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Abstract. This paper develops the model theory of ordered struc-
tures that satisfy Keisler’s regularity scheme, and its strengthening
REF(L) (the reflection scheme) which is an analogue of the reflec-
tion principle of Zermelo-Fraenkel set theory. Here L is a language
with a distinguished linear order <, and REF(L) consists of the
universal closure of formulas of the form

∃x∀y1 < x · · · ∀yn < x ϕ(y1, · · ·, yn) ↔ ϕ<x(y1, · · ·, yn),

where ϕ(y1, · · ·, yn) is an L-formula, ϕ<x is the L-formula obtained
by restricting all the quantifiers of ϕ to the initial segment deter-
mined by x, and x is a variable that does not appear in ϕ. Our
results include:

Theorem. The following five conditions are equivalent for a com-
plete first order theory T in a countable language L with a distin-
guished linear order :
(1) Some model of T has an elementary end extension with a

first new element.
(2) T ` REF(L).
(3) T has an ω1-like model that continuously embeds ω1.
(4) For some regular uncountable cardinal κ, T has a κ-like model

that continuously embeds a stationary subset of κ.
(5) For some regular uncountable cardinal κ, T has a κ-like model

M that has an elementary extension in which the supremum
of M exists.

Moreover, if κ is a regular cardinal satisfying κ = κ<κ, then each
of the above conditions is equivalent to:
(6) T has a κ+-like model that continuously embeds a stationary

subset of κ.
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1. INTRODUCTION AND PRELIMINARIES

The reflection principle1 for Zermelo-Fraenkel set theory implies that
for any set theoretical formula ϕ(x) (possibly with parameters) there
is a rank initial segment Vα of the universe that is ϕ-reflective, i.e., for
any s ∈ Vα, ϕ(s) holds in the universe iff ϕ(s) holds in Vα. This paper
develops the basic model theory of ordered structures that satisfy an
analogue - dubbed the reflection scheme - of the reflection principle
in set theory. The reflection scheme was first explicitly formulated in
Schmerl’s work [Schm-2, Sec.1] on the model theory of ordered struc-
tures that continuously embed stationary subsets of uncountable car-
dinals, a topic that is intimately related to the study of extensions of
first order logic with stationary quantifiers on power-like models, first
introduced by Shelah [Sh-1], and recently revisited in his joint work
with Väänänen [SV].

Given a language L with a distinguished symbol < for a linear order,
the reflection scheme over L, denoted REF(L), consists of the sentence
“< is a linear order without a last element” plus the universal closure
of formulas of the form

∃x∀y1 < x · · · ∀y1 < x ϕ(y1, ···, yn, w1, ···, wr) ↔ ϕ<x(y1, ···, yn, w1, ···, wr),

where ϕ(y1, · · ·, yn, w1, · · ·, wr) is an L-formula with the displayed free
variables, ϕ<x is the L-formula obtained by restricting all the quanti-
fiers of ϕ to the initial segment determined by x, and x is a variable that
does not appear in ϕ. In other words, models of REF(L) are precisely
those L-structures

M = (M,<M , · · ·)
such that (M,<M) is a linear order without a last element such that
for any L-formula ϕ(y1, · · ·, yn, w1, · · ·, wr) and any choice of parameters
c1, · · ·, cr in M, there is some m ∈ M such that for every sequence of
elements a1, · · ·, an below m, the sentence ϕ(a1, · · ·, an, c1, · · ·, cr) holds
in M iff it holds in the submodel of M whose universe is the initial
segment {x ∈ M : x <M m}.

It is easy to see, using a Löwenheim-Skolem argument, that if κ is
a regular uncountable cardinal, and < is the natural order on κ, then
every expansion of the structure (κ,<) satisfies the reflection scheme.

1This particular formulation is one of the three variants of the reflection principle
stated in [Jec, Theorem 2.14], and is due to Lévy who refined an earlier version
by Montague. See [Kan, Sec. 2] for more detail on the history of the reflection
principle.
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Another rich source of examples of models of the reflection scheme
come from set theory. By a well-known forcing construction [F], every
countable2 model M := (M, E) of ZFC (where E = ∈M) has an ex-
pansion to a model (M, <) that satisfies the statement GW expressing
“< is global well-ordering all of whose proper initial segments form a
set”, and which also satisfies ZF({<,∈}), i.e., all instances of the re-
placement scheme for formulas of the extended language {∈, <}. By a
slight modification of the proof of the reflection principle one can show
that all instances of the reflection scheme in the language {∈, <} are
provable in the theory ZF({<,∈})+GW. In particular, this shows that
ZFC + REF({<,∈}) is a conservative extension of ZFC.

In order to motivate and situate the results of this paper, we first
discuss a related first order scheme known as the regularity scheme.
The regularity scheme was introduced implicitly by Keisler in [Ke-1]
and [Ke-2], and further investigated in [Sh-2]. The model theory of
the regularity scheme is closely tied to the study of κ-like models and
generalized quantifiers of the form “there exist κ-many” (where κ is an
infinite cardinal).

• Throughout the paper, L is a countable language with a distin-
guished linear order <.

The regularity scheme REG(L) consists of the sentence “< is a linear
order with no last element” plus the universal closure of axioms of the
form

[∀v ∃x > v ∃y < z ϕ(x, y)] → [∃y < z ∀v ∃x > v ϕ(x, y)],

where ϕ is an L-formula. Note that every model of REF(L) is also
a model of REG(L) (but not vice versa). It is well-known that the
regularity scheme is equivalent to the collection scheme COLL(L), con-
sisting of the sentence “< is a linear order with no last element” plus
the universal closure of axioms of the following form

(∀x < z ∃y1 · · · ∃yk ϕ(x, y)) → (∃v ∀x < z ∃y1 < v · · · ∃yk < v ϕ(x, y)) ,

2If M satisfies the statement “the universe is ordinal definable from some set”
then the countability assumption of M (and the forcing argument) can be by-
passed. In particular, all models of ZF + ∃x(V = L[x]) expand to models of the
reflection scheme. However, uncountable models of ZFC that have no expansion
to REF ({<,∈}) exist. To see this, recall that by a classical theorem of Easton
[Ea], there is a (countable) model M0 of ZFC with a proper class of pairs that has
no definable choice function. If M is a “rather classless” elementary extension of
M0, then M has no expansion to REF({<,∈}). See [En-1] for more information on
rather classless models of set theory.



4 ENAYAT AND MOHSENIPOUR

where ϕ(x, y) := ϕ(x, y1 · · ·yk). See [Ho, Lemma 6.1.6] for a level-by-
level refinement of the equivalence of REG(L) and COLL(L).

Example 1.1.

(1) If κ is a regular infinite cardinal, then every expansion of a κ-
like linear order3 satisfies the regularity scheme. As observed
earlier, if κ is an uncountable regular cardinal and < is the
natural order on κ, then every expansion of (κ,<) satisfies the
reflection scheme. More generally, if (X, C) is a κ-like linear
order that continuously embeds4 a stationary subset of κ, then
any expansion of (X, C) satisfies the reflection scheme.

(2) All instances of REG(LPA) are provable in PA, where LPA is the
language of PA (Peano arithmetic). In this context REG(LPA)
plus the scheme I∆0 of bounded induction is known to be equiv-
alent to PA. See [Kay, Theorem 7.3] and [MP] for more detail.
It is easy to see that PA disproves many instances of REF(LPA),
e.g., the sentence “there is no last element” is never reflected.

(3) Zermelo-Fraenkel set theory ZF plus the axiom V = OD (ex-
pressing “all sets are ordinal definable”) proves all instances of
the reflection scheme in the language of {<OD,∈}, where <OD

is the canonical well-ordering of the ordinal-definable sets. This
follows from the reflection principle in ZF.

(4) ZF\{Power Set Axiom} plus the axiom V = L (expressing
“all sets are constructible”) proves all instances of the reflec-
tion scheme in the language L = {<L,∈}, where <L is the
canonical well-ordering of the constructible universe. This is
a nontrivial result that follows from coupling the provability
of the so-called “βk-model reflection scheme” within Z2 + DC
(second order arithmetic plus the dependent choice scheme),
with the canonical one-to-one correspondence between models
of ZF\{Power Set Axiom}+ “all sets are finite or countable”
and models of Z2 + DC. See [Si, Sec. VII.7] for the former, and
[Si, Sec. VII.3] for the latter.

(5) The theory T of pure linear orders with no maximum element
proves every instance of REG({<}). This follows from coupling
Theorem 1.2 below with a result of Rosenstein [R, Theorem
13.58], which states that every countable linear order without

3Recall that a linear order (X, C) is κ-like if |X| = κ, but for every x ∈ X,
|{y ∈ X : y C x}| < κ.

4A linear order L continuously embeds a subset S of κ if there is an order
preserving injection f from κ to L such that for all limit ordinals α ∈ S, f(α) is
the supremum of {f(β) : β < α}.
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a maximum element has an e.e.e. It is easy to see that (a) T
is consistent with REF({<}), but (b) T does not prove some
instance of REF({<}).

Before stating the next result, let us recall a key definition:

• Given L-structures M = (M, <M , · · ·) and N = (N,<N , · · ·),
M is end extended by N, written M ⊆e N, if M is a submodel
of N such that x <N y whenever x ∈ M and y ∈ N\M . We
abbreviate “elementary end extension” by “e.e.e”; and write
M ≺e N when N is a proper e.e.e. of M.

The following fundamental theorem establishes various model the-
oretic characterizations of the regularity scheme. It is fairly straight-
forward to use Theorem 1.2 to derive several important theorems of
model theory, including: Vaught’s two cardinal theorem, the countable
compactness of the logic L(Q) with the extra quantifier “there exist
uncountably many”, and the recursive enumerability of the set of valid
sentences of L(Q).

Theorem 1.2. (Keisler) The following are equivalent for a complete
first order theory T formulated in the language L.
(1) Some model of T has an e.e.e.
(2) T proves REG(L).
(3) Every countable model of T has an e.e.e.
(4) Every countable model of T has an ω1-like e.e.e.
(5) T has a κ-like model for some regular cardinal κ.

Proof (outline):

(1) ⇒ (2) : Routine.
(2) ⇒ (3) : This uses a standard application of the Henkin-Orey omit-
ting types theorem, see [CK, Theorem 2.2.18] for a similar proof.
(3) ⇒ (4) : Start with any countable model of T and use part (3)
ω1-times (while taking unions at limits).
(4) ⇒ (5) : ω1 is a regular cardinal, assuming ZFC in the metatheory
(see Example 1.1.1).
(5) ⇒ (1) : Suppose M is a κ-like model of T . If κ = ω, then (M,<M)
has order-type ω and any elementary extension of M is automatically
an end extension. On the other hand, if κ > ω, then a Löwenheim-
Skolem argument reveals that M has a proper initial elementary sub-
model.

¤
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Corollary 1.3. Every consistent theory T extending REG(L) has a
completion T ∗ in a language L∗ extending L by one new unary relation
symbol such that T ∗ is Skolemized and contains REG(L∗).
Proof: Given T , use Theorem 1.2 to build an ω1-like model M of T ,
and let C well-order M of order-type ω1. Since the expanded structure
(M,C) has definable Skolem functions, we can let T ∗ = Th(M,C).

¤
Remark 1.4.

(1) In part (4) of Theorem 1.2, ω1 cannot be replaced by ω2. To see
this, let M := (H(ω1)

L, <L,∈), where H(ω1)
L is the collection

of hereditarily countable sets in the sense of the constructible
universe L. It is well-known that M satisfies the theory spec-
ified in Example 1.1.4. Let M0 be a countable model that is
elementarily equivalent to M. Note that an e.e.e. of M0 cannot
be of cardinality more than ω1 since the set of natural numbers
in the sense of M is countable, and M satisfies the sentence
“every set is finite or countable”.

(2) In part (5) of Theorem 1.2, κ cannot in general be chosen as
ω2. To establish this claim, let M be as in (1) above, and note
that within M, one can define a special Aronszajn tree in a first
order manner by repeating the classical construction internally
in M. This shows that if ω2 has the tree property (i.e., there
is no ω2-Aronszajn tree), then Th(M) cannot have an ω2-like
model5.

(3) Certain theories T containing the regularity scheme have the
property that every model of T has an e.e.e. The celebrated
MacDowell-Specker Theorem6 shows that PA is such a theory
(see [Kay] or [KS] for an exposition). In contrast, it is known
that every completion of ZFC has an ω1-like model that does
not have an e.e.e., see [Kau, Theorem 4.2] or [En-1, Theorem
1.5]. Moreover, as shown in [En-2], there is a scheme Φ in the
usual language of set theory such that: (a) every completion
of ZFC + Φ has a θ-like model for any uncountable θ ≥ ω1,
and (b) it is consistent (relative to ZFC + “there is an ω-Mahlo
cardinal”) that the only completions of ZFC that have an ω2-like
model are those that satisfy Φ.

5The work of Mitchell and Silver shows that over ZFC, the statement “ℵ2 has
the tree property” is equiconsistent with “there is uncountable weakly compact”,
see [Jec, Theorems 28.23 and 28.24].

6Shelah [Sh-2, Theorem 2.5] extended the MacDowell-Specker Theorem to a
wider class of models. See [Schm, Sec.6] for an exposition.
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(4) Rubin [Sh-2, Theorem 2.1.2] refined (2) ⇒ (3) of Theorem 1.2
by showing that for any countable linear order L, and any
countable model M0 of REG(L) with definable Skolem func-
tions, there is an elementary extension ML of M0 such that
the lattice of intermediate submodels {M : M0 ¹ M ¹ ML}
(ordered under ≺) is isomorphic to the Dedekind completion of
L. Since there are continuum many nonisomorphic countable
Dedekind complete linear orders, this shows that every count-
able complete Skolemized extension of REG(L) has continuum
many countable nonisomorphic models.

The following is a reformulation of the classical two-cardinal theo-
rems of Chang [CK, Theorem 7.2.7] and Jensen [Jen]. An analogue of
Theorem 1.5.1 will be established in Theorem 2.10.

Theorem 1.5. Suppose T is a consistent theory formulated in the
language L such that T proves REG(L).

(1) (Chang) If κ is a regular cardinal satisfying κ<κ = κ, then T
has a κ+-like model.

(2) (Jensen) If κ is a singular strong limit cardinal and ¤κ holds,
then T has a κ+-like model.

Remark 1.6.

(1) The converse of part (1) of Theorem 1.5 is false (this answers
a question posed by Chang in his original paper [C]). To see
this, suppose the universe of set theory V is obtained by forcing
over the constructible universe L such that (a) 2ω = ω2, and (b)
the cardinals of L are the cardinals of V (this can be easily ar-
ranged, e.g., by adding ω2-many Cohen reals to L). Let T be as
in Theorem 1.5, and recall that the submodel L(T ) satisfies the
continuum hypothesis. Therefore by Theorem 1.5 (a), there is a
model M of T such that L(T ) thinks “M is ω2-like”. But since
cardinals are preserved in the passage between L and V, M is
ω2-like in V. Chang’s Theorem has been recently revisited in
the work of Villegas-Silva [V], which employs the existence of a
coarse (κ, 1)-morass (instead of κ<κ = κ) to establish the con-
clusion of Theorem 1.5.1 for theories T formulated in languages
of cardinality κ.

(2) Shelah [Sh-3] has isolated a square principle (denoted ¤b∗
κ ) that

is equivalent to the two-cardinal transfer principle (ω1, ω) →
(κ+, κ). See [KV] for a detailed discussion of the role of ¤b∗

κ and
related square principles in model theory.
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2. PRINCIPAL RESULTS

It is well-known7 that every elementary extension of a model of PA
or ZF can be “split” into a cofinal elementary extension (denoted ¹cof)
followed by an elementary end extension. The first result of this section
shows that what is at work here is the regularity scheme. Note that by
(1) ⇒ (2) of Theorem 1.2, the converse of Theorem 2.1 is also true.

Theorem 2.1. (Splitting Theorem). Suppose M ² REG(L) with M ≺
N. Let M∗ be the submodel of M whose universe M∗ is the convex
hull of M in N, i.e.,

M∗ := {x ∈ N : ∃y ∈ M (x <N y)}.
Then

M ¹cof M∗ ¹e N.

Proof: It suffices to show that M∗ ¹ N. We use the Tarski-test by
supposing that N ² ∃xϕ(a1, · · ·, an, x), where each ai ∈ M∗. Let c ∈ M
such that each ai < c. Then, by invoking REG(L) in M (in the guise
of COLL(L)), there must be some b ∈ M such that M satisfies the
sentence

∀z1 < c · · · ∀zn < c (∃xϕ(z1, · · ·, zn, x) → ∃x < b ϕ(z1, · · ·, zn, x)).

Since N satisfies the same sentence, this shows that we can find an+1 ∈
M∗ such that N ² ϕ(a1, · · ·, an, an+1). ¤

Another notion that can be fruitfully generalized from the model
theory of arithmetic is the important notion of tallness.

• A model is tall iff it can be written as an e.e.e. chain with no
last element.

The following theorem is well-known in the context of models of PA.
Recall that M is recursively saturated8 if for every finite sequence m of
elements of M, every finitely realizable type over the expanded model
(M,m) that is recursive (computable) in L is realized in M.

Theorem 2.2. The following three conditions are equivalent for a
model M of REG(L) with definable Skolem functions.
(1) For every c in M there is some d in M such that M ² τ(c) < d
for every definable L-term τ.
(2) M is tall.
(3) M has a cofinal recursively saturated elementary extension.

7See [Kay] for PA and [Ke-2, Lemma C, p. 138] for ZF.
8Usually recursive saturation is defined for structures whose vocabulary L is

effectively presented. Our definition here is more general and applies to structures
in all countable languages.
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Proof (outline):
(1) ⇒ (2): The Splitting Theorem, coupled with (1) shows that the set
of elementary initial segments of M are unbounded in M.
(2) ⇒ (3): The key observation here is that (2) can be used to show
that if Σ(x1, · · ·, xn) is any finitely satisfiable type over some expansion
(M,m) of M, then there is some c ∈ M such that the “bounded” type

Σ(x1, · · ·, xn) := Σ(x1, · · ·, xn) ∪ {xi < c : 1 ≤ i ≤ n}
is also finitely satisfiable. Since Σ is L-recursive iff Σ is L-recursive,
the Splitting Theorem and a routine modification of the usual elemen-
tary chains proof of the existence of recursively saturated elementary
extensions of prescribed structures together show that M has a cofinal
recursively saturated elementary extension.

(3) ⇒ (1) : Suppose N is a cofinal recursively saturated elementary
extension of M. Given any c ∈ M , by recursive saturation there is a
bound d1 ∈ N for the elements generated by c in N via definable terms.
Choose d ∈ M with d1 < d and observe that by elementarity, for all
definable terms τ(x),

M ² τ(c) < d.

¤
By putting Theorem 2.2 together with the fact that the notions of
recursive saturation and resplendence coincide for countable models
[BS, 2.3(ii)], we may conclude that if M is a countable L-model of
REG(L), then M is tall iff M has a resplendent cofinal elementary
extension. The next result (Theorem 2.3) removes the countability
hypothesis from the aforementioned equivalence. The proof uses the
notion of ‘total resplendence’, defined as follows: an L-structure M is
totally resplendent if the following condition is satisfied:

For any formula ϕ(R) in the language L ∪ {R}, where
R is a new n-ary predicate, whenever some elementary
extension of M expands to a model of ϕ(R), then there
is some relation symbol S ∈ L such that M satisfies
ϕ(S).

It is well-known that the usual existence proof of resplendent models
can be modified to yield a totally resplendent elementary extension M
of any prescribed structure M0 (note that in general the language of
M extends the language of M0).

Theorem 2.3. Every tall model of REG(L) has a cofinal resplendent
elementary extension.
Proof: Let M be a tall model of REG(L). Then M can be written
as the union of an e.e.e. chain 〈Mα : α < κ〉, where κ is some infinite
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cardinal. We wish to build, by simultaneous recursion on α, a chain
of models 〈Nα : α < κ〉 and a chain of languages 〈Lα : α < κ〉 with
satisfying the following conditions for each α < κ:

(1) Nα is an Lα-structure and Mα ≺ Nα ¹ L;
(2) L0 = L, Lδ ⊆ Lα and Nδ ≺ Nα ¹ Lδ whenever δ < α;
(3) Nα+1 ² c < d for all c ∈ Nα and d ∈ Mα+1\Mα;
(4) Nα is totally resplendent; and
(5) Nα ∩M = Mα.

Let us first verify that the existence of a chain of models satisfying the
above properties establishes Theorem 2.3. Let

N :=
⋃

α<κ

(Nα ¹ L),

and note that by (1) and (2), M ≺ N, and by (3) M is cofinal in N.
Also, by coupling (2) and (4) with the Robinson consistency theorem
[CK, Theorem 2.2.23], N is resplendent.

〈Nα : α < κ〉 is built by recursion on α as follows. Our effort will be
focused on dealing with successor ordinals α since N0 can be chosen to
be a totally resplendent elementary extension of M0 such that N0∩M =
M0, and Nα can be defined as the union of 〈Nγ : γ < α〉 for limit α. If
α is a successor ordinal of the form θ + 1, then we first build a model
N∗

θ+1 that satisfies the following two properties:

(i) N∗
θ+1 ² c < d for all c ∈ Nθ and d ∈ Mθ+1\Mθ; and

(ii) N∗
θ+1 realizes the commuting diagram below. In the diagram,

→ denotes elementary embedding, and →e denotes elementary
end embedding.

N∗
θ+1

↗ ↖
Nθ Mθ+1

↖ ↗e

Mθ

Note that Nθ ∩ Mθ+1 = Mθ by inductive hypothesis. Thanks to the
compactness theorem, the construction of N∗

θ+1 is reduced to verifying
the consistency of the theory Tθ obtained by augmenting the union of
the elementary diagrams of Nθ and Mθ+1 with sentences of the form
(c < d) where c ∈ Nθ and d ∈ Mθ+1\Mθ.

Let T0 be a finite subset of Tθ. By using conjunctions, we may assume
that T0 is of the form

{ϕ(c1, · · ·, cr), ψ(d1, · · ·, ds), cr < d1},
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where c1, · · ·, cr is an increasing finite sequence from Nθ, d1, · · ·, ds is an
increasing finite sequence from Mθ+1, the sentence ϕ(c1, · · ·, cr) holds in
Nθ, and the sentence ψ(d1, · · ·, ds) holds in Mθ+1. Note that ϕ and ψ
may contain (suppressed) parameters from Mθ. We shall verify that T0

is interpretable in Nθ. By coupling the assumption that ψ(d1, · · ·, ds)
holds in Mθ+1 with the assumption that Mθ+1 is an e.e.e. of Mθ, it is
easy to see that Mθ satisfies the sentence

∀x∃y1 > x · · · ∃ys > x ψ(y1, · · ·, ys).

Since Mθ ≺ Nθ, the above sentence is also true in Nθ, and therefore
there is an increasing sequence e1, · · ·, es in Nθ with cr < e1 such that
Nθ satisfies

ϕ(c1, · · ·, cr) ∧ ψ(e1, · · ·, es) ∧ cr < e1.

This concludes the verification of the consistency of Tθ. Let N∗
θ+1 be a

model of Tθ and choose Nθ+1 to be a totally resplendent model whose
reduct to Lθ is an elementary extension of N∗

θ. Note that it is easy to
ensure that Nθ+1 ∩Mθ+2 = Mθ+1.

¤
Schlipf [Schl, Sec.3] showed that every resplendent model of PA or

ZF is isomorphic to a proper initial elementary submodel of itself. Our
next theorem generalizes Schlipf’s result. Before stating it, we need a
new definition.

• Suppose M and N are structures with a distinguished linear
order <, and M is a submodel of N. N is said to be a blunt9

extension of M if the supremum of M in (N, <N) exists, i.e., if
{x ∈ N : ∀m ∈ M(m <N x)} has a first element.

Theorem 2.4. Suppose M is a resplendent model of REG(L). Then
there is some M0 ≺e M such that M0

∼= M. Moreover, if M is a model
of REF(L), then we can further require that M0 ≺blunt

e M.

Proof: Add a new unary predicate U(x) to L, and consider the theory
T (U) in the expanded language obtained by augmenting Th(M,m)m∈M

with a scheme S that expresses “the submodel determined by U is a
proper initial elementary submodel”. Note that by Theorem 1.2, T (U)
is consistent. Now augment the language of T (U) with a new unary
function symbol f and let T (U, f) be T (U) plus a scheme that expresses
“f is an isomorphism between the submodel determined by U and the
whole model”. We claim that T (U, f) is also consistent. To verify

9Note that a blunt extension need not be an end extension. We already com-
mented (Remark 1.4.3) that no ℵ1-like model of ZF has an e.e.e., but in contrast,
by Corollary 2.6 of this paper, every ℵ1-like model of ZF with a definable global
well-ordering has a blunt elementary extension.
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this, it suffices to show that every countable subtheory T0 of T (U) that
includes S has a model that is isomorphic to a proper initial segment
of itself. To this end, choose a countable recursively saturated model
(M, UM) of T0, and let MU be the submodel of M whose universe is
UM . Notice that

MU is recursively saturated, and MU ≺e M.

This allows us to invoke the pseudo-uniqueness of countable recursively
saturated models [BS, 1.4(iii)] to conclude that MU

∼= M. Therefore
T (U, f) is consistent and M has an elementary extension that is iso-
morphic to a proper initial segment of itself. We may now employ
resplendence to conclude that M is also isomorphic to a proper initial
segment of itself.

Next, we verify the ‘moreover’ clause. If M is a resplendent model of
REF(L), then repeat the same argument as above, but (1) replace the
scheme S with REF(L), and (2) replace T (U) with Tblunt(U) obtained
by adding the sentence “U is the set of predecessors of some element”
to T (U). Then use the fact that any countable recursively saturated
model M of REF(L) has an element c ∈ M such that the submodel
of M whose universe is the set of predecessors of c is an elementary
submodel of M.

¤
Corollary 2.5. Every resplendent model of REF(L) with definable
Skolem functions has a blunt minimal10 elementary end extension.

Proof: Let M be a resplendent model of REF(L) with definable Skolem
functions. By the ‘moreover’ clause of Theorem 2.4 there is some blunt
e.e.e. N of M, with c = min(N\M). Let M(c) be the (elementary)
submodel of N generated by M ∪ {c} via the definable terms of N.
To see that M(c) is a minimal e.e.e. of M, suppose N∗ ¹ M(c), with
N∗ ) M. It suffices to show that for any d ∈ N∗\M , c belongs to
the submodel generated by M ∪ {d}. To verify this, choose a definable
term τ(x) (with suppressed parameters from M) such that d = τ(x)
and then observe that for all m ∈ M, N ² τ(m) 6= d since M ≺ N.
Therefore N satisfies the sentence S expressing “there is a least x such
that τ(x) = d”. So S is also true in N∗, and moreover, any element
witnessing the existential claim of S in N∗ should be equal to c by the
assumption that N∗ ¹ M(c).

¤

10Recall that B is a minimal elementary extension of A, if A ≺ B and there is
no C with A ¹ C ¹ B.
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Corollary 2.6. Every tall model of REF(L) has a blunt elementary ex-
tension. In particular, every model of REF(L) of uncountable cofinality
has a blunt elementary extension.

Proof: This is an immediate consequence of putting Theorems 2.3 and
2.4 together.

¤
The next result is the analogue of Theorem 1.2 for models of the

reflection scheme. We should point out that the equivalence of condi-
tions (1), (3), (5), and (6) of Theorem 2.7 was stated (but not proved)
in [Schm-2, Sec.1].

Theorem 2.7. The following are equivalent for a complete first order
theory T formulated in the language L.
(1) Some model of T has a blunt e.e.e.
(2) There are models M1 and M2 of T such that M1 has an e.e.e.
and M2 has a blunt elementary extension.
(3) T ` REF(L).
(4) Every countable recursively saturated model of T has a countable
blunt recursively saturated e.e.e.
(5) T has an ω1-like e.e.e. that continuously embeds ω1.
(6) T has a κ-like model for some regular uncountable cardinal κ that
continuously embeds a stationary subset of κ.
(7) T has a κ-like model for some regular uncountable cardinal κ that
has a blunt elementary extension.

Proof (outline):

(1) ⇒ (2) : Trivial.
(2) ⇒ (3) : Since M1 has an e.e.e., T satisfies REG(L) by Theorem 1.2.
This allows us to invoke the Splitting Theorem to show that M2 has a
cofinal elementary extension that has a blunt e.e.e. The rest is easy.
(3) ⇒ (4) : This is an immediate consequence of the ‘moreover’ clause
of Theorem 2.4, and the resplendence property of countable recursively
saturated models.
(4) ⇒ (5) : Start with a countable recursively saturated model of T ,
and build an elementary chain of length ω1 by invoking the ‘moreover’
clause of Theorem 2.4 ω1-times, while taking unions at limits. Note
that recursive saturation is preserved at limit stages.
(5) ⇒ (6) : Our metatheory is ZFC, one of whose theorems is that ω1

is a regular cardinal (see Example 1.1.1).
(6) ⇒ (7) : A Löwenheim-Skolem argument reveals that if T has a
κ-like model M that continuously embeds a stationary subset of κ for



14 ENAYAT AND MOHSENIPOUR

some regular uncountable cardinal κ, then M satisfies REF(L). There-
fore Corollary 2.6 can be invoked to obtain a blunt elementary extension
of M.
(7) ⇒ (1) : Suppose κ is a regular uncountable cardinal, and M is a
κ-like model of T such that M ≺blunt N with c = sup M in (N,<N).
Note that M must satisfy the regularity scheme, so by the Splitting
Theorem there is a (unique) model M∗ such that

M ¹cof M∗ ≺e N.

This shows that M∗ ≺blunt
e N since c = min(N\M∗).

¤
Remark 2.8.

(1) In contrast with part (3) of Theorem 1.2, not all countable mod-
els of the reflection scheme have a blunt e.e.e. For example, no
e.e.e. of the Shepherdson-Cohen minimal model of set theory
can be blunt. This follows from [En-3, Theorem 3.11 and Corol-
lary 3.12] which also shows that every consistent extension of
ZF has a countable model that has no blunt e.e.e. With a little
more work, one can even show that each consistent extension
of ZF has a countable model that has no blunt elementary ex-
tension.

(2) A number of central results about stationary logic L(aa) can be
derived, via the reduction method11, as corollaries of Theorem
2.7. In particular, the countable compactness of L(aa), as well
as the recursive enumerability of the set of valid sentences of
L(aa) can be directly derived from Theorem 2.7.

Using the strategy of the proof of Corollary 1.3 from Theorem 1.2,
we can derive the following corollary from Theorem 2.7.

Corollary 2.9. Every consistent theory T extending REF(L) has a
completion T ∗ in a language L∗ ⊇ L extending L by a new binary
relation symbol such that T ∗ is Skolemized and contains REF(L∗).

Our last theorem is the analogue of Chang’s Theorem 1.5.1, whose
proof is based on an adaptation of Chang’s original proof. This result
was stated without proof in [Schm-2, Sec.1].

11See [Eb, Sec.3.2] or [Schm-3, Sec.1] for more on the reduction method. [Eb,
Theorem 3.2.2] couples the reduction method with a theorem of Hutchinson [Hu]
concerning blunt elementary end extensions of models of set theory to establish the
ℵ0-compactness of L(aa) and recursive enumerability of the set of valid sentences
of L(aa).
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Theorem 2.10. Suppose T is a consistent theory containing REF(L),
and κ is a regular cardinal with κ = κ<κ. Then T has a κ+-like model
that continuously embeds the stationary subset {α < κ+ : cf(α) = κ}
of κ+.

Proof: By Theorem 2.7, T has an ω1-like model M that continuously
embeds ω1. Without loss of generality M is of the form (ω1, <M , · · ·).
Expand M by adjoining a binary relation E0 such that (ω1, E0) satisfies
a weak fragment of set theory, known in the literature as VS (Vaught set
theory), consisting of sentences of the following form for each positive
n ∈ ω (where E0 interprets E):

∀x1 · · · ∀xn∃y∀z(zEy ↔
n∨

i=1

z = xi).

The importance of adjoining E0 will become clear later in the proof, but
notice the important fact that the expansion (M, E0) satisfies REF (L),
where L = L ∪ {E}. Since κ = κ<κ, by a classical theorem of model
theory [CK, Prop. 5.1.5] there is a saturated model

A := (A,<A, · · ·, EA)

of power κ of Th(M, E0).

The general plan of the proof is to build a chain of models 〈Aα : α < κ+〉
satisfying the following two conditions:

(1) Aα
∼= A and Aα ≺e A for each α < κ+.

(2) Aα ≺blunt
e Aα+1 for each α < κ+ of cofinality κ.

Note that the existence of such a chain immediately establishes the the-
orem, since the model obtained by taking the union of the chain would
then be a κ+-like model of T that continuously embeds {α < κ+ : cf(α) = κ} .

Putting the resplendence property of saturated models [CK, Theo-
rem 5.3.1 and Exercise 5.3.5] with the ‘moreover’ clause of Theorem
2.4 shows that A has a blunt e.e.e. that is isomorphic to A. It is easy
to see that this fact can be used ω-times to obtain a sequence of mod-
els 〈An : n ∈ ω〉 such that An

∼= A and An ≺blunt
e An+1 for each n ∈ ω.

However, the union of 〈An : n ∈ ω〉 is a model of cofinality ω and there-
fore is not isomorphic to A. The following central claim, however, will
allow us to construct the desired chain of models:
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Claim (♣). Suppose θ < κ+ and 〈Aα : α < θ〉 is an e.e.e. chain such
that Aα

∼= A for each α < θ, and let

Bθ :=
⋃

α<θ

Aα.

Bθ has an e.e.e. C ∼= A and moreover, if cf(θ) = κ, then Bθ ≺blunt
e C.

The rest of the proof will be devoted to the verification of the above
claim. Notice that if cf(θ) = κ, and Bθ is as in the statement of
Claim (♣), then Bθ ≡ A, and Bθ is a saturated model of power κ .
Since elementary equivalent saturated models of the same cardinality
are isomorphic [CK, Theorem 5.1.13], this shows that

Bθ
∼= A.

Coupled with the earlier observation that A has a blunt e.e.e., this
shows that the verification of Claim (♣) would be complete once we
verify that Bθ can be elementarily embedded as an initial segment of A
whenever cf(θ) < κ. Of course the κ+-universality of saturated models
of power κ [CK, Theorem 5.1.12] implies that there is an elementary
embedding j mapping Bθ into A. We shall take advantage of the
availability of the ∈-like relation E to show that we can arrange the
range of j to be an initial segment of A. It is easy to see that such an
embedding j can be constructed by a back-and-forth construction of
length κ, once we establish the following nontrivial sub-claim:

Claim (♠). Suppose λ = cf(θ) < κ and (Bθ, bα)α<λ ≡ (A, aα)α<λ.
Then

(a) ∀c ∈ A ∃α(c < aα) ⇒ ∃d ∈ Bθ (Bθ, d, bα)α<λ ≡ (A, c, aα)α<λ.
(b) ∀d ∈ Bθ ∃c ∈ A (Bθ, d, bα)α<λ ≡ (A, c, aα)α<λ.

The proof of part (b) of Claim (♠) is routine and uses κ+-universality of
κ-saturated models, therefore we shall concentrate on the proof of part
(a), whose proof is tricky. Suppose that we are given some c <A aα0

for some α0 < λ. We are looking for some d ∈ Bθ such that

(Bθ, d, bα)α<λ ≡ (A, c, aα)α<λ.

Let Σ(x) be the 1-type of c over (A, c, aα)α<λ. It is easy to see, using the
assumption of Claim (♠), that Σ(x) is finitely satisfiable in (Bθ, bα)α<λ.
We wish to show that indeed Σ(x) is realized in (Bθ, bα)α<λ. Let S be
the set of all of finite subsets of Σ(x), and for each s ∈ S, choose a
realization rs ∈ Bθ of the formulas in s. Note that for every s ∈ S

Bθ ² rs < bα0 .
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For each s ∈ S, we wish to find an element ms ∈ Bθ that satisfies the
following two conditions:

(∗) If s ⊆ s′ ∈ S, then Bθ ² rs′ E ms, and

(∗∗) Bθ ² ∀x(xEms →
∧
ϕ∈s

ϕ(x)).

Consider the 1-type Γs(v) defined as follows

Γs(v) := {rs′ E v : s ⊆ s′ ∈ S} ∪ {∀x(xEv →
∧
ϕ∈s

ϕ(x))}.

The crucial observation is that s is a finite set of formulas, and there-
fore there are only a finite number of parameters that are used in the
formulas in s. This shows that there is an ordinal αs < θ such that all
the parameters used in s come from Aαs and bα0 ∈ Aαa (the latter con-
dition ensures that all the parameters mentioned in Γs(v) come from
Aαs). It is easy to see, using Aαs ≺ Bθ, that Γs(v) is finitely satisfiable
in Aαs . Coupled with the assumption that Aαs is a saturated model,
this shows that Γs(v) is realized in Aαs , and therefore also realized in
Bθ by some element ms, as desired. Our final task is to find an element
d ∈ Bθ such that for all s ∈ S, Bθ ² dEms. Consider the following
1-type

Π(v) := {vEms : s ∈ S}.
Recall that ms ∈ Aαa for each s ∈ S. Note that Π(v) is finitely satis-
fiable in Aαs since S is closed under finite unions. Therefore Π(v) is
realized in Aαs by some element d. It is now easy to check that d is the
desired element satisfying condition (a) of Claim (♠).

¤
Remark 2.11. In light of Theorem 2.7, one might wonder whether
Theorem 2.10 be strengthened by arranging a κ+-like model in which
κ+ itself can be continuously embedded. The following example shows
that such a strengthening is impossible. Consider the linear order L
obtained by inserting a copy of the rationals Q between any two con-
secutive ordinals in ω1. Note that L is a dense linear order that contin-
uously embeds ω1, and all the initial segments determined by elements
of L have the order-type of the non-negative rationals Q≥0. This allows
us to define a relation R(x, y, z, w) such that for any fixed choice of x
and y, R(x, y, z, w) codes the graph of an order-preserving bijection
between the initial segments of L determined by x and y. It is easy
to see that Th(L, R) has no model that continuously embeds any sta-
tionary subset S of a cardinal such that at least two members of S
have different cofinalities. In particular, Th(L, R) has no model that
continuously embeds any cardinal κ ≥ ω2.
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3. OPEN QUESTIONS

Question 3.1. Is there a countable theory containing REF(L) that has
no ω2-like model that continuously embeds {α < ω2 : cf(α) = ω}?

• This question is motivated by Theorem 2.10 and Remark 2.11.

Question 3.2. Let κ →c.u.b. θ abbreviate the transfer relation “ev-
ery sentence with a κ-like model that continuously embeds a stationary
subset of κ also has a θ-like model that continuously embeds a c.u.b.
subset of θ”. Is there a model of ZFC in which the only inaccessible
cardinals κ such that the transfer relation κ →c.u.b. ω2 holds are those
cardinals κ that are n-subtle for each n ∈ ω?

• Notice that Theorem 2.7 implies that κ →c.u.b. ω1 for every
regular uncountable cardinal κ. To motivate this question, first
let κ → θ abbreviate “every sentence with a κ-like model also
has a θ-like model”. The following three results suggest that
Question 3.2 might have a positive answer: (1) Schmerl and
Shelah [SS] showed that κ → θ holds for θ ≥ ω1, if κ is n-Mahlo
for each n ∈ ω; (2) Schmerl [Schm-1] proved that (relative to
the consistency of an ω-Mahlo cardinal) there is a model of ZFC
in which the only inaccessible cardinals κ such that κ → ω2

holds are precisely those inaccessible cardinals κ that are n-
Mahlo for each n ∈ ω; and (3) Schmerl [Schm-2] established
that κ →c.u.b. θ holds for all θ ≥ ω1 if κ is n-subtle for each
n ∈ ω.

Question 3.3. Can Theorem 2.10 be strengthened by (1) weakening
the hypothesis κ = κ<κ to Shelah’s square principle ¤b∗

κ (mentioned in
Remark 1.6.1), or (2) by using coarse (κ, 1) morasses so as to allow T
to have cardinality κ?

• Schmerl [Schm-2] states that Jensen’s proof of Theorem 1.5.2
can be modified to establish the conclusion of Theorem 2.7 for
singular limit κ using ¤κ. Coarse (κ, 1) morasses were men-
tioned in Remark 1.6.1.

Question 3.4. (Schmerl) Given a language L with a distinguished
linear order, is there a scheme of L-formulas that axiomatizes the the-
ory of the class of L-structures that continuously embed some regular
uncountable cardinal κ?

• As observed by Schmerl (private communication), one can use
Theorem 2.7 to show that the answer to the above question is in
the positive if “scheme” is replaced by “recursively enumerable
set”.
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Question 3.5. Does every pure linear order (of any cardinality) with
no last element have an elementary end extension?

• This is motivated by Rosenstein’s theorem mentioned in Exam-
ple 1.1.5.

Question 3.6. Let < be the natural order on ωω and suppose (A, C)
and (ωω, <) are elementarily equivalent. Does (A, C) have a blunt
e.e.e.?

• Recall that by a classical theorem of Ehrenfeucht [Eh], (ωω, <) ≺
(Ord, <). We do not know the answer to Question 3.6 even
when A is countable.

Question 3.7. Is it true that a cofinal elementary extension of a
recursively saturated model of REF(L) is recursively saturated?

• It is known that every cofinal extension of a recursively sat-
urated model of PA or ZF is recursively saturated. Schmerl
has pointed out that the answer to Question 3.7 is negative if
REF(L) is replaced by REG(L): consider the saturated model
M0 = (ω + QZ, <) of Th(ω, <), and the non-recursively satu-
rated cofinal elementary extension M1 := (ω+(Q+2+Q)Z, <)
of M0.

Question 3.8. Does every resplendent model of REG(L) with definable
Skolem functions have a minimal e.e.e. ?

• This is motivated by Corollary 2.5. By a theorem of Rubin
[Sh-2, Theorem 2.1.1], every countable model of REG(L) with
definable Skolem functions has a minimal e.e.e. We have been
able to modify Rubin’s proof to show that every saturated model
of REG(L) with definable Skolem functions has a minimal e.e.e.,
but we suspect that Question 3.8 has a negative answer.

Question 3.9. Does every countable model of REG(L) (or REF(L))
expand to a Skolemized model of REG(L∗) (or REF(L∗))?

• This question is motivated by Corollaries 1.3 and 2.9.
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