Skip to main content
Log in

Around splitting and reaping for partitions of ω

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate splitting number and reaping number for the structure (ω)ω of infinite partitions of ω. We prove that \({\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}}\) and \({\mathfrak{s}_{d}\geq\mathfrak{b}}\) . We also show the consistency results \({\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}\) and \({\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}\) . To prove the consistency \({\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}\) and \({\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})}\) we introduce new cardinal invariants \({\mathfrak{r}_{pair}}\) and \({\mathfrak{s}_{pair}}\) . We also study the relation between \({\mathfrak{r}_{pair}, \mathfrak{s}_{pair}}\) and other cardinal invariants. We show that \({\mathsf{cov}(\mathcal{M}),\mathsf{cov}(\mathcal{N})\leq\mathfrak{r}_{pair}\leq\mathfrak{s}_{d},\mathfrak{r}}\) and \({\mathfrak{s}\leq\mathfrak{s}_{pair}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N})}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balcar B., Hernández-Hernández F., Hrušák M.: Combinatorics of dense subsets of the rationals. Fundam. Math. 183(1), 59–80 (2004)

    Article  MATH  Google Scholar 

  • Bartoszyński T., Judah H.: Set Theory. On The Structure of the Real Line. A K Peters, Wellesley, MA (1995)

    MATH  Google Scholar 

  • Baumgartner J.E., Dordal P.: Adjoining dominating functions. J. Symb. Log. 50(1), 94–101 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Kanamori, A. (eds.), Handbook of Set Theory. Springer, Berlin (2010)

  • Blass A., Shelah S.: There may be simple \({{P}_{\aleph_{1}}}\) and \({{P}_{\aleph_{2}}}\) -points and the Rudin–Keisler ordering may be downward directed. Ann. Pure Appl. Log. 33(3), 213–243 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Brendle, J.: Martin’s axiom and the dual distributivity number. Math. Log. Q. 46(2), 2000

  • Brendle J.: Van Douwen’s diagram for dense sets of rationals. Ann. Pure Appl. Log. 143(1–3), 54–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Carlson T.J., Simpson S.G.: A dual form of Ramsey’s theorem. Adv. Math. 53(3), 265–290 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Cichoń J., Krawczyk A., Majcher-Iwanow B., Wȩglorz B.: Dualization of the van Douwen diagram. J. Symb. Log. 65(2), 959–968 (2000)

    Article  MATH  Google Scholar 

  • Halbeisen L.: On shattering, splitting and reaping partitions. Math. Log. Q. 44(1), 123–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Hrušák, M., Meza-Alcántara, D., Minami, H.: Pair-splitting, pair-reaping and cardinal invariants of F σ-ideals. J. Symb. Log. 75(2), 261–277 (2010)

    Google Scholar 

  • Kamburelis A., Wȩglorz B.: Splittings. Arch. Math. Log. 35(4), 263–277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Matet P.: Partitions and filters. J. Symb. Log. 51(1), 12–21 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Miller A.W.: Some properties of measure and category. Trans. Am. Math. Soc. 266(1), 93–114 (1981)

    Article  MATH  Google Scholar 

  • Shelah S.: Proper and Improper Forcing, Perspectives in Mathematical Logic. 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  • Spinas O.: Partition numbers. Ann. Pure Appl. Log. 90(1–3), 243–262 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Truss, J.: Sets having calibre \({\aleph_{1}}\) . In: Logic Colloquium 76, vol. 87 of Studies in Logic and Found. Math. pp. 595–612, Amsterdam, North-Holland, (1977)

  • van Douwen, E.K.: The integers and topology. pp. 111–167. North-Holland, Amsterdam, (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Minami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, H. Around splitting and reaping for partitions of ω . Arch. Math. Logic 49, 501–518 (2010). https://doi.org/10.1007/s00153-010-0184-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0184-9

Keywords

Mathematics Subject Classification (2000)

Navigation