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Abstract

We answer questions concerning an existence of almost precipitous ideals raised
in [5]. It is shown that every successor of a regular cardinal can carry an almost
precipitous ideal in a generic extension of L. In L[u] every regular cardinal which
is less than the measurable carries an almost precipitous non-precipitous ideal. Also,
results of [4] are generalized- thus assumptions on precipitousness are replaced by those
on oco-semi precipitousness.

1 On semi precipitous and almost precipitous ideals

Definition 1.1 Let s be a regular uncountable cardinal, 7 a ordinal and I a k-complete
ideal over k. We call I 7-almost precipitous iff every generic ultrapower of I is wellfounded

up to the image of 7.

Clearly, any such [ is 7-almost precipitous for each 7 < k. Also, note if 7 > (2°)* and I

is 7-almost precipitous, then [ is precipitous.

Definition 1.2 Let s be a regular uncountable cardinal. We call x almost precipitous iff

for each 7 < (27)" there is 7-almost precipitous ideal over k.

It was shown in [5] that ¥ is almost precipitous once there is an 8;-Erdés cardinal. The
following questions were raised in [5]:
1. Is Ny-Erdés cardinal needed?
2. Can cardinals above ®; be almost precipitous without a measurable cardinal in an inner

model?

*The second author is grateful to Jakob Kellner for pointing his attention to the papers Donder, Levinski
[1] and Jech [7].



We will construct two generic extensions of L such N; will be almost precipitous in the
first and N, in the second.

Some of the ideas of Donder and Leviski [1] will be crucial here.

Definition 1.3 ( Donder- Levinski [1]) Let x be a cardinal and 7 be a limit ordinal of cofi-
nality above k or 7 = On. k is called T-semi-precipitous iff there exists a forcing notion P

such the following is forced by the weakest condition:

there exists an elementary embedding j : V, — M such that
1. crit(j) =k
2. M is transitive.

k is called < A- semi-precipitous iff it is 7-semi-precipitous for every limit ordinal 7 < A
of cofinality above .
k is called a semi-precipitous iff it is 7-semi-precipitous for every limit ordinal 7 of cofinality
above K.
k is called oo-semi-precipitous iff it is On-semi-precipitous.
Note if k is a semi-precipitous, then it is not necessarily co-semi-precipitous, since by Don-
der and Levinski [1] semi-precipitous cardinals are compatible with V' = L, and oo-semi-
precipitous cardinals imply an inner model with a measurable.
Let us call

F={XCr|0p|~r € jX)}

a T-semi-precipitous filter. Note that such F' is a normal filter over k.

Lemma 1.4 Let F' be a T-almost precipitous normal filter over k for some ordinal T above

k. Then F' is T-semi-precipitous.

Proof. Force with F'*. Let i : V. — N =V N*V/G be the corresponding generic embedding.
Set j =4 [ 7. Then j: V; — (Vyr))V. Set M = (Vi))". We claim that M is well founded.

Suppose otherwise. Then there is a sequence (g, | n < w) of functions such that
1. g, €V
2. gn k= V7

3. {a <kl gnn(a) egn(a)} €C



Replace each g, by a function f, : K — 7. Thus, set f,(a) = rank(g,(«)). Clearly, still

we have
{Oé <K ‘ fn+1(a) € fn(a)} € G

But this means that NV is not well-founded below the image of 7. Contradiction.
OJ

Note that the opposite direction does not necessary hold. Thus for 7 > (27)",  7-almost
precipitousness implies precipitousness and hence a measurable cardinal in an inner model.
By Donder and Levinski [1], it is possible to have semi-precipitous cardinals in L.

The following is an analog of a game that was used in [5] with connection to almost

precipitous ideals.

Definition 1.5 (The game G, (F))
Let F' be a normal filter on s and let 7 > x be an ordinal.
The game G, (F) is defined as follows:
Player I starts by picking a set Ay in F'*. Player II chooses a function f; : Ay — 7 and
either a partition (B;|i < £ < k) of A into less than x many pieces or a sequence (B,|a < k)
of disjoint subsets of k so that
Va<xBa 2 Ag.

The first player then supposed to respond by picking an ordinal oy and a set A, € F'" which
is a subset of Ay and of one of B;’s or B,’s.
At the next stage the second player supplies again a function f3 : A5 — 7 and either a
partition (B;|i < & < k) of Ay into less than x many pieces or a sequence (B,|a < k) of
disjoint subsets of x so that

Va<iBa 2 As.

The first player then supposed to respond by picking a stationary set A4 which is a subset
of Ay and of one of B;’s or B,’s on which everywhere f; is either above f3 or equal f3 or

below f3. In addition he picks an ordinal a4 such that
9, iy Tespect the order of f1 [ Ay, f3 [ Ag,

i.e.

ay < ag iff fi [ Ay < f3 ] Ay,
ay >aqiff fi [ Ay > f3] Ay



and
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. Intuitively, ag, pretends to represent fy, 1 in a generic ultrapower.
Continue further in the same fashion.

Player I wins if the game continues infinitely many moves. Otherwise Player 11 wins.

Clearly it is a determined game.

The following lemma is analogous to [5] (Lemma 3).

Lemma 1.6 Suppose that X is a k-Erdds cardinal. Then for each ordinal = < \ Player IT

does not have a winning strategy in the game G,(Cuby).

Proof. Suppose otherwise. Let o be a strategy of two. Find a set X C X of cardinality &
such that ¢ does not depend on ordinals picked by Player I from X. In order to get such X

let us consider a structure
A=(H(N), €, Nk, P(k), F,G-(F),0).

Let X be a set of k indiscernibles for .

Pick now an elementary submodel M of H(y) for x > X big enough of cardinality less
than k, with 0, X € M and such that M Nk € On. Let « = M N k. Let us produce an
infinite play in which the second player uses o. This will give us the desired contradiction.
Consider the set S = {f(a)|f € M, f is a partial function from « to 7}. Obviously, S is
countable. Hence we can fix an order preserving function 7 : S — X.

Let one start with Ay = k. Consider o(Ap). Clearly, o(Ag) € M. Tt consists of a function
fi 1 Ay — 7 and, say a sequence (B¢|{ < k) of disjoint subsets of k so that

VearnBe 2 Ao,

Now, a € Ay, hence there is £* < a such that o € Be-. Then B, € M, as M O «. Hence,
AoN Be» € M and o € AgN Be+. Let Ay = AgN Be». Note that Ay N C # (0, for every closed
unbounded subset C' of k which belongs to M, since « is in both A; and C.

Pick ag = w(f1()).

Consider now the answer of two which plays according to ¢. It does not depend on «y, hence
it is in M. Let it be a function f; : Ay — 7 and, say a sequence (B¢|{ < k) of disjoint
subsets of k so that

VearnBe 2 As.
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As above find £* < a such that o € Be+. Then B« € M, as M O a. Hence, Ay N Be» € M
and o € Ay N Be«. Let Ay = Ay N Be«. Split it into three sets Cc, C—, C's such that

Co ={v € A fs(v) < L)},

C_ ={v e Afs(v) = L(V)},
Cs ={v e 4|fs(v) > i)}
Clearly, a belongs to only one of them, say to C-. Set then Ay = C.. Then, clearly, A, € M,
it is stationary and f3(a) < fi(a). Set ay = w(f3(a)).
Continue further in the same fashion.
O
It follows that the first player has a winning strategy.

The next game was introduced by Donder and Levinski in [1].

Definition 1.7 A set R is called s-plain iff
1. R#0,
2. R consists of normal filters over k,

3. forall FEe Rand Ae F*, F+ A€ R.

Definition 1.8 (The game Hg(F, 7))

Let R be a k-plain, I’ € R be a normal filter on x and let 7 > k be an ordinal.
The game Hr(F'7) is defined as follows. Set Fy = F. Let 1 <1i < w. Player I plays at stage
i a pair (A;, f;), where A; C k and f; : K — 7. Player II answers by a pair (Fj,7;), where

F; € R and 7; is an ordinal. The rules are as follows:
1. For 0 <i<w, Ay € (F)*T
2. For 0 <i<w, Fiy1 2 Fi[Ai4]
Player IT wins iff for all 1 < i,k <n<w: (f; <g, fr) = (i < %)

Donder and Levinski [1] showed that an existence of a winning strategy for Player II in
the game Hr(F,\) for some R, F' is equivalent to x being 7- semi precipitous.

Next two lemmas deal with connections between winning strategies for the games G, (F')
and Hg(F,T).



Lemma 1.9 Suppose that Player IT has a winning strategy in the game Hg(F, 1), for some
k-plain R, a normal filter F € R over k and an ordinal 7. Then Player I has a winning

strategy in the game G, (F).

Proof. Let o be a winning strategy of Player IT in Hg(F,7). Define a winning strategy o
for Player I in the game G.(F'). Let the first move according to d be k. Suppose that Player
II responds by a function f; : K — 7 and a partition B; of x to less then k many subsets
or a sequence By = (B, | @ < k) of kK many subsets such that V,.,B, 2 . Turn to the
strategy o. Let o(k, f1) = (F1,7), for some F} O F, F} € R and an ordinal 7;. Now we let
Player I pick A; € (F})T such that there is a set B € By with A; C B (he can always choose
such an A; because F} is normal and VV,<xB, € (F1)1) and let the respond according to §
be (A1,71). Player II will now choose a function fy : A; — X and a partition By of A; or
a sequence By = (B, | @ < K) , Va<xBa 2 Aj. Back in Hg(F, 1), we consider the answer
according o of Player II to (Ay, f2), i.e. o((k, f1), (A1, fa)) = (F2,72). Choose Ay € (Fy)"
such that there is a set B € By with Ay C B (it is always possible to find such Ay because
F5 is normal and S/ 4<, B, € (F2)" ) on which either f; < fy or fi > fy or fi = fo. Let the
respond according to ¢ be (Ay, o).

Continue in a similar fashion. The play will continue infinitely many moves. Hence Player

I will always win once using the strategy 9.
O

Lemma 1.10 Suppose that Player I has a winning strategy in the game G.(F'), for a normal
filter F' over k and an ordinal 7. Then Player II has a winning strategy in the game Hr(D, T)
for some k-plain R and D € R.

Proof. Let o be a winning strategy of Player I in G.(F'). Set
J ={X C k| X and any of its subsets are never used by o},
and for every finite play t = (t1, ..., ta,)
Ji = {X C k| X and any of its subsets are never used by ¢ in the continuation of ¢}.

It is not hard to see that such J and J;’s are normal ideals over k. Denote by D and D, the
corresponding dual filters.
Pick R to be a k-plain which includes D and all D,’s.
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Define a winning strategy J for Player II in the game Hg(D, 7). Let (Ay,g1) be the first
move in Hg(D, 7). Then A; € D*. Hence o picks A; in a certain play ¢ as a move of Player
I in the game G, (F). Continue this play, and let Player II responde by a trivial partition of
A; consisting of A; itself and by function g; restricted to A;. Let (By,71) be the respond of
Player I according to 0. Set t; =t~ ({A1},¢1). Then By € D;,. Now we set the respond of
Player IT according to 0 to be (Dy,,7v1).

Continue in similar fashion.

0

Theorem 1.11 Suppose that X is a k-Erdds cardinal, then k 1s T-semi precipitous for every

T <A

Proof. 1t follows by Lemmas 1.6,1.10.
O

Combining the above with Theorem 17 of [5], we obtain the following:

Theorem 1.12 Assume that 2% = Ry and || f|| = we, for some f:w; — wy. Let 7 < V3. If
there is a T-semi-precipitous filter over Ny, then there is a normal T-almost precipitous filter

over N as well.

By Donder and Levinski [1], 0% implies that the first indiscernible ¢y for L is in L
T-semi-precipitous for each 7. They showed [1](Theorem 7) that the property ”x is 7-semi-
precipitous 7 relativizes down to L. Also it is preserved under x-c.c. forcings of cardinality
<k ([1)(Theorem 8)).

Now combine this with 1.12. We obtain the following:

Theorem 1.13 Suppose that k is < k1 -semi-precipitous cardinal in L. Let G be a generic
subset of the Levy Collapse Col(w,< k). Then for each T < k™t, Kk carries a T-almost

precipitous normal ideal in L[G].

Proof. In order to apply 1.12, we need to check that there is f : w; — w; with || f]| = ws.
Suppose otherwise. Then by Donder and Koepke [2] (Theorem 5.1) we will have wCC(w,)
(the weak Chang Conjecture for wy). Again by Donder and Koepke [2] (Theorem D), then

(R)MC will be almost < (R;)*-Erdds in L. But note that (X)“¢ = (k%) and in L,
2

K?

2% = k*. Hence, in L, we must have 2 — (w)
< Ny-Erdés. But 2¢ 4 (3)2. Contradiction.
U

as a particular case of 2% being almost



Corollary 1.14 The following are equivalent:
1. Con( there exists an almost precipitous cardinal),

2. Con( there exists an almost precipitous cardinal with normal ideals witnessing its almost

precipitousness),
3. Con(there exists < k™t-semi-precipitous cardinal k).

In particular the strength of existence of an almost precipitous cardinal is below 07.

2 An almost precipitous ideal on w»

In this section we will construct a model with Ny being almost precipitous.

The initial assumption will be an existence of a Mahlo cardinal £ which carries a (2")*-
semi precipitous normal filter F' with {7 < k | 7 is a regular cardinal } € F.

Again by Donder and Levinski [1] this assumption is compatible with L. Thus, under 0%,
the first indiscernible will be like this in L.

Assume V = L.

Let (P, Q; | i < k,j < k) be Revised Countable Support iteration (see [9]) so that for
each a < li,?f « is an inaccessible cardinal (in V'), then @, is Col(w;, o) which turns it to N;
and Q41 will be the Namba forcing which changes the cofinality of a™ (which is now N,)
to w.NIn all other cases let @), be the trivial forcing.

By [9]( Chapter 9), the %rcing P, turns k into Ng, preserves N; , does not add reals and
satisfies the k -c.c. Let GG be a generic subset of P.

By Donder and Levinsky ([1]), a k-c.c. forcing preserves semi precipitousness of F'. Hence

F is k™" = Ny-semi precipitous in L[G]. In addition,
{r<k|cof(r) =wi} €F
and
{r <k|cof((rT)V)=w} e F.

Now, there is a forcing @ in L[G] so that in L[G]%¢ we have a generic embedding
j : Le++|G] — M such that M is a transitive and x € j(A) for every A € F. By elementarity,
then M is of the form L,[G*], for some A > k¥, and G* C j(P,) which is Ly-generic.
Note that @, collapses x to (X;)™ because it was an inaccessible cardinal, and at the very

next stage its successor changes the cofinality to w. That means that there is a function
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H € L,++[G] such that j(H)(k) : w — (¥3)*¢ is an increasing and unbounded in (x*) =
(R3)E] function.

We will use such H as a replacement of the corresponding function of [4]. Together with the
fact that in the model L|G] we have a filter on Ry which is R4 semi precipitous this will allow

us to construct 7- almost precipitous filter on Ny, for every 7 < Ny.

2.1 The construction

Fix 7 < ktT.
By [1], we can assume that @@ = Col(w, ") Denote by B the complete Boolean algebra
RO(Q®). Further by < we will mean the order of 5.
For each p € B set
Fp:{X§H|pII—/€€ZJ(X)}

We will use the following easy lemma:
Lemma 2.1 1.p<q— F,DF,
2. X € (F,)" iff there is a ¢ < p,qIF k € j(X)
3. Let X € (F,)*, then for some q<p , Fy=F,+X

Proof. (1) and (2) are trivial. Let us prove (3).
Suppose that X € (F,)*. Set ¢ = ||[x € j (X)||® A p. We claim that F, = F, + X. The
inclusion F; O F,+ X is trivial. Let us show that F,+X 2 F,. Suppose not, then there are
Y € (F,)",Y C X and Z € F, such that Y N Z = 0. But Y € (F,)*, so we can find s <p
such that sl-xk € j(Y). Now, s <pand sl x e j(X), since Y C X. Hence, s < ¢g. But
then - -

slkre jY),ne j(2),j(ZnY)=0.

~

Contradiction.
O

Define {4, |« < k™,n <w} as in [4]:

Ao ={n>r|IpeB pl-Hn)(n) = ha(n)},

where (h, | a < k™) is a sequence of kT canonical functions from « to x (in V5). Note that
here H is only cofinal and not onto, as in [4].

The following lemmas were proved in [4] and hold without changes in the present context:
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Lemma 2.2 For every n < w there is an ordinal « < kK so that A, € (Fiz)*

Lemma 2.3 For every a < k% and p € B there isn < w and o < [ < k" so that
Ang € (Fp)*

Lemma 2.4 Letn < w and p € B. Then the set:
{Ana | @ < k" and A, € (Fp)*}

is a maximal antichain in (F,)" .

The following is an analog of a lemma due Assaf Rinot in [4], 3.5.

Lemma 2.5 Let D be a family of kT dense subsets of B, there exists a sequence (po|a < KT)
such that for all Z € (F1,)T ,p/ € Q and n < w if

Zn,p’ = {Oé < /£+|Ana NnZe (Fp/)Jr}
has cardinality k* then :
1. For any p € B there exists o € Zy, ,y with p > py,.

2. For any D € D there exists a € Zy, ,y with po IF £ € j(Ana N Z),pa <P and p, € D.

Proof. Let {S; |i < k*} C [£]"" be some partition of k*, {D, | @ < k*} an enumeration of
D {qo | @ < k7} an enumeration of @ and let < be a well ordering of K™ U k™ x k1 of order
type k. Now, fix a surjective function ¢ : k™ — {(Z,n,p) € (Fi,)",w, Q) | |Znp| =T} .
We would like to define a function ¢ : k™ — kT U k' x kT and the sequence (p,|a < k7).
For that, we now define two sequences of ordinals {L, | o < k™},{R, | @ < T} and the
values of ¢ and the sequence on the intervals [L,, R,] by recursion on o < x*. For a = 0
we set Lo = Ry =0 ,2(0) = 0 and pg = qo.

Now, suppose that {Lg, Rg | B < a} and ¢ | Ug., [Ls, ] were defined.Take i to be the
unique index such that o € S;.Let (Z,n,p) = ¢(i) and set L, = min(k™ \ Ug<qa [Lg, R5]) ,
R, =min(Z,, \ L,).

Now, for each 8 € [L,, R,] we set () = t,where:

t =ming(kTU{i} x 67)\ " (Zp N La).

If t € kT then we set pg = ¢; for each 3 € [L,, R,].Otherwise , t = (4,0) for some § < k™ and
because A,g,NZ € F} and Ds is dense we can find some ¢ € D5, ¢ <p,ql- s € j(Ar,NZ)
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and set pg = ¢ for each ( € [L,, R,]. This completes the construction.

Now, we would like to check that the construction works. Fix Z € Ff; peEQandn < w
so that |Z,,| = kT.Let i < kT be such that (i) = Z,, and notice that the construction
insures that "7, = kT U {i} x k.

(1) Let p’ € B:There exists a t < k* so that ¢ < p’.Let a € Z,, be such that ¢(a) = t, so
Pa=aq <V

(2) Let D € D. There exist 0 < k™ and « € Z,,, such that Ds = D and ¢(«) = (¢,9).Then,
by the construction we have that p, € Ds , po IF Kk € j(Ane N Z) and p, < p.O

Define D = {D; | f € (7%)V}, where

Dy={peB|IyeOn plj(f)(r) =7}

and let (p, | @ < k™) be as in lemma 2.5.
We turn now to the construction of filters which will be similar to those of [4]).

Start with n = 0. Let o < k™. Consider three cases:

Case It If {§ < kT | Aoe € (Fi,)T}H = T and p, IF K € j(Apa) then we define g~ = p, and
extend Fy, to I,

q<a>"

Case II: If I fails but Ay, € (Fi,)" then we define g~ = ||k € j(Aoa)||s and extend our filter
to I,

q<a>"

Case III: If Ao, € E} (the dual ideal of Fy, ) then g<,~ is not defined.

Notice that by Lemma 2.2, there exists some o < T with Ag, € (F1,)", thus {a < k™
F,

4oy 18 defined } is non-empty.

Definition 2.6 Set Fy = ({Fy,, |a <r", F

41y 18 defined }, and denote the corresponding
dual ideals by I, , and .

Clearly, Iy = ﬂ{[Q<a> | a < ﬁ+,1q<a> is defined }. Also, Fy 2 Fy, and I; 2 Fy, since each
F,

gy 2 T and Iy 2 Fy. Note that Fj is a x complete, normal and proper filter since it

is an intersection of such filters and also I is .
We now describe the successor step of the construction, i.e., m =n + 1.

Let 0 : m — k™ be a function with F), defined and oo < k™. There are three cases:

Case I If {§ < k" | Ape € FJ} = K7, po < po and po IF & € j(Apa), then we define
Jo~a = Pa and extend F), to F, .
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Case II: If Case I fails, but A,,, € (F,)", then let ¢,~o = ||k € j(Ama)llB A ¢o, and extend F,
to I,

oo

Case III: If A, € I,,, then g,~, and F, would not be defined.

o T«

This completes the construction.

Definition 2.7 Let F,,.y = ({F,, | ¢ : n+2 — kT, F, isdefined }, and define the
corresponding dual ideals I,,41, I, .
Notice that all F,,s and I,s are k complete, proper and normal as an intersection of such

filters and ideals respectively.

Definition 2.8 Let F,, be the closure under w intersections of | J, _, Fy.

Let I, = the closure under w unions of | J,_,, In.

Lemma 29 FCF,C..CF,C..CF,andl CIyC..C1I,C..C1, and 1, is the
dual ideal to F,,.

Lemma 2.10 Let s : m — k* with F),, defined; then:
1 {a < K" | Foaq is defined } = {{ < K7 | Ape € Ff )
2. There exists an extension o O s such that F,, is defined and:

|{f < KT | Adom(g)g c F;—}l =K.

Proof. 1) is clear from the construction above. For 2), let us assume that for every extension
o 2 s such that F}, is defined :

H{E < K7 | Adom(ore € FS} < k.

That means that X = {0 : n — kT|n > m and o O s} is of cardinality less or equal &, so
v = U,ex ran(o) is less then x* and p, or some extension of it will force that j(H)(x) is
bounded, contradiction.

U

From now on the proof will be the same as in [4]( Theorem 2.5) and we get that F, is
the desired filter.
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3 Constructing of almost precipitous ideals from semi-
precipitous

Suppose k is a A semi-precipitous cardinal for some ordinal A\ which is a successor ordinal
> k or a limit one with cof(A) > k. Let P be a forcing notion witnessing this. Then, for
each generic G C P, in V[G] we have an elementary embedding j : V), — M with ¢p(j) = &

and M is transitive. Consider
U={XCk|XeV,kejX)}

Then U is a V—normal ultrafilter over k. Let iy : V. — V N *V/U be the corresponding
elementary embedding. Note that V' N*V/U need not be well founded, but it is well founded
up to the image of X. Thus, denote V' N*V/U by N. Define k : (V;,))" — M in a standard
fashion by setting

k([f]v) = 3(F)(x),

for each f : k — V), f € V. Then k will be elementary embedding, and so (Vi()\)N is well
founded.
For every p € P set

F={X Crlplre j(X)

Clearly, if GG is a generic subset of P with p € G and Ug is the corresponding V-ultrafilter,
then F, C Ug.

Note that, if for some p € P the filter F}, is k™-saturated, then each Ug with p € G will be
generic over V for the forcing with F)-positive sets. Thus, every maximal antichain in FPJr
consists of at most k£ many sets. Let (4, | v < k) € V be such maximal antichain. Without
loss of generality we can assume that min(A,) > v, for each v < k. Then there is v* < &
with k € j(A,+). Hence A,- € Ug and we are done.

It follows that in such a case N which is the ultrapower by Uy is fully well founded.

Note that in general if some forcing P produces a well founded NN, then x is co-semi precip-
itous. Just ¢ and N will witness this.

Our aim will be to prove the following:

Theorem 3.1 Assume that 2% = k™ and k carries a A\-semi-precipitous filter for some limit
ordinal \ with cof(\) > k. Suppose in addition that there is a forcing notion P witnessing

A-semi-precipitous with corresponding N ill founded. Then
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1. if X\ < k™, then k is A-almost precipitous witnessed by a normal filter,

2. if \> k1T, then k is an almost precipitous witnessed by a normal filters.

Proof. The proof will be based on an extension of the method of constructing normal filters
of [4] which replaces restrictions to positive sets by restrictions to filters. An additional idea
will be to use a witness of a non-well-foundedness in the construction in order to limit it to
w many steps.

Let k, 7, P be as in the statement of the theorem. Preserve the notation that we intro-
duced above. Then

0p|H(Vin)Y is well founded and N is ill founded.

Fix a sequence (g, | n < w) of names of functions witnessing an ill foundedness of N i.e.

0lHg] > [gnnl,

for every n < w. Note that, as was observed above, for every p € P, the filter F}, is not
kt-saturated.

Fix some 7 < k7,7 < X\. We should construct a normal 7-almost precipitous filter over
K.
For each p € P choose a maximal antichain {A,s | 3 < "} in Ff.

Let (fs | @ < kKT) enumerate all the functions from s to 7. Fix an enumeration (X, |
o < K1) of F .

Start now an inductive process of extending of Fi .
Let n = 0. Assume for simplicity that there is a function gy : Kk — On € V so that
lpIF go = go.
We construr\(;t inductively a sequence of ordinals (§ys | f < k) and a sequence of conditions

(pog | B < k™). Let o < k™.

Case I. There is a £ < kT so that £ # &g, for every f < a and X, N Aj¢ € Fg;.
Then let &, be the least such . We would like to attach an ordinal to f¢,, . Let us pick
p € P, such that p IF k € j(X, N Aj¢) and for some v such that p IF j( fe.) (k) = 7.
Now, set po, = p and extend Fp, to Fj,,. h

Case II. Not Case 1.
Then we will not define F},, . Set {,, = 0 and poo, = Op.
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Note that if Case I fails then we have X, C V/g<,€A15T(B) mod Fp, for a surjective 7: kK — «

Set Fg = ﬂ{Fp
ideals by I,,,, and Ij.
Clearly, Iy = ({Ip, | @ < k7}. Also, Fy 2 Fy, and Iy D Fp,, since each F,, 2 F, and
I

Poc

e | @ < kT and F,,, is defined }, and denote the corresponding dual

D [, »- Note that Fj is a k complete, normal and proper filter since it is an intersection
of such filters and also I is.

We now describe the successor step of the construction, i.e., n = m + 1.

Let 0 : m — k™. Find some p € P,p > p, and a function g,, : K — On € V such that
PIFgm =0m, 0 gm < gm-1. Denote S, = {v | gn(v) < gm-1(v)}. We extend F,_ to
F,+S,. B;Q.l, therr\é is qUNG P,q >pand F, O F,+S,.

We construct now by induction a sequence of ordinals (£,3 | 8 < k') and a sequence of
conditions (pog | < k). Let o« < k™

Case I. There is { < kT so that § # &, for every 3 < a and X, N Aye € Ff.
Then let &, be the least such {. We would like to attach an ordinal to f¢ .. Let us
pick p € P so that p < ¢,, pIF k € j(X, N Age,.) and there is an ordinal v such that
plF j(igm)(/{) = . Now, set p,o = p and extend F,, to F,

Poa

Case II. Case I fails.
Then we will not define F}, . Set {yo = 0 and pyo = Op.

This completes the construction.
Set F, = ({Fp,o | 0 :m — kT, < k" and F), _ is defined }, and denote the corresponding
dual ideals by [, . and I,,.

will use the following:

oo

Definition 3.2 Let F, be the closure under w intersections of (J, cw Fn-

Let I, = the closure under w unions of J,_, In.

Lemma 3.3 Fp C..CF,C..CF,andlyC..C1I,C..C1,, and I, is the dual ideal
to F,,.

Our purpose now will be to show that we cannot continue the construction further beyond

w and then we would be able to show that F, is a 7 -almost precipitous filter.

Lemma 3.4 F CU{F, |o € ““rT}.
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Proof. Let X € (F,)" and assume that X ¢ F,, for each o € [x7]<¥ so that F}, is defined.
Let us show that then there are at most x many o’s so that X & Fpt. Thus, for n=0,
{o <kt | X NAy, € F{} is of cardinality less or equal . Suppose otherwise. Let v < st
be such that X = X,. Then F}, is defined according to Case I and X € F,, . Contradiction.
For every v < k" with X € Ff, the set {a < k* | X N A, o € Fq‘t } is of cardinality
less or equal . Otherwise, we must have that for £ < k™ with X = X, the filter Fp, .
defined according to Case I and X € Fp.e- We continue in a similar fashion and obtain
that the set ' = {0 € [k"]<¥ | F}, is defined , X € F"} is of cardinality at most k. Also

note, that for every o € T' the set

18

BU:{6<K+|AQJBQX€F;;}

is of cardinality at most k. Otherwise, we can always find £, < k™ so that X = X, ,
XaNAge € th and § # &, for every 3 < a. Then, according to Case 1, X, € F_, .
For every 0 € T | fix 9, : kK «<— B,. Note that

X \ vﬁ<l€ QG'IZJG(/B)

is in the ideal I, .
Now, let n = 0. Turn the family {Ag,y,(1) | ¥ < &} into a family of disjoint sets as follows:

0pe0) = Aopy) — 10}

and for each v < k let
Ay = Aopun) — (I Aopuia) U (7 +1)).
<y

Note that
Vgin 6P¢0 {V<"{|Elﬁ<VSOthatV€AOP¢O’6)}

and, because v € Alh/’o(ﬁ) — v > 3, we get that the right hand side is equal to

U{Aopm () | v < K}
Also note that
V52 A po3) = VhrAopo(9)-
So {XNA, ;. |7 <~} is still a maximal antichain in Iy below X and X C vﬁqA’

0pto(B)
mod Fy,. Set Ry := X \ Ug< A} wu(p)- Then Ro € Io,..
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Now, for each § < x with F,, = F,, . defined, let us turn the family {Aqoﬁ%g o7 <

k} into a disjoint one {A’ () | 7 < K} as described above. Then

qo woﬂ

Rop = XN A (B \ U qagwog )HSUB) Log,

Y<K

where S, , was defined during the construction above. Set R; = U{Rgﬁ |og € T}
Claim 1 R, € 1.

Proof. Suppose otherwise. Then R; € (Fy)". Note that By C U{X NAG_, 5 | (¥(8)) € T'}
and that the right hand side is a disjoint union. Maximality of {X N A0p¢ @ | B <K}
implies that Ry N Agpw(a) € Fpta, for some o < k. But Ry N Aépw(a) =R,, and R, € I,_,
contradiction.

U of the claim.

Continue similar for each n < w. We will have R,, € I,,_;. Set

R, =] R

n<w

Then R, € I, and X — R, € (F,)". Now, let « € X — R,. We can find a non decreasing
sequence (p, | n < w) and (£, | n < w) so that

aeﬂ ﬁﬂS

n<w

Recall that g,,41(v) < gn(v), foreachn <wand v € (< ,,,1(4}, 5,

Ny<w (4, 5, NSp,) must be empty, but on the other hand, ar is a member of this intersection.

NSy, )- So the intersection

Contradiction.
O

Lemma 3.5 Generic ultapower by F,, is well founded up to the image of T

Proof. Suppose that (h, | n < w) is a sequence of (F,)"-names of old (in V) functions
from k to 7. Let G C (F,)" be a generic ultrafilter. Choose X, € G and a function
ho : k — T,hg € V so that Xg IFp+ ho = ho. Let ag < x* be so that f,, = ho. By
Lemma 3.4, we can find oy € [x7]<“ such that F},, is defined and X, € F,, . Note that at
the next stage of the construction there will be § with Ay, o, € Fp, 5, and so the value of

J(f ap)(r) will be decided. Denote this value by 7p. Assume for simplicity that A, ., N X is

17



in G (otherwise we could replace Xy by another positive set using density). Continue below
Ap, a0 N Xo and pick X; € G and a function hy : £ — 7,hy € V so that X IFp+ hy = hy.
Let a; < k" be so that f,, = hi. By Lemma 3.4, we can find 0, € [x7]<“ such that F},
is defined, 01 2 0 and X; € F},, . Again, note that at the next stage of the construction
there will be 8 with A, », € F}, 5, and so the value of j(ial)(m) will be decided. Denote
this value by ~;. Continue the process for every n < w. There must be k£ < m < w such that
Ve < Ym and X, N Ay o, € G. So the sequence ([h,]¢ | n < w) is not strictly decreasing.
O

Let us deduce now some conclusions concerning an existence of almost precipitous filters.

The following answers a question raised in [5].

Corollary 3.6 Assume 0°. Then every cardinal can be an almost precipitous witnessed by

normal filters in a generic extension of L .

Proof. By Donder, Levinski [1], every cardinal can be semi-precipitous in a generic extension
of L. Now apply 3.1. Clearly, there is no saturated ideals in L[0¢].
O

Corollary 3.7 Assume there are class many Ramsey cardinals. Then every cardinal is an

almost precipitous witnessed by normal filters.

Proof. 1t follows from 1.6 and 3.1.
OJ

Corollary 3.8 Assume V = L[U] with U a normal ultrafilter over k. Then

1. every regqular cardinal less than k is an almost precipitous witnessed by normal filters

and non precipitous,

2. for each T < kT, K carries a normal T-almost precipitous non precipitous filter.

Proof. Let n be a regular cardinal less than k. By 1.11, n is < k-semi-precipitous. Note
that no cardinal less than x can be co-semi precipitous. Hence, n is almost an precipitous
witnessed by a normal filter, by 3.1. This proves (1).

Now,

A ={n < k| mnis an almost precipitous witnessed by a normal filter and non precipitous }
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is in U. Hence, in M ~ *V/U, for each 7 < (k™)™ there is a normal 7-almost precipitous
non precipitous filter F, over k. Then F, remains such also in V', since "M C M.
O

We do not know if (2) remains valid once we replace 7 < k™ by 7 < k1.

Let us turn to the case of co-semi precipitous cardinals which was not covered by Theorem
3.1
Combining constructions of [4] with the present ones (mainly, replacing restrictions to sets

by restrictions to filters) we obtain the following.

Theorem 3.9 Assume that N, is co-semi precipitous and 2%' = Ry. Suppose that for some
witnessing this forcing P
Oplbp,i,(Re) > (R])".

Then Ry is almost precipitous witnessed by normal filters.

<K~

Theorem 3.10 Assume that k is co-semi precipitous, 2 = k™ and (k™) = K, where

Kk~ denotes the immediate predecessor of k. Suppose that for some witnessing this forcing P
1 0plp () > (k)Y
2. Oplfpr € {v < i (k) | cof(v) = K™}

Then k is almost precipitous witnessed by normal filters.

Theorem 3.11 Suppose that there is no inner model satisfying (3o o(a) = a™™). Assume
that X, is co-semi precipitous and 28 = Ry. If N3 is not a limit of measurable cardinals of

the core model, then there exists a normal precipitous ideal on N;.

Theorem 3.12 Suppose that there is no inner model satisfying (3o o(a) = o). Assume
that k is co-semi precipitous, 2" = kt and (k~)<% = k~, where k= denotes the immediate
predecessor of k. Suppose that for some witnessing this forcing P

Oplfpr € {v < i (k) | cof(v) = K™}
If k™ is not a limit of measurable cardinals of the core model, then there exists a normal

precipitous ideal on K.

Theorem 3.13 Assume that Ny is oco-semi precipitous. Let P be a witnessing this forcing
such that

0plp i (R1) > (Rf)".
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Then, after forcing with Col(Rq, |P|), there will be a normal precipitous filter on Rj.

<K~

Theorem 3.14 Assume that k is co-semi precipitous and (k™) = Kk~ , where Kk~ denotes

the itmmediate predecessor of k. Let P be a witnessing this forcing such that
1 0pl i () > (57)"
2. Oplfpr € {v < i (k) | cof(v) = K™}
Then, after forcing with Col(k™,|P|), there will be a normal precipitous filter on k.

Sketch of the proof of 3.13. Let P be a forcing notion witnessing co-semi precipitousness
such that

Oplfpi(R) > (RF)".

Fix a function H such that for some p € P
plip i (H)(K) :w — " (x1)",

where here and further x will stand for ;. Assume for simplicity that p = 0p. Let (h, | a <

k") be a sequence of the canonical functions from x to k. For every a < k¥ and n < w set
A = {0 | H)(0) = ha0)}.

Then, the following hold:

Lemma 3.15 For every a < k% and p € P there is n < w so that A,, € F;.

Lemma 3.16 Letn < w and p € P. Then the set
{Apa | @ < kT and Ay € Fp+}

is a mazimal antichain in Ff.

Denote by
Col(Rg, P) = {t | t is a partial function of cardinality at most X; from Ny to P}.

Let G C Col(RXq, P) be a generic and C' = [JG.
We extend £, now as follows.
Start with n = 0. If [{« | Aoa € Fy,| < k7, then set Fy = Fy,,.
Suppose otherwise. Let a < k. If Ay, in the ideal dual to Fy,, then set Fy, = Fp,. If
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Agn € FOJ;, then we consider Fp(q). If Ay & Fg(a), then pick some p(0a) € P forcing
k€ i(Apa) and set Foq = Fyoa). If Aga € F(jf(a), then pick some p(0a) € P, p(0a) > C(a)
forcing K € L(AOQ) and set Foo = Fya)-
Set Fo = [{Foa | @ < KT}

Let now n = 1. Fix some v < & with Fy, defined. If [{a | A1, € F| < 67, then we do
nothing. Suppose that it is not the case. Let a < k™. We define Flo, 1,y as follows:

o if Ala ¢ FJW then set F<0%10> = FO’)H

e if A, € FOJ;, then consider F (o). If there is no p stronger than both C'(«), p(07y) and
forcing x € i (Aia), then pick some p({07, la)) > p(Ocr) which forces x € i (A1,) and
set Floy1a) = Fp((oy,1a))- Otherwise, pick some p((0v, 1)) > C(a), p(0c) which forces
K € 1 (A) and set Floy1a) = Fp((0v,1a))-

Set Fi = (W Floy1a) | @, 7 < KT}
Continue by induction and define similar filters Fs, F,, and conditions p(s) for each n <
w, s € [wx KT]<,

Finally set

F,, = the closure under w intersections of U F,.

n<w
The arguments like those of 3.1 transfer directly to the present context. We refer to [4] which
contains more details.

Let us prove the following crucial lemma.

Lemma 3.17 F,, is a precipitous filter.

Proof. Suppose that (g,|n < w) is a sequence of Ff-names of old (in V') functions from
Kk — On.
Let G C FI be a generic ultrafilter. Pick a set Xy € G and a function

go : k — On
in V such that

XOWFJQ'O = %o

Pick some t; € Col(Ry, P), t C C such that

(o, Xo) ‘FCol(Nz,P)*Fj 9o = 9o
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and for some sy = (&, ..., &,) € [w x KT
tolF-Xo € F,

moreover, for each i <n, & € dom(ty) and #5(&,) = p(so)-

Claim 2 For each (t,Y) € Col(Xy, P) * Ff with (t,Y) > (to, Xo) there are (g, Zo) >
(t,Y), po € On and s; extending sg such that

1. q(sh(|sh]) < p(sh),

2. Q|F001(N2,P)ZO = Esav
3. p(so)lFp 2 (90) (k) = fo.

Proof. Suppose for simplicity that (t,Y) = (to, Xo). We know that ¢y decides F,, to(so(|s0|)) =
p(so) and Xy € Fy,. Find s extending sy of the smallest possible length such that the set
B ={a| Ay € Fb} has cardinality x*. Remember that we do not split Fy, before getting
to such s. Pick some o € B\dom(ty). Ao € F;5, hence there is some p' € P,p’ > p(so)
which forces k € i (Ajsa). Find some p € P,p > p' and po such that

Plipi(90)(K) = po.

Extend now ¢y to ¢ by adding to it (a,p). Let s; = s”a and Zy = Xo N Ajgja.
(] of the claim.

By the genericity we can find (qo, Zy) as above in C' * G. Back in V[C,G], find X; C Z,
in G and a function

g1k — On

in V such that
X1|pr+g'1 = G1-

Proceed as above only replacing X, by X;. This will define ¢;, Z; and p; for ¢g; as in the
claim.

Continue the process for each n < w. The ordinals p, will witness the well foundness of
the sequence ([g,]¢|n < w)
OJ
OJ
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Note that if there is a precipitous ideal (not a normal one) over x, then we can use its
positive sets as P of Theorems 3.13, 3.14. The cardinality of this forcing is 2. So adding a
Cohen subset to x will suffice.

Embeddings witnessing co-semi precipitousness may have a various sources. Thus for
example they may come from strong, supercompact, huge cardinals etc or their generic

relatives. An additional source of examples is Woodin Stationary Tower forcings, see Larson

[6]-

Corollary 3.18 Suppose that ¢ is a Woodin cardinal and there is f : w1 — wy with || f|| > ws.

Then in VE R0 there is a normal precipitous ideal over N.

Remark. Woodin following Foreman, Magidor and Shelah [3] showed that C'ol(Xy,d) turns
NSy, into a presaturated ideal. On the other hand Schimmerling and Velickovic [8] showed
that there is no precipitous ideals on ¥y in L[E] up to at least a Woodin limit of Woodins.
Also by [8], there is f : w; — wy with ||f|| > we in L[E] up to at least a Woodin limit of
Woodins.

Proof. Let 6 be a Woodin cardinal. Force with P_s, (refer to the Larson book [6] for
the definitions) above a stationary subset of w;. This will produce a generic embedding

iV — N with a critical point w;, N is transitive and i(w;) > (wq)"

. The cardinality of
P_sis 0. So 3.13 applies.
O

Similar, using 3.14, one can obtain the following:

Corollary 3.19 Suppose that 6 is a Woodin cardinal, k < § is the immediate successor of
k=, (k)" = Kk~ and there is f : v — k with ||f|| > kt. Then in VCIE"0) there is a

normal precipitous ideal over k.

4 Extension of an elementary embedding

Donder and Levinsky [1] showed that k-c.c. forcings preserve semi-precipitousness of a
cardinal k. Let us show that xT-distributive forcings preserve semi-precipitousness of a

cardinal x, as well.

Lemma 4.1 Let k be a semi-precipitous cardinal and let P be a w*-distributive forcing.

Then, VP = 7 k is semi-precipitous ”
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Proof. Fix a cardinal )\ so that P € V). Let as show that x remains a A-semi-precipitous in
VP It is enough for every p € P to find a generic subset G of P with p € G, such that & is
a A-semi-precipitous in V[G]. Fix some p, € P.
In V, k is A-semi-precipitous so the forcing @) = Col(w, 1), with g > A big enough, produces
an elementary embedding j : Vy — M = (V))*/U, with M transitive and U a normal V-
ultrafilter over s (in V9).
Note that |P| = Ry in V?. So there is a set G € V¥ which is a V-generic subset of P with
po € G. Set

G*={peP| thereisaqge P,p>j(q)}.

Clearly, G* is directed and we would like to show that it meets every open dense subset of
j(P) which belongs to M. Let D be such a subset. There is a function f € Vi, f : & — V),
so that [f]y = D. We can assume that for each o < k f(a) is an open dense subset of P. P
is kT -distributive, hence ({f(a) | @ < k} = D’ is a dense subset of P. So GN D’ # (). Let
q € GND'. Then j(q) € G* which implies that G* N D # ().
Now it is easy to extend j to j* : VA[G] — M[G*].

So, in V@, we found a V-generic subset G of P with py € G and an elementary embedding
of VA|G] into a transitive model. Note that this actually implies A-semi-precipitousness of k
in V[G]. Thus, force with Q/G over V[G]. Clearly, V[G]?/¢ = V<. Hence the forcing Q/G
produces the desired elementary embedding.
OJ

We can use the previous lemma in order to show the following:

Theorem 4.2 Suppose that K is a A-semi-precipitous, for some A > (2°)*. Then k will be

an almost precipitous after adding of a Cohen subset to k™.

Proof. First note that if k caries a precipitous filter, then this filter will remain precipitous
in the extension. By Lemma 4.1, x caries a A-semi-precipitous filter in V¢on(x™) If there
is a precipitous filter over x, then we are done. Suppose that it is not the case. Note that in
the generic extension we have 2% = k™, so the results of Section 3 apply and give the desired
conclusion.

0
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5 A remark on pseudo-precipitous ideals

Pseudo-precipitous ideals were introduced by T. Jech in [7]. The original definition was
based on a game. We will use an equivalent definition, also due to T. Jech [7].

Let I be a normal ideal over k. Consider the forcing notion (); which consists of normal
ideals J extending I. We say that .J; is stronger than Js, if J; D Js.

Let G be a generic subset of Q;. Then |JG is a prime ideal with respect to V. Let Fg
denotes its dual V-ultrafilter.

Definition 5.1 (Jech [7]) An ideal I is called a pseudo-precipitous iff I forces in Q; that
"V NV/Fq is well founded.

T. Jech [7] asked how strong is the consistency of ”there is a pseudo-precipitous ideal on
N7

Note that if U is a normal ultrafilter over s then the corresponding forcing is trivial and
F¢ is always U. In particular, U is pseudo-precipitous.

Let us address the consistency strength of existence of a pseudo-precipitous ideal over a

successor cardinal.

Theorem 5.2 If there is a pseudo-precipitous ideal over a successor cardinal then there is
an inner model with a strong cardinal. In particular, an existence of precipitous ideal does

not necessary imply an existence of a pseudo-precipitous one.

Remark 5.3 By Jech [7], any normal saturated ideal is pseudo-saturated. S. Shelah showed
that starting with a Woodin cardinal it is possible to construct a model with a saturated
ideal on N;. So the strength of existence of a pseudo-precipitous ideal requires at least a

strong but not more than a Woodin cardinal.
Proof. Suppose that I is a pseudo-precipitous ideal over A = k*. Assume
- v
Ilkg,i(A) > (A7),

just otherwise we will have large cardinals. This is basically due to Mitchell, see Lemmas
2.31, 2.32 of [4].
Find J > I and a function H such that

Tlgd(H)(A) : & =" (AF)V.
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Fix (h, | v < A") canonical functions. Now there is £ < x such that for A™ ordinals v < A*,

we have

A, = {a < \| H()() > hy(a)} € J*.

Extend J to J’ by adding to it all the compliments of A,’s and their subsets. Then J’
will be a normal ideal extending J. Now extend J’ to J” deciding j(H)(M)(&). Let n be the
decided value. Then for each v < At we have n > v. But

g, ran(i(H)(A)) = (A*)".

Contradiction.
]

The following natural question remain open:

Question: Suppose that [ is a pseudo-precipitous. Is I a precipitous?
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