Skip to main content
Log in

Fuzzy power structures

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Power structures are obtained by lifting some mathematical structure (operations, relations, etc.) from an universe X to its power set \({\mathcal{P}(X)}\) . A similar construction provides fuzzy power structures: operations and fuzzy relations on X are extended to operations and fuzzy relations on the set \({\mathcal{F}(X)}\) of fuzzy subsets of X. In this paper we study how this construction preserves some properties of fuzzy sets and fuzzy relations (similarity, congruence, etc.). We define the notions of good, very good, Hoare good and Smith good fuzzy relation and establish some connections between them, generalizing some results of Brink, Bošnjak and Madarász on power structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bělohlávek R.: Fuzzy Relational Systems. Foundations and Principles. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  2. Bělohlávek R., Vychodil V.: Algebras with fuzzy equalities. Fuzzy Sets Syst. 157, 161–201 (2006)

    Article  MATH  Google Scholar 

  3. Bošnjak I., Madarász R.: Power algebras and generalized quotient algebras. Algebra Universalis 45, 179–189 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bošnjak I., Madarász R.: Good quotient algebras and power algebras. Novi Sad J. Math. 29, 71–84 (1999)

    MathSciNet  Google Scholar 

  5. Bošnjak I., Madárasz R.: On some classes of good quotient relations. Novi Sad J. Math. 32, 131–140 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Brink C.: Power structures. Algebra Universalis 30, 177–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brink C., Rewitzki I.: A Paradigm for Program Semantics. Power Strctures and Duality. CSLI Publications, Stanford (2001)

    Google Scholar 

  8. Burris S., Sankappanavar H.P.: A Course in Universal Algebra. Springer, New York (1981)

    MATH  Google Scholar 

  9. Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Gautam N.D.: The validity of equations of complex algebras. Arch. Math. Logik Grundleg. 3, 117–124 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grätzer G.: Universal algebra. Springer, Berlin (1979)

    MATH  Google Scholar 

  12. Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  13. Klement E.P., Mesiar R., Pap E.: Triangular Norms. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  14. Kuraoka T., Suzuki N.Y.: Lattice of fuzzy subalgebras in universal algebra. Algebra Universalis 47, 223–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Madarász R.: Generalized factor algebras. Matem. Bilten 18, 29–38 (1994)

    Google Scholar 

  16. Madarász R.: Remarks on power structures. Algebra Universalis 34, 179–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schweizer B., Sklar A.: Statistical metric spaces. Pac. J. Math. 10, 312–334 (1960)

    Google Scholar 

  18. Zadeh L.A.: Similarity relations and fuzzy ordering. Inform. Sci. 3, 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgescu, G. Fuzzy power structures. Arch. Math. Logic 47, 233–261 (2008). https://doi.org/10.1007/s00153-008-0082-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0082-6

Mathematics Subject Classification (2000)

Navigation