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The Workshop on Model Theory and Computable Model Theory took place
February 5–10, 2007 at the University of Florida in Gainesville, as part of the National
Science Foundation-sponsored Special Year in Logic. This special issue consists of
selected papers from the conference. The workshop brought researchers in classical
model theory and its applications together with researchers in computable model the-
ory. Tutorials were given in these respective areas by Thomas Scanlon (Model Theory
and Connections To Algebra) and Julia Knight (Computable Model Theory).

Model theory studies the relationship between structures and their first order prop-
erties, including the study of definable subsets of their universes. An introduction to
the subject is given by Marker [21]. Several topics in model theory were presented,
including three areas represented in this volume: abstract model theory with links
to computable model theory (Laskowski), model theory of fields (Martin-Pizarro and
Wagner), and definability in number fields (Shlapentokh). The remaining papers come
from within computable model theory.

By effectivizing Henkin’s construction, one shows that every consistent decidable
theory has a decidable model. For a decidable uncountably categorical theory T ,
Harrington and Khisamiev (independently) showed that every countable model of T
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is isomorphic to a decidable model. For an undecidable uncountably categorical the-
ory, it is possible that some of the countable models are isomorphic to computable
ones, some not. Goncharov et al. [14] showed that trivial, strongly minimal theories
are model complete after naming constants for a model, and hence are ∀∃-axiomatiz-
able. This implies that if a trivial, strongly minimal theory has a computable model,
then all of its countable models are isomorphic to 0′′-decidable models. Khoussainov
et al. [19] later showed that this is the best possible bound for these theories.

Back in the context of abstract model theory, more specifically stability theory,
Dolich et al. [7] established model completeness for every trivial, uncountably cate-
gorical theory of Morley rank 1 once one has named constants for a model. Previously,
Marker [20] constructed a trivial, totally categorical theory of Morley rank 2 which
cannot be made model complete by naming constants.

Michael C. Laskowski (The elementary diagram of a trivial, weakly minimal struc-
ture is near model complete) continues this line of research on bounded quantifier
depth of the elementary diagram of a model. He proves that if M is any model of a
trivial, weakly minimal theory, then the elementary diagram T (M) eliminates quanti-
fiers down to Boolean combinations of certain existential formulas. A trivial, weakly
minimal theory has a well behaved forking notion defined by algebraic closure, for
which the finite cover property fails. The existential formulas used in the quantifier
elimination are obtained from a class of quantifier-free, mutually algebraic formulas
ψ(

−→z ) by partitioning −→z into −→z = −→x ˆ−→y and existentially quantifying over −→x .
A long-standing open question in applied model theory is whether there are stable

theories of fields beyond those of finite and separably closed fields. Related questions
arise in the context of simple and supersimple theories. In 1995, Pillay conjectured
that all supersimple fields are perfect, pseudo algebraically closed (PAC), and with
bounded absolute Galois group, that is, have finitely many open subgroups of index n
for every n. In [23], Pillay and Poizat showed that supersimple fields are perfect and
have bounded absolute Galois group. A perfect fields K is PAC if every absolutely
irreducible plane curve over K has a K -rational point.

Amador Martin-Pizarro and Frank O. Wagner (Supersimplicity and quadratic exten-
sions) prove that if K is a supersimple field with exactly one extension of degree 2 (up
to isomorphism), then any elliptic curve E defined over K has an s-generic K -rational
point, that is, a point P ∈ E(K ) such that SU (P/F) = SU (K ), where F is some
small set of parameters over which E is defined. The importance of this theorem is
that it holds for all elliptic curves. It uses the group law in the elliptic curves, and thus
it is not clear how to handle curves of larger genus. They also ask whether it is possible
to generalize the result to fields with more than one extension of degree 2.

A strong link between the computable and classical arises in the context of defin-
ability theory. Structural information sought by applied model theorists can arise from
the study of what can, and cannot, be defined in a given structure. Similarly, the pres-
ence of certain definable sets can enable transfer of undecidability phenomena to the
underlying theory.

Interest in the questions of decidability and existential definability goes back to
Hilbert’s Tenth Problem (HTP) which asks for an algorithm to determine whether a
given polynomial in several variables over Z has solutions in Z. HTP was answered
negatively by M. Davis, H. Putnam, J. Robinson and Yu. Matijasevich [12]. Similar
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questions arise for other fields and rings: given a computable ring R, is there an algo-
rithm to determine whether an arbitrary polynomial in several variables over R has
solutions in R? A survey of the area is given by Shlapentokh [26]. One route to a neg-
ative solution of this question over a ring R is to construct a Diophantine definition of
Z over R. Using norm equations, Diophantine definitions have been obtained for Z

over the rings of algebraic integers of various number fields [16] and also over certain
“large” subrings of totally real number fields [27]. Another method of constructing
Diophantine definitions [6] uses elliptic curves. If K is a totally real algebraic exten-
sion of Q and there exists an elliptic curve E over Q such that [E(K ) : E(Q)] < ∞,
then Z has a Diophantine definition over OK .

Alexandra Shlapentokh (Rings of algebraic numbers in infinite extensions of Q

and elliptic curves retaining their rank) shows that elliptic curves whose Mordell–
Weil groups are finitely generated over some infinite extensions of Q can be used to
show the Diophantine undecidability of the rings of integers and larger rings contained
in some infinite extensions of rational numbers. In particular, let K be a totally real
possibly infinite extension of Q and let U be a finite extension of K such that there
is an elliptic curve E defined over U with E(U ) finitely generated and of positive
rank. Then Z is existentially definable and HTP is unsolvable over the ring of integers
of K .

Computable model theory investigates the relationship between computability the-
oretic properties of countable structures and their theories and definable sets. Thus,
computable model theory and computable algebra include the study of the computabil-
ity of structures, substructures, isomorphisms and theories. We say that computable
structures A1 and A2 have the same computable isomorphism type if there is a com-
putable isomorphism between them. The number of computable isomorphism types
of A, denoted by dim(A), is called the computable dimension of A. It is obvious that
dim(A) = 1 if and only if any two computable presentations of A are computably
isomorphic. In case dim(A) = 1, then we say that A is computably categorical.

One of the central topics in computable model theory is the study of computable
dimensions of structures and characterizations of computable categoricity. Goncharov
proved that for any n ∈ ω ∪ {ω} there exists a structure of computable dimension n
[13]. In [5] Cholak, Goncharov, Khoussainov and Shore gave an example of a com-
putably categorical structure A such that for each a ∈ A the structure (A, a) has
computable dimension n, where n ∈ ω. Goncharov and Remmel proved that a line-
arly ordered set is computably categorical if and only if the set of successive pairs in
the order is finite [11,25]. Calvert, Cenzer, Harizanov and Morozov [1] showed that
an equivalence structure is computably categorical if and only if there is a bound b on
the sizes of finite equivalence classes, and there is at most one t ∈ {1, . . . , b} ∪ {ω}
with infinitely many classes of size t .

Wesley Calvert, Sergey Goncharov, Jessica Millar and Julia Knight (Categoricity
of computable infinitary theories) answer a question posed by J. Millar and Sacks,
on the categoricity of the computable infinitary theories of structures with Scott rank
ωC K

1 . In previous work, various subsets of the authors had produced computable struc-
tures of various kinds (trees [3], undirected graphs, fields, linear orderings [2]) with
Scott rank ωC K

1 . J. Millar and Sacks asked whether it was possible that a computable
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structure with Scott rank ωC K
1 could have a computable infinitary theory that was

ℵ0-categorical [22]. It is natural to ask whether for known examples of computable
structures of Scott rankωC K

1 the theories are ℵ0-categorical. The present paper gives an
affirmative answer for several of the known examples; in particular, trees, undirected
graphs, fields, and linear orderings.

Valentina Harizanov, Carl Jockusch and Julia Knight (Chains and antichains in
partial orderings) study the complexity of infinite chains and antichains in computable
partial orderings. It follows from a result of Jockusch [17] that a computable partial
ordering has either an infinite �0

2 chain or an infinite �0
2 antichain, or else both an

infinite�0
2 chain and an infinite�0

2 antichain. Hermann [15] constructed a computable
partial ordering with no infinite �0

2 chain or antichain. The present paper shows that
there is a computable partial ordering which has an infinite chain but none that is �1

1
or �1

1, and also obtains an analogous result for antichains. On the other hand, every
computable partial ordering which has an infinite chain must have an infinite chain
that is the difference of two �1

1 sets. The main result is that there is a computably
axiomatizable theory of partial orderings which has a computable model with arbi-
tarily long finite chains but no computable model with an infinite chain, and similarly
for antichains. It is shown that if a computable partial ordering A has the feature that
for every B ∼= A, there is an infinite chain or antichain which is�0

2 relative to B, then
there is a uniform dichotomy: either every copy B of A has an infinite chain which is
�0

2 relative to B, or every copy B of A has an infinite antichain which is �0
2 relative

to B.
Jennifer Chubb, Valentina Harizanov and Andrey Frolov (Degree spectra of the

successor relation of computable linear orderings) determine a condition ensuring the
Turing degree spectrum of the successor relation of a linear ordering will be closed
upward in the c.e. Turing degrees. The condition applies to a broad class of linear
orderings, and those to which it does not apply are characterized. The Turing degree
spectrum of a relation on a linear ordering is the class of Turing degrees of that rela-
tion in computable copies of the linear ordering. Surprisingly little is known about the
degree spectrum of the successor relation in computable linear orderings. Of course,
the successor relation is always intrinsically co-c.e., and it is intrinsically computable
when it is finite. Downey and Moses [9] provide an example where it is intrinsically
complete. Downey, Goncharov and Hirschfeldt [10] ask whether the degree spectrum
of the successor relation can consist of a single degree different from 0 and 0′, and a
similar question for the degree spectrum of the atom relation of computable Boolean
algebras with infinitely many atoms was resolved by Downey and Remmel. Remmel
[24] established that such a spectrum is closed upward in the c.e. degrees, and Downey
[8] showed that such a spectrum must contain an incomplete degree. The result in the
present article provides that every upper cone of c.e. degrees is realized as the Turing
degree spectrum of some computable linear ordering.

Douglas Cenzer, Barbara Csima and Bakhadyr Khoussainov (Linear orders with
distinguished function symbol) study certain linear orders with a function on them,
and discuss for which types of functions the resulting structure is or is not comput-
ably categorical. In [18] Khoussainov provided examples of structures of type (A, h)
where h is a function from A to A, of computable dimension n with n ∈ ω. In [28]
Ventsov studied computable dimensions of (L;≤, P) where (L;≤) is a linearly
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ordered set and P is a unary predicate. This paper is a continuation of the above
work with an emphasis on computable dimensions of linearly ordered sets with dis-
tinguished endomorphisms. Particular structures include computable copies of the
rationals with a fixed-point free automorphism, and also ω with a non-decreasing
function.

Douglas Cenzer, Rod Downey, Jeffrey Remmel and Zia Uddin (Space complexity
of torsion-free Abelian groups) continue the study of complexity theoretic model the-
ory and algebra developed by Nerode, Remmel and Cenzer; see the handbook article
[4] for details. Much of the work of those authors focused on polynomial time models.
The present paper develops the theory of L OGS P AC E structures and applies it to the
study of L OGS P AC E Abelian groups. It is shown that all computable torsion Abe-
lian groups have L OGS P AC E presentations and the authors show that the groups
Z,Z(p∞), and the additive group of the rationals have L OGS P AC E presentations
over a standard universe such as the tally representation and the binary representation
of the natural numbers. The effective categoricity of such groups is also studied. For
example, conditions are given under which two isomorphic L OGS P AC E structures
will have a linear space isomorphism.

The editors would like to thank the National Science Foundation for support under
Special Year grant DMS 0532644. The first editor is also partially supported by NSF
DMS 0554841 and DMS 0652732 and the second editor by NSF DMS 0704256.
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