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Abstract Monadic MV –algebras are an algebraic model of the predicate calculus

of the  Lukasiewicz infinite valued logic in which only a single individual variable oc-

curs. GMV -algebras are a non-commutative generalization of MV -algebras and are

an algebraic counterpart of the non-commutative  Lukasiewicz infinite valued logic. We

introduce monadic GMV -algebras and describe their connections to certain couples

of GMV -algebras and to left adjoint mappings of canonical embeddings of GMV -

algebras. Furthermore, functional MGMV -algebras are studied and polyadic GMV -

algebras are introduced and discussed.
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1 Introduction

MV -algebras have been introduced by C. C. Chang in [3] as an algebraic counterpart

of the  Lukasiewicz infinite valued propositional logic. The first author in [18] and, in-

dependently, G. Georgescu and A. Iorgulescu in [7], have introduced non-commutative

generalization of MV -algebras (non-commutative MV -algebras in [18] and pseudo

MV -algebras in [7]) which are equivalent. We will use for these algebras the name

generalized MV -algebras, briefly GMV -algebras. Recently, I. Leuştean in [14] has in-

troduced the non-commutative  Lukasiewicz infinite valued logic and GMV -algebras

can be taken as an algebraic semantics of this propositional logic.
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Recall that an intensive development of the theory of MV -algebras was made pos-

sible by the fundamental result of D. Mundici in [15] that gave a representability of

MV -algebras by means of intervals of unital abelian lattice ordered groups (ℓ-groups).

A. Dvurečenskij in [6] has generalized this result also for GMV -algebras, i.e., he has

proved that every GMV -algebra is isomorphic to a GMV -algebra introduced by the

standard method on the unit interval of a unital (non-abelian, in general) ℓ-group.

Monadic MV -algebras (MMV -algebras) were introduced and studied in [20] as

an algebraic model of the predicate calculus of the  Lukasiewicz infinite valued logic

in which only a single individual variable occurs. MMV -algebras were also studied

as polyadic MV -algebras in [21] and [22]. Recently, the theory of MMV -algebras has

been developed in [1], [4] and [8]. Recall that monadic, polyadic and cylindric (Boolean)

algebras, as algebraic structures corresponding to classical predicate logic, have been

investigated in [11] and [12]. Similar algebraic structures have been considered for

various logics in [16] and [17].

In this paper we extend the notion of an MMV -algebra to an arbitrary GMV -

algebra which need not be commutative. We obtain monadic GMV -algebras (MGMV -

algebras) and then we define the monadic non-commutative  Lukasiewicz propositional

calculus MPL using the non-commutative  Lukasiewicz propositional calculus PL from

[14].

Recall that the language of PL is based on unary connectives ¬ and ∼, and on

binary connectives → and  . Denote the set of all formulas of PL by Form(PL). For

any ϕ ∈ Form(PL) define ϕ• as follows:

(1) if ϕ is a propositional variable then ϕ• is ϕ;

(2) if ϕ is ¬ψ then ϕ• is ∼ (ψ•);

(3) if ϕ is ∼ ψ then ϕ• is ¬(ψ•);

(4) if ϕ is ψ → χ then ϕ• is ψ•
 χ•;

(5) if ϕ is ψ  χ then ϕ• is ψ• → χ•.

The axioms of PL are as follows:

I. for any ϕ,ψ, χ ∈ Form(PL),

(P1) ϕ→ (ψ → ϕ);

(P2) (ϕ→ ψ) → ((ψ → χ) (ϕ→ χ));

(P3) ((ϕ→ ψ) ψ) → ((ψ → ϕ) ϕ);

(P4) (¬ψ  ¬ϕ) → (ϕ→ ψ);

(P5) ∼ (ϕ→ ¬ψ) → ¬(ψ  ∼ ϕ);

II. if ϕ is an axiom then ϕ• is an axiom too.

The deductive rules of PL are two modus ponens:

(MP→)
ϕ, ϕ→ ψ

ψ

(MP )
ϕ, ϕ ψ

ψ

Further connectives derived from {¬,∼,→, } are defined as follows:

ϕ⊕ ψ is ∼ ϕ→ ψ (equivalently ¬ψ → ϕ);

ϕ⊙ ψ is ∼ (¬ϕ⊕ ¬ψ) (equivalently ¬(∼ ϕ⊕ ∼ ψ));

ϕ∨ψ is ϕ⊕ (ψ⊙ ∼ ϕ) (equivalently ψ⊕ (ϕ⊙ ∼ ψ), (¬ψ⊙ϕ)⊕ψ, (¬ϕ⊙ψ)⊕ϕ).
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The monadic non-commutative  Lukasiewicz propositional calculus MPL is now the

logic containing PL in which the following formulas are axioms for arbitrary formulas

ϕ and ψ:

(M1) ϕ → ∃ϕ, ϕ ∃ϕ;

(M2) ∃(ϕ ∨ ψ) ≡ ∃ϕ ∨ ∃ψ;

(M3) ∃(¬∃ϕ) ≡ ¬∃ϕ, ∃(∼ ∃ϕ) ≡∼ ∃ϕ;

(M4) ∃(∃ϕ⊕ ∃ψ) ≡ ∃ϕ⊕ ∃ψ;

(M5) ∃(ϕ⊕ ϕ) ≡ ∃ϕ⊕ ∃ϕ;

(M6) ∃(ϕ⊙ ϕ) ≡ ∃ϕ⊙ ∃ϕ.

Let ∀ϕ mean ∼ (∃(¬ϕ)). Then the deductive rules in MPL are two modus ponens

(MP→) and (MP ), and the necessitation

(Nec)
ϕ

∀ϕ
.

Now, analogously as in [1], we will consider a first-order language L based on

{⊕,⊙,→, ,¬,∼,∃} and a monadic propositional logic Lm based on {⊕,⊙,→, 

,¬,∼,∃}. Let x be a fixed variable in L. For any propositional variable p in Lm choose

a monadic predicate Fp(x) in L. Then we introduce the mapping ∆ : Form(Lm) −→
Form(L) such that

(1) ∆(p) = Fp(x), for any propositional variable p;

(2) ∆(ϕ ◦ ψ) = ∆(ϕ) ◦∆(ψ), for any ◦ ∈ {⊕,⊙,→, ,¬,∼};

(3) ∆(∃ϕ) = ∃x∆(ϕ).

It is obvious that ∆ makes it possible to identify formulas of Lm and monadic formulas

of L containing x.

We show that monadic GMV -algebras (MGMV -algebras) can be characterized,

analogously as MMV -algebras, by means of certain couples of GMV -algebras and by

means of left adjoint mappings of canonical embeddings of GMV –algebras. We intro-

duce the notion of a functional monadic GMV -algebra and show that every such an

algebra is an MGMV -algebra. Furthermore, we study connections between congru-

ences and ideals of MGMV -algebras. Moreover, we introduce polyadic GMV -algebras

(a generalization of MGMV -algebras) as special cases of polyadic (Λ, I)-algebras which

should be developed in the future.

2 Preliminaries

Let A = (A; ⊕,− ,∼ , 0, 1) be an algebra of type 〈2, 1, 1, 0, 0〉. Set x⊙ y := (x− ⊕ y−)∼

for any x, y ∈ A. Then A is called a generalized MV-algebra (briefly: GMV-algebra) if

for any x, y, z ∈ A the following conditions are satisfied:

(A1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z;

(A2) x⊕ 0 = x = 0 ⊕ x;

(A3) x⊕ 1 = 1 = 1 ⊕ x;

(A4) 1− = 0 = 1∼;

(A5) (x∼ ⊕ y∼)− = (x− ⊕ y−)∼;

(A6) x⊕ (y ⊙ x∼) = y ⊕ (x⊙ y∼) = (y− ⊙ x) ⊕ y = (x− ⊙ y) ⊕ x;

(A7) (x− ⊕ y) ⊙ x = y ⊙ (x⊕ y∼);
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(A8) x−∼ = x.

Proposition 1 [7, Propositions 1.7 and 1.23] The following properties hold in any

GMV -algebra:

(1) x⊙ y = (x∼ ⊕ y∼)−;

(2) (x∼)− = x;

(3) 0∼ = 0− = 1;

(4) x⊙ 1 = 1 ⊙ x = x,

(5) (x⊕ y)− = x− ⊙ y−, (x⊕ y)∼ = x∼ ⊙ y∼;

(6) (x⊙ y)− = x− ⊕ y−, (x⊙ y)∼ = x∼ ⊕ y∼;

(7) x⊕ y = (x− ⊙ y−)∼ = (x∼ ⊙ y∼)−;

(8) (x ∧ y)− = x− ∨ y−, (x ∨ y)− = x− ∧ y−;

(9) (x ∧ y)∼ = x∼ ∨ y∼, (x ∨ y)∼ = x∼ ∧ y∼.

It is easily seen that the operations ⊕ and ⊙ are mutually dual.

Proposition 2 [7, Proposition 1.12] In every GMV -algebra the following properties

hold:

(1) x ≤ y ⇐⇒ y− ≤ x− ⇐⇒ y∼ ≤ x∼;

(2) x ≤ y =⇒ a⊕ x ≤ a⊕ y, x⊕ a ≤ y ⊕ a;

(3) x ≤ y =⇒ a⊙ x ≤ a⊙ y, x⊙ a ≤ y ⊙ a.

Proposition 3 See [7] and [13].

In any GMV -algebra, if the meets and joins on the left-hand side exist then so do

those on the right-side and the following equalities hold:

a⊕

0

@

^

i∈I

bi

1

A =
^

i∈I

(a⊕ bi),

0

@

^

i∈I

bi

1

A⊕ a =
^

i∈I

(bi ⊕ a),
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0

@

_
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bi

1
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_
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0
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_
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0
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1
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0
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1
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0
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^

i∈I

bi

1

A =
^
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0
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^
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1

A⊙ a =
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a ∨
^

i∈I

bi =
^

i∈I

(a ∨ bi).
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We define the operations ⊘ and ; as follows:

x⊘ y := x⊙ y∼, x; y := y− ⊙ x.

It is obvious that x− = 1 ; x and x∼ = 1 ⊘ x.

If we put x ≤ y if and only if x− ⊕ y = 1 then L(A) = (A;≤) is a bounded

distributive lattice (0 is the least and 1 is the greatest element) with x∨y = x⊕(y⊙x∼)

and x ∧ y = x⊙ (y ⊕ x∼).

GMV -algebras are in a close connection with unital ℓ-groups. (Recall that a unital

ℓ-group is a pair (G,u) where G is an ℓ-group and u is a strong order unit of G.) If G is

an ℓ-group, and 0 ≤ u ∈ G then Γ (G,u) = ([0, u]; ⊕,− ,∼ , 0, u), where [0, u] = {x ∈ G :

0 ≤ x ≤ u}, and for any x, y ∈ [0, u], x⊕ y = (x+ y) ∧ u, x− = u− x, x∼ = −x+ u,

is a GMV -algebra.

Conversely, A. Dvurečenskij in [6] proved that every GMV -algebra is isomorphic

to Γ (G,u) for an appropriate unital ℓ-group (G,u). Moreover, the categories of GMV -

algebras and unital ℓ-groups are by [6] equivalent.

3 Quantifiers on GMV –algebras

Let A be a GMV -algebra and ∃ : A −→ A be a mapping. Then ∃ is called an existential

quantifier on A if the following identities are satisfied:

(E1) x ≤ ∃x;

(E2) ∃(x ∨ y) = ∃x ∨ ∃y;

(E3) ∃
`

(∃x)−
´

= (∃x)−, ∃ ((∃x)∼) = (∃x)∼;

(E4) ∃(∃x⊕ ∃y) = ∃x⊕ ∃y;

(E5) ∃(x⊙ x) = ∃x⊙ ∃x;

(E6) ∃(x⊕ x) = ∃x⊕ ∃x.

If A is a GMV -algebra and ∀ : A −→ A is a mapping then ∀ is called a universal

quantifier on A if the following identities are satisfied:

(U1) x ≥ ∀x;

(U2) ∀(x ∧ y) = ∀x ∧ ∀y;

(U3) ∀((∀x)−) = (∀x)−, ∀((∀x)∼) = (∀x)∼;

(U4) ∀(∀x⊙ ∀y) = ∀x⊙ ∀y;

(U5) ∀(x⊙ x) = ∀x⊙ ∀x;

(U6) ∀(x⊕ x) = ∀x⊕ ∀x.

Lemma 1 Let A be a GMV -algebra.

(a) If ∃ is an existential quantifier on A then
`

∃x−
´∼

= (∃x∼)− for each x ∈ A.

(b) If ∀ is a universal quantifier on A then
`

∀x−
´∼

= (∀x∼)− for each x ∈ A.

Proof (a) Let x ∈ A. Then using (E1) and (E3) we obtain:

x− ≤ ∃x− =⇒ x−∼ ≥ (∃x−)∼ =⇒ x ≥ (∃x−)∼ = ∃((∃x−)∼)

=⇒ x∼ ≤ (∃((∃x−)∼))∼ =⇒ ∃x∼ ≤ ∃((∃((∃x−)∼))∼)

=⇒ (∃x∼)− ≥ (∃((∃((∃x−)∼))∼))−.

Put y = (∃x−)∼. Then

(∃x∼)− ≥ (∃((∃y)∼))− = ((∃y)∼)− = ∃y = ∃((∃x−)∼) = (∃x−)∼,
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therefore

(∃x∼)− ≥ (∃x−)∼.

Analogously, we get (∃x−)∼ ≥ (∃x∼)−, that means (∃x−)∼ = (∃x∼)−.

(b) Similarly, (∀x−)∼ = (∀x∼)− for every universal quantifier. ⊓⊔

Proposition 4 If A is a GMV -algebra then there is a one-to-one correspondence be-

tween existential and universal quantifiers on A. Namely, if ∃ is an existential quantifier

and ∀ is a universal one on A, then the mapping ∀∃ : A −→ A and ∃∀ : A −→ A

such that for each x ∈ A,

∀∃ x := (∃x−)∼ = (∃x∼)−

and

∃∀ x := (∀x−)∼ = (∀x∼)−,

is a universal and an existential quantifier on A, respectively, and, moreover,

∃(∀∃) = ∃ and ∀(∃∀) = ∀.

Proof Let ∃ be an existential quantifier on A and let ∀x = ∀∃ x := (∃x−)∼ = (∃x∼)−.

Let x, y ∈ A.

(U1) x− ≤ ∃x− =⇒ x−∼ ≥ (∃x−)∼ =⇒ x ≥ ∀x.
(U2) ∀(x ∧ y) = (∃(x ∧ y)−)∼ = (∃(x− ∨ y−))∼ = (∃x− ∨ ∃y−)∼ = (∃x−)∼ ∧ (∃y−)∼

= ∀x ∧ ∀y.
(U3) ∀((∀x)−) = ∀((∃x−)∼−) = ∀(∃x−) = (∃(∃x−)∼))− = ((∃x−)∼)− = (∃x−)∼−

= (∀x)−. The second identity analogously.

(U4) ∀(∀x⊙ ∀y) = ∀((∃x−)∼ ⊙ (∃y−)∼) = (∃((∃x−)∼⊙)∃y−)∼))−)∼

= (∃((∃x−)∼− ⊕ (∃y−)∼−))∼ = (∃(∃x− ⊕ ∃y−))∼ = (∃x− ⊕ ∃y−)∼

= (∃x−)∼ ⊙ (∃y−)∼ = ∀x⊙ ∀y.

(U5) ∀(x⊙x) = (∃((x⊙x)−))∼ = (∃(x−⊕x−))∼ = (∃x−⊕∃x−)∼ = (∃x−)∼⊙ (∃x−)∼

= ∀x⊙ ∀x.
(U6) ∀(x⊕x) = (∃((x⊕x)−))∼ = (∃(x−⊙x−))∼ = (∃x−⊙∃x−)∼ = (∃x−)∼⊕ (∃x−)∼

= ∀x⊕ ∀x.

The proof of the remaining assertions is now obvious. ⊓⊔

As a consequence of Proposition 4, it will be sufficient to investigate only one from

these kinds of quantifiers, e.g. the existential ones.

If A is a GMV -algebra and ∃ is an existential quantifier on A then the couple (A,∃)

is called a monadic GMV -algebra (an MGMV -algebra, in brief).

In the following proposition we will prove some useful properties of MGMV -

algebras.

Proposition 5 Let (A,∃) be an MGMV -algebra and x, y ∈ A. Then the following

conditions are satisfied.

(1) ∃1 = 1;

(2) ∃0 = 0;

(3) ∃(∃x) = ∃x;

(4) ∃(∃x⊙ ∃y) = ∃x⊙ ∃y;
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(5) x ≤ ∃y ⇐⇒ ∃x ≤ ∃y;

(6) x ≤ y =⇒ ∃x ≤ ∃y.
(7) ∃(x⊕ y) ≤ ∃x⊕ ∃y;

(8) ∃(x⊙ y) ≤ ∃x⊙ ∃y;

(9) (∃x)− ⊙ ∃y ≤ ∃(x− ⊙ ∃y), (∃x)∼ ⊙ ∃y ≤ ∃(x∼ ⊙ ∃y),

∃y ⊙ (∃x)− ≤ ∃(∃y ⊙ x−), ∃y ⊙ (∃x)∼ ≤ ∃(∃y ⊙ x∼);

(10) ∃(x; y) ≥ ∃x; ∃y, ∃(x⊘ y) ≥ ∃x⊘ ∃y;

(11) ∃x− ≥ (∃x)−, ∃x∼ ≥ (∃x)∼.

Proof (1) It is obvious.

(2) 0 = 1− = (∃1)− = ∃((∃1)−) = ∃(1−) = ∃0.

(3) ∃(∃x) = ∃(0 ⊕ ∃x) = ∃(∃0 ⊕ ∃x) = ∃0 ⊕ ∃x = 0 ⊕ ∃x = ∃x.

(4) ∃x⊙∃y = ((∃x)−⊕(∃y)−)∼ = (∃((∃x)−)⊕∃((∃y)−))∼ = (∃(∃((∃x)−⊕∃((∃y)−)))∼

= ∃((∃(∃((∃x)−) ⊕ ∃((∃y)−))∼) = ∃((∃((∃x)−) ⊕ ∃((∃y)−))∼) = ∃(((∃x)− ⊕
(∃y)−)∼)

= ∃(∃x⊙ ∃y).

(5) x ≤ ∃y ⇐⇒ x ∨ ∃y = ∃y =⇒ ∃y = ∃(x ∨ ∃y) = ∃x ∨ ∃y =⇒ ∃x ≤ ∃y,

∃x ≤ ∃y =⇒ x ≤ ∃x ≤ ∃y.
(6) x ≤ y =⇒ y = x ∨ y =⇒ ∃y = ∃(x ∨ y) = ∃x ∨ ∃y =⇒ ∃x ≤ ∃y.

(7) x⊕ y ≤ ∃x⊕ ∃y =⇒ ∃(x⊕ y) ≤ ∃(∃x⊕ ∃y) = ∃x⊕ ∃y.
(8) x⊙ y ≤ ∃x⊙ ∃y =⇒ ∃(x⊙ y) ≤ ∃(∃x⊙ ∃y) = ∃x⊙ ∃y.

(9) (∃x)− ⊙ ∃y ≤ x− ⊙ ∃y ≤ ∃(x− ⊙ ∃y).

(10) (x;y)⊕y = x∨y ≥ x =⇒ ∃x ≤ ∃((x;y)⊕y) ≤ ∃(x;y)⊕∃y =⇒ ∃(x;y) ≥ ∃x;∃y.

(11) ∃x− = ∃(1 ; x) ≥ ∃1 ; ∃x = 1 ; ∃x = (∃x)−.

⊓⊔

Remark 1 By (E1) and properties (3) and (6) of Proposition 5, every existential quan-

tifier on an MGMV -algebra A is a closure operator on the lattice L(A). Dually, every

universal quantifier on A is an interior operator on L(A).

4 Functional monadic GMV -algebras

Functional monadic Boolean algebras have been introduced and investigated in [11].

Since their elements are functions (mappings) from their domains to their value Boolean

algebras and existential and universal quantifiers are suprema and infima, respectively,

of their ranges, functional monadic Boolean algebras give a visualization of the general

notion of monadic Boolean algebras.

In this section we introduce analogously functional monadic GMV -algebras and

show that they are special instances of monadic GMV -algebras.

Let M be a GMV -algebra and X be a non-empty set. Denote by MX the set of all

functions (mappings) from X into M . Then MX forms, with respect to the pointwise

operations, also a GMV -algebra (a direct power of the GMV -algebra M). It is obvious

that MX contains the GMV -subalgebra of constant functions which is isomorphic to

M .

For any p ∈ MX denote by R(p) := {p(x) : x ∈ X} the range of p. We want to

obtain existential and universal quantifiers by means of suprema and infima, respec-

tively, of ranges of functions. But the underlying lattice (M ;∨,∧) of a GMV -algebra

M need not be complete. In fact, if M = Γ (G,u), where (G,u) is a unital ℓ-group,

then by [6], (M ;∨,∧) is a complete lattice if and only if G is a complete ℓ-group. In
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particular, every complete ℓ-group is still commutative (see for instance [9]), therefore

every non-commutative GMV -algebra is not complete.

Hence we will consider any GMV -subalgebra A of the GMV -algebra MX satisfying

following conditions:

(i) for every p ∈ A there exist supM R(p) =
W

R(p), infM R(p) =
V

R(p);

(ii) for every p ∈ A, the constant functions ∃p and ∀p defined such that

∃p(x) :=
_

R(p), ∀p(x) :=
^

R(p),

for any x ∈ X, belong to A.

Every such a subalgebra A of MX is called a functional monadic GMV -algebra.

We will use Proposition 3 in the following proofs without further notice.

Lemma 2 In any functional monadic GMV -algebra A (p, q ∈ A), the following is

valid:

(1) ∃0 = 0.

(2) p ≤ ∃p.

(3) ∃(p ∧ ∃q) = ∃p ∧ ∃q.
(4) ∃1 = 1.

(5) ∃∃p = ∃p.
(6) p ∈ ∃A = {∃p : p ∈ A} if and only if ∃p = p.

(7) If p ≤ ∃q then ∃p ≤ ∃q.

(8) If p ≤ q then ∃p ≤ ∃q.
(9) ∃((∃p)−) = (∃p)−, ∃((∃p)∼) = (∃p)∼.

(10) ∃(∃p⊕ ∃q) = ∃p⊕ ∃q.
(11) ∃A is a subalgebra of the GMV -algebra A.

(12) ∃(p ∨ q) = ∃p ∨ ∃q.
(13) ∃(p⊕ p) = ∃p⊕ ∃p.

(14) ∃(p⊙ p) = ∃p⊙ ∃p.

Proof (1) R(0) = {0}, therefore ∃0 =
W

R(0) = 0.

(2) For every x ∈ X, p(x) ≤
W

R(p), hence p ≤ ∃p.

(3) It holds that p ∧ ∃q = p ∧
W

R(q) =
_

a∈R(q)

(p ∧ a), so

∃(p ∧ ∃q) = ∃(
_

a∈R(q)

(p ∧ a)) =
_

b∈R(p)

_

a∈R(q)

(b ∧ a).

Further,

∃p ∧ ∃q =
W

R(p) ∧
W

R(q) =
_

b∈R(p)

_

a∈R(q)

(b ∧ a).

Therefore ∃(p ∧ ∃q) = ∃p ∧ ∃q.

(4) By (2).

(5) By (3) and (4), we have ∃(1 ∧ ∃p) = ∃1 ∧ ∃p = 1 ∧ ∃p, hence ∃∃p = ∃p.

(6) If p = ∃q ∈ ∃A then ∃p = ∃∃q = ∃q, from this ∃p = p.

The converse implication is obvious.

(7) Let p ≤ ∃q. Then p = p ∧ ∃q and by (3), ∃p = ∃(p ∧ ∃q) = ∃p ∧ ∃q, consequently,

∃p ≤ ∃q.

(8) If p ≤ q then p ≤ ∃q and so by (7), ∃p ≤ ∃q.

Archive for mathematical logic. 2008, vol. 47, no. 3, p. 277-297. http://dx.doi.org/10.1007/s00153-008-0086-2

DSpace VŠB-TUO http://hdl.handle.net/10084/65996 22/09/2011



9

(9) (∃p)− = (
W

R(p))− = (
_

x∈X

p(x))− =
^

x∈X

(p(x))−, therefore R((∃p)−) = {
^

x∈X

(p(x))−}.

Hence ∃((∃p)−) =
W

R((∃p)−) =
_

{
^

x∈X

(p(x))−} =
^

x∈X

(p(x))−.

From this we obtain ∃((∃p)−) = (∃p)−.

The proof of the other equality is analogous.

(10) ∃p⊕ ∃q =
W

R(p) ⊕
W

R(q) =
_

a∈R(p)

_

b∈R(q)

(a⊕ b),

∃(∃p⊕ ∃q) = ∃(
_

a∈R(p)

_

b∈R(q)

(a⊕ b)) =
_

a∈R(p)

_

b∈R(q)

(a⊕ b).

(11) 0 ∈ ∃A, therefore ∃A 6= ∅.

If p, q ∈ ∃A then by (6), (10), ∃(p⊕q) = ∃(∃p⊕∃q) = ∃p⊕∃q = p⊕q, so p⊕q ∈ ∃A.

Let p ∈ ∃A. Then by (9), ∃p− = ∃((∃p)−) = (∃p)− = p−, similarly, ∃p∼ = p∼.

Hence ∃A is a subalgebra of A.

(12) By (8), ∃p ∨ ∃q ≤ ∃(p ∨ q). Conversely, ∃p, ∃q ∈ ∃A, hence by (11), ∃p ∨ ∃q ∈ ∃A,

it entails ∃(∃p ∨ ∃q) = ∃p ∨ ∃q.
Further, p ∨ q ≤ ∃p ∨ ∃q, hence by (8), ∃(p ∨ q) ≤ ∃(∃p ∨ ∃q) = ∃p ∨ ∃q.

(13) ∃p⊕∃p =
W

R(p)⊕
W

R(p) =
_

a∈R(p)

_

b∈R(p)

(a⊕b) =
_

a,b∈R(p)

(a⊕b) =
_

c∈R(p)

(c⊕c)=

W

R(p⊕ p) = ∃(p⊕ p).

(14) It is analogous to the proof of (13).

⊓⊔

Theorem 1 If M is a GMV -algebra, X is a non-empty set and A ⊆ MX is a func-

tional monadic GMV -algebra, then (A,∃) is a monadic GMV -algebra.

Proof It follows from (2), (12), (9), (10), (14) and (13). ⊓⊔

5 Quantifiers, relatively complete subalgebras and left adjoint mappings of

GMV –algebras

In this section we study connections among quantifiers, infima and suprema in certain

subalgebras and left adjoint mappings to canonical embeddings of GMV -algebras. The

results of the section extend those of Section 3 of [4] to the non-commutative case and

some from proofs are very similar to their commutative originals in [4].

If (A,∃) is an MGMV -algebra, put

∃A := {x ∈ A : x = ∃x}.

Proposition 6 If (A,∃) is an MGMV -algebra then ∃A is a subalgebra of the GMV -

algebra A.

Proof If x, y ∈ ∃A then ∃(x⊕ y) = ∃(∃x⊕ ∃y) = ∃x⊕ ∃y = x⊕ y, thus x⊕ y ∈ ∃A.

Let x ∈ ∃A. Then x− = (∃x)− = ∃((∃x)−) = ∃x−, hence x− ∈ ∃A.

Analogously, x ∈ ∃A implies x∼ ∈ ∃A.

Moreover, 0, 1 ∈ ∃A. ⊓⊔
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Let A be a GMV -algebra and B be its subalgebra. Then B is called relatively

complete if for each element a ∈ A, the set {b ∈ B : a ≤ b} has a least element,

denoted by inf{b ∈ B : a ≤ b}, or by
^

a≤b∈B

b.

A subalgebra B of a GMV -algebra A is called m-relatively complete if it is relatively

complete and satisfies the following conditions:

(MRC1) For every a ∈ A and x ∈ B such that x ≥ a⊙ a there is an element

v ∈ B such that v ≥ a and v ⊙ v ≤ x.

(MRC2) For every a ∈ A and x ∈ B such that x ≥ a⊕ a there is an element

v ∈ B such that v ≥ a and v ⊕ v ≤ x.

Proposition 7 If (A,∃) is an MGMV -algebra then ∃A is an m-relatively complete

subalgebra of the GMV -algebra A.

Proof Let a ∈ A and x ∈ ∃A. Then a ≤ x = ∃x if and only if ∃a ≤ ∃x = x. We have

∃a ∈ ∃A, hence ∃a = inf{x ∈ ∃A : a ≤ x}, and therefore ∃A is relatively complete.

Let a ∈ A, x ∈ ∃A and let x ≥ a ⊙ a. Then x = ∃x ≥ ∃(a ⊙ a) = ∃a⊙ ∃a, hence for

v = ∃a, the condition (MRC1) is satisfied.

Similarly, v = ∃a also satisfies the condition (MRC2). ⊓⊔

Lemma 3 Let A be a GMV -algebra and xi ∈ A, i ∈ I. If
^

i∈I

xi in A exists then

_

i∈I

x−i and
_

i∈I

x∼i exist too, and

a)

 

^

i∈i

xi

!−

=
_

i∈I

x−i ,

b)

 

^

i∈i

xi

!∼

=
_

i∈I

x∼i .

Proof Let A be a GMV -algebra and let A = Γ (G,u), where (G, u) is a unital ℓ-group.

a) Suppose that xi ∈ A, i ∈ I , and that
^

i∈I

xi exists.

Let j ∈ I . Then in G we have u−

0

@

^

i∈I

xi

1

A ≥ u− xj , hence

0

@

^

i∈I

xi

1

A

−

≥ x−j .

Let z ∈ A be such that z ≥ x−j for every j ∈ I . Then z ≥ u − xj for each j ∈ I ,

hence −z + u ≤
^

i∈I

xi, thus u−
^

i∈I

xi ≤ z, that means

0

@

^

i∈I

xi

1

A

−

≤ z. Therefore in

A we get

0

@

^

i∈I

xi

1

A

−

=
_

i∈I

x−i .

b) Analogously the second equality. ⊓⊔

Theorem 2 There exists a one-to-one correspondence between MGMV -algebras and

pairs (A,B), where B is an m-relatively complete subalgebra of a GMV -algebra A.
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Proof a) Let (A,∃) be an MGMV -algebra. Then the m-relatively complete subalgebra

B = ∃A is uniquely determined by ∃.

b) Conversely, let B be an m-relatively complete subalgebra of a GMV -algebra A.

Denote by ∃ = ∃B : A −→ A the mapping such that

∃a := inf{b ∈ B : a ≤ b} =
^

a≤b∈B

b.

We will show that this uniquely determined mapping is an existential quantifier on A.

(E1) Obvious.

(E2) Let a, b ∈ A. Then

∃(a ∨ b) =
^

a∨b≤x∈B

x =
^

a≤y ∈B

y ∨
^

b≤z ∈B

z = ∃a ∨ ∃b.

(E3) Let a ∈ A. Then

∃((∃a)−) = ∃

0

B

@

0

@

^

a≤x∈B

x

1

A

−
1

C

A
= ∃

0

@

_

a≤x∈B

x−

1

A =
_

a≤x∈B

x− =

0

@

^

a≤x∈B

x

1

A

−

= (∃a)−.

Analogously ∃((∃a)∼) = (∃a)∼.

(E4) Let a, b ∈ A. Then

∃(∃a⊕ ∃b) = ∃

0

@

^

a≤x∈B

x ⊕
^

b≤y ∈B

y

1

A =
^

a≤x∈B

x ⊕
^

b≤y ∈B

y = ∃a⊕ ∃b.

(E5) Let a ∈ A. Then

∃a⊙ ∃a =
^

a≤x∈B

x ⊙
^

a≤y ∈B

y =
^

a≤x∈B

^

a≤y ∈B

(x⊙ y).

Since a ≤ x and a ≤ y, a⊙a ≤ x⊙y, hence by (MRC1) there is v ∈ B such that v ≥ a

and v ⊙ v ≤ y. Thus
^

a≤x∈B

^

a≤y ∈B

(x⊙ y) =
^

a≤v ∈B

^

a≤v ∈B

(v ⊙ v) =
^

a≤v ∈B

(v ⊙ v) =
^

a⊙a≤v⊙v

(v ⊙ v).

Let t ∈ B be such that t ≥ a ⊙ a. Then by (MRC1), there is w ∈ B such that w ≥ a

and w ⊙ w ≤ t. Thus
^

a⊙a≤w⊙w∈B

(w ⊙ w) =
^

a⊙a≤t∈B

t = ∃(a⊙ a).

Therefore ∃a⊙ ∃a = ∃(a⊙ a).

(E6) Let a ∈ A. Then

∃a⊕ ∃a =
^

a≤x∈B

x ⊕
^

a≤y ∈B

y =
^

a≤x∈B

^

a≤y ∈B

(x⊕ y).

Since a ≤ x and a ≤ y, a⊕ a ≤ x⊕ y, therefore by (MRC2), there is v ∈ B such that

v ≥ a and x⊕ y ≥ v ⊕ v. Hence
^

a≤x∈B

^

a≤y ∈B

(x⊕ y) =
^

a⊕a≤x⊕y ∈B

(x⊕ y) =
^

a⊕a≤v⊕v ∈B

(v ⊕ v).
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Thus
^

a⊕a≤v⊕v ∈B

(v ⊕ v) =
^

a⊕a≤u∈B

u = ∃(a⊕ a).

Therefore ∃a⊕ ∃a = ∃(a⊕ a). ⊓⊔

Let A be a GMV -algebra, B a subalgebra of A and h : B −→ A a mapping. Then

a mapping ∃h : A −→ B is called a left adjoint mapping to h if

∃h(a) ≤ x ⇐⇒ a ≤ h(x)

for each a ∈ A and x ∈ B.

If ∃h, moreover, satisfies the identities

∃h(a⊙ a) = ∃h(a) ⊙ ∃h(a),

∃h(a⊕ a) = ∃h(a) ⊕ ∃h(a),

then ∃h is called a left m-adjoint mapping to h.

Theorem 3 There is a one-to-one correspondence between pairs (A,B), where B is

an m-relatively complete subalgebra of a GMV -algebra A, and pairs (A,B), where B

is a subalgebra of a GMV -algebra A such that the canonical embedding h : B →֒ A has

a left m-adjoint mapping.

Proof a) Let B be an m-relatively complete subalgebra of a GMV -algebra A and

h : B →֒ A be the canonical embedding. Put

∃h(a) :=
^

a≤x∈B

x

for every a ∈ A. Then ∃h(a) ≤ x if and only if a ≤ x = h(x), hence ∃h is a left adjoint

mapping to the mapping h. Moreover, ∃h(a ⊙ a) = ∃h(a) ⊙ ∃h(a) and ∃h(a ⊕ a) =

∃h(a) ⊕ ∃h(a), therefore ∃h is a left m-adjoint mapping to h.

b) Let A be a GMV -algebra and B be a subalgebra of A such that the canonical

embedding h : B →֒ A has a left m-adjoint mapping ∃h. Put ∃a := h ◦ ∃h(a) for each

a ∈ A. For any x ∈ B we have ∃h(a) ≤ x if and only if a ≤ x, thus ∃a is a least element

x ∈ B such that a ≤ x, that means ∃a =
^

a≤x∈B

x. Hence B is a relatively complete

subalgebra of A. We will prove that it is also m-relatively complete.

Firstly we will show that the mapping ∃ = ∃h is isotone. Let a, b ∈ A, a ≤ b. Then

∃ha =
^

a≤x∈B

x ≤
^

b≤y ∈B

y = ∃hb.

Now, let a ∈ A, x ∈ B and x ≥ a⊙ a. Put v = ∃ha. Then v ≥ a and

x = ∃hx ≥ ∃h(a⊙ a) = ∃ha⊙ ∃ha = v ⊙ v.

Further, let a ∈ A, x ∈ B and x ≥ a⊕ a. Then for v = ∃ha we have v ≥ a and

x = ∃hx ≥ ∃h(a⊕ a) = ∃ha⊕ ∃ha = v ⊕ v.

Hence B is m-relatively complete. ⊓⊔
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The following theorem is an immediate consequence of Theorems 2 and 3.

Theorem 4 There are one-to-one correspondences among

1. MGMV -algebras;

2. pairs (A,B), where B is an m-relatively complete subalgebra of a GMV -algebra A;

3. pairs (A,B), where B is a subalgebra of a GMV -algebra A such that the canonical

embedding h : B →֒ A has a left m-adjoint mapping.

Now, let us denote by MGMV the category of MGMV -algebras in which mor-

phisms are homomorphisms f ofGMV -algebras satisfying the condition f(∃a) = ∃f(a).

Further, denote by GMV2 the category in which objects are pairs (A,BA) of GMV -

algebras such that an injective GMV -homomorphism h : BA →֒ A has a left m-adjoint

mapping ∃h, and morphisms are pairs of mappings (f, fB) : (A,BA) −→ (A′, BA′)

such that

(1) f : A −→ A′ is a GMV -homomorphism;

(2) f ◦ h = h′ ◦ fB ;

(3) fB ◦ ∃h = ∃h′ ◦ f ,

where h′ : BA′ →֒ A′ is an injective GMV -homomorphism having a left m-adjoint

mapping ∃h′ .

From injectivity of h′ and from (1) and (2) it follows that fB is aGMV -homomorphism.

Theorem 5 The categories GMV2 and MGMV are equivalent.

Proof If (A,∃) is an MGMV -algebra, put Φ(A) = (A,BA), where BA = ∃A, and if f is

an MGMV -homomorphism of an MGMV -algebra A = (A,∃) into an MGMV -algebra

A′ = (A′,∃), put Φ(f) = (f, f |BA).

Conversely, if (A,BA) is an object in GMV2, put Ψ(A,BA) = (A,∃), where

∃ = h ◦ ∃h, and if (f, fBA
) is a morphism in GMV2 of (A,BA) into (A′, BA′), put

Ψ(f, fBA
) = f .

Then Φ : MGMV −→ GMV2 and Ψ : GMV2 −→ MGMV are functors which

give the equivalence between MGMV and GMV2. ⊓⊔

The following theorem is the non-commutative generalization of [1, Theorem 3.1]

and it gives the possibility of introducing of quantifiers on certain GMV -algebras.

Theorem 6 Let L be a linearly ordered GMV -algebra, n ∈ N and D = {〈a, . . . , a〉 :

a ∈ L} be the diagonal subalgebra of a direct power Ln. Let A be a subalgebra of the

GMV -algebra Ln containing D. Then there exists an existential quantifier ∃ on A such

that ∃A = D ∼= L holds in the MGMV -algebra (A,∃).

Proof Let A be a subalgebra of a GMV -algebra Ln such that D ⊆ A. For any a =

〈a1, . . . , an〉 ∈ Ln, we put ∃a := 〈c, . . . , c〉, where c = max{a1, . . . , an}. Then ∃a ∈ D

and ∃a = a if and only if a ∈ D.

The axioms (E1)–(E6) can be verified analogously as in [1]. ⊓⊔

Example 1 Let G be the group of all matrices of the form

„

a b

0 1

«

, where a, b ∈ R, a > 0,
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and where the group binary operation is the common multiplication of matrices. Set

(a, b) :=

„

a b

0 1

«

.

Then (a, b)−1 =

„

1

a
,−

b

a

«

and (1, 0) is the neutral element. For any (a, b), (c, d) ∈ G

we put

(a, b) ≤ (c, d) :⇐⇒ a < c or a = c, b ≤ d.

Then by [5], G = (G,≤) is a linearly ordered (non-commutative) group in which for

the positive cone G+ it is satisfied G+ = {(a, b) : a > 1 or a = 1, b ≥ 0} and e.g.

u = (2, 0) is its strong order unit. Hence by [6], A = Γ (G,u) is a linearly ordered

non-commutative GMV -algebra in which among others it holds

(a, b) ⊕ (c, d) = (min(ac, 2), min(ad+ b, 0)) ,

(a, b)− =

„

2

a
,−

2b

a

«

,

(a, b)∼ =

„

2

a
,−

b

a

«

.

Let us now consider the (non-commutative) GMV -algebra M = A2. For any

((a, b), (c, d)) ∈ M we put ∃((a, b), (c, d)) = (max{(a, b), (c, d)},max{(a, b), (c, d)}).

Then by the previous theorem, we obtain that ∃ : M −→ M is an existential quantifier

on the non-commutative GMV -algebra M and, moreover, ∃M is isomorphic with A.

6 Ideals and congruences of monadic GMV –algebras

Let A be a GMV -algebra and ∅ 6= I ⊆ A. Then I is called an ideal of A if the following

conditions are satisfied:

(I1) if x, y ∈ I then x⊕ y ∈ I ;

(I2) if x ∈ I, y ∈ A and y ≤ x then y ∈ I.

If X ⊆ A, denote by Id(X) the ideal of A generated by X. For X = ∅, we have

Id(∅) = {0}.

Let 1 · x = x and (n + 1)x = nx ⊕ x for any x ∈ A and n ∈ N. Then, by [7], for

any ideal I of a GMV -algebra A and each a ∈ A we have

Id(I ∪ {a}) = {x ∈ A : x ≤ (b1 ⊕ n1a) ⊕ (b2 ⊕ n2a) ⊕ · · · ⊕ (bm ⊕ nma) for some

m ∈ N, b1, . . . , bm ∈ I, n1, . . . , nm ∈ N0}.

The set I(A) of all ideals in aGMV -algebra A ordered by set inclusion is a complete

lattice (a Brouwerian lattice, moreover).

Let (A,∃) be an MGMV -algebra and let I be an ideal of the GMV -algebra A.

Then I is called a monadic ideal (in short: m-ideal) of (A,∃) if the following condition

is valid:

x ∈ I =⇒ ∃x ∈ I.

Proposition 8 If (A,∃) is an MGMV -algebra, a ∈ ∃A and I is an m-ideal of (A,∃)

then Id({a} ∪ I) is also an m-ideal of (A,∃).
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Proof If x ∈ Id({a} ∪ I) then there are m ∈ N, b1, . . . , bm ∈ I, n1, . . . , nm ∈ N0 such

that x ≤ b1 ⊕ n1a⊕ b2 ⊕ n2a⊕ · · · ⊕ bm ⊕ nma. Hence

∃x ≤ ∃(b1 ⊕ n1a⊕ b2 ⊕ n2a⊕ · · · ⊕ bm ⊕ nma)

≤ ∃b1 ⊕ n1∃a⊕ ∃b2 ⊕ n2∃a⊕ · · · ⊕ ∃bm ⊕ nm∃a

= ∃b1 ⊕ n1a⊕ ∃b2 ⊕ n2a⊕ · · · ⊕ ∃bm ⊕ nma,

thus ∃x ∈ Id({a} ∪ I), and therefore Id({a} ∪ I) is an m-ideal of (A,∃). ⊓⊔

Proposition 9 If (A,∃) is an MGMV -algebra and I ∈ I(A) then I is an m-ideal of

(A,∃) if and only if I = Id(I ∩ ∃A).

Proof Let I be an m-ideal. If a ∈ I then ∃a ∈ I , and thus ∃a ∈ I ∩ ∃A. Since a ≤ ∃a,
we have a ∈ Id(I ∩ ∃A).

Conversely, if a ∈ Id(I∩∃A) then a ≤ b for some b ∈ I∩∃A, hence a ≤ ∃a ≤ ∃b = b,

and so a ∈ I .

Therefore for every m-ideal I of (A,∃) we get I = Id(I ∩ ∃A).

Let now I ∈ I(A) be such that I = Id(I∩∃A). If a ∈ I then a ≤ b1⊕· · ·⊕bn, where

n ∈ N and b1, . . . , bn ∈ I ∩ ∃A. From this, ∃a ≤ ∃(b1 ⊕ · · · ⊕ bn) ≤ ∃b1 ⊕ · · · ⊕ ∃bn =

b1 ⊕ · · · ⊕ bn, thus ∃a ∈ I . That means, I is an m-ideal of (A,∃). ⊓⊔

It is obvious that the set of m-ideals of any MGMV -algebra (A,∃) is a complete

lattice with respect to the order by set inclusion. We will denote it by I(A,∃).

Theorem 7 If (A,∃) is a MGMV -algebra then the lattice I(A,∃) is isomorphic to

the lattice I(∃A) of ideals of the GMV -algebra ∃A.

Proof For any J ∈ I(∃A) we put ϕ(J) := IdA(J), where IdA(J) is the ideal of A

generated by J . If x ∈ ϕ(J) then x ≤ a for some a ∈ J , hence ∃x ≤ ∃a = a, and

thus ∃x ∈ ϕ(J). Therefore ϕ is a mapping of the lattice I(∃A) into the lattice I(A,∃).

Moreover, ϕ(J) ∩ ∃A = J, hence ϕ is injective.

Let now K ∈ I(A,∃). Then K = IdA(K ∩ ∃A) and since K ∩ ∃A ∈ I(∃A), we get

K = ϕ(K ∩ ∃A). Therefore ϕ is a surjective mapping of I(∃A) onto I(A,∃).

Moreover, it is obvious that for each J1, J2 ∈ I(∃A), J1 ⊆ J2 if and only if

ϕ(J1) ⊆ ϕ(J2), hence ϕ is an isomorphism of the lattice I(∃A) onto the lattice I(A,∃)

(and ϕ−1(K) = K ∩ ∃A for every K ∈ I(A,∃)). ⊓⊔

Recall that if A is a GMV -algebra and I ∈ I(A) then I is called a normal ideal of

A if

x− ⊙ y ∈ I ⇐⇒ y ⊙ x∼ ∈ I,

for every x, y ∈ A.

Proposition 10 If (A,∃) is an MGMV -algebra and I is an m-ideal of (A,∃) which

is normal in A, then ϕ−1(I) is a normal ideal in ∃A.

Proof Let us suppose that I is a normal m-ideal of (A,∃). Let x, y ∈ ∃A. If x− ⊙ y ∈
ϕ−1(I), then x− ⊙ y ∈ I and x− ⊙ y ∈ ∃A, hence y ⊙ x∼ ∈ I and y ⊙ x∼ ∈ ∃A, i.e.,

y ⊙ x∼ ∈ ϕ−1(I). Analogously, y ⊙ x∼ ∈ ϕ−1(I) implies x− ⊙ y ∈ ϕ−1(I). ⊓⊔

Question 1 If (A,∃) is any MGMV -algebra and J is an arbitrary normal ideal of ∃A,

is ϕ(J) normal in A?
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If (A,∃) is an MGMV -algebra and θ is a congruence on A, then θ is called an

m-congruence on (A,∃) provided

(x, y) ∈ θ =⇒ (∃x, ∃y) ∈ θ,

for every x, y ∈ A.

Theorem 8 For any MGMV -algebra there is a one-to-one correspondence between

its m-congruences and normal m-ideals.

Proof Let (A,∃) be an MGMV -algebra. Recall that normal ideals of A are in a one-

to-one correspondence with congruences on A, and that the corresponding congruence

θ(I) to a normal ideal I of A is such that

(x, y) ∈ θ(I) ⇐⇒ (x− ⊙ y) ⊕ (y− ⊙ x) ∈ I ⇐⇒ (y ⊙ x∼) ⊕ (x⊙ y∼) ∈ I.

Now, let I be a normal m-ideal on (A,∃) and x, y ∈ A. Then

(x, y) ∈ θ(I) =⇒ (x− ⊙ y) ⊕ (y− ⊙ x) ∈ I =⇒ y ; x, x; y ∈ I

=⇒ ∃(y ; x), ∃(x; y) ∈ I =⇒ ∃y ; ∃x, ∃x; ∃y ∈ I

=⇒ (∃y ; ∃x) ⊕ (∃x; ∃y) ∈ I =⇒ ((∃x)− ⊙ ∃y) ⊕ ((∃y)− ⊙ ∃x) ∈ I

=⇒ (∃x, ∃y) ∈ θ(I),

hence θ(I) is an m-congruence on (A,∃).

Conversely, if θ is an m-congruence on (A,∃) then 0/θ is a normal m-ideal of (A,∃).

⊓⊔

If I is a normal ideal of a GMV -algebra A, put A/I := A/θ(I).

Let (A,∃) be an MGMV -algebra and I be its normal m-ideal. We define the

mapping ∃I : A/I −→ A/I such that

∃I(x/I) := (∃x)/I,

for each x ∈ A.

Proposition 11 If I is a normal m-ideal of an MGMV -algebra (A,∃) then (A/I,∃I)

is an MGMV -algebra.

Let us consider the class MGMV of all MGMV -algebras. By the definition of an

MGMV -algebra it is clear that MGMV is a variety of algebras of type 〈2, 1, 1, 0, 1〉.

Theorem 9 The variety MGMV is arithmetical.

Proof By [18], the variety GMV of all GMV -algebras (of type 〈2, 1, 1, 0〉) is arithmeti-

cal, hence the variety MGMV is arithmetical, too. ⊓⊔

An ideal P of a GMV -algebra A is called prime if I is a finitely meet-irreducible

element in the lattice I(A). A prime ideal P is called minimal if P is a minimal element

in the set of prime ideals of A ordered by inclusion. By Zorn’s lemma, every prime ideal

contains a minimal prime ideal.

Let A be a GMV -algebra and X ⊆ A. The set

X⊥ = {a ∈ A : a ∧ x = 0, for each x ∈ X}

is called the polar of X in A. For any a ∈ A, we write a⊥ instead of {a}⊥.
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Proposition 12 (See [7, Theorem 2.20].) For P ∈ I(A), the following conditions are

equivalent:

(1) P is a minimal prime.

(2) P =
S

{a⊥ : a /∈ P}.

A GMV -algebra A is called representable if A is isomorphic to a subdirect product

of linearly ordered GMV -algebras.

Proposition 13 (See [7, Proposition 3.13].) For a GMV -algebra A the following con-

ditions are equivalent:

(1) A is representable.

(2) There exists a set S of normal prime ideals such that
T

S = {0}.
(3) Every minimal prime ideal is normal.

Theorem 10 Let (A,∃) be an MGMV -algebra satisfying the identity ∃(x∧ y) = ∃x∧
∃y. Then (A,∃) is a subdirect product of linearly ordered MGMV -algebras if and only

if A is a representable GMV -algebra.

Proof Let us consider an MGMV -algebra (A,∃) which satisfies ∃(x ∧ y) = ∃x ∧ ∃y,

for every x, y ∈ A. Let us suppose that the GMV -algebra A is representable. Then

by Proposition 13, there exists a system S of normal prime ideals of A such that
T

S = {0}, and, moreover, all minimal prime ideals of A are normal. Since every prime

ideal of A contains a minimal prime ideal, we get that in our case the intersection of

all minimal prime ideals is equal to {0}.

We will show that every minimal prime ideal of A is an m-ideal in (A,∃). Let P be

a minimal prime ideal of A. Then by Proposition 12, P =
S

{a⊥ : a /∈ P}. If x ∈ P ,

then there is a /∈ P such that x ∧ a = 0, hence 0 = ∃0 = ∃(x ∧ a) = ∃x ∧ ∃a. Since

a /∈ P , we get ∃a /∈ P , therefore ∃x ∈ P. That means, P is an m-ideal in (A,∃).

The converse implication is trivial. ⊓⊔

7 Polyadic GMV -algebras

In this section we will deal with polyadic GMV -algebras as special cases of polyadic

(Λ, I)-algebras in the sense of [17].

Let I be a nonempty set. Any mapping σ : I −→ I is called a transformation of I .

The set of transformations of I is denoted by II and the identity transformation by ι.

If J ⊆ I and σ, τ ∈ II then σJτ means that σi = τi for each i ∈ J , and σJ∗τ means

that σi = τi for each i ∈ I \ J . We say that J supports σ if σJ∗ι. Further, σ is of finite

support if it has a finite support set. The set of all transformations of finite support is

denoted by I(I). The denotation J ⊆ω I means that J is a finite subset of I . The set

of all finite subsets of I is denoted by SbωI .

Let Λ = 〈N ,B, ρ〉 be a first-order language with two disjoint sets N and B of

operation symbols, where N = 〈⊕,⊙,− ,∼ , 0, 1〉 is the set of operation symbols of

GMV -algebras, and ρ : N −→ ω denotes their usual arities. Let I be a nonempty set.

Now we consider a further first-order language closely related to Λ such that its

nonlogical symbols are divided to the following categories.

(a) The operation symbols 〈⊕,⊙,− ,∼ , 0, 1〉, called nonbinding operations or proposi-

tional connectives.
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(b) An SbωI-indexed system of unary operation symbols Q := 〈QJ : J ⊆ω I〉 for each

Q ∈ B. These are called binding operations or generalized quantifiers.

(c) A unary operation symbol Sσ for each σ ∈ I(I). These are called substitution

operators.

Let I be a nonempty set and Λ be a language as above. Then a polyadic GMV -

algebra (over (Λ, I)) is any algebra of the form

A :=
D

A; 〈⊕,⊙,− ,∼ , 0, 1〉, 〈QJ : Q ∈ B, J ⊆ω I〉, 〈Sσ : σ ∈ I(I)〉
E

satisfying the following axioms (universally quantified):

(PGMV1) Sιx = x;

(PGMV2) Sσ(Sτx) = Sστx,

for all σ, τ ∈ I(I);

(PGMV3) Sσ(x1 ⊕ x2) = Sσx1 ⊕ Sσx2,

Sσ(x1 ⊙ x2) = Sσx1 ⊙ Sσx2,

Sσx
− = (Sσx)−, Sσx

∼ = (Sσx)∼,

Sσ0 = 0, Sσ1 = 1,

for all σ ∈ I(I);

(PGMV4) SσQJx = SτQJx,

for all Q ∈ B, J ⊆ω I and σ, τ ∈ I(I) such that σJ∗τ ;

(PGMV5) QJSσx = SσQσ−1(J)x,

for all Q ∈ B, J ⊆ω I and σ ∈ I(I) such that σ is one-to-one on σ−1(J).

A polyadic GMV -algebra A over (Λ, I) is called pseudomonotonic if it satisfies the

following axiom:

(PGMV6) QJx = QJSσy ∧QJy = QJSτy → QJx = QJy,

for all Q ∈ B, J ⊆ω I and σ, τ ∈ I(I) such that σJ∗ι and τJ∗ι.

A polyadic GMV -algebra A over (Λ, I) is called infinite-dimensional if I is infinite.

Remark 2 Every monadic GMV -algebra can be considered as a special case of polyadic

GMV -algebra, where cardI = 1 and B = 〈∃〉.

Remark 3 The notion of a polyadic GMV -algebra is based on an essentially more

general notion of a polyadic (Λ, I)-algebra, where in a language Λ = 〈N ,B, ρ〉, the set

N of operation symbols is not specified, ρ : N −→ ω is an arbitrary mapping, and

instead of the axiom (PGMV3) it is used more general axiom related to all operation

symbols in N . (See [17, Definition 1.1].)

Let now A be a polyadic GMV -algebra over (Λ, I). Then J ⊆ I supports an element

a ∈ A if Sσa = Sτa for all σ, τ ∈ I(I) such that σJτ . An element a ∈ A is of finite

support if it has a finite support set. A is called locally finite if every element in A is

of finite support.

Functional polyadic (Λ, I)-algebras are introduced and studied in [17]. It is shown

([17, Theorems 1.11, 1.12]) that every functional polyadic (Λ, I)-algebra is a polyadic

(Λ, I)-algebra and that every locally finite polyadic (Λ, I)-algebra of infinite dimension

is isomorphic to a functional polyadic (Λ, I)-algebra.
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Furthermore, Pigozzi and Salibra in [17] deal with the first-order extensions of the

so-called standard systems of implicational extensional propositional calculi (SIC’s)

considered by Rasiowa in [19]. These include many of non-classical logics (classical and

intuitionistic and their various weakenings and fragments, the Post and  Lukasiewicz

multiple-valued logics, modal logics that admit the rule of necessitation, BCK-logic,

. . .). Note that every SIC S is algebraizable in the sense of [2].

For any SIC S , polyadic S-algebras and function-representable polyadic S-algebras

are introduced in [17], and it is proved ([17, Theorem 3.7]) that every locally fi-

nite polyadic S-algebra of infinite dimension is isomorphic to a function-representable

polyadic S-algebra.

Now, it is a question how to introduce an analogue of the notion of SIC for non-

commutative logics (including the non-commutative  Lukasiewicz infinite valued logic)

and whether, in such a case, there is an analogous representation for some class of

non-commutative polyadic S-algebras as for locally finite polyadic S-algebras.
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