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Abstract

We develop a theory of LOGSPACE structures and apply it to con-
struct a number of examples of Abelian Groups which have LOGSPACE
presentations. We show that all computable torsion Abelian groups have
LOGSPACE presentations and we show that the groups Z, Z(p™), and
the additive group of the rationals have LOGSPACFE presentations over
a standard universe such as the tally representation and the binary repre-
sentation of the natural numbers. We also study the effective categoricity
of such groups. For example, we give conditions are given under which two
isomorphic LOGSPACE structures will have a linear space isomorphism.

1 Introduction

This paper continues the study of complexity theoretic model theory and al-
gebra. Complexity theoretic or feasible model theory is the study of resource-
bounded structures and isomorphisms and their relation to computable struc-
tures and computable isomorphisms. Complexity theoretic model theory and
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algebra was developed by Nerode, Remmel and Cenzer [16, 17, 18, 4, 5]; see
the handbook article [9] for details. Much of the work of those authors fo-
cused on polynomial time models. In this paper, we shall develop the theory
of LOGSPACE structures and apply it to the study of LOGSPACE Abelian
groups.

Complexity theory has been a central theme of computer science and related
areas of mathematics since the middle of the last century. Much work has been
done on the time complexity of sets, functions and structures. The practical
goal is to find efficient algorithms for computing functions and solving prob-
lems. In his encyclopedic book [14], Knuth examines in detail the quest for fast
multiplication and also considers the problem of radix conversion of numbers
between binary and decimal representation. Recent striking advances include
the proof that primality is polynomial-time decidable [1] and the result that
division of integers can be computed in LOGSPACE [11]. The latter result
will be used below in our construction of a LOGSPACE model for the additive
group of rationals.

Complexity theoretic model theory is concerned with infinite models whose
universe, functions, and relations are in some well known complexity class C
such as polynomial time, exponential time, polynomial space, LOGSPACE
etc. That is, let My, My,... be an effective list of all Turing machines and
@e(21,...,2n) denote the function of n-variables computed by the e-th Turing
machine M,. Let

A= (Aa {RIL‘A}iGSa {f?t,A}iETv {Cf}i€U>7

be a structure where the universe of A, A, is a subset of {0,1}* and S, T,
and U are finite initial segments of of the natural numbers N. Then we say
that A is computable if A is a computable subset of {0,1}*, each relation R;“
is computable, and each function fiA is computable. For any given complexity
class C, we say that A is C structure if A is in C, each relation R;‘\ is in C, and
each function fy! is in C. If

B = (B,{RP}ies, {fPlien, {F }icv),

is another C structure, then we say that A is C-isomorphic to B if there is an
isomorphism © : A — B such that both © and ©~! are in C.

By far, the complexity class that has received the most attention is poly-
nomial time. One immediate difference between computable model theory and
complexity theoretic model theory is that, in general, it is not the case that all in-
finite C sets are C-isomorphic. For example, there is no polynomial isomorphism
f with a polynomial time inverse f~! which maps the binary representation of
the natural numbers Bin(N) = {0} U{1}{0,1}* onto the tally representation of
the natural numbers Tal(N) = {0}U1{1}*. This is in contrast with computable
model theory where all infinite computable sets are computably isomorphic, so
that one usually only considers computable structures whose universe is the set
of natural numbers N.
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There are two basic types of questions which have been studied in complexity
theoretic model theory. First, there is the basic existence problem, i.e. whether
a given infinite computable structure A is isomorphic or computably isomorphic
to a model that lies in a given complexity class C. That is, when we are given
a class of structures S such as a linear orderings, Abelian groups, etc., the
following natural questions arise.

(1) Is every computable structure in S isomorphic to a C structure?
(2) Is every computable structure in S computably isomorphic to a C structure?

For example, Cenzer and Remmel showed in [4] that every computable relational
structure is computably isomorphic to a polynomial time structure and that
the standard model of arithmetic (w,+, —, -, <,2%) with addition, subtraction,
multiplication, order and the 1-place exponential function is isomorphic to a
polynomial time structure. The fundamental effective completeness theorem
says that any decidable theory has a decidable model. It follows that any
decidable relational theory has a polynomial time model. These results are
examples of answers to questions (1) and (2) above. However, one can consider
more refined existence questions. For example, we can ask whether a given
computable structure A is isomorphic or computably isomorphic to a polynomial
time structure with a standard universe such as the binary representation of the
natural numbers, Bin(N), or the tally representation of the natural numbers,
Tal(N). That is, when we are given a class of structures S, we can ask the
following questions.

(3) Isevery computable structure in S isomorphic to a C structure with universe
Bin(N) or Tal(N)?

(4) Is every computable structure in S computably isomorphic to a C structure
with universe Bin(N) or Tal(N)?

It is often the case that when one attempts to answer questions of type (3) and
(4) that the contrasts between computable model theory and complexity theo-
retic model theory become more apparent. For example, Grigorieff [12] proved
that every computable linear order is isomorphic to a linear time linear order
which has universe Bin(N). However Grigorieft’s result can not be improved
to the result that every computable linear order is computably isomorphic to
a linear time linear order over Bin(N). For example, Cenzer and Remmel [4]
proved that for any infinite polynomial time set A C {0,1}*, there exists a
computable copy of the linear order w 4+ w™* which is not computably isomorphic
to any polynomial time linear order which has universe A. Here w + w™* is the
order obtained by taking a copy of w = {0,1,2,...} under the usual ordering
followed by a copy of the negative integers under the usual ordering.

The main goal of this paper is the study LOGSPACE Abelian groups.
It was shown in [5] that there is a family of Abelian p-groups, including the
computably categorical p-groups of [20] which are computably isomorphic to
polynomial time groups with a standard universe. At the same time, Abelian
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p-groups were constructed in [5] which are not computably isomorphic to poly-
nomial time groups with a standard universe. The question of uniqueness of
representation, that is, categoricity, was studied further in [6, 8]

It was established by Hopcroft and Ullman [13] that an appropriate model
for function calculation is a Turing machine with read-only input and write-only
output. The motivation for the input/output approach is that simple functions
such as addition can be performed in logarithmic space (in fact in zero space)
whereas including the input and/or output would automatically require at least
space n.

In particular, addition of integers can be computed with zero space and
multiplication can be computed in LOGSPACE. Recent work of Chiu et al
[11] has shown that division can also be computed in LOGSPACE. It then
follows from [2] that powering and iterated multiplication can also be computed
in LOGSPACE. On the other hand, the best upper bound for radix conversion
seems to require space log n log log n. (see [2]). We show that, nevertheless,
for each k, there is a LOGSPACE isomorphism between the binary and k-ary
representations of natural numbers.

The outline of this paper is as follows. In section 2, we shall define the various
complexity classes that we shall need for our developments as well as prove some
basic lemmas about the closure properties of functions from these classes un-
der composition. For example, it is well known that the family of LOGSPACE
functions is closed under composition and therefore this notion of LOGSPACE
computation is robust. We give a generalization of this result which gives upper
bounds for the complexity of the composition of functions of arbitrary space
complexity. In section 3, we improve some results of Cenzer and Remmel [5] by
characterizing the sets of natural numbers which are LOGSPACE isomorphic
to {1}* and by giving various lemmas which ensure that a given sum or prod-
uct of LOGSPACE sets is LOGSPACE isomorphic to Tal(N) or to Bin(N).
Section 4 is devoted to the construction of LOGSPACE models for certain
standard Abelian groups. For example, we show that any computable torsion
group is computably isomorphic to a LOGSPACE group. Also, we show that
the additive groups Q, of p-adic rationals and Z(p>) of p-adic rationals modulo
1 where p is a prime, the additive groups Q mod 1 and the additive group Q
of the rationals have LOGSP ACFE presentations over either Bin(N) or Tal(N).
Note that the standard model of Q is certainly LINSPACE and PTIME. The
difficulty in obtaining a LOGSPACE model is that one needs a unique rep-
resentative for each rational, which seems to require finding the least common
denominator of two integers. In section 5, we construct LOGSPACE presenta-
tions for a general family of torsion-free Abelian groups of rank one. Finally, in
section 6, we study the effective categoricity of LOGSPACE groups. For ex-
ample, we show that Q, ®;<,Z(p>°) for any n > 0, and any computable torsion
Abelian groups have LOGSPACE presentations which are not even primitive
recursively isomorphic. We also give conditions under which two isomorphic
LOGSPACE structures are linear space isomorphic.
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2 Preliminaries

Our model of computation is the multi-tape Turing machine of Papadimitriou
[19]. The cursor of each tape can move independently of the cursors of other
tapes. Our Turing machines are both read-only (input tape symbols are never
overwritten) and write-only (the output-string cursor never moves left).

Let N denote the set {0,1,2,...} of natural numbers and N* = N —{0}. A
function F(z): NT — N7 is a proper complexity function if F is nondecreasing
and furthermore, there is a Turing machine M with input and output which,
on any input x, computes the string 172D in < O(|z| + F(|z|) steps and uses
space < O(F(|z]). Some examples are constant functions, klogz, (logx)*, kz,
zk, 2(og g”)k, ok 2””k7 or 22 (We use log z as an abbreviation for log, x.)

Fix a finite alphabet 3 and a proper complexity function G. Then a function
f: (Z%)F — 2* is computable in SPACE(G) if there is a Turing machine M
with input and output which computes f(z1,...,zx) using space < G(|z|); f is
computable in TIME(G) if there is a Turing machine M with input and output
which computes f(z1,...,z)) using time < G(|z|). For time complexity, the
restriction on input and output does not change the capability of the Turing
machine, by Proposition 2.2 of [19].

We are primarily interested in the following families

LOG = LOGSPACE = U.enSPACE(c log n);
PLOGSPACE = U.enSPACE((log n)°);
LINSPACE = U.enSPACE(c n);
SUPERSPACE = U.cnSPACE(2(l09 m°):;
EXSPACE = U.enSPACE(27);
EXPSPACE = U.cnSPACE(2™);

P = PTIME = UeenTIM E(n).

A function mapping >* to ¥* is sometimes said to be FLOG computable,
or simply FLOG if it is in LOG. The following is part of Theorem 7.4 of [19].

Lemma 1. For any proper complezity function G:
(a) TIME(G) C SPACE(G);
(b) SPACE(G) C TIME(EG™+9 ™) for some k. O
This implies in particular that LOG C P and hence the following fact.

Lemma 2. For any function f in FLOG, there is a constant k such that
|f(z)| < |z|* for all inputs z.
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The standard universes for computation are the following. Let Tal(0) = 0
and for n > 1, let Tal(n) = 1". Then Tal(N) = {0}U1{1}* = {Tal(n) : n € N}.
For each n € N* and each k > 2, let Bg(n) = b.b,—1---by € {0,1,...,k—1}*
be the standard k-ary representation where b, > 0 and n = bg+b1k+---+b.k".
Let By (0) =0 for all k¥ > 2. Then

Bi(N) = {0} U{Bx(n) :n € Nt} = {0} U{b,---bo € {0,1,... . k—1}* : b, # 0}

In particular, let Bin(n) = B2(n) and Bin(N) = By(N).

Next we consider the space complexity of composite functions. We start by
giving a general result which provides an upper bound on the complexity of a
composition of functions and some specific corollaries which we will need for our
study of resource-bounded structures.

Theorem 1. Let F,G : N* — NT be nonconstant proper complexity functions
such that F(n),G(n) > log n for alln € NT. Let g be a unary function in
SPACE(G) and f an n-ary function in SPACE(F). Then the composition
go f can be computed in SPACE < G(2FF) for some constant k.

Proof. We let |z| = max(|z1], ..., |x,]) if £ = (21,...,2,) is a n-tuple of strings
in {0,1}*.

Our proof is a generalization of the standard proof ([19], p. 164) that the
composition of two LOGSPACE functions is in LOGSPACE. That is, suppose
that M is an input/output Turing machine that witnesses that f € SPACE(F)
and M’ is an input/output Turing machine that witnesses that g € SPACE(G).
Then the input/output Turing @ which computes g o f operates as follows. We

do not explicitly store the string f(x1,...,z,) on one of the work tapes of Q.
Instead, we simulate M’ on input (z1,...,2,) by remembering at all times the
cursor position 7 of the input string f(z1,...,z,) which is the output string of

M. We store the string ¢ in binary on one of the work tapes of Q. Initially,
we set ¢ = 1 and on a separate set of work tapes, we begin to simulate the
computation of M on input (x1,...,2,). Whenever the cursor of M"’s input
string moves to the right, then we increment ¢ and continue the computation
of M long enough for it to produce the next output symbol. That symbol then
becomes the symbol currently scanned by M’. If the cursor for M’ stays in the
same position, we just remember the last input symbol for M’ that we scanned.
If the cursor of M’ moves left, then we decrement ¢ by one and then run M
on input (z1,...,z,) from the beginning, counting on a separate work tape the
symbols output by M and stopping when the i-th symbol of M on (z1,...,z,)
is output. Once we know this symbol, then the simulation of M’ is continued.
In particular, it follows from Lemma 1 that for © = (z1,...,2,), f(z) can
be computed in time ¢|z]¢2¢F (=) for some constant ¢, which bounds the length
of f(z). Since F(n) > log n, it follows that |f(z)| < 2¢F(=]) for some constant a
so that the space required for the simulation of the computation of M’ on input
flxy,...,2,) is < G(2¢F). Similarly the space required for the simulation of
M on input (21,...,z,) is at most bF(|z|) for some constant b and bF(|z|) <
G(2°FU=D)) since G(n) > log n. The the total space required for the computation
of Q on input (z1,...,x,) is < G(2*FU#D) for some constant k. O
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Corollary 1. (i) LOGSPACE o LOGSPACE = LOGSPACE.
(i) LINSPACE o LOGSPACE C PSPACE.
(iti) PLOGSPACE o LINSPACE = LINSPACE.
(tv) PLOGSPACE o PLOGSPACE = PLOGSPACE.
(v) SUPERSPACE o LINSPACE C EXPSPACE.
(vi) SUPERSPACE o PLOGSPACE = SUPERSPACE.
(vii) EXPSPACE o LOGSPACE C EXPSPACE.

3 LOGSPACE Sets and Radix Representation

In this section, we establish a few lemmas about LOGSPACE isomorphisms of
sets which will be needed for the discussion of LOGSPACE structures.

The first lemma characterizes sets isomorphic to Tal(N) and is similar to
Lemma 2.4 of [5].

Lemma 3. Let A be a LOGSPACE subset of Tal(N) and suppose that
ag, a1, a2 ... is an increasing list of the elements of A in the standard ordering.
Then the following are equivalent:

(a) A is LOGSPACE isomorphic to Tal(N).
(b) There exists a k such that for alln > 2, |a,| < n*.

(c) The canonical bijection between Tal(N) and A that associates 1™ with a.,,
n >0 is in LOGSPACE.

Proof. Clearly, (a) implies (¢) which, in turn, implies (b) by Lemma 2. Thus
we need only show that (b) implies (a).

The map taking a,, to 1™ is FLOG even without assumption (b). That is,
given tally input ¢ = a,, one proceeds as follows. First convert a to binary b
and write this on a worktape. Now a second tape will begin with Bin(0) and
increment at stage t + 1 from Bin(t) to Bin(t + 1) as long as Bin(t) < b. The
output tape will begin with 0. Then at stage t, we will simulate testing whether
Tal(t) € A as follows. Use the standard LINSPACE conversion Bin(t) into
Tal(t) and then the LOGSPACE test of whether Tal(T) € A. Tt follows from
Corollary 1 that this computation is LINSPACE in the input Bin(t) and
since Tal(t) < ay, the computation can be done in LOGSPACE with respect
to input a,. If the test is positive, then a “1” is appended to the output tape.

For the map taking 1™ to a, = Tal(m), assume (b) and use the following
procedure. As above, at stage ¢ < n, we will have Bin(t) on one work tape and
test whether Tal(t) € A. If the test is positive, then we move the cursor on the
input tape to the right and otherwise not. Once the end of the input tape is
reached, we will have Bin(m) on the work tape. The final step is to convert
this to a,, = Tal(m). Since a,, < n*, it follows that |Bin(m)| < log(n*), so that
the computation can be done in LOGSPACE. O
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Next we consider the translation between tally to binary.

Lemma 4. There is a LOGSPACE algorithm which takes Tal(n) to Bin(n)
and there is a linear space algorithm which takes Bin(n) to Tal(n).

Proof. On input Tal(n) = 1™, simply write 1 on the worktape after reading
the first 1 of 1™ and then after each additional 1 increment the binary number
on the worktape. Thus after reading the first k bits of 17, the work tape will
contain Bin(k). After finishing the input, transfer Bin(n) to the output tape.
Since Bin(n) has length log n, this requires only space log n. For the reverse
translation, copy Bin(n) onto the work tape and decrement it repeatedly by 1
while writing 1’s on the output tape. The maximum space used on the work
tape is the initial copying of the input, so this uses linear space |Bin(n)|. O

The next lemma is also crucial for building structures with a standard uni-
verse.

Lemma 5. For each k > 2, the following sets are LOGSPACE isomorphic:
(a) Bin(N);
(b) Bi(N);
(c) {0,1,...,k—1}*.

Furthermore, there exists a LOGSPACE bijection f : Bin(N) — Bg(N)
and constants c1,cy > 0 such that, for every n € N:

(i) 1(Bin(n))| < e1|Bin(n)| and
(ii) 1/~ (Bi(n)| < ol Bu(n)].

Proof. Tt is easy to see that Bin(N) is LOGSPACE isomorphic to {0,1}*. That
is, the isomorphism f sends bin(n) to bin(n + 1) and then strips off the leading
1. Clearly f and f~! are LOGSPACE computable.

Next for any k > 2, consider the map g which send B (n) to Bi(n+ k) and
the strips off the leading bit in the string. gx maps By (N) onto k — 1 copies of
{0,...,k —1}* — {0}. Clearly, both g;, and g, ' are LOGSPACE computable.
We claim that {0,1...,k—1}*—{0} is LOGSPACE isomorphic to k—1 copies
of itself. That is, below we denote the elements of {0,1...,k —1}* — {0} by ¢
and elements of the k — 1 fold disjoint union by (j, o), and arbitrary elements
of {0,1...,k— 1}* are denoted by 7. The mapping is defined by the following
sets of rules. For strings not beginning with 0 or 1, we have:

2 — (1,0) 270" — (1,0 270 — (1,0)
3 — (2,0) 370" — (2,0m1) 370 — (2,0)

}c—2—><k:—3,o> (k—z)“on—><k—3,0"+1> (k—z)“a—><k—37a>
E—1— (k—2,0) (k—=1)70" — (k—2,0"") (k=1)"0 = (k—2,0)
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For strings beginning with 1, we have:
1—(0,(k—1)70) 170™ — (0, (k — 1)70™*h) 170 = (0,(k—1)"0)

For strings beginning with 0, we have:

0" — (0,0™)

0~ (k—1)"7 — (0,(k—2)"T1) 0" (k—1)"7 — (0,0""(k—2)"7)
07 (k=27 — (0,(k—3)"7) 0"t (k=27 — (0,0""(k—3)"7)

02”7 — (0,1°7) 07277 — (0,0""177)
0177 — (0,07 (k—1)"7) 0" 717 — (0,0" 7 (k—1)"7)

It is not hard to see that this defines a bijection f and that both f and f~!
are LOGSPACE computable, in fact, they can be computed without using any
space. Since LOGSPACE functions are closed under composition, it follows
that Bg(N) is LOGSPACE isomorphic to {0,...,k — 1} — {0#}. However, the
map h which takes Bi(n) to Bi(n + 1) shows that By(N) is LOGSPACE
isomorphic to By (N) — {0} and, hence, Bx(N) — {0} is LOGSPACE isomorphic
t0{0,...,k—1}—{0}. Thus Bk(N) is LOGSPACE isomorphic to {0,..., k—1}*

Thus, to complete the proof, we need only show that for any k& > 2,
{0,1,...,k—1}* is LOGSPACE isomorphic to {0,1}*. First define

g:{0,1,...,k—1} — {0,1}*

by g(0) = 0¥~ and g(i) = 10°~! for 1 < i < k — 1. Then for k > 3, consider
the function fi : {0,...,k — 1}* — {0,1}* which is defined as follows. First
fe@ =0. fo =01...00 € {0,...,k — 1}* — {0}, then we scan o and as
long as we scan a sequence of 0’s, we write the corresponding sequence of 0’s
on the output tape. If 0y = -+ = 0,1 = 0 and o; # 0, then for j > i, we add
g(oj) to the output tape when we scan o;. Thus if ¢ = 07, then fi(c) = 0"
and if 0 = 0"y - - - 75 where 71 # 0, then fr(o) = 0"g(71) - g(7s). Clearly fx
is in LOGSPACE. To compute fk_1 on a string v = v1 -+ - yn, we scan v and
as long as we see a 0, we add a corresponding 0 on the output tape. We also
have a work tape which is recording in binary, the number of elements that we
have scanned. Once we see a 1, then we record on another work tape when we
saw that 1 and we have another work tape which begins to record the length
in binary until we see another 1 or we reach the end to the string. Clearly if
we know the length s between the last 1 that we have recorded and the next 1
that we see, then we can divide s by k — 1 and express s = a(k — 1) 4+ j where
0 < j < k—2. Once we have a and j, then we know to add j+1 followed by a 0’s
to the output tape. If we have not reached the end of the string, we replace the
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position of the previous 1 with the position of the next 1 and start the process
over again. It is clear that this process can be carried out in LOGSPACE so
that f, ' is in LOGSPACE. O

Lemma 6. Let A be a nonempty LOGSPACE subset of Tal(N). Then

(a) The set A@® Tal(N) is LOGSPACE isomorphic to Tal(N) and the set
A ® Bin(N) is LOGSPACE isomorphic to Bin(N).

(b) The set A x Tal(N) is LOGSPACE isomorphic to Tal(N) and the set
A x Bin(N) is LOGSPACE isomorphic to Bin(N).

(¢) Both Bin(N)®Bin(N) and Bin(N)x Bin(N) are LOGSPACE isomorphic
to Bin(N).

(d) If B is a nonempty finite subset of Bin(N), then both B @ Bin(N) and
B x Bin(N) are LOGSPACE isomorphic to Bin(N).

Proof. The tally cases of parts (a) and (b) follow from Lemma 3. That is, for
example, A @ Tal(N) contains all odd numbers and therefore the nth element
is certainly < 2n + 1.

For the binary cases of (a) and (b), first observe that Bin(N) — Tal(N)

is LOGSPACE isomorphic to Bin(N) via the map f(z) = z + 1 — |z|] and
Tal(N) x Bin(N) is LOGSPACE isomorphic to Bin(N) via the map g defined
as follows: ¢((0,0)) =0,
g((1™,0)) = 0™V if m > 1,
g9({0, Bin(n))) = 1™ Bin(n) if n > 1, g((1™, Bin(n))) = 10™ Bin(n), and
ifm>1andn > 1.
Then A® Bin(N) is LOGSPACE isomorphic to A®Tal(N)®(Bin(N)—Tal(N)),
which is LOGSPACE isomorphic to Tal(N) & Bin(N) — T'al(N) by the tally
case and thus is LOGSPACE isomorphic to Bin(N). Finally, A x Bin(N)
is LOGSPACE isomorphic to A x Tal(N) x Bin(N), which is LOGSPACE
isomorphic to Tal(N) x Bin(N) by the tally case and thus is LOGSPACE
isomorphic to Bin(N).

For part (c), partition N x N into an infinite disjoint union as follows.

For each n > 1, define

A, = {0,1,...,2" — 1} x {2727 +1,...,2" Tt — 1},
B, = {227 +1,...,2"" —1} x{0,1,...,2" — 1}, and
C, = {2727 +1,..., 2" 1} x {2727 +1,..., 27Tt — 1}

Define the map f from N x N to N by f(0,0) =0, f(1,0) =2, f(1,1) = 3 and
for each n > 1,

(z,y) = 2" +y+2°" =20 if (z,y) € Ay,

(z,y) = 2"z +y +2°" if (z,y) € Bn,

(x,y) = 2"z +y + 22T — 27 if  (z,y) € C,.
Then it can be shown that the corresponding map from Bin(N) x Bin(N) to

Bin(N) is a LOGSPACE isomorphism.
Part (d) is straightforward so we will not give the details. O
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4 LOGSPACE Abelian Groups

Let Z denote the group of integers with the usual addition. For any natural
number n > 1, Z,, denote the cyclic group of order n. For a prime number p,
the group Z(p>) is the inverse limit of the sequence Z(p™), or more concretely,
the set of rational numbers with denominator equal to a power of p and addition
modulo 1. The additive group of rational numbers is denoted by Q. A group is
said to be torsion if all elements have finite order and torsion-free if all elements
(except the identity) have infinite order. The main results of this section is
to show that the groups Z, Z(p*°), Q, @ mod 1, and any computable torsion
Abelian groups are isomorphic to LOGSPACE groups with universe equal to
Bin(N) or Tal(N).

Before giving our constructions of LOGSPACE groups isomorphic to Z,
Z(p*>), Q, and Q mod 1, we need to establish a few basic lemmas. Our first
lemma is completely straightforward so we state it without proof.

Lemma 7. Let A be a LOGSPACE structure and let ¢ be a LOGSPACE
bijection from A (the universe of A) onto a set B. Then B is a LOGSPACE
structure, where the functions and relations on its universe B are defined to
make ¢ an isomorphism of the structures.

Let
A= (A AR Vies {f ier {c }iev),

be a structure where the universe of A, A, is a subset of N and S, T, and U
are finite initial segments of N. Then If A = {ag < a1 < ---}, then we let
Tal(A) (Br(A)) denote the structure whose universe is {T'al(ag), Tal(ay), ...}
({Bing(ag), Bing(ay),...}) and whose relations and functions are defined so
that the map f which sends a; to Tal(a;) (a; to Bing(a;)) for ¢ > 0 is an
isomorphism.

Lemma 8. Let M be a structure with universe M C N, and let A = Tal(M)
and B = Bi(M), where k > 2. Then we have

(a) If Be LOGSPACE, then A € PLOGSPACE.

(b) If B € LINSPACE and for all functions f&, it is the case that there
is a constant depending on fB such that for all but finitely many n-
tuples (my,...,my), |fB(my,...,mu)| < c(lmi| + - + |my|), then A €
LOGSPACE.

Proof. (a) Tt easily follows from Corollary 1 and Lemma 4 that the domain
Tal(A) and all relations on A are in LOGSPACE. For any function symbol f4
and any y = fA(21,...,2,), we can compute Tal(y) from Tal(z1),. .., Tal(x,)
in 3 stages. First convert each Tal(x;) to Bing(z;), then compute Bing(y) in B,
and finally convert Bing(y) to Tal(y). Again by Corollary 1, the first two steps
can be done in LOGSPACE. Since, for each i, |Bing(z;)| < log|Tal(z;)|, it
follows that |Bin(y)| < max;[log|Tal(x;|]¢ for some constant ¢. Thus the final
step of converting Bing(y) to Tal(y) can be carried out in PLOGSPACE.



4 LOGSPACE ABELIAN GROUPS 12

(b) To check whether Tal(n) € Tal(A), we first compute Bing(n) and then
test Bing(n) € Bin(A). Clearly we can compute Bing(n) in LOGSPACE
and since |Bing(n)| < log|Tal(n)|, we can test whether Bing(n) € Bin(A)
in LOGSPACE as well. A similar argument applies to relations. For any
function f% and almost all (x1,...,z,), ify = fB(x1,...,2,), then |Bing(y)| <
c(log|Tal(z1)|+ - -+log|Tal(xy,)|) so that we can compute T'al(y) in LOGSPACE
as well. O

The direct sum, or external weak product, of a sequence A; = (A4;, +;, —i, €;)
of groups is defined as usual to have elements (ag, a1, ..., a,) where, for all but
finitely many 4, a; = e; and the operations are coordinatewise. Thus every
element of the direct sum other than the zero can be thought of as a finite
sequence (aj,...,a,) where a; € A; for 1 <i <n and a, € 4, —{en}.

For now on, we shall fix the following LOGSPACE pairing function from
{0,1}* x {0,1}* — {0,1}*. Given two strings a; - --a, and by --- b, € {0,1}*,
we define the pair (ay - - - an, by - - - by, ) as follows. First we pad the shorter string
with 2’s at the end so that the two strings have the same length p = max(m,n).
This results in two string @ - - - @, and by - - - b,. Then we define define c(1) = 11,
¢(0) = 00 and ¢(2) = 10. Then define

(a1 an,by - by) = c(@r)e(by) - - c(ay)c(by).

It is easy to see that for any ¢, we can recover either a; or b; in LOGSPACE.
Then we say that the sequence is fully uniformly LOGSPACE over B where
B is either Bin(N) or T'al(N)) if the following hold:

(i) the set {(B(n),a) : a € A,} is a LOGSPACE subset of B ® B, where
B(n) = Tal(n) if B =Tal(N) and B(n) = Bin(n) if B = Bin(N),

(ii) the functions F' and G, defined by F/(B(n), a,b) = a+,band G(B(n),a,b) =
a—nb, are in LOGSPACE,

(iii) the function e : Tal(N) — B, defined by e(Tal(i)) = e;, isin LOGSPACE.

Lemma 9. Let B be either Tal(N) or Bin(N). Suppose that the sequence
{Ai}ien of groups is fully uniformly LOGSPACE over B. Then

(a) The direct sum @;A; is computably isomorphic to a LOGSPACE group
with universe contained in Bin(N).

(b) If the sequence is infinite and the universe of each A; is equal to Tal(N)
and e; = 0 for alli, then ®;A; is computably isomorphic to a LOGSPACE
group with universe equal to Bin(N).

(c) If A; is a subgroup of A;y1 for alli,and if there is a LOGSPACE function
[ :{0,1}* — B such that for all a € |J; Ai, we have a € Ay, then the
union |J; A; is a LOGSPACE group with universe contained in B.
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(d) If one of the components has universe B, and the remaining components
have universes that are LOGSPACE subsets of Tal(N), then the direct
sum is computably isomorphic to a LOGSPACE group with universe B.

(e) If the sequence is infinite and if each component has universe Bin(N),
then the direct sum is computably isomorphic to a LOGSPACE group
with universe Bin(N).

(f) If each component has universe Tal(N) and there is a uniform constant ¢
such that for each i and any a,b € A;, we have both |a+;b| < c¢(|a| +; |b])
and |a —; b| < c(la| 44 |b]), then the direct sum is computably isomorphic
to a LOGSPACE group with universe Tal(N).

Proof. For (a), first consider the case when B = T'al(N). Thus we are assuming
that the universe of each A; is a subset of T'al(N). Then we simply map the
zero element of ®;A; to 0 and map any sequence (aq,...,a,) where a; € A; for
1<i<nanda, € A,—{en} to 1la;0a20 - - - 0a,0. It is then easy to see that our
definitions ensure that we can carry out the group operations in LOGSPACE.
Similarly, if B = Bin(N), then we can map the n-tuple (a,...,a,) to the string
that results by taking la;2as2 - - - 2a,2 and replacing each 0 in the string by 00,
each 1 in the string by 11, and each 2 in the string by 10. Again, it is easy to
see that our definitions ensure that we can carry out the group operations in
LOGSPACE.

For (b), we can map the zero element of @®;4; to 0 and map any se-
quence (ay,...,a,) where a; € A; for 1 < i < n and a, € A, — {e,} to
d(a,)0d(an—1)0---d(a;) where d(a;) = 0 if a; = e; and d(a;) = a; otherwise.
It is then easy to see we can recover the j-th bit of any a; in LOGSPACE
so that our our definitions ensure that we can carry out the group operations
in LOGSPACE. In this case, we have mapped @;A4; bijectively onto Bin(N)
so that @;.A; is computably isomorphic to a LOGSPACFE group with universe
Bin(N).

Part (c¢) easily follows from our definitions so we will not give the proof. Part
(d) immediately follows from part (a) and Lemma 6.

We just sketch the proofs of (e) and (f). We let the zero element of the
direct sum be 0 and the remaining elements of the sum may be viewed as
finite sequences (ay,...,a,) from Bin(N) such that a; € A; for 1 < i < n
and a,, € A, — {e,}. The operations of plus and minus are the corresponding
coordinatewise operations and, hence, they can be carried out in LOGSPACE.
For the isomorphism, sequences of length n > 0 may be mapped to (n,m) €
Bin(N) @ Bin(N) since the set of sequences of length n is a finite sum of n — 1
copies of Bin(N) with one copy of Bin(N)—{0} and hence isomorphic to Bin(N)
by Lemma 6. This will give a LOGSPACE isomorphism of the universe which
then leads to a group isomorphism by Lemma 7. This group can be converted
into a LOGSPACE group with universe Tal(N) using Lemma 8 under the
conditions given in (e).

U
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For a given prime p, let Q, denote the additive group of all p-adic rationals

Theorem 2. Let k > 1 be in N and let p be a prime. Each of the groups Z,
D, Zi, Z(p>), and Q, are computably isomorphic to a LOGSPACE groups
A with universe Bin(N) and a LOGSPACE group B with universe Tal(N).

Proof. The standard structure for Z is clearly LOGSPACE and can be made
to have universe Bin(N) or T'al(N) by mapping n to 2n for n > 0 and mapping
—n to 2n + 1 for n > 0. For any k > 2, we can think of Z; as having universe
{0,...,k—1} where the operations are addition modulo k. It then easily follows
that @@ Zj can be identified with By (N) where the 0 of @ Zy, is sent to 0 and
a sequence (ay,...,a,) with a; € {0,...,k—1}fori <nanda, € {1,...,k—1}
is sent to a,, ...a;. It is then easy to see that operations will be in LOGSPACE
so that our result follows from Lemmas 4 and 5.

For a fixed prime number p, the group Z(p*) counsists of rational numbers
of the form a/pi where a,i € N, 0 < a < p’ and ¢ > 0 with addition modulo
1. For our LOGSPACE model G(p*), we let the string epe; ...e,—1 € Bp(N)
represent the p-adic rational

€0 €1 €n—1
==+ .
p P pr

It can be verified that the addition operation on these strings is indeed FFLOG
computable so that (G(p™),+%) is a LOGSPACE model of Z(p™) with uni-
verse B,(N). Note that in Z(p>), the sum x +¢ y of two rationals either equals
x4y (ifz+y<1)orequalsz+y—1 (if x+y > 1), and these cases can be de-
termined in LOGSPACE. Now Lemma 8 implies that there is a LOGSPACE
model with universe Bin(N). Furthermore, |a @ b] < max(|al, |b]), so that by
Lemmas 5 and 8, there is a LOGSPACE model with universe T'al(N).

The group Q) is almost the direct sum of the groups Z and Z(p>). That
is, the universe of Q,, is the product of the universes of the two groups, but for
the addition, we have to check as in the remarks above, whether the elements
of Z(p*>), viewed as rational numbers, have a sum less than 1, or not. Now let
(By,+1) be our LOGSPACE model of Z and let (Bg, +2) be our LOGSPACE
model of Z(p>®) and let 17 denote the element of B; corresponding to the
integer 1. The desired model of Q, will have elements (b, b2) with b3 € B; and
by € By. To compute (by,bs) + (¢1, ¢2), first compute by +1 ¢; and by +2 ¢2. Note
from the remarks above that we can also decide in LOGSPACE whether the
bo+2ca = ba+co or equals by+co—1. In the former case, (b1, bo)+(c1,¢2) = (b1+1
1, ba+ac2) and in the latter case, (b1,b2)+(c1,c2) = (b1 +1¢1+11, ba+2c2). This
construction will carry over to the models with binary and tally universes. [

Theorem 3. The additive group Q of rationals and the additive group Q mod 1,
are computadly isomorphic to LOGSPACE groups with universe Bin(N), and
to LOGSPACE groups with universe Tal(N).

Proof. The group Q mod 1 can be represented as the infinite sum of the groups
Z(p®) over all primes p. Lemma 9 implies that there are LOGSPACE models
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of these groups with universe Bin(N) and with universe Tal(N). We will briefly
explain how this direct sum can be obtained in a fully uniformly LOGSPACE
fashion. Let A, be a LOGSPACE group isomorphic to Z(p™)with universe
B = Tal(N) and define C, to be a copy of A, with the element a replaced
by (Tal(p),a). Given z = (Tal(n),(Tal(p), Tal(a)), x € Cp, if and only if
P = pn, the nth prime. Since the set of primes is polynomial time in Binary,
it is LOGSPACE in Tally and therefore we can check whether p = p, in
LOGSPACE. That is, given Tal(n) and Tal(p), convert them into Bin(n)
and Bin(p). Then test whether Bin(2), Bin(3),..., Bin(p) are primes, using
(and reusing) space < clog(p)-since prime testing is in P. Keep track of the
the number of primes found, increment by one (in binary) when a new prime is
found. After testing Bin(p), just check that the counter equals Bin(n) to see
whether p = p,.

The second clause in the definition of uniformly LOGSPACE follows from
the uniformity of the proof of Theorem 2. Part (e) of Lemma 9 now gives a group
with universe T'al(N). Omitting the first component Co from the sequence, we
get a group with universe T'al(N) which can then by combined with a binary
copy of Z(2°°) to obtain a copy of Q mod 1 with universe Bin(N), by Lemma
6.

For the group Q, we proceed as in the proof of Theorem 2. That is, the
universe of QQ is the product of the universes of models for Z and for Q mod 1
and thus by Lemma 6 may be taken to be Bin(N) or T'al(N) as desired. However,
for the addition, we have to add the elements from Q mod 1 as rationals and
then carry the integer part over. Now in our model of Q mod 1, a finite sequence
of strings o!,..., 0™ where each o' = (ef, €}, ... €} _,) € Bh represents the p;-
adic rational €0 4 ... 4 it

pi I

. To compute the sum oy + - - - + 7, requires taking

a common denominator p¥ - pk2 .. pFn and using iterated multiplication and
addition to obtain the numerator and finally division to obtain the desired carry
value ¢ to be added to the integer sum. The results of [2, 11] imply that this
can be done in LOGSPACE. |

Recall that a computable Abelian group A is computably categorical if any
computable group B which is isomorphic to A is computably isomorphic to A.
Smith [20] characterized the computably categorical Abelian p-groups.

Theorem 4. A computable p-group G is computably categorical if and only if
either

1. G = PpewZ(p>®)®F or
2. G BicnZ(p™®) ® Bi<wZpm & F
where F' is a finite p-group and m,n € N.
The following is a immediate corollary of our previous results in this section.

Corollary 2. Any computably categegorical p-group is computably isomorphic
to a LOGSPACE group with universe equal to Tal(N) and to a LOGSPACE
group with universe equal to Bin(N).
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The following theorem is an improvement of a result of Cenzer and Remmel
[4].
Theorem 5. Any computable Abelian torsion group G = (G,+¢, =%, ¢e%) is
computably isomorphic to a LOGSPACE group whose universe is contained in

B where B = Tal(N) or B = Bin(N).

Proof. We may assume that the universe G of our group is just the set Bin(N)
and also that e = 0. We first renumber the elements of G as follows. For
each k € w, let G, =< {1,2,...,k} > be the group generated by the first k
elements. Now for each g in G, let k(g) be the least k such that g € Gx. We
then order the elements of G in the following way. We say that a precedes b if
either k(a) < k(b), k(a) = k(b) and |a|] < |b], k(a) = k(b) and |a|] = |b] and a
is lexicographically less than b. Since all elements of G have finite order, this
ordering has order type w and is computable. Now list the elements of G in this
order as {ag, a1, ... }. The idea of this renumbering is to make a;+“/—%a; occur
in the list as soon as possible after a; and a;. We now define the computable
group A = (A, +4,—4,0) where A = T'al(N) and, for any natural numbers m,n
and p,

m+4 ) An=p <= an+°/-%a, = a,.

It is clear that A is computably isomorphic to G via the map which takes 4
to a;. Now for each k, let Ay be the subgroup of (A4, +4) generated by the set
{1,---,k}. By the definition of A given above, it follows that A is an initial
segment of A. Now suppose that i +4 / —4 j = k and i < j. It is clear that
k € A;. Since A; is an initial segment of A, it follows that {0,1,--- ,k} C A;
so that A, C A;.

We are now ready to define the LOGSPACE group B = (B, +7) which is
computably isomorphic to A and therefore computably isomorphic to G. For
each k, let v(k) be the total time needed to compute each of the sums and
differences a +4 / —4 b, where a and b range over Ay. Now let ¢(k) = 127 ok
and let B = {¢(k) : k € w}. Let 08 = ¢(0) and define the operations +7 and
—B 50 as to make ¢ a group isomorphism.

It remains to be shown that the set B is in LOGSPACE and the operations
+/—B are LOGSPACE functions. Given a string «, in LOGSPACE, we can
test if it of the form 12°0%. That is, given any string «, we can read the initial
string of n’s 1’s and compute Bin(n) in LOGSPACE in |«|. If Bin(n) is not of
the form 107, then a is not of the form 12°0%. If Bin(n) is of the proper form,
then « is a string of the form 12°0* only if we do not encounter a 1 after we
read the initial 0. If « is not of the form 12t0k, then it is not in B and if it is of
the form 12°0%, then we can write 1 on a work tape using log(|a|) space. Then
do the following to see whether it belongs in B. First, attempt to generate a
list of the elements of A from the set {1,2,---,k}. This requires that each
possible sum a +4 b, for a,b € A be computed at most once and therefore
takes time at most ¢ - v(k) for some fixed constant c¢. Thus we carry out this

process for time c¢ - ¢t and if the process is not finished, then 12°0% is not in B.
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If the process finishes, then we perform all the operations and keep track of the
total time required. Again, this will take time at most ¢; - v(k) for some fixed
constant c¢;. Without loss of generality, we may assume that ¢; = ¢. Thus we
carry out the process for time ¢ - ¢ and if the process is not finished, then 12°0*
is not in B. If the process finishes, then we compare the total time computed
with ¢ and 12'0% € B if and only if this time exactly equals ¢t. Now this entire
procedure takes time no more than 2c¢t and hence it can be carried out in space
2¢ct = 2clog(|al).

Given two elements 12 0% and 127’0/ of B, compute the sum (respectively
difference) 12770k = 121/(1)0i+B/—B 170D as follows. Assume, without loss of
generality, that i < j. First, compute k = i+4 / —4 j. This takes time less than
c-v(j), where c is the constant discussed above. Now as above, generate a list of
the set Ay, from the set {1,2,---,k}, perform all of the operations a +4 / —4 b
where a,b range over Ay, and keep track of the total time v(k) required to
perform those operations. Since Ay C Aj, this can all be done in time 2¢ - v(j).
It follows that the addition and subtraction operations of B are linear time in
v(j) and v(i) and and hence LOGSPACE in 12”0 and 12”07, Moreover,
it is easy to see that |12u(k)0k\ < |121I(J)0j|. It follows that B is LOGSPACE
group contained in Bin(N). Moreover, we can then apply Lemma 8 to conclude
that T'al(B) is in LOGSPACE. |

5 Torsion-Free Abelian Groups

Recall that a group G is torsion-free if no element of G has finite order. For
any Abelian group G, the notation n - g denotes the sum g+ ---+g of n g’s. A
torsion-free Abelian group G is said to be of rank one if there is some a € G such
that for any g € G there are integers m,n such that m-a = n-g. For example,
Q is rank one with the unit 1 playing the role of a. It is easy to see that any
torsion-free group of rank one is countable and is isomorphic to a subgroup of
Q via the map which takes g to m/n if m-a = n-g. A torsion-free Abelian
group is said to have rank n if it is a direct sum of n subgroups of rank one.
The character x(g) of an element g of an Abelian group equals

{(p,m) : p is prime and (3z € G)p" -z = g}.

Let p. denote the e-th prime number. Then the character sequence of g is the
sequence (rg,71,...) where r; is the greatest r such that (p;,7) € x(g) or r; = 00
if (p;,7) € x(g) for all 7. Recall that any two elements of a torsion-free Abelian
group of rank one have the same character sequence modulo a finite set. Thus
the character sequence of a torsion-free Abelian group G of rank one may be
defined, modulo finite sets, as the character sequence of any of its elements.
Similarly, the character C' = x(G) of a torsion-free Abelian group G of rank 1
may be defined, modulo finite sets, as the character of any element of G.

More generally, we say that C is a character if C is a set of pairs (p,r) where
p is a prime number and r is a positive integer with the property that whenever
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(pi,r) € C and n < r, then (p;,n) € C. Clearly, for any torsion-free Abelian
group G of rank one, x(G) is character in this sense. Conversely, any set C' with
these properties is also a character of some torsion-free Abelian group of rank
one.

Unless otherwise stated, all groups discussed hereafter in this section will
be assumed to be torsion-free Abelian groups of rank one. It is clear that two
groups with the same character are isomorphic. It is a classical result that any
torsion-free Abelian group of rank one is isomorphic to a subgroup of Q. Our
goal is to consider effective versions of these two results. Mal’tsev [15] proved
that any two computable torsion-free groups of rank 1 with the same character
are computably isomorphic.

Our next set of result will consider characters of the form {(p,n) : p €
C & n € N} where C is a set of primes. In this situation, we shall simply
identify the character with the set of primes C. Thus the torsion-free group of
rank one with character C' is the infinite sum of the groups Q, for p € C. For
subgroups of Q mod 1, the character may be similarly defined and we can say
that a torsion group G has rank one if it is a subgroup of ®, primeZ(poo) and,
hence, is isomorphic to a subgroup of Q mod 1. If C is set of primes, then the
torsion group with character C' is just the infinite sum of Z(p>°) over p € C.

Since the standard model of Q and the standard model of Q mod 1 are
isomorphic to a LINSPACFE group and to a PTIMFE group, we have the
following result.

Proposition 1. For any notion K of complezity stronger than LINSPACE
(PTIME), any nonempty set of primes C, and B = Bin(N) or B = Tal(N),
the following are equivalent.

(i) The character C is in K.

(i) There is a rank one torsion-free group G with character C and universe

B which is in K.

(iii) There is a torsion group H of rank one with character C' and universe B
which is in K.

Proof. We can take the subgroups of Q (or of Q mod 1) of elements * with all
prime factors of n in C'. This can be done in K since the prime factors of n may
be computed in LINSPACE. Then to obtain a standard universe B, just take
one of the components to have universe B and apply Lemma 6 as in the proof
of Theorem 3 U

To obtain a corresponding result for LOGSPACE is more difficult.

Theorem 6. Let B = Bin(N) or Tal(N) and C be a non-empty set of primes
such that Tal(C) is in LOGSPACE. Then

(i) There is a torsion group H of rank one with character C which is in

LOGSPACE.
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(ii) There is a rank one torsion-free group G with character C' which is in
LOGSPACE.

Proof. 'H is the the infinite sum of the groups Z(p°), for prime p € C. Thus
we can construct LOGSPACFE group isomorphic to H in much that same way
that we constructed the group Q@ mod 1 in the proof of Theorem 3. That
is, let qo,q1,... enumerate the members of C in increasing order. Since C is
LOGSPACE in tally, we can check whether p = ¢, in LOGSPACE. That
is, given Tal(n) and Tal(p), convert them into Bin(n) and Bin(p). Then we
can test whether Tal(i) belongs to C for i = 2,3,...,p and keep track of the
number of elements of C' found. Here we cannot actually write out T'al(i) on
the tape since this would use linear space so we simulate the testing of T'al(7)
by a composition of two functions. We have Bin(i) on a work tape which is
incremented at each step. The first function converts Bin(i) to T'al(i) and the
second function tests ¢ € C. This is the composition of a linear space function
followed by a LOGSPACE function so, by Corollary 1, it is LINSPACFE in
the input Bin(i) and hence takes space < clog i < ¢ log p. After testing T'al(p),
we have p = ¢, if and only if the counter equals n.

Then as in the proof of Theorem 3, the group C, may be taken to be a
LOGSPACE group with elements of the form (Tal(q,),a) for a € B. Thus
the universe of H is a LOGSPACE set of triples (Tal(n),Tal(g,),a) and the
remainder of the proof is essentially the same as the proof that the group Q
mod 1 is computably isomorphic to a LOGSPACE group over B given in The-
orem 3.

For the group G, we again proceed as in the proof of Theorem 3. That is, the
universe of G is the product of the universes of LOGSPACE models for Z and
for H and thus by Lemma 6 may be taken to be Bin(N) or Tal(N) as desired.
For the addition, we have to add the elements from H as rationals and then
carry the integer part over. The proof that can be carried out in LOGSPACE
is essentially the same as the proof in Theorem 3. O

6 Feasible categoricity

For any complexity class C, we say a structure A is C-categorical over a universe
B C {0,1}* which is in C if and only if for any C structure B with universe
B which is isomorphic to A, there is a C isomorphism f from 4 onto B where
f~lis also in C. In [6], Cenzer and Remmel explored the question of whether
there exists p-time categorical groups over the universe T'al(N) or the universe
Bin(N). For example, Cenzer and Remmel proved the following results in [6].
First, in Theorem 4.11 (p. 126), it was shown that any infinite computable
torsion Abelian group is isomorphic to each of a countably infinite family of
PTIME groups, none of which are primitive recursively isomorphic to each
other. The proof uses padding, so that the elements of each group are very
long strings. Second, in Theorem 4.18 (p. 150), it was shown that there is an
infinite family of PTTM E groups each with standard universe (either Bin(N) or
Tal(N) as desired) and isomorphic to Q such that no two of them are primitive
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recursively isomorphic. Third, in Theorem 4.31 (p. 132), it was shown that for
any n > 0, there is an infinite family of PTIMFE groups each with standard
universe (either Bin(N) or T'al(N) as desired) and isomorphic to ®;<,Z(p>)
such that no two of them are primitive recursively isomorphic. First we shall
show that we can prove similar results for LOGSPACE groups.

We start by strengthening Lemma 2.8 of [6]

Lemma 10. For any p-time set A = {Bin(ag) < Bin(a;) < ---} and any
integer ¢ > 1, there is a set M = M(A) = {Bin(mg) < Bin(m;) < ---}
such that M is in LOGSPACE and the map which takes Bin(m;) to Bin(a;)
is LOGSPACE, but there is mo primitive recursive embedding of any cofinite
subset of A into M which maps at most ¢ elements to any given element..
Furthermore, M may be taken to be a subset of Tal(N).

Proof. Let ¢, be the e-th primitive recursive function mapping Bin(N) into
Bin(N) and, for each e, let t. be the total time required to test all numbers
Bin(n) where n < a. for membership in A and to compute ¢;(Bin(a;)) for all
J,t < ae. Thust, < t.y1 because it takes at least one step to compute anything.
For each e, let m, = 2%, so that Bin(m.) = 10% and |Bin(m.)| =t. + 1. It
follows that ¢.(Bin(a;)) < Bin(m;) for all i < e, since by convention it takes
at least k steps to compute an output of length k. Let D = {m, : e < w}.

We claim that D is in LOGSPACE. Here is the LOGSPACE algorithm
for testing whether x € M(A). First check to see that x = 2" for some n
by computing Bin(n) in LOGSPACE and checking whether it is of the proper
form. Then start to test Bin(0), Bin(1),... for membership in A. As soon as we
find that Bin(n) is e-th member of A so that Bin(n) = Bin(a.), then compute
in order ¢(ag),...,de(ac—1) and ¢g(ae),. .., ¢c(a.) and then return to testing
whether Bin(n+1), Bin(n+2),... are in A. If the total number of steps reaches
n exactly when the computation of some ¢.(a.) has just been completed, then
n = t. so that * = m, belongs to D. Otherwise, ¢ D. This argument also
shows that D is in LOGSPACE and the map which takes Bin(m.) to Bin(a.)
is in LOGSPACE. Finally, we let M = M(A) = {my, : i <w} where hy =1
and h;1 = 2" Tt is easy to see that M(A) is also in LOGSPACE.

Now suppose by way of contradiction that ¢, is an embedding of of some
cofinite subset C' of A into M and let ¢ = |A\ C| which is at most ¢ to one.
Since each primitive recursive function has infinitely many indices, we may
assume that e > ¢2. Then ¢.(Bin(ag)),...,¢.(Bin(ay.)) has at least h./c >
me + 1 distinct elements. This implies that at least one of them is > m,,
which contradicts the observation above that ¢.(Bin(a;)) < m, for all i < e
and thus establishes the result. To obtain a subset of Tal(N), replace each
my with m; = 2™t — 1 in the argument, so that Bin(m]) = Tal(m;). Then
M* = {Tal(m)} is in LOGSPACE and the map taking T'al(m) to Bin(a;) is
also LOGSPACE computable. O

Theorem 7. For any infinite computable Abelian torsion group G, there is
an infinite family G; = (G;,+i,e;) of LOGSPACE groups, each recursively
isomorphic to G and having universe a subset of Tal(N), such that, for all
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i < j, there is no primitive recursive map from G; into G; which is at most c to
1 for some finite c.

Proof. Again there is no loss of generality in assuming that the universe of G
is Bin(N) and also that e = 0. Let A be the p-time group with universe
{121/(1)01' :i < w} constructed in Theorem 5. Let By = {Tal(2*®") : i < w} and
let B;+1 = M(B;) as in Lemma 10. Thus By, By, . .. is sequence of LOGSPACE
subsets of Tal(N) so that, for any ¢ < j, there is no primitive recursive map
from B; into B;.

Let ¢; be the LOGSPACE embedding from B, onto By for each t. Define
Gy = {12"0" : Tal(n) € B, & ¢4(Tal(n)) = Tal(2"®@)}. Note that i < (i)
for all 4. It is easy to see from the proof of Lemma 10 that for all ¢ and ¢, if
#¢(Tal(n)) = Tal(2"@), then 2¥() < n. Moreover it is easy to see that ¢; is
order preserving for all t. We define the operation +; on G; by defining for a < b,
12709 4,127 0% = 12°0¢ if and only if ¢;(m) = 1279 ¢, (n) = 12°®) and ¢, (k) =
12°(¢) and 12" (@02 4 4 12" ()b = 12°()gc. This operation is LOGSPACE since
v(c) < maz{v(a),v(b)} so that k < max{m,n}. A similar definition can be
given for subtraction. Note that we can apply Lemma 4 to transform G; into a
LOGSPACE group with universe a subset of Tal(N).

Suppose now that there were a primitive recursive map v from G; into G;,
for some i < j which is at most 2¢ to 1 for some finite e. Then we could define
a primitive recursive map ¢ from B; into B; as follows. First let B; = {1™ <
1" < .-} and B; = {1™ < 1™ < ---}. Given 1" € B, first find k such
that 1™ = 1. Note that since B; is LOGSPACE, we can in fact find & in
polynomial time in n by simply testing 1°,...,1" for membership in B;. Next
we can find T),, ; = {1"0° : » < k & 1"0° € G;} also in polynomial time in n
since G; is in LOGSPACFE and by construction 1"0° € G; implies that s < m.
Note that T;,,; C Tp,; C --- C Ty, ; correspond to an increasing sequence
of subgroups A;, C A;, C --- C A;, in the group A where we continue the
notation of Theorem 5 and let Ay denote the subgroup generated by {1,...,k}
in A. Similarly the sequence T}y, j C T, j C -+ - Thm,,; correspond to the same
increasing sequence of subgroups A;, C A;, C --- C A;, in the group A. Now
for each k, we have |A;, | > 2|A;, |. It follows that for each k, ¢)(T},, ;) cannot
be contained in T3,, . , ; for any k. Thus it must be that

maz({q : 190 = (1™0°%) for some p < k}) > mp_c_1.

But then the one-to-one map ¢(17+) = 1™s-=1 from B; \ {101"""} onto
B; could be defined primitive recursively by letting ¢(1™#+<) be equal to 1™~
where 7 is the least h such that there is an s and ¢ such that 1"10° € (T, . i),
h < ¢, and 1™» ¢ {(1™+¢) : a < k}. Hence there can be no such 1 and
therefore there is no primitive recursive map from G; into G; which is at most ¢
to 1 for some finite c. O

Theorem 8. For any prime p, for any n with 0 < n < w, and for B = Bin(N)
or Tal(N), there is an infinite family of LOGSPACE groups A; each with
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universe B and isomorphic to @;«,Z(p>°) and such that there is no primitive
recursive structure preserving embedding of A; into A; for any i < j.

Proof. We first give the proof for n = 1. Let By = T'al(N) and B;y; = M(B;) as
defined in Lemma 10. Thus B; = {Tal(mo;) < Tal(my;) < ---} is a sequence
of LOGSPACYE sets such that there is no primitive recursive embedding of B;
into B; for any ¢ < j. Recall that the m;;’s are defined to be sequence of 1’s
whose lengths are increasing powers of 2. We let n;; be the integer such that
Bin(n; ;) = my; so that the differences ny41, — ny,; are increasing in ¢.

We build our p-time group A; to have universe B,(N). An element b =
eies ... e, € B,(N) will now be broken into blocks

bop=¢e1...enp;s D1 =€ng 1.+ Cnyysorvy, p=€ny i 41 60,

where k is the least j such that r < n;; and we let m_;; = 0 for complete-
ness. In the standard model of Z(p*), the block b, represents the rational
E?;,;lsfl.i“rl e;p~t. Thus in particular b, = (10...0) represents p~"s1i~! and
bs = (010...0) represents p~"=-1i=2. Then b represents the sum of the ratio-
nals represented by the b,’s. The addition operation includes a carry to the left
which can cross from a block to the previous block.

For A;, we shall use a non-standard model of Z(p*>°) where the block is read
in reverse order, so that now b; = (10...0) represents p~ ", by = (010...0)
represents p~™si*1 and in general b, represents the sum

N i

Z etp_ns,i"!‘(t_ns—l,i_l).

t=ns_1,i+1

The addition operation +4¢ is defined so that within blocks we add like integers
in B,(N), with carry to the right. When a carry would go beyond the right end
of the (k + 1)-th block, it is added to the left end of the k-th block. A carry in
the 0" block is simply dropped, as in Z(p>). Note that by our construction in
the Lemma 10, |Bin(niy1)| = |meg1| > 2Ime! = 21870l 5 that we can write
down all the positions of the left ends of the smaller blocks in LOGSPACE in
|Bin(b)|. It easily follows that we can carry out this addition in LOGSPACE

We can now use Lemmas 4 and 5 to show A; is LOGSPACE isomor-
phic to isomorphic to a LOGSPACE structure with universe Bin(N) and to
LOGSPACE structure with universe Tal(N).

We can show that there is no primitive recursive structure preserving em-
bedding of A; into A; as follows. Recall that for each ¢ < j, B; C B;. Let
Tk = Nk,i, let sy = ng ; and let sg = 7). It follows from the construction of
Lemma 10 that t(k + 1) > t(k) + 1, that is, there is always at least one element
of B; between any two elements of B;. Now observe that in A4;, the elements of
order p"* are precisely the elements of length r,_1 + 1 and the elements of order
p"=+1 71 are precisely the elements of length 7. Similarly for A;, the elements of
order p°* are precisely the elements of length p**~1*! and the elements of order
p*k+171 are precisely the elements of length s,. Thus in particular the element
0°#1 has order p**+! in A; and has order p"t+1 in A;.
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Suppose that ¢ were a primitive recursive structure preserving embedding
of A; into A;. Then we could primitive recursively compute si11 from si by
the following procedure. First compute ¢(0°¢1), which by the isomorphism
must have order p"t®+1 in A;. Therefore the length of ¢(0"*1) must be sg41 —
(Teky+1 — (Tery 1)) = Sk + k1 — Tyry41 + 1. Now since ry(pq1) — Te(ry1)-1 >
Te(k)+1 — Te(k)s it follows that sp + sky1 — Tyey+1 + 1 > Teer)—1 > Te(k)+1-
Hence we can compute s;(z)41 from ¢(0°* 1) by examining all strings of the form
1! where [ < |$(0%+1)| for membership in B;. Since B; is a LOGSPACE subset
of {1}*, this can be done in polynomial time in the length of ¢(0°¢1). It follows
that we could primitive recursively compute sx41 from s;. But then we could
compute sg from k by primitive recursion which would contradict the fact that
there is no primitive recursive embedding from T'al(N) into B;.

Now if n > 1, let A'; = ®p<nA;. It is clear that A'; is a LOGSPACE
group which is isomorphic to ®r«,Z(p>°) and we may be assume that it has
universe B by Lemma 9. Recall that the elements of A’; are finite sequences of
elements of A;. Furthermore, if an element of A’; has order p then at least one
of its coordinates has order p in A;. Let a have order p in A;, so that, for any
x # 0 in A;, we have ¢cp™z = a for some m and for some ¢ € {1,2,...,p—1}.

Now suppose that ¢ is a primitive recursive embedding of A’; into A’;. For
any x € A;, let (x) denote the n-tuple with all coordinates equal to x. Then let
¢((a)) = (b1,...,b,). Then at least one of these coordinates, say b; must have
order p in A;. Now define the primitive recursive homomorphism from A4; into
A; by letting ¢(z) be the t-th projection of ¢((x)), so that ¥(a) = b,. We show
that 1) is one-to-one as follows. Suppose that () = 0 and let ¢p™x = a. Then
(a) = ep™p(z) = 0 so that we must conclude that = 0. This shows that v
is a primitive recursive embedding of A; into A;, contradicting the case n =1
above and proving the result. O

Theorem 9. For any infinite computable set C' of prime numbers, there is a
countably infinite family of LOGSPACE groups each isomorphic to ®pecZ(p™)
and having universe a subset of Tal(N), such that no two of these are primitive
recursively isomorphic. These may be taken to have standard universe Bin(N)
or Tal(N), as desired.

Proof. The first part of this is a corollary of Theorem 7. For the second part, just
leave aside one element, p; of C' and take a direct sum with a copy of Z(p$°)
having standard universe. Then the resulting groups will all have standard
universe by Lemma 6 and the groups will still not be primitive recursively
isomorphic. O

Next we consider the additive group of the rationals Q. Recall @ mod 1 be

the additive group of rationals in [0, 1) where the operation is addition modulo
1 is a torsion group.
Theorem 10. Let B be either Bin(N) or Tal(N). Then there is an infinite
family of LOGSPACE groups H; each with universe B and isomorphic to Q
and such that there is no primitive recursive embedding of H; into H; for any
i<j.
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Proof. First we take a specific representation of QQ mod 1 with universe is
Tal(N) given in Theorem 3. For any ¢ < j where ¢ and j are relatively prime,
let g(i/7) be the element represented by i/j in Q@ mod 1. Now by Theorem 7,
there exists an infinite family of p-time groups G; = (G, +i,0;) each with uni-
verse contained in T'al(N) where Gy = G and for all ¢ < j, there is no primitive
recursive map from G; into G;. Moreover the construction of Theorem 7 also
gives us a LOGSPACFE isomorphism v; from G; onto Gy for all 4 > 0. Now let
Z be a standard group of the integers with universe equal to B. In what follows,
we will simply write n for n - 12 and —n for —n - 1% for any natural number n.
Then for each i, we let H’; consist of all pairs (a,n) such that a € G;, where
the group operation is defined by

[ (a4 b 45 m) if g~ (¢i(a)) + 97 (¥:(b)) <1
{a,n) +i (b;m) = { (a+"bn+2m+217%), it g7 (Pi(a) + g7 () > 1.

It is easy to see that our definitions ensure that each H'; is a LOGSPACE
group which is isomorphic to Q. Since H’; has universe equal to G; X B, which is
LOGSPACE isomorphic to B by Lemma 6, it follows that H'; is LOGSPACE
isomorphic to a LOGSPACE group H; with universe B.

Now suppose that there were a primitive recursive isomorphism from H;
onto ‘H; for some ¢ < j. Then clearly there would be a primitive recursive
isomorphism 6 from H’; onto H’;. This induces an isomorphism f from Q to Q
which must map a given rational  to ar, where a = 4p/q is the image of 1 under
the isomorphism and p is relatively prime to q. Now consider the corresponding
map h: Q mod 1 — Q mod 1 defined by h(r) = g(r) mod 1. If p < ¢, then
the map h is clearly one-to-one. If ¢ < p and p = (¢ — 1)q + s for some ¢ and
some s with 0 < s < ¢, then h has kernel {0,q/p,2q/p,...,cq/p} and is ¢ to
1. With this in mind, consider the primitive recursive map ¢ from G; into G;
defined by

¢(a) = mo(0((a, 0)))-

Then by the discussion above ¢ would have to be a d to 1 map for some
finite d, contradicting the choice of G; and G; by Theorem 7. Thus there can be
no such primitive recursive isomorphism 6 and hence the groups H; satisfy the
requirements of the theorem. O

In [8], Cenzer and Remmel examined extra hypotheses under which groups
of low time complexity should have isomorphisms between them of low time
complexity. It was suggested in [8] that suitable conditions on divisibility might
imply that two PTIME copies of Z(p*>) are EXPTIME isomorphic, for ex-
ample. In the remainder of this article, we will present some results of this
type.

Let us say that a torsion group G whose universe is contained in Bing(N)
for some k has linear size order if there exists a constant ¢ > 1 such that for
all a € G, |Bing(o(a))| < cla| and |a| < ¢|Bing(o(a))|. For example, in the
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standard model of Z(p>°) with elements taken from {0,1,...,p— 1}*, the order
of an element a = (eg,e1,...,ep—1) with e,_; # 0 is precisely p", so that
|Biny(o(a))| = |al-

Theorem 11. Let G and H be two LINSPACE groups isomorphic to Z(p™)
and each having linear size order. Then there is a LINSPACE isomorphism
between G and H.

Proof. Tt suffices to show that each group is linear space isomorphic to the
standard model of Z(p>), so we may assume that G is the standard model.
The mapping from G to H is defined as follows. Recursively define a sequence
of elements ag, .. .,a,—1 € H so that ag is the the shortest and lexicographically
least element of H which has order p and, for each n, a,11 is the shortest and
lexicographically least element a of H such that p-a = a,. Then (cg,...,cn_1)
is mapped to

corapt+erai+ o +ep_1an_1 = (cop" tHe1p" P4t en_optcn1) an_1.

It is easy to see that this is a group isomorphism from G onto H. The function

may be computed in linear space as follows. Given input (eq,...,€,—1), which
has order p", compute the desired element a,_; as follows. Since o(a,) = p",
we know by assumption that |a,—1]| < en < ¢|(eg,...,en—1)|. Thus we can use

linear space to guess a value a = a,,_1 of length < ¢n. Now to ensure that a,_1 is
the shortest and lexicographically least a such that pa = pa,,_1, use linear space
to compute pzx for all elements z of length < cn and, if pxr = pa, check to see that
a is either shorter or lexicographically less than x. If this works, we say that a,,_1
is optimal, let a,_o = pa,_1 and again check that a,,_o is optimal among all x
with pr = pa,_o. Continue this process, so that at stage i, we have stored a,_1
and also a,,_; as well as 7 and we have checked the optimality of a,,_1,...,an_;-
If at any stage a,,_; is not optimal, then we return to the beginning and take a
new value for a = a,,_1. Otherwise we continue until we have verified a correct
choice of a,—1. Then (cop"*1 +ep" 4t epop+ Cn—1) * Gp—1 may be
computed in linear space from a,—1 and (cg,...,Cn—1).

For the inverse mapping, suppose we are given some b € H. Since o(b) < c|b|,
we may compute the order o(b) = p™ in linear space by repeatedly adding b to
itself, keeping ¢ on one tape and i-b on a second tape, so that o(b) is the value of
¢ when 7 - b = 0. Once we have p”, we may compute the element a,,_; as above
and then compute the integer m = cop™ '+ ---+¢,,—1 such that b = m-a,_1 by
repeatedly adding a,_1 to itself until we reach b. Then the desired coefficients
€0y - - -, Cn—1 may be read directly from the p-ary form of m. O

Theorem 12. Let G and H be two LINSPACE groups isomorphic to Q mod 1
and each having linear size order. Then there is a LINSPACE isomorphism
between G and 'H.

Proof. Let the standard linear space model G of Q mod 1 be the set of quotients
7 of relatively prime positive integers n < d together with 0. As in the proof of
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Theorem 11, we will show that any other model H is LINSPACE isomorphic
to the standard model G.

Given input 4 € G, factor d into a product of prime powers p{'p5* - - - pj*—
this can be done in linear space and the result can also be stored in linear space.
Then we can compute my, ms, ..., m such that

n
_:ml/pil_i_..._i_mk/pik

d
in linear space by guessing the sequence my, ..., my and then checking the sum.
Now for ¢ = 1,...,k, proceed as in the proof of Theorem 11 to compute the

element a; = a;e,—1 and then b; = m; - a;. Then 7 is mapped to the sum

by + - -+ + b, where we can reuse the space needed by just saving by + --- + b;
while computing ;1.

For the inverse, first observe that the element a; above corresponding to p5*
is mapped to 1/p;*. Now suppose we are given some b € H. First compute
the order o(b) and factor it into prime powers pi*p5* - - - pi*. Then compute the
elements aq, ..., a; which map to 1/pf* as above. Since o(a;) = p;, we see that

i

o(ar) +ofaz) + -+~ +olar) < elpi*| + - + [pi*| < clo(b)];

so that the sequence a1, ..., a; may be stored. Then we simply guess coefficients

mi,...,mg such that b = mya; + ---myar and check until they are correct.

Finally, map b to ;’ii + - ;’éﬁ ) a
1 k

These two results have versions for PSPACE, SUPERSPACE, EXSPACE
and EXPSPACE with similar proofs.
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