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Abstract Using infinite time Turing machines we define two successive extensions
of Kleene’s O and characterize both their height and their complexity. Specifically,
we first prove that the one extension—which we will call O+—has height equal to the
supremum of the writable ordinals, and that the other extension—which we will call
O++—has height equal to the supremum of the eventually writable ordinals. Next we
prove that O+ is Turing computably isomorphic to the halting problem of infinite time
Turing computability, and that O++ is Turing computably isomorphic to the halting
problem of eventual computability.
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1 Introdution

One natural motivation for work on the theory of infinite time Turing machines is
the question of how notions and objects from classical computability theory carry
over into infinite time. An instance of that question is the motivation for the present
paper: we will here study two infinite time analogues of Kleene’s O. Our exposition
will presuppose some familiarity with these machines and their theory, comparable to
what can be got from reading, for instance, Hamkins and Lewis’ papers [2] and [3];
material on Kleene’s O can be found in Sacks’ book [8].

To distinguish the classical notion of computability from infinite time notions, we
will call the former Turing computability; so, for example, instead of saying that A and
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692 A. M. Klev

B are computably isomorphic, we will say that they are Turing computably isomorphic.
The expression {e} denotes the e-th Turing computable function. The following is one
way of defining Kleene’s O.

Definition 1 (Kleene [4] ) Let <O be the least binary transitive relation on N satisfying
the following closure conditions:

1. 1 <O 2
2. If n ∈ field(<O), then n <O 2n

3. If dom({e}) = N, and we have {e}(n) <O {e}(n+1) for all n ∈ N, then {e}(n) <O

3 · 5e holds for all n ∈ N

Kleene’s O is the subset of N coding the relation <O.

We should think of Kleene’s O as a tree constructed from below; at successor stages
of its construction each top node of the tree constructed thus far gets another node on
top of itself; at limit stages we let the Turing computable functions climb the tree—if
a function climbs cofinally in a branch, all natural number codes for that function are
put on top of that branch.

In [4] Kleene introduced O as a system of ordinal notations which is maximal in
possessing certain constructive features: it is Turing semi-decidable whether a number
is a notation for an ordinal, and in particular whether it is a notation for zero, for a
successor, or for a limit; from a notation for a successor, the predecessor can be uni-
formly computed; there is a Turing computable function Q : N

2 ⇀ N such that if x
is a notation for a limit ordinal α, then there is a sequence of ordinals {αn}n∈ω whose
limit is α and such that Q(x, n) is a notation for αn .

Now, the only property of the Turing computable functions used in the construction
of Kleene’s O is their indexing; thus, in principle, any family F = {Fe}e∈N of functions
can step in for the class of the Turing computable functions in Definition 1.

Definition 2 Suppose F = {Fe} is a family of functions. Let <OF be the least binary
transitive relation on N satisfying the following closure conditions:

1. 1 <OF 2
2. If n ∈ field(<O), then n <OF 2n

3. If N ⊆ dom(Fe), and we have Fe(n) <OF Fe(n+1) for all n ∈ N, then Fe(n) <OF

3 · 5e holds for all n ∈ N

Let OF be the subset of N coding <OF . We call OF the analogue of Kleene’s O for
the family F.

The main objects of study in this paper are two such analogues of Kleene’s O,
one for the family of infinite time computable functions, another for the family of
so-called eventually computable functions. These will not in any sense be construc-
tive ordinal notations; our interest in these analogues stems rather from our viewing
them as set-theoretical objects.
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Infinite time extensions 693

2 Infinite time computability and extensions of Kleene’s O

The infinite time Turing machines of Hamkins and Lewis [2] naturally give rise to two
distinct notions of computability, according as to whether we require the machines to
halt or to merely stabilize at a constant value.

A partial function on the reals, F : 2N ⇀ 2N, is infinite time computable if there
is an infinite time Turing machine which on any input a ∈ dom(F) halts and outputs
F(a) and which does not halt on any input a /∈ dom(F). The function infinite time
computed by the Turing machine with code e is denoted by Pe. Not to get lost in
symbols, we will also let Pe(a) denote the ω1-sequence of snapshots corresponding
to the infinite time computation of machine e on input a. The expression Pe(a)↓ = b
means that the computation Pe(a) halts with output b.

An infinite time computation may, even if it does not halt, nevertheless stabilize
with a constant value on its output tape. Let {Qe}e∈N be the family of all the infinite
time Turing machine programs in which there is no mention of the halting state. The
expression Qe(a) denotes the computation of program Qe on input a, that is, Qe(a)

is an ω1-sequence of snapshots according to the program Qe on input a.
For α < ω1, let Qe,α(a) denote the content of the output tape of the α-th snapshot

in the sequence Qe(a). If there is an ordinal α < ω1 and some b ∈ 2N such that
Qe,β(a) = b for all β > α, then we write Qe(a)↑ = b; we write Qe(a)⇑ if there are
no such α and b.

We say that F : 2N ⇀ 2N is eventually computable if there is an e such that
Qe(a)↑ = F(a) for every a ∈ dom(F) and Qe(a)⇑ for every a /∈ dom(F). In that
case we say that the program Qe eventually computes F . Abusing notation, we let Qe

also denote the function eventually computed by the program Qe. It is not hard to see
that the class of infinite time computable functions is strictly included in the class of
eventually computable functions.

We can now define our two objects of study.

Definition 3 Denote by O+ the analogue of Kleene’s O for the class of infinite time
computable functions.

Definition 4 Denote by O++ the analogue of Kleene’s O for the class of eventually
computable functions.

For any family F and an n ∈ field(OF), let OF� n code the linear order that results
from <OF when its field is restricted to {k ∈ field(OF) : k < n}. Then OF� n is a
well-order; let |n|OF denote its height; define |OF| := sup{|n|OF : n ∈ field(OF)}.
Intuitively, |OF| is the height of the tree coded by OF.

Kleene both characterized |O| as equalling ωCK
1 , the supremum of the Turing com-

putable ordinals,1 and showed that O is complete for the class of �1
1 sets of integers.

Here we prove what may be viewed as corresponding results for O+ and O++: firstly,
that |O+| equals the supremum of the infinite time computable ordinals, and that
|O++| equals the supremum of the eventually computable ordinals; secondly, that O+

1 To be historically correct, Kleene [5] proved that ωCK
1 ≤ |O|, while Markwald [7], and, independently,

Spector showed that |O| ≤ ωCK
1 .
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694 A. M. Klev

is Turing computably isomorphic to the halting problem of infinite time computability
and that O++ is Turing computably isomorphic to the halting problem of eventual
computability.

In the next section we characterize |O+| and |O++|, and in Sect. 4 we give com-
plexity measures of O+ and O++.

3 Height

Recall the following notions, introduced in [2].
A real a ∈ 2N such that Pe(0)↓ = a for some e ∈ N is called a writable real. An

ordinal is a writable ordinal if it is coded by a writable real. The supremum of the
writable ordinals is called λ. Notice that a real a is writable if and only if it is infinite
time computable (as a function on N); the writable ordinals are thus the infinite time
computability analogues of the Turing computable ordinals.

A real a ∈ 2N is said to be an eventually writable real if there is an e ∈ N such
that Qe(0)↑ = a. An ordinal is an eventually writable ordinal if it is coded by some
eventually writable real. The supremum of the eventually writable ordinals is called ζ .
Again, notice that a real a is eventually writable if and only if it is eventually com-
putable (as a function on N); the eventually writable ordinals are thus the eventual
computability analogues of the Turing computable ordinals.

A real is said to be an accidentally writable real if there is an e ∈ N and an ordinal
α < ω1 such that Qe,α(0) = a. An ordinal coded by an accidentally writable real
is called an accidentally writable ordinal; the supremum of the accidentally writable
ordinals is named �. Hamkins and Lewis proved that ωCK

1 < λ < ζ < �.
By viewing a set A ⊆ N and its characteristic function χA as the same object, we

may refer to sets as being, for instance, eventually writable.

Theorem 1 1. |O+| = λ

2. |O++| = ζ

We prove Theorem 1.1 in Sect. 3.1 and Theorem 1.2 in Sect. 3.2.

3.1 The height of O+

In this subsection we prove Theorem 1.1.

Lemma 1 For any n ∈ field(O+), the set O+� n is writable. In consequence,
|O+| ≤ λ.

Proof The crucial observation is that O+ is eventually writable. This is because an
infinite time Turing machine can mimic the inductive definition of O+: while simu-
lating all the computations {Pe(k)}e,k∈N on the scratch tape, it can build O+ on the
output tape, writing up limit elements 3 · 5e as soon as it is found that Pe� N is total
and unbounded in a branch of the current approximation to O+. Since we do not know
whether Pe(k) will halt for arbitrary e, k ∈ N, we will not know when to stop this
process. Hence, O+ is eventually writable.
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Infinite time extensions 695

Now, when eventually eventually writing O+ a machine can recognize that O+� n
has appeared on the output tape and thus write O+� n. ��

For the proof of the other direction the idea is, naturally, to embed writable reals
coding well-orders into O+. Our proof takes several cues from Kleene’s proof that the
computable ordinals embed into the constructive ordinals. The s-m-n Theorem and
the Recursion Theorem hold for both infinite time and eventual computability; that
fact is used throughout.

Lemma 2 [Kleene] There is an infinite time computable function � such that

1. m, n ∈ field(O+) if and only if m � n ∈ field(O+)

2. for all m, n ∈ field(O+) we have |m � n|O+ = |m|O+ + |n|O+
3. if m, n ∈ field(O+) and n 	= 1, then m <O+ m � n

Proof This is just an adaptation of Kleene’s definition of +O in [5]. The function
m � n can be defined by recursion on n along the well-founded relation <O+ . If n is a
successor element of <O+ , then it has the form 2k for some k, so in that case we want
m � n = 2m�k . If n is a limit element of <O+ then it has the form 3 · 5e for some
e, and in that case we want m � n = 3 · 5d , where d ∈ N codes a program such that
Pd(k) = m � Pe(k). By use of the Recursion Theorem one can see that there is an
infinite time computable function � with these required properties. ��

This addition operation allows us to bound every writable subset a of O+ by taking
the infinite �-sum over a. The bounding can be done in a Turing computable manner
via a function taking an index for a to an element of O+ lying above all of a’s elements.
We use the following nomenclature: say that n ∈ field(OF) bounds a ∈ 2N in OF if
a ⊆ field(OF) and |m|OF < |n|OF holds for all m ∈ a.

Lemma 3 There is a Turing computable function F ′ : N → N such that if Pe(0)↓ = a
and a ⊆ field(O+), then F ′(e) bounds a in O+.

Proof Consider the following procedure. Given e, n ∈ N, start computing Pe(0); if it
is found that Pe(0)↓ = a, then output the result of applying � recursively n times to
the string a in the order its elements appear on the tape.

The s-m-n Theorem gives a function I : N → N such that QI (e)(n) operates accord-
ing to this procedure; hence we may put F ′(e) := 3 · 5I (e). ��
Lemma 4 There is an infinite time computable function F : 2N ⇀ N with domain the
writable reals, such that for all a ∈ dom(F), if a ⊆ field(O+), then F(a) bounds a
in O+.

Proof Let F ′ be the function asserted to exist by the previous lemma. An algorithm
which computes F is then: given a ∈ 2N search for an e ∈ N such that Pe(0)↓ = a.
The first time such an e is found output F ′(e) and halt. ��

Applying the F of Lemma 4 recursively we can embed every writable real coding
a well-order into O+.

123



696 A. M. Klev

Lemma 5 There is a Turing computable function G : N → N such that if Pe(0)↓ = a
and a ∈ WO, then PG(e)(m) ∈ field(O+) for all m ∈ field(a), and

m <a n implies |PG(e)(m)|O+ < |PG(e)(n)|O+ .

Proof Suppose we are given an e ∈ N such that Pe(0)↓ = a with a ∈ WO. Uni-
formly in e we can devise a program which uses the well-order a as a counter for
recursive applications of the function F asserted to exist by the previous lemma.
For any given e ∈ N, a general step can be described as follows: let n ∈ field(a)

be the least element of a not already erased from the counter; erase n and compute
PG(e)(n) = F({PG(e)(m) : m <a n}). As all final segments of a are writable, it
follows that {PG(e)(m) : m <a n} is writable for each n ∈ field(a). ��
Proof of Theorem 1.1 Let F and G be the functions of Lemmas 4 and 5, respectively.
Suppose α < λ. There is then an a ∈ WO coding α and an e ∈ N such that Pe(0)↓ = a.
Using Pe and PG(e) we can write a real c := PG(e)[a]. We have c ⊆ field(O+) and
α ≤ sup{|n|O+ : n ∈ c}, hence also α ≤ |F(c)|O+ < |O+|. ��

3.2 The height of O++

We now turn to the proof of Theorem 1.2, starting with the less messy direction.

Lemma 6 If n ∈ field(O++), then O++� n is eventually writable. In consequence,
|O++| ≤ ζ .

Proof On one part of the scratch tape we simulate all the computations {Qe(k)}e,k∈N.
We stop this simulation at, say, every ω-th step to write an approximation (O++)∗ to
O++, using the current values {Qe,η(k)}e,k∈N. Thus, at the η-th step of the simulation
of {Qe(k)}e,k , this (O++)∗ is just the analogue of Kleene’s O for the family {Qe,η}e∈N.
If we find that n ∈ field((O++)∗), then we write (O++)∗� n on the output tape, unless
this real is already written there.

Now, if n ∈ field(O++), then all the computations {Qe(k)}k∈N for 3·5e <O++ n will
finally stabilize; thus, from some point onwards we will have (O++)∗� n = O++� n
for any approximation (O++)∗. Thus, we will be eventually writing O++� n. ��

The proof of Lemma 6 does not adopt to show that O++ is eventually writable: in
general, it will not be the case that (O++)∗ = O++.

To get any further in eventual computability—in particular to prove the other direc-
tion of Theorem 1.2—we need the following important results of Welch [12].

Lemma 7 (Welch [12]) There is an infinite time Turing machine which from some
point onwards only outputs ordinals greater than ζ , and which outputs arbitrarily
large accidentally writable ordinals.

For ease of reference we will call this machine the ordinal production machine.
Using this machine, Welch proved
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Infinite time extensions 697

Welch’s Lemma The ζ -snapshot of an infinite time Turing machine computation is
equal to its �-snapshot; moreover, the computation never escapes the loop in which
it finds itself at stage ζ .2

Lemma 8 (Welch [12]) If a computation Qe(0) stabilizes, then it stabilizes before
stage ζ .

We can now prove the lemmas needed to complete the proof of Theorem 1.

Lemma 9 (Kleene) There is an eventually computable function +̂ such that

1. m, n ∈ field(O++) if and only if m +̂ n ∈ field(O++)

2. for all m, n ∈ field(O++) we have |m +̂ n|O++ = |m|O++ + |n|O++
3. if m, n ∈ field(O++) and n 	= 1, then m <O++ m +̂ n

Proof The function +̂ is defined by recursion along <O++ . One uses the ordinal pro-
duction machine and Lemma 8 to show existence of the auxiliary functions needed in
this recursive definition. ��
Lemma 10 There is a Turing computable function F ′ : N → N such that if Qe(0)↑ =
a and a ⊆ field(O++), then F ′(e) bounds a in O++.

Proof As a preliminary, fix a d ∈ N such that the program Qd eventually computes
the function +̂ . We intend to use the s-m-n Theorem on the following recursive algo-
rithm. Given input (e, n) ∈ N

2. Let α be given by the ordinal production machine;
first compute a∗ := Qe,α(0), then apply Qd,α recursively n times to the string a∗ in
the order its elements appear on the scratch tape and write the result on the output
tape (unless it is already written there). Then wait for a new ordinal from the ordinal
production machine.

The s-m-n Theorem gives a Turing computable function I : N → N such that
QI (e)(n) executes this algorithm. Suppose that Qe(0)↑ = a. By Lemma 8 the com-
putation Qe(0) will stabilize before stage ζ , as will any computation m +̂ n for m, n ∈
field(O++). Hence, from some point onwards the computation QI (e)(n) recursively
+̂ -adds n times the elements of a in the order they appear on the scratch tape. Hence,
we can let F ′(e) := 3 · 5I (e). ��

This proof shows how we lift a lemma from infinite time computability to eventual
computability: compute approximations along ordinals given by the ordinal produc-
tion machine; Lemma 8 ensures that from some point onwards the approximation
computed will in fact be the true value.

Applying this technique and using the algorithms described in the proofs of Lem-
mas 4 and 5, the following two lemmas are readily proved.

Lemma 11 There is an eventually computable function F : 2N ⇀ N such that for
any eventually writable a, if a ⊆ field(O++), then F(a) bounds a in O++.

2 Welch’s proof in [12] of this lemma has a gap. For what the author considers to be a gap-free proof,
see [6].
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698 A. M. Klev

Lemma 12 There is a Turing computable function G : N → N such that if Qe(0)↑ =
a and a ∈ WO, then QG(e)(m) ∈ field(O++) for all m ∈ field(a), and

m <a n implies |QG(e)(m)|O++ < |QG(e)(n)|O++ .

The proof of Theorem 1.2 is now completed just like the proof of Theorem 1.1.
The finite time notion of eventual computability is captured by that of Turing com-

putable approximations: a Turing computable sequence {Fe}e∈N of partial functions
on N is an approximation to F : N ⇀ N if for every n ∈ dom(F) there is an m ∈ N

such that Fe(n) 
 F(n) holds for all e ≥ m, whereas for all n /∈ dom(F) there is no
such m.

According to Shoenfield’s Limit Lemma a function has a Turing computable
approximation if and only if it is Turing computable with 0′ as an oracle; conse-
quently, finite time eventual computability is just 0′-Turing computability. Let O0′

be
the analogue of Kleene’s O for the family of 0′-Turing computable functions. From a
theorem of Spector [9] it follows that |O0′ | = |O|. Thus, in contrast to what happens
in the infinite time setting, moving to eventual computability in the classical setting
does not increase the height of the relevant analogue of Kleene’s O.

4 Complexity

In this section we prove that O+ is Turing computably isomorphic to the halting prob-
lem of infinite time computability, and that O++ is Turing computably isomorphic to
the halting problem of eventual computability. As a consequence of these results we
can situate O+ and O++ within the infinite time Turing degrees.

As is described in [2], infinite time Turing machines can compute with a set A ⊆ 2N

as an oracle; this gives rise to the partial order of infinite time Turing reducibility ≤∞
on 2N, and derivatively to the infinite time Turing degrees.

An infinite time Turing degree [A]≡∞ is said to be eventually, respectively acci-
dentally, writable if there is an eventually, respectively accidentally, writable real
a ∈ [A]≡∞ . Hamkins, Lewis, and Welch proved that the eventually writable degrees
ordered by ≤∞ forms a well-order of height ζ , and that the accidentally writable
degrees ordered by ≤∞ forms a well-order of height ζ + 1.

The halting problem for infinite time computability is the set

h := {e ∈ N : Pe(0)↓}.
It is readily seen that 0 <∞ h; Hamkins and Lewis [3] proved that there is no real a
such that 0 <∞ a <∞ h; hence, h is of the least non-zero eventually writable degree.

The halting problem for eventual computability—more rightly called the stabiliza-
tion problem—is the set

s := {e ∈ N : Qe(0)↑}.
The set s is not eventually writable, but it is accidentally writable; hence, it is of the
maximal accidentally writable degree.
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Infinite time extensions 699

Theorem 2 1. O+ ≡1 h
2. O++ ≡1 s

Proof 2. To see that h ≤1 O+ consider, for instance,

G(e, n) :=

⎧
⎪⎪⎨

⎪⎪⎩

n times
︷ ︸︸ ︷

22.. .
2

if e ∈ h
undefined if e /∈ h

This G is infinite time computable, so the s-m-n Theorem yields an injective Turing
computable F : N → N such that e ∈ h ⇔ 〈1, 3 · 5F(e)〉 ∈ O+.

For the other direction, we notice that O+ is infinite time semi-decidable: this fol-
lows from the fact that in the eventual writing of O+, once something is written on
the output tape it is never again erased. It is easy to see that any semi-decidable set is
1-reducible to h.
2. The proof that s ≤1 O++ is just a rewording of the proof that h ≤1 O+, so we head
directly for the other direction.

Say that a computation Qe(a) is locally stable at a limit ordinal α if the sequence
{Qe,β(a)}β<α is eventually constant. Now define

Qe,<α(a) :=
{

Qe,α(a) if Qe(a) is locally stable at α

undefined otherwise.

For an ordinal α < ω1, let (O++)α be the analogue of Kleene’s O for the class of
functions {Qe,<α}e∈N. Uniformly in n ∈ N we devise the following recursive algo-
rithm: given an ordinal α from the ordinal production machine, write (O++)α on the
scratch tape, only using the scratch tape and the input tape. Then flash a flag on the
output tape if, and only if, n /∈ (O++)α and wait for a new ordinal.

Let A be the set of ordinals that the ordinal production machine outputs after stage
ζ . Then A is an unbounded subset of the interval [ζ,�). The s-m-n Theorem applied
to the algorithm of the previous paragraph thus yields a function F : N → N such that

n ∈
⋂

β∈A

(O++)β ⇔ F(n) ∈ s.

Using Lemma 8 and the fact that A is unbounded in [ζ,�) one can see that

⋂

β∈A

(O++)β = O++.

Hence, F witnesses that O++ ≤1 s. ��
Corollary 1 1. O+ is of the least non-zero accidentally writable degree.
2. O++ is of the maximal accidentally writable degree.
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5 A close relationship between O and O++

We conclude with some observations indicating that objects and notions of classical
hyperarithmetic theory are closely related to objects and notions of eventual comput-
ability. As a preliminary we recall a few definitions.

An operator � : ℘(N) → ℘(N) is said to be inductive if it is either monotone or
if A ⊆ �(A) for all A ⊆ N; the operator � is said to be arithmetical if it has an
arithmetical definition. Call a set A ⊆ N arithmetically inductive if it is m-reducible
to the least fixed-point of an arithmetical, inductive operator. Kleene proved that a set
is arithmetically inductive if and only if it is �1

1. Below we shall stick to the latter
designation for these sets.

In [1], Burgess introduced the notion of an arithmetically quasi-inductive set. For
η a limit ordinal and {Aα}α<η a sequence of sets, define

lim inf{Aα}α<η :=
⋃

α<η

⋂

α<β<η

Aβ.

Given an operator � : ℘(N) → ℘(N), define

�0 := ∅
�α+1 := �(�α)

�η := lim inf{�α}α<η, for limit ordinals η.

Denote by �<∞ the set
⋃

α

⋂
α<β �β . A set A ⊆ N is said to be arithmetically

quasi-inductive if there is an operator � with an arithmetical definition such that A is
m-reducible to �<∞.

A set A whose transitive closure is countable can be coded by a set of natural num-
bers: let {vn}n∈N be an enumeration of trcl(A), and let RA be the unique relation on
N such that

m RAn ⇔ vm ∈ vn ∈ trcl(A)

holds for all m, n ∈ N. If B ⊆ N codes this relation RA, then B is also a code for A.
For any two sets A, B, say that B is �n(A) if there is a �n formula ϕ in the language

of set theory such that

v ∈ B ⇔ (A,∈) |� ϕ[v].

Let Lα be the α-th level of Gödel’s constructible hierarchy. The following Observation
1 is the mother of the rest of our Observations.

Observation 1 (Folklore, Burgess, Welch)

1. �1(LωCK
1

) is the set of those sets which have a �1
1 code.

2. �2(Lζ ) is the set of those sets which have an arithmetically quasi-inductive code.
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Infinite time extensions 701

Proof 1. is a basic result of admissible set theory; it goes back to the work of Kripke
and Platek.

2. is Burgess’ Theorem 14.1 in [1] combined with Welch’s Theorem 2.1 in [11]. ��
Observation 2 (Kleene, Welch)

1. Kleene’s O is 1-complete with respect to the class of �1
1 sets.

2. O++ is 1-complete with respect to the class of arithmetically quasi-inductive sets.

Proof 1. is Theorem 1 in Kleene [5].
2. follows from Observation 1.2 combined with Welch’s Theorem 2.6 in [11] and

with Theorem 2.2 above. ��
Given an operator � : ℘(N) → ℘(N), denote by ‖�‖ the least ordinal α such that

�α = �<∞; for inductive �, ‖�‖ is often called the closure ordinal of �.

Observation 3 (Spector, Burgess, Welch)

1. sup{‖�‖ : � is arithmetical and inductive} = ωCK
1 .

2. sup{‖�‖ : � is arithmetical} = ζ .

Proof 1. is Theorem 3 in Spector [10].
2. The “Upper bound” part of the proof of Theorem 14.1 in Burgess [1] gives ζ as

upper bound for sup{‖�‖ : �is arithmetical}. There is a set of the form �<∞
which is complete with respect to the arithmetically quasi-inductive sets. From
Observation 1.2 it follows that, for the operator � generating this set we must have
‖�‖ ≥ ζ . ��

The class of hyperarithmetic sets is obtained by iterating the Turing jump along
O and closing under Turing reducibility ≤T. Let us look at a similar construction for
infinite time computability. First recall that the weak jump of infinite time computa-
bilty ·� is defined by A� := A ⊕ h A, where ⊕ is some primitive recursive disjoint
union operation. Now define a family {En}n∈field(O++) of subsets of N, by iteration of
the weak jump along O++, as follows.

E1 := ∅
E2n := (En)

� for n ∈ field(O++)

E3·5e := {〈m, Qe(n)〉 : m ∈ EQe(n)} for 3 · 5e ∈ field(O++)

We now observe that if we close the family {En}n∈field(O++) under infinite time
Turing reducibility, ≤∞, then we obtain the class of eventually writable sets.

Observation 4 A set A ⊆ N is eventually writable if and only if there is some n ∈
field(O++) such that A ≤∞ En.

Proof For the only if direction it suffices to prove that every set En is eventually writ-
able; we prove that by induction on <O++ . The weak jump of any eventually writable
real is again eventually writable, a fact which takes care of the successor step. For
the limit step, we recall that Hamkins and Lewis [2] proved that if z is an eventually
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writable real coding an ordinal, and a is any eventually writable real, then a�(α)
z —the

α-th ·�-iterate of a, where the iteration is done along the well-order coded by z—is
also eventually writable. Using their algorithm with some extra elaboration on how to
deal with limit levels, one can show that E3·5e is eventually writable.

For the if direction, note that if b is a path through O++ of height ζ , then the set
{[En]≡∞ : n ∈ field(b)} ordered by ≤∞ is a well-order of height ζ . Hence, the exis-
tence of an eventually writable real not reducible to any En would contradict the fact
that the eventually writable degrees ordered by ≤∞ is a well-order of height ζ . ��

The relationship between hyperarithmetic and eventually writable is further stren-
gthened by

Observation 5 (Folklore, Burgess, Welch)

1. LωCK
1

is the set of those sets which have a hyperarithmetical code.
2. Lζ is the set of those sets which have an eventually writable code.

Proof 1. is another basic result of admissible set theory.
2. is Corollary 3.1 in [12]. ��

We can sum up Observations 1–5 in the following diagram.

�1(LωCK
1

) �1
1

Hyper-
arithmetic

O ωCK
1

�2(Lζ )

Arithmetically
Quasi-

Inductive

Eventually
Writable

O++ ζ
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