comma separating them).

Definition 5.2 We abbreviate FA[basicQ, D; comp, line
∑

, line
∏

] by FAQ(disctn).

Using D, and the easily derived N, the class FAQ(disctn) can break apart a rational into a triple
of naturals and then work with these naturals in an elementary computable manner, thus it
is much more powerful than FAQ(ctn). Recalling proposition 4.9, we can immediately obtain
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FAN ¹ FAQ(disctn), and will in fact reference that proposition with respect to either FAQ(ctn)
or FAQ(disctn). Also, by noting that D ¹λ FAN, we can extend corollary 4.14 to FAQ(disctn), i.e.
FAQ(disctn) ¹λ FAN. Immediate from the definitions we can conclude the following.

Proposition 5.3 E(N) ¹ E(Q) and E(Q) ¹λ E(N).

The relationships between the function classes on the naturals and the (discontinuous) ones on the
rationals are pictured in the top of the figure. Note that E(Q) ≈λ FAQ(disctn) follows by transitivity
using the relationships pictured in the figure. We can use this fact to conclude the following.

Lemma 5.4 E(Q) = FAQ(disctn).

Proof

We will use the fact established above: E(Q) ≈λ FAQ(disctn). We now show the two
inclusions for the equality: E(Q) = FAQ(disctn).

• (⊆) By the fact we have E(Q) ¹λ FAQ(disctn). Using D and N, we can conclude
that λ and λ−1 are in FAQ(disctn). We obtain E(Q) ⊆ FAQ(disctn), because for
any f(x) ∈ E(Q), we have fλ ∈ FAQ(disctn) such that f(x) = λ−1 ◦ fλ(λ(x)), and
λ−1 ◦ fλ(λ(x)) ∈ FAQ(disctn), by closure under composition.

• (⊇) By the fact we have FAQ(disctn) ¹λ E(Q). We have λ, λ−1 ∈ E(Q), so by the
same reasoning as in the previous inclusion we have FAQ(disctn) ⊆ E(Q).

¥

Note that the crucial place (and only place) where the previous proof would break down for FAQ(ctn)
is at the point where we claim λ ∈ FAQ(disctn); this discontinuous function cannot be in FAQ(ctn).
Thus we have completed the first and easier step of the lifting, showing how to conclude E(Q) =
FAQ(disctn) from E(N) = FAN.

In the second step of the lifting, the main part is to show how to pass from E(Q) = FAQ(disctn)
to the following theorem.

Theorem 5.5 E(R) ≈1/T W
+ L

Note that the theorem follows by transitivity once we have established the relationships pictured
in the lower part of the figure (the approximations appearing in the figure will be proved in the
next section). Note that in the figure we pass through classes with universe Q, so transitivity alone
yields the theorem only on Q; however, since L and E(R) are classes of continuous functions we
obtain the approximation for all of R. As indicated in the figure, for the pairs E(Q) and E(R),
and FAQ(disctn) and FAQ(ctn), the approximation is true only for functions with a 1/T W modulus.
Those approximations are an important and involved part of the lifting process, showing that we
can in fact connect the continuous and discontinuous classes of functions simply by restricting the
discontinuous classes to their functions which have a 1/T W modulus. Section 6 is devoted to the
technical work of proving these relationships.

To obtain a class of functions which actually equals E(R) we will add a kind of limit operation
to L (the idea of using a limit operation goes back to work from Costa and Mycka, see [9] and [10]).
We will show that two different kinds of limit operations suffice and then at the end of this section
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we point out that for our purposes we could in fact be quite flexible in choosing our limit operation.
We start with a limit operation that resembles LIMω (definition 8 from [1]), and, as discussed at
the end of this section, is equivalent for our purposes.

Definition 5.6 dLIM is the operation which takes a function function f(t, x̄) and if | ∂
∂tf | ≤ 1/2t

for t ≥ 1, it returns F (x̄) = limt→∞f(t, x̄).

Note that the derivative condition guarantees the existence of the limit (see the end of the proof of
theorem 5.8 in the next section). In [1], the function algebra L∗ is defined as the function algebra L
augmented by a limit operation (one more restrictive than LIMω). They then show (in theorem 1)
that E(R) = L∗ for certain C2 functions. Instead of L∗, we will consider L(dLIM), where in general
by F(op), for a class of functions F and an operation op, we mean the set of functions F together
with those that result from a single application of op to a function in F . With this caveat and the
fact that we only consider total functions on R, we prove, in theorem 5.8, the following, which is
essentially an extension of theorem 1 from [1]:

E(R) = L(dLIM).

While we should be able to obtain exactly the result of [1], with a little more technical work, it
seems more interesting to focus on this simple modification. In fact, we prove what they call a
kind of “normal form” (as in proposition 17 of [1]), in which we only need one application of limits.
Furthermore, our result does not require a restriction to C2 functions. In the conclusion of this
section we discuss further reasons for choosing to focus on this simpler form. Our work will in fact
use a different limit operation, one which is only concerned with closeness (again, we will discuss
at the end of this section how the limit can be made quite a bit more flexible without any changes
to the results).

Definition 5.7 LIM is the operation which takes a function f(t, x̄) and returns F (x̄) = limt→∞f(t, x̄)
if the limit exists and F ¹1/t f , for t ≥ 1.

We now state the main theorem (proved in the next section).

Theorem 5.8 E(R) = L(LIM) = L(dLIM)

To understand an important aspect of our alternative proof, consider their method for proving
E(R) = L∗ (restricted to certain functions). They prove the more involved inclusion, E(R) ⊆ L∗,
by showing how to simulate Turing Machines in L∗. Our proof of these results will follow without
another Turing Machine simulation (i.e. nothing beyond the original one used to show E(N) = FAN).
As discussed, we use a lifting process which depends on showing a series of approximations. Though
ultimately our proofs may not be simpler than the proofs of [1], we believe this work offers a nice
perspective on these problems, as well as providing tools that should be more generally applicable.

We now discuss some of the promised issues with limits. The limits could be strengthened
or weakened in various ways, preserving the same set of functions when L is closed under such
operations. To strengthen the limits we could for instance (following the form of the limits from
[1]) only require F (x̄) ¹ε f(t, x̄), where ε(t, x̄) = K(x̄)/α(t, x̄), for some K ∈ T W and α(t, x̄) =
log ◦ . . . ◦ log(t + x̄), and we could require this only need hold for |t| ≥ s(x̄), for s ∈ T W. If
L were closed under such a limit it would yield the same set of functions as closing under LIM.
The reason for this is simply that given a function f(t, x̄) ∈ L converging (as t → ∞) to F (x̄)
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Figure 1: Approximations used for lifting.
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in the looser sense, we could find a function which converged in the sense of LIM, simply by
taking f(α(t, x̄), x̄) ∈ L for α(t, x̄) sufficiently fast. We could even allow repeated use of limits
(though not allowing other operations after a limit). To weaken the limit we could define a kind of
completion operation, putting F (x̄) in the completion of L if for every α(t, x̄) ∈ T W, there were
a f(t, x̄) ∈ L such that F ¹1/α f (in which case limt→∞f(t, x̄) = F (x̄)). This is again equivalent
to LIM, by using the same idea of composing in fast growing functions. For dLIM the situation is
similar with the caveat that the function bounding the derivative, say b(t, x̄), needs to converge
to zero quickly enough as t → ∞ (basically a condition like

∑
t∈N b(t, x̄) < ∞ would suffice, and

using b(t, x̄) = 1/2t is a simple approach; this point follows by inspecting the end of the proof
of theorem 5.8 in the next section). Furthermore, for dLIM, we can not simply compose in fast
functions because the derivative would not be properly bounded, but we can use lemma 6.2, which
allows us to transform a converging function (which could have a badly behaved derivative) into a
function that converges with a properly bounded derivative. Note in particular that we can obtain
the claim E(R) = L(LIMω), essentially theorem 1 of [1].

This latter idea of completion highlights what is really going on. The fundamental point is
that L in some sense approximates E(R) (e.g. theorem 5.5), so that any sufficiently well behaved
way of completing it yields E(R). As seen in the above discussion the manner in which L can be
completed is quite flexible. The function algebra L∗ of [1] is a good first step towards finding a
function algebra for E(R), but in a sense it is not a “proper” function algebra. Their limit operation
can be interleaved with the other operations of the function algebra as one would like, but they go
on to prove a “normalization” theorem, showing that a single use of the limit operation suffices. In
a more “proper” function algebra we would expect the necessary interleaving of the operations in
order to obtain all the functions of the class. From this discussion we justify our ignoring the issue
of showing how the limit operation can be used freely in the function algebra. However the initial
step of [1] leads to an interesting, though not precisely stated question.

Question 5.9 Are there natural and genuine operations that can be added to the function algebra
L (or perhaps to a different function algebra) so that the resulting functions are exactly E(R),
where by “genuine” we mean that it really makes sense to interleave these operations with the other
operations of the function algebra?

We remark that the idea of completion is at the core of the notion of “converging computation”
for continuous-time models like the GPAC (or, equivalently, systems of polynomial differential
equations) explored in [5] and [11]. The main result in [11] could be stated as an approximation
result for the real computable functions. The equivalence proved in that paper between GPAC-
computability and computability in the sense of recursive analysis follows from the fact that the
definition of GPAC-computability encapsulates the idea of completion. The connections above
suggest that approximation, lifting and completion should allow us to unify apparently distinct
notions of computability over the reals.

6 Connection to Computable Analysis: Technical Discussion

The rest of the paper is devoted to proving the technical lemmas and the properties indicated in
the figure of the previous section, as well as providing a proof of theorem 5.8.

See [3] for the details on the following technical lemma (in particular, see lemma 4.6 and 4.7 of
[3] for a discussion of the functions behaving like σ and step).
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Lemma 6.1 L contains the functions +, ∗, and sin, as well as functions step and σ with the
following properties:

• σ(t) = 0 for t ≤ 0 and σ(t) = 1, for t ≥ 1.

• step(t) = btc if t ∈ [btc, btc+ 1/2], and step is increasing.

Thus we will freely use such functions in L, using the names σ and step to refer to functions in L
with the above properties.

The next lemma shows how to transform a converging function of L into one that converges
with a well-behaved derivative.

Lemma 6.2 Suppose f(t, x̄) ∈ L such that limt→∞ f(t, x̄) = F (x̄) and F ¹1/t f . For any α(t, x̄) ∈
T W there is h(t, x̄) ∈ L such that limt→∞ h(t, x̄) = F (x̄) and | ∂

∂th| ≤ 1/α.

Proof

Let α∗(t, x̄) be a sufficiently fast function in L (discussed later). Let g(t, x̄) = f(α∗(t, x̄), x̄),
so F ¹1/α∗ g. Let G(t, x̄) = g(step(t), x̄), so G(t, x̄) = g(btc, x̄) for t ∈ [btc, btc + 1/2].
Let H(t, x̄) = σ(2t + 1/2)c3θ3(sin 2πt)G(t, x̄), where c3 is a constant we can define in
L, which makes

∫ 1/2
0 c3θ3(sin 2πt) = 1 (see proofs of lemma 4.6 and 4.7 of [3]). The

particularly relevant properties of H are as follows.

1. H(t, x̄) = 0 for −1 ≤ t ≤ 0 (this property is the only reason for the function
σ(2t + 1/2), which equals 1 for t ≥ 0 and so we mostly ignore).

2. H(t, x̄) = 0 for t ∈ [btc+ 1/2, btc+ 1] for t ≥ 0.

3.
∫ btc+1/2
btc H(u, x̄)du = g(btc, x̄), for t ≥ 0.

Let h(t, x̄) =
∫ t
0 H(u, x̄) −H(u − 1, x̄) du, which is in L because H is, and integration

is a special case of LI.

Now we check that h works as required. For the derivative condition consider t ≥ 0 and
note that:

| ∂
∂t

h| = |H(t, x̄)−H(t− 1, x̄)|
≤ c3|G(t, x̄)−G(t− 1, x̄)|

By the definition of G and the fact that the function step is monotone, the last difference
can be bounded by maxbtc−1≤t1,t2≤btc+1{ c3|g(t1, x̄) − g(t2, x̄)| }, so by choosing α∗

sufficiently large (around 2α), since F ¹1/α∗ g, we can get | ∂
∂th| ≤ 1/α.

To show that limt→∞ h(t, x̄) = F (x̄), it suffices to show that h(t, x̄) is in-between g(btc−
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1, x̄) and g(btc, x̄), for t ≥ 1. Note that (leaving out x̄, and for t ≥ 1):

h(t) =
∫ t

0
H(u)−H(u− 1)

=
∫ t

t−1
H(u)

=
∫ btc

btc−1
H(u)−

∫ t−1

btc−1
H(u) +

∫ t

btc
H(u)

= g(btc − 1, x̄)− g(btc − 1, x̄)
∫ t−1

btc−1
c3θ3(sin 2πu) + g(btc, x̄)

∫ t

btc
c3θ3(sin 2πu)

= (1− γ(t))g(btc − 1, x̄) + γ(t)g(btc, x̄),

where γ(t) =
∫ t−1
btc−1 c3θ3(sin 2πu) =

∫ t
btc c3θ3(sin 2πu). Thus h(t, x̄) is in-between g(btc−

1, x̄) and g(btc, x̄) as desired. For the second equality, we use property 1 of H, along
with basic properties of integrals. The second to last equality follows by the definition
of G along with properties 2 and 3 of H.

¥

Now we prove the main theorem (theorem 5.8) from the last section:

E(R) = L(LIM) = L(dLIM)

Proof

We will use the following fact:

E(R)(LIM) = E(R)

First we prove this fact. Suppose f(t, x̄) ∈ E(R) and F (x̄) = limt→∞ f(t, x̄), with
F ¹1/t f . We need to show F ∈ E(R). Let Mx̄,t(n) be the machine that approximates
f(t, x̄) to 1/n accuracy, writing the oracle inputs x̄, t as superscripts. Let Nx̄(n) be
defined by Mx̄,2n(2n), using accuracy input 2n as the oracle input for t. Thus |f(2n, x̄)−
Nx̄(n)| ≤ 1/2n and |F (x̄)− f(2n, x̄)| ≤ 1/2n, so |F (x̄)−Nx̄(n)| ≤ 1/n, and F ∈ E(R).

Now consider the first equality E(R) = L(LIM). By theorem 5.5 we have the approxi-
mation E(R) ≈1/T W

+ L, which we use to show both inclusions of the first equality.

• ⊆: Consider f(x̄) ∈ E(R) and let f∗(t, x̄) ∈ L such that f ¹1/t f∗. Thus f(x̄) =
limt→∞ f∗(t, x̄) ∈ L(LIM).

• ⊇: Consider f(x̄) ∈ L and let f∗(t, x̄) ∈ E(R) such that f ¹1/t f∗. Thus f(x̄) =
limt→∞ f∗(t, x̄) ∈ E(R)(LIM) = E(R), the last equality holding by the above fact.
Thus L ⊆ E(R), and so L(LIM) ⊆ E(R)(LIM) = E(R).

Consider the second equality L(LIM) = L(dLIM). We show both inclusions.

• ⊆: Suppose F (x̄) = limt→∞ f(t, x̄) for f ∈ L, and F ¹1/t f . To show F ∈ L(dLIM)
we need an h(u, x̄) ∈ L such that limu→∞ h(u, x̄) = F (x̄) and | ∂

∂uh| ≤ 1/2u; such
an h is given by lemma 6.2.
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• ⊇: Suppose f(t, x̄) is such that | ∂
∂tf | ≤ 1/2t. From the derivative condition we can

conclude that |f(t, x̄)− f(t0, x̄)| ≤ 1/2t0 , for t0 ≤ t ≤ t0 + 1, and thus

F |f(t, x̄)− f(t0, x̄)| ≤ 1/2t0 + 1/2t0+1 + . . . ≤ 1/2t0−1, for t ≥ t0.

Thus, for fixed x̄, limt→∞ f(t, x̄) exists and we call this limit F (x̄). To finish, it
suffices to show that |F (x̄)− f(t, x̄)| ≤ 1/2t−2 (which is ≤ 1/t for t ≥ 4). To show
this, assume for sake of contradiction that there are t0, x̄ such that |F (x̄)−f(t, x̄)| >
1/2t0−2. For ease of discussion, assume f(t0, x̄) < F (x̄). By condition F, for t > t0,

f(t, x̄) ≤ f(t0, x̄) + 1/2t0−1 ≤ F (x̄)− 1/2t0−1,

which contradicts the fact that limt→∞ f(t, x̄) = F (x̄).

¥

Definition 6.3 For functions f(x, ȳ) and g(x, ȳ), and a ∈ Q such that f(a, ȳ) = g(a, ȳ), we define

the operation h(x, ȳ) = mergea(f, g) so that h(x, ȳ) =
{

f(x, ȳ), if x ≤ a;
g(x, ȳ), if x > a.

Lemma 6.4 Let F be the set of R−functions with a 1/T W−modulus. For any a ∈ Q,

(mergea)|F ¹1/T W
+ L

Proof

Let f(x, ȳ) and g(x, ȳ) be functions with a 1/T W−modulus, such that f(a, ȳ) = g(a, ȳ),
and let h(x, ȳ) = mergea(f, g). Supposing f∗(x, ȳ, z̄) and g∗(x, ȳ, z̄) 1/T W approximate
f and g, respectively, we define h∗(x, ȳ, z̄) that 1/T W approximates h. We define h∗

by a convex combination of f∗ and g∗ given by h∗(x, ȳ, z̄) = (1− ca(x, ȳ, z̄))f∗(x, ȳ, z̄)+
ca(x, ȳ, z̄)g∗(x, ȳ, z̄), where ca(x, ȳ, z̄) = 0 for x ≤ a, ca(x, ȳ, z̄) = 1 for x ≥ a′ > a and
ca increases with x on [a, a′], where a′ will be defined so it is just a bit bigger than a.
The idea is to define ca in L such that h ¹1/T W

+ h∗.

We define ca(x, ȳ, z̄) = σ(M(x, ȳ, z̄)θ3(x − a)), where M is a fast growing function in
T W, which we easily dominate in L. It is easy to check that ca behaves as indicated
above and, therefore h∗ = f∗ or h∗ = g∗ for x ≤ a and x ≥ a′, respectively. Moreover,
we can adjust |a′ − a| with M so that h∗ works on [a, a′] too. To see why, first note
that by the definition of ca, for x ∈ [a, a′] we have that h∗(x, ȳ, z̄) is between f∗(a, ȳ, z̄)
and g∗(a′, ȳ, z̄). We can bound |f∗(a, ȳ, z̄) − g∗(a′, ȳ, z̄)| freely in 1/T W, because we
can freely bound |f(a, ȳ)−f∗(a, ȳ, z̄)|, |g(a′, ȳ)−g∗(a′, ȳ, z̄)|, and |f(a, ȳ)−g(a′, ȳ)|, the
latter bound following from the modulus condition on g.

¥

The next important technical lemma shows that we can approximate linearizations.

Lemma 6.5 Lin ¹1/T W
+ L

Proof
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Suppose f(x, ȳ) is some R−function and α(x, ȳ, z̄) ∈ T W, and let L(x, ȳ) = Lin(f(x, ȳ);x)
(linearizing with respect to more variables follows). We will describe an L∗(x, ȳ, z̄) such
that L ¹1/α L∗, using f∗(x, ȳ, z̄) such that f ¹1/β f∗ and the extra function u(x, z̄),
where β(x, ȳ, z̄) ∈ T W; at the end both u and β will be chosen large enough in T W to
get the 1/α approximation.

For simplicity we drop the argument ȳ in the proof and we consider x ≥ 0. Consider the
piecewise constant function ∆(x) = f(bxc + 1) − f(bxc) which is the slope of L(x) for
non integer x. ∆ is discontinuous, so instead we develop a continuous “step” function
S which will behave like ∆(x). This is done in three steps. Firstly, we define with
linear integration a pair of functions y1, y2 that approximate f∗(bxc) and f∗(bxc − 1),
respectively on [bxc + 1

2 , bxc + 1] and [bxc, bxc + 1
2 ], respectively. Then, we use y1, y2

to define new functions S1 and S2 that similarly approximate ∆(bxc). Finally, S is
given by a convex combination of S1 and S2. Having S, we define h as the solution of
∂
∂xh(x, u) = S(x, u) with initial condition h(0, u) = f∗(0), where the new parameter u

controls the error of the approximation. Finally, a function L∗ such that L ¹1/α L∗ is
given by L∗(x, z̄) = h(x, u(x, z̄)) where u is an appropriate increasing function of x and
z̄.

Then F (x) = f∗(step(x)) = f∗(bxc) for x ∈ [bxc, bxc + 1
2 ]. We define y1, y2 with the

following system of linear differential equations

∂
∂xy1(x, u) = (F (x)− y1) θ3(sin 2πx) u
∂
∂xy2(x, u) = (y1 − y2) θ3(− sin 2πx) u

and initial condition y1(0, u) = y2(0, u) = 0. The equations above can be explicitly
solved by separating variables. For x ∈ [bxc+ 1

2 , bxc+ 1], the error |y1(x, u)− f∗(bxc)|
is bounded by

e(bxc, u) = exp{ −u

∫ bxc+1/2

bxc
sin3(2πt)dt }

This can be freely bounded in 1/T W adjusting u. It is easy to check that y2 behaves
similarly, with a 1/2 delay. Hence, S1(x, u) = y2(x + 2, u)− y2(x + 1, u) and S2(x, u) =
y1(x + 1, u) − y1(x, u) approximate ∆(bxc) respectively on [bxc, bxc + 1

2 ] and [bxc +
1
2 , bxc+ 1] with an error bounded by 2e(bxc, u).

Consider now the convex combination S(x, u) = λ(x, u)S1(x, u) + (1− λ(x, u))S2(x, u),
where λ(x, u) = σ(u θ3(sin 2πx)) is a function with period 1 whose values range over
[0, 1]. More precisely, there is a function εu which decreases to zero as u increases,
such that λ can be described by its behavior on the following intervals (n ∈ N), which
essentially break up each interval [n, n + 1] into its left half IL, its right half IR, and
two small pieces:

In
L = [n + εu, n + 1

2 − εu], In
ε = [n− εu, n + εu],

In
R = [n + 1

2 + εu, n + 1− εu], Jn
ε = [n + 1

2 − εu, n + 1
2 + εu].

We have that λ(x, u) = 1 for x ∈ I
bxc
L , λ(x, u) = 0 for x ∈ I

bxc
R , and λ is monotone on

I
bxc
ε and on J

bxc
ε .
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Given S, we define h(x, u) = f∗(0)+
∫ x
0 S(t, u)dt. The total error |h(x, u)−L(x)| can be

broken in two parts, one on X = ∪dxen=0(I
n
L∪In

R), and the other one on Xε = ∪dxen=0(I
n
ε ∪Jn

ε ).
Then,

|h(x, u)− L(x)| ≤ ∫
X S(x, u)−∆(x) dx +

∫
Xε

S(x, u)−∆(x) dx

< Σdxen=02 e(n, u)(2/β(n)) + Σdxen=0εu∆(n)(2/β(n))

The (2/β(n)) terms appear because S in fact approximates f∗(bxc + 1) − f∗(bxc),
which approximates ∆(x) = f(bxc + 1) − f(bxc) to 2/β(bxc) accuracy. Both terms
decrease with u and β. In particular, the second term can be bounded by choosing β
sufficiently large and u(x, z̄) sufficiently large to make εu sufficiently small in 1/T W.
Hence, there is are large enough u(x, z̄) in L and β ∈ T W such that we can freely bound
|h(x, u(x, z̄))− L(x)| in 1/T W. Therefore, L∗(x, z̄) = h(x, u(x, z̄)) satisfies L ¹1/α L∗.

¥
The next proposition follows by a small calculation; we write [u] in a statement to indicate that

it holds for either buc or due in place of [u].

Proposition 6.6 Given r(x, w̄) ∈ T W there is r∗(x, w̄) ∈ T W such that for any R(x, w̄) ≥
r∗(x, w̄), we have

|x− [R(x, w̄)x]
[R(x, w̄)]

| ≤ 1
r(x, w̄)

.

The following lemma makes the basic connection between the two models of computation on
Turing Machines, the Computable Analysis model and the discrete model.

Lemma 6.7 E(R) ≈1/T W
+ {f ∈ E(Q) | f has a modulus in 1/T W}.

Proof

We prove the two approximate inclusions.

• (º1/T W
+ ) We prove the stronger exact approximation (“ º”), that is we show that

for f(x) ∈ E(Q) (we consider just one variable for simplicity), with a modulus
1/m(x, z) ∈ 1/T W, there is f∗(x) ∈ E(R) such that f(x) = f∗(x) for x ∈ Q. Let
M be the Turing Machine which computes f where the input x ∈ Q is given as a
triple of natural numbers. Let f∗ be the unique continuous extension of f to R.
We design a Turing Machine N to put f∗ in E(R). N has an oracle for x and
an accuracy input z. First N computes m(x∗, z), where x∗ is a number such
that x ≤ x∗ (easily obtained by querying for close enough approximation to x
and then adding one). N puts m(x∗, z) on the query tape to get some y ∈ D
such that |x − y| ≤ 1/m(x∗, z) ≤ 1/m(x, z) (the last inequality holds since func-
tions in error classes decrease). Also note that y is a dyadic of length ≤ m(x∗, z)
(by usual definitions in Computable Analysis, see [7], definition 2.1, requirement
“prec(φ(n)) = n”) and so for y = p/q, we have p, q ≤ m(x∗, z). Now N simply runs
M on (p, q), thus outputing exactly f(y) (we ignore the sign of y for simplicity),
and due to the modulus condition we know that |f(x)−f(y)| ≤ 1/z. N runs within
T W time in x and z because the length of the p and q are larger by at most a
function in T W and M ’s running time is bounded by a function in T W.
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• (¹1/T W
+ ) Let f(x) ∈ E(R), and let α(x, y) ∈ T W, and we need f∗(x, y) ∈ E(Q)

such that f ¹1/α f∗ and f∗ has a modulus in 1/T W. Let M be the Turing
Machine that computes f in the Computable Analysis sense of approximation.
Thus M has an oracle tape which gives approximations of x, and an input tape for
the accuracy input. We will design a Turing Machine N which takes x, y ∈ Q as
input (where each rational is given exactly as a triple of natural numbers); f∗(x, y)
will be the function computed by N. To obtain the condition f ¹1/α f∗ alone would
be straightforward. We could define N in terms of M, by inputing the the desired
accuracy, dα(x, y)e, to the machine M, and use the exact x as the oracle to M. This
is roughly how N will in fact be defined, but guaranteeing the modulus condition
will require some care and is the reason for complicating the definition of N. For
ease of exposition, suppose the inputs (to machine N) x, y are both of length 1, so
we write them as x and y. Let t(x, n) ∈ T W be the largest dyadic number that can
be written down by M given oracle and accuracy inputs of x and n, respectively
(i.e. about 2 raised to the time bound on the machine).
First we compute α, t ∈ T W exactly, since by definition they are just linearizations
of functions that we can compute on N. We also calculate τ(x, y) = t(x, 1+α(x, y)),
and let (by proposition 6.6) τ∗(x, ȳ) ∈ T W be sufficiently large so that the 4
rationals of the form [τ∗x]/[τ∗] are all within 1/τ of x. Now we will define a
function h(u1, u2, u3) on N, taking on values in Q:

Run M with accuracy input u1, using u2/u3 as its oracle. When we say to
use u3/u2 as the oracle we mean that we consider the binary expansion of
u3/u2 and whenever some accuracy is asked of the oracle, exactly enough
bits of this expansion are given. Define h(u1, u2, u3) to be the output of
this run of M.

Consider the linearization ĥ(u1, u2, u3) of h (recall definition 2.8). We define
N(x, y) = ĥ(1 + α(x, y), xτ∗(x, y), τ∗(x, y)). It is continuous because it is the
result of composing continuous functions. Furthermore this function has a 1/T W
modulus because it is the result of composing functions that have both a 1/T W
modulus and T W bounds (this holds by reasoning similar to that in the proof
of lemma 3.13). It is left to check that it operates as required, that is that
|f(x) − N(x, y)| ≤ 1/α(x, y). By proposition 2.9, it suffices to note that all of
the 23 versions of h (used in the definition of N) on Z are within 1/α(x, y) of f(x).
This is true because h runs M, and the following two points hold concerning this
run, following the definition of N. First, M is given a sufficiently large accuracy
parameter 1 + α, i.e. both b1 + αc and d1 + αe are at least as big as α. Second,
M uses an oracle for x that is good enough, meaning that whenever M asks for x
to some accuracy, it gets something that is that accurate. Since M cannot write
down numbers larger than τ , it can only demand x to an accuracy at best 1/τ . By
the the definition of h, we picked a number as the oracle that was this close to x
(i.e. any of the four [τ∗x]/[τ∗]).

¥

To relate FAQ(disctn) and FAQ(ctn) will use some technical lemmas. The next important techni-
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cal lemma relates to the syntactic structure of the function algebra (i.e. recall the construction trees
of definition 3.5) and is sensitive to the exact definition of the function algebra (i.e. other function
algebras which yield the same functions in the end, might have the wrong syntactic property).

Lemma 6.8 For every f(x) ∈ FAQ(disctn), there is a construction tree for f in which D is only
applied to variables.

Proof

It suffices to show we can push D into any of the basic functions and past any of
the operations of FAQ(disctn). First we discuss some useful functions. Recall the gcd
function on N and also consider the function bx/yc on N, where we let bx/0c = 0
for any x ∈ N; we will use these functions on Z, requiring gcd to always be non-
negative. By proposition 4.9, FAQ(ctn) contains extensions of these functions to Q (we
use the same names for the extensions, only caring about their behavior on Z). We
also consider the two discontinuous functions, N and sign (recall definition 5.1). We can
define sign in FAQ(disctn) in such a way that D is only applied to variables, as follows:
sign(x) = sgn(θ1(D(x))). Likewise, N(x) = |x|D(x). We now show how to push D past
the basic functions:

1. D(θ1(x)) = θ1(D(x))

2. D(D(x)) =





0, if x = 0;
1, if x > 0;
−1, if x < 0.

= sign(x)− sign(−x)

3. D(div(x)) =
{

x, if x ≥ 1;
1, if x < 1.

= 1 + θ1(x− 1)

4.

D(xy) =
⌊

D(x)D(y)
gcd(D(x)D(y), N(x)N(y))

⌋

We can check this by letting x = p/q and y = a/b and checking the equation:
D((p/q)(a/b)) = D(pa/bq) = bq/gcd(bq, pa). Furthermore, the equation works for
either x or y equals 0 (by the above definition of b·/·c), and the sign matches (i.e.
the sign of D(xy) is the same as the sign of D(x)D(y) and by definition gcd is
non-negative).

5. For + we have cases on whether or not x or y is 0, and use a function, say s(x, y),
built up from sign, to make the sign correct:

D(x + y) =





⌊
s(x,y)D(x)D(y)

gcd(D(x)D(y),N(x)D(y)+N(y)D(x))

⌋
, if x, y 6= 0;

D(x), if y = 0;
D(y), if x = 0.

Note that branching on the 3 cases can be carried out with sign or sgn.

The projection functions are easy to deal with. Now consider how we can push into
the operation line

∏
. Recalling the definition, we have D(line

∏z
y=0 f(y, x)) = D((1 +

bzc − z)
∏bzc

y=0 f(y, x) + (z − bzc) ∏dze
y=0 f(y, x)). In FAQ(disctn), the products up to bzc
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and dze can both be written as legitimate function on their own (this is not the case
of FAQ(ctn)). We can push D into multiplication, addition, and b·c (the latter uses
reasoning similar to the above functions), so we are just left with the product operation
itself. Note that

D(
bzc∏

y=0

f(y, x)) =

∏bzc
y=0 D(f(y, x))

gcd(
∏bzc

y=0 D(f(y, x)),
∏bzc

y=0 N(f(y, x)))
.

The case for summation is similar to products.

¥

The next two propositions are proved inductively on the function algebra; the second one uses
the first.

Proposition 6.9 FAQ(ctn) ≤ T W.

Proposition 6.10 FAQ(ctn) has a 1/T W modulus.

The following corrects lemma 5.18 from [4], making the basic connection between the continuous
and discontinuous function algebras.

Lemma 6.11 FAQ(ctn) ≈1/T W
+ {f ∈ FAQ(disctn) | f has 1/ T W modulus}

Proof

We prove the two inclusions.

¹1/T W
+ : Using lemma 6.10, we can obtain the stronger claim of inclusion.

º1/T W
+ : Let f(x) ∈ FAQ(disctn), assuming just one variable for ease of readability.

Furthermore, we assume it has a modulus of 1/m(x, z), where m(x, z) ∈ T W. Suppose
α(x, ȳ) ∈ T W, so our goal is now to find some f∗(x, ȳ) ∈ FAQ(ctn), such that f ¹1/α f∗.

By lemma 6.8, we can assume we have a construction of f in which D is only applied to
the variable x. The occurrences of D in f applied to variables other than x are easily
dispensed with since such occurrences of D must have their variables bound by a sum
or product. Sums or products only range over natural numbers, so we can deal with
them easily (since for all u ∈ N, D(u) = 1, except for D(0) = 0, so in such cases we
can replace D(u) by a function from FAQ(ctn)). Thus we can write f(x) as g(D(x), x),
where g(u, x) ∈ FAQ(ctn). Now we give the intuition behind the rest of the proof.
We will define f∗(x, ȳ) using g(u, x), so that it approximates f(x) = g(D(x), x). The
difficulty lies in how to get around the discontinuous function D. The idea is to pick a
w ∈ Q which is sufficiently close to x and such that D(w) is known in FAQ(ctn). By
the modulus condition on f , f(w) = g(D(w), w) will be close to f(x). To carry out
the details we will essentially work in Z and use the linearization to ensure that the
function does not fluctuate too much on the rest of Q. We now define some functions
in FAQ(ctn) (though we will only care about their values on Z):
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• sg(a) =





1, a ≥ 1;
−1, a ≤ −1;
a, −1 < a < 1.

• dv(a, b) = a ∗ div(|b|) ∗ sg(b) ( = a/b for a, b ∈ Z)

• bottom(a, b) = b ∗ div(gcd(a, b)) ∗ sg(a) ( = D(a/b) for a, b ∈ Z), recalling that gcd
is always non-negative.

• h(a, b) = g(bottom(a, b), dv(a, b))

By lemma 4.10, ĥ is in FAQ(ctn). Recalling the modulus m for f , we let m∗(x, ȳ) ∈
FAQ(ctn) be defined so that we have the property z:

∣∣x− [xm∗(x, ȳ)]
[m∗(x, ȳ)]

∣∣ ≤ 1
m(x, α(x, ȳ))

By proposition 6.6 we have such an m∗ ∈ T W that works and by proposition 4.15 we
can dominate this m∗ in FAQ(ctn). We define f∗(x, ȳ) = ĥ(xm∗(x, ȳ),m∗(x, ȳ)). It is in
FAQ(ctn), and we just need to show that |f(x)−f∗(x, ȳ)| ≤ 1/α(x, ȳ). For any x, ȳ ∈ Q,
let (F, x, ȳ) =

{ ĥ(bxm∗(x, ȳ)c, bm∗(x, ȳ)c),
ĥ(bxm∗(x, ȳ)c, dm∗(x, ȳ)e),
ĥ(dxm∗(x, ȳ)e, bm∗(x, ȳ)c),
ĥ(dxm∗(x, ȳ)e, dm∗(x, ȳ)e) }.

By proposition 2.9, we know that for any x, ȳ ∈ Q: min(F, x, ȳ) ≤ f∗(x, ȳ) ≤ max(F, x, ȳ).
Thus it suffices to show that |f(x) − ĥ([xm∗(x, ȳ)], [m∗(x, ȳ)])| ≤ 1/α(x, ȳ). By defini-
tion,

ĥ([xm∗(x, ȳ)], [m∗(x, ȳ)]) = g(D(
[xm∗(x, ȳ)]
[m∗(x, ȳ)]

),
[xm∗(x, ȳ)]
[m∗(x, ȳ)]

)

= f(
[xm∗(x, ȳ)]
[m∗(x, ȳ)]

).

By property z and the definition of a modulus, |f(x) − f( [xm∗(x,ȳ)]
[m∗(x,ȳ)] )| ≤ 1/α(x, ȳ) and

we are done.

¥

Now we will show L can approximate FAQ(ctn).

Lemma 6.12 basicQ ¹1/T W
+ L

Proof

Except for θ1 and div, L approximates exactly the functions in basicQ (since it contains
extensions of them). For the functions θ1 and div recall lemma 6.4 and note that
these two functions are both defined as functions which are a merging of functions
approximated in L. For θ1 this is easy. For div we use the fact that 1/x can be
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approximated (for x ≥ 1) because (as observed in [1]) E(t, x) ∈ L, where E(t, x) ={
1−e−tx

x , if x 6= 0;
t, if x = 0.

To approximate 1/x we then substitute an appropriately fast

function for the variable t. We then merge this with the constant function 1 at the
point x = 1.

¥

Lemma 6.13 line
∑

, line
∏ ¹1/T W

+ L

Proof

First, we claim the following fact:

line
∑

, line
∏

¹1/T W,id|Z
+ L.

In words, the statement means that ignoring their values off of Z, sums and products
can be approximated by L. Putting the fact together with lemma 6.5 finishes the proof.

To see why the fact is true, we note that an examination of the proof of lemma 4.7 of
[3] essentially proves it (we cannot use their lemma as they state it, because it requires
the functions in question to have universe N, but ours can take on vales in Q; ours
also have domain Z, rather than N, but this is no problem when working in L). For
sums, it is immediate. For products, they conclude the accumulated error of their use
of LI is an expression of the form ε(n)2n(n + 1)βn+1(n), where ε(n) = exp(−β(n)),
thus by choosing β(n) ∈ L growing quickly enough, we can obtain our desired 1/T W
approximation.

¥

Thus, the next corollary follows by using lemma 3.9 and the above approximations, following the
form of the proof in corollary 4.25 (notice that we use lemma 3.13 again, which requires propositions
6.9 and 6.10).

Corollary 6.14 FAQ(ctn) ¹1/T W
+ L

7 Conclusion

We have introduced two techniques, lifting and approximation, and have applied them to obtain
two theorems concerning the elementary functions. In particular, we have extended a result of
Bournez and Hainry [1]. We argue that the notion of approximation provides the right connection
between function algebras of real functions and computable analysis and could be used to link
together different theories of computability over the reals. Another informal claim of this work is
that these techniques are general and should be applicable to other complexity classes. This claim
is supported by other work in progress (which is perhaps not so convincing to the reader) and by the
character of many of the claims which did not depend on the fact that we happened to be working
with the elementary computable functions. So of course further work is to apply these techniques
more broadly. In particular we have work in progress relating to the class #P . Furthermore it
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seems that it should be relatively straightforward to apply these techniques to the classes stronger
than the elementary computable functions, in particular, to the Grzegorczyk hierarchy up to the
primitive recursive functions and recursive functions (such connections have been made in terms
of discrete part in [3], and in terms of Computable Analysis in [1] and [2]). More ambitious goals
include results of this kind for the weaker complexity classes such as the polynomial time functions.
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