Skip to main content
Log in

Harrington’s conservation theorem redone

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Leo Harrington showed that the second-order theory of arithmetic WKL 0 is \({\Pi^1_1}\)-conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avigad J.: Formalizing forcing arguments in subsystems of second-order arithmetic. Ann. Pure Appl. Logic 82, 165–191 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)

  3. Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes Series, vol. 97. Cambridge University Press, Cambridge (1987)

  4. Buss, S.R.: Bounded arithmetic. Ph.D. thesis, Princeton University, Princeton, New Jersey (1985). A revision of this thesis was published by Bibliopolis (Naples) in 1986

  5. Buss, S.R.: First-order proof theory of arithmetic. In: Buss, S.R. (ed.) Handbook of Proof Theory, vol. 137, pp. 79–147. Elsevier, Amsterdam (1998)

  6. Buss S.R.: An introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, vol. 137, pp. 1–78. Elsevier, Amsterdam (1998)

  7. Fernandes A.: Strict \({\Pi^1_1}\)-reflection in bounded arithmetic. Submitted

  8. Ferreira F.: A feasible theory for analysis. J. Symbolic Logic 59(3), 1001–1011 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferreira F.: A simple proof of Parson’s theorem. Notre Dame J. Formal Logic 46, 83–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferreira F., Oliva P.: Bounded functional interpretation. Ann. Pure Appl. Logic 135, 73–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferreira, G.: Sistemas de Análise Fraca para a Integração. Ph.D. thesis, Faculdade de Ciências da Universidade de Lisboa (2006), in Portuguese

  12. Friedman H.: Systems of second order arithmetic with restricted induction, I, II (abstracts). J. Symbolic Logic 41, 557–559 (1976)

    Google Scholar 

  13. Kaye, R.: Models of Peano Arithmetic, Oxford Logic Guides, vol. 15. Clarendon Press, Oxford (1991)

  14. Kohlenbach U.: Effective bounds from ineffective proofs in analysis: an application of functional interpretation and majorization. J. Symbolic Logic 57, 1239–1273 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kohlenbach U.: Remarks on Herbrand normal forms and Herbrand realizations. Arch. Math. Logic 31, 305–317 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Parsons, C.: On a number theoretic choice schema and its relation to induction. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and Proof Theory, pp. 459–473. North-Holland, Amsterdam (1970)

    Google Scholar 

  17. Sieg W.: Fragments of arithmetic. Ann. Pure Appl. Logic 28, 33–71 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sieg W.: Herbrand analyses. Arch. Math. Logic 30, 409–441 (1991)

    Article  MathSciNet  Google Scholar 

  19. Simpson S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1999)

    Google Scholar 

  20. Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilda Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, F., Ferreira, G. Harrington’s conservation theorem redone. Arch. Math. Logic 47, 91–100 (2008). https://doi.org/10.1007/s00153-008-0080-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0080-8

Keywords

Mathematics Subject Classification (2000)

Navigation