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Abstract

We examine what happens if we replace ZFC with a localis-
tic/relativistic system, LZFC, whose central new axiom, denoted by
Loc(ZFC), says that every set belongs to a transitive model of ZFC.
LZFC consists of Loc(ZFC) plus some elementary axioms forming Ba-
sic Set Theory (BST). Some theoretical reasons for this shift of view
are given. All Π2 consequences of ZFC are provable in LZFC. LZFC
strongly extends Kripke-Platek (KP) set theory minus ∆0-Collection
and minus ∈-induction scheme. ZFC+“there is an inaccessible car-
dinal” proves the consistency of LZFC. In LZFC we focus on models
rather than cardinals, a transitive model being considered as the ana-
logue of an inaccessible cardinal. Pushing this analogy further we
define α-Mahlo models and Π1

1
-indescribable models, the latter being

the analogues of weakly compact cardinals. Also localization axioms
of the form Loc(ZFC+φ) are considered and their global consequences
are examined. Finally we introduce the concept of standard compact
cardinal (in ZFC) and some standard compactness results are proved.

Keywords. Localization axiom, Local ZFC, Mahlo model, standard com-
pact cardinal.

1 Introduction

The purpose of this paper is to look at ZFC from a certain localis-
tic/relativistic point of view. In current set theory we believe that there
is an objective reality of sets, the “real world” V , the main properties of
which are captured by the axioms of ZFC. In other words, the ZFC ax-
ioms are supposed to hold in V . This is the absolutistic point of view.
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An opposite view, that may be called localistic/relativistic, would consist in
claiming that the ZFC axioms, especially the problematic axiom of Powerset
(and perhaps Replacement), should refer not to V itself but only to several
local models, which are counterparts of the reference frames of physics. Con-
ceivably there are more than one ways to formalize this general idea of local
truth and local models. The formal account presented in this paper is just
one among them. Its main points are roughly the following: (1) All local
models of ZFC (or extensions of it) that we consider are standard transitive
sets. (2) There is an abundance of them across the universe.

The motivation for such a shift of view comes from the well-known rela-
tivity, first pointed out by Skolem [10], that occurs in all first-order axiomati-
zations of set theory. Some fundamental notions, especially cardinality and
powerset, raise such unsurmountable difficulties when treated as absolute
entities, that, until one comes up with a revolutionary new idea about what
the powerset of an infinite set actually contains - which possibly (though
not necessarily) might settle also the problem of counting its members - one
would better let aside the idea that P(ω) exists in V and instead be con-
tent with the idea that P(ω) is a set with respect to transitive set-universes
only, i.e., in the local/relative form PM (ω) = P(ω) ∩M , where (M,∈) is a
transitive model of ZFC.1 P(ω) itself makes sense only as a proper class. In
compensation one may assume that transitive models of ZFC exist every-
where in V , specifically that every set x belongs to some transitive model y.
Such a view on the one hand does not have any negative impact on the study
of various kinds of infinite cardinals. For example it by no means invalidates
the theory of large cardinals, except of course that these are now treated as
relativized entities living only in models. And on the other hand it spurs the
interest in transitive models themselves, as objects of study per se rather
than just a means. Large cardinals in particular constitute a source of ideas
and techniques some of which can be transferred to models in order to build
analogous classifications among them.

A theoretical justification of the above viewpoint is summarized in the
following argument: Although we may believe that V is indeed an objective,
absolute reality, it does not necessarily follow that all properties and facts

1Throughout the term “transitive model” is used instead of the more cumbersome
“standard transitive (set) model”, i.e., a transitive set x equipped with the standard
membership relation ∈, so that (x,∈) |= ZFC. We could just say “standard model”, would
transitivity not be independent from standardness. A transitive set on the other hand is
implicitly thought as being structured by ∈. In view of the Mostowski’s isomorphism
theorem however, a standard model of ZFC is essentially identical to a standard transitive
one.
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concerning objects of V should be absolute too. Some properties may be sub-
ject always and by their nature to local constraints, so that any absolutistic
judgment about them would simply not make sense. A helpful and convinc-
ing analogy comes from the universe of physical objects. According to the
established paradigm of Relativity Theory, this universe is also an objective,
absolute reality of things,2 but fundamental physical magnitudes like mass,
length, time, velocity, etc, are inherently relative quantities, heavily depend-
ing on the observer’s reference frame. If fundamental attributes of physical
objects such as mass and size are relative, why should the type (or degree)
of infinity of an infinite set be absolute? Of course there are differences: In
the case of physical universe there are experiments and measurements sup-
porting the view of Relativity Theory, while for the universe of abstract sets
one can only make assumptions. Also one tends to accept much more easily
that almost all physical properties (color, shape, smell, etc) are subject to
relativization, than that this is also the case with abstract properties, like
number and structure, which are commonly supposed to reflect deeper and
more permanent characteristics of beings. And in fact, finite cardinalities
0, 1, 2, . . . do not seem to relativize in any reasonable way. But the various
infinite cardinalities is a different matter. Among all mathematical objects
these should be the most naturally expected to be inherently relative. A
strong indication is the ease by which the cardinality of an infinite set can
change by means of forcing constructions.

So much for the viability of the localistic/relativistic approach to set
theory. The purpose of the paper is to set out a particular implementation of
this approach through an axiomatic system and examine its logical strength
and its set theoretic consequences. The paper is organized as follows:

In section 2 we define the system LZFC (from “local ZFC”) whose main
axiom is:

(Loc(ZFC)) ∀x∃y(x ∈ y ∧ Tr(y) ∧ (y,∈) |= ZFC).

The other axioms, forming the system BST (of Basic Set Theory), are
elementary assumptions like Pair, Union, etc, needed only to formulate
Loc(ZFC). LZFC proves all Π2 consequences of ZFC. Also LZFC proves the
equivalence of the Found∗ of ∈-induction and the scheme FoundOn of induc-
tion over the ordinals. However none of them seems to be derivable in LZFC.
Consequently, transfinite induction along On is not available in LZFC. LZFC
does not prove Π2-Reflection, since LZFC + Π2-Reflection ⊢ Con(LZFC).

2Or, at least, it can be. Obviously no final decision can be reached on such a meta-
physical issue.
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Σ1-Collection is equivalent to ∆0-Collection over LZFC, but it is open
whether the latter proves ∆0-Collection. The class L of constructible sets
is definable (though one cannot prove in LZFC that L is an inner model of
LZFC). Also standard facts and constructions, like Completeness theorem,
Löwenheim-Skolem theorem, generic extensions, Mostowski collapse etc, are
available in LZFC. LZFC is a strong extension of KP (Kripke-Platek set
theory) minus ∆0-Collection and minus the scheme Found∗ of ∈-induction.
Concerning consistency, LZFC is a subtheory of ZFC+ “there is a proper
class of inaccessible cardinals”. Also ZFC + “there is an inaccessible cardi-
nal” proves the consistency of ZFC+LZFC, while ZFC + “there is a natural
model of ZFC” proves the consistency of LZFC.

In section 3 we discuss infinite (uncountable) cardinals and powersets
(of infinite sets) in LZFC. In view of the absence of transfinite induction, no
general statement about cardinals ωα and powersets Pα(ω) can be derived.
Yet certain implications concerning existence and absoluteness of concrete
classes like ω1, P(ω) and H(ω1) (and more generally ωn, P

n(ω) and H(ωn),
for n ∈ ω) can be established. For example it is proved that H(ω1) ∈ M
implies P(ω)M = P(ω) and ωM

1 = ω1; P(ω) ∈ M implies ωM
1 = ω1 and

H(ω1)
M = H(ω), etc. We discuss also an ambiguity concerning the meaning

of the symbols ωα, for α > 0, and how it can be raised.
In section 4 we define α-Mahlo models as analogues of α-Mahlo cardinals.

This is a pretty natural notion: A model M of ZFC is Mahlo if the set of
models of ZFC that belong to M is a stationary subset of M . Stationary, as
well as closed unbounded subsets of M , are restricted to definable subsets
of M . Definability guarantees that the property of α-Mahloness is absolute
for transitive models of ZFC. It is shown in ZFC that if κ is α-Mahlo, then
Vκ is an α-Mahlo model.

In section 5 we define in LZFC Π1
1-indescribable models, as analogues of

Π1
1-indescribable (i.e., weakly compact) cardinals. Concerning the existence

of such models, we show (in ZFC) that if κ is weakly compact then Vκ is
Π1

1-indescribable. Moreover, if M is Π1
1-indescribable, then it is α-Mahlo for

every α ∈M .
In section 6 we consider localization axioms of extensions of ZFC, i.e.,

of the form Loc(ZFC + φ), or {Loc(ZFC + φ) : φ ∈ Γ}, for some set of
sentences Γ, and examine their consistency (when added to LZFC) and
their impact on V . For instance it is shown that for every Π1 or Σ1 sentence
φ, Loc(ZFC+φ)+Loc(ZFC+¬φ) is inconsistent. Further, Loc(ZFC+V =
L) implies V = L. Also it is shown that if LZFC + Loc(ZFC + CH) +
Loc(ZFC+¬CH) is consistent, then Powerset is false, while the consistency
of LZFC+Loc(ZFC+CH)+Loc(ZFC+¬CH) follows from the consistency
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of ZFC+“there is a natural model of ZFC”. Finally we show that for any
definable set c and definable ordinals α, β, the theory LZFC+Loc(ZFC+|c| =
ωα) + Loc(ZFC + |c| = ωβ) + “c exists” is inconsistent.

In section 7 we consider (in ZFC) a question that arises as a result
of dealing exclusively with transitive models. We can dub it “standard
compactness” problem, since it is like ordinary compactness except that
the models allowed are (standard) transitive ones only. Given a set Σ of
sentences of a finitary language extending the language of set theory, such
that |Σ| = κ and every subset of Σ of cardinality < κ has a transitive
model, does Σ have a transitive model? If the answer is yes we call κ
standard compact. We show (in ZFC): (a) ω is not standard compact, (b)
every weakly compact cardinal is standard compact, and (c) if λ > ω is
strongly compact, then every κ ≥ λ such that κ<κ = κ is standard compact.

2 A localized variant of ZFC.

V is the universe of sets. The membership relation between entities of V is
denoted by ∈. Let L = {ǫ} be the language of set theory. Since ǫ is going to
be interpreted only by ∈ we shall identify ǫ with ∈ and write for simplicity
L = {∈}.

Πn, Σn denote the usual classes of formulas in the Lévy hierarchy (with
Π0 = Σ0 being the class of bounded formulas). If S is a set theory, ΣS

n

and ΠS
n are the classes of formulas provably equivalent in S to a Σn and Πn

formula, respectively. Also ∆S
n is the class of properties φ which are provably

equivalent in S both to a Πn and a Σn formula, i.e., there is a Σn formula
φ1 and a Πn formula φ2 such that S ⊢ φ↔ φ1 ↔ φ2.

Lower case letters a, b, x, y, u, v denote sets. Upper case letters
A,B,M,N,X, Y denote either sets or (proper) classes, depending on the
context. For example throughout the letters M,N always denote transitive
sets which are models of ZFC.

If φ is a formula of L and u is a set, φu denotes the bounded formula
resulting from φ if we replace each unbounded quantifier ∀x, ∃x of φ with
∀x ∈ u, ∃x ∈ u, respectively. As usual writing φ we mean that (V,∈) |= φ.
So φu is equivalent to (u,∈) |= φ.

The following localistic substitute of ZFC will be the main axiom of our
system LZFC defined below:

(Loc(ZFC)) ∀x∃y(x ∈ y ∧ Tr(y) ∧ (y,∈) |= ZFC),

where Tr(y) denotes the formula “y is transitive” and (y,∈) |= ZFC abbre-
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viates the formula ∀φ ∈ ZFC((y,∈) |= φ). Loc(ZFC) says that the class of
transitive models of ZFC is an unbounded (or cofinal) subclass of V with
respect to ∈, and hence with respect to ⊆ (because of transitivity).

However, the relation “(y,∈) |= φ”, as well as the set ZFC, as a set of
formulas, cannot be defined without some elementary notions and facts from
a body of absolute set theoretic truths that we call Basic Set Theory and
denote by BST. This is similar to Elementary Set Theory, EST, of [4, p. 39],
except that BST contains in addition Cartesian Product, while the axioms
of Foundation and Choice are not included because they can be deduced
from Loc(ZFC) (see below). So we take BST to consist of the following
axioms:

(Emptyset) ∃x(x = ∅),
(Ext) ∀x∀y[∀z(z ∈ x↔ z ∈ y) → x = y]
(Pair) ∀x∀y∃z(z = {x, y})
(Union) ∀x∃y(y =

⋃

x)
(Cartesian Product) ∀x∀y∃z(z = x × y). [The predicates, “pair”,

“function” etc, are ∆0 and can be defined as in [1, p. 14].]
(Infinity) ∃x[∅ ∈ x ∧ ∀y ∈ x∃z ∈ x(z = y ∪ {y})]
(∆0-Separation) ∀z̄∀a∃b∀y(y ∈ b↔ y ∈ a ∧ φ(y, z̄)),

for every ∆0 formula φ not containing b free.

Lemma 2.1 In BST: (i) ω exists and the axioms of Peano arithmetic (PA)
can be proven to hold in ω endowed with the usual operations. Thus PA ⊆
BST. (ii) The set of formulas Fml(L) is definable, Vω exists and the relation
“(x,∈) |= φ(ā)” is definable.

Proof. (i) By Infinity, let a be an inductive set. We can define ω (using
∆0-Separation) as the set of ordinals x ∈ a such that for every y ≤ x and
y 6= 0, y is a successor ordinal. We can see that this set is the least inductive
set (details are left to the reader). The minimality of ω as inductive set
amounts to the fact that ω satisfies complete induction. The operations
′,+, · on it are defined as usual and the axioms of PA are shown in BST to
be true with respect to ω.

(ii) By Cartesian Product, for every set a and n ∈ ω, an =
{(x0, . . . , xn−1) : xi ∈ a} is a set. Formulas of L are defined inductively
as triples of integers, e.g. ⌈vi = vj⌉ = (0, i, j), ⌈vi ∈ vj⌉ = (1, i, j), etc, as
in [3, p. 90]. The set Fml(L) of formulas of L is a recursive (hence ∆ZFC

1

definable subset of ω). So is also ZFC ⊂ Fml(L).
The set an can be identified also with the set of functions f such that

dom(f) = n and rng(f) ⊆ a. Using this identification we can define Vω as
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in [3, p.81] by a ∆ZFC
1 definition. Finally the relation“(x,∈) |= φ” is also

∆ZFC
1 definable by the help of Vω (see [3, p. 91] for details). ⊣

Remark 2.2 Without the axiom Cartesian Product of BST, to prove that
cartesian products of sets are sets one would need something like ∆0-
Collection (or ∆0-Replacement) (see [1, prop. 3.2]). This is a rather strong
axiom, while existence of cartesian products is quite elementary. We do not
know if LZFC proves ∆0-Collection (see Propositions 2.15 and 2.16 below).

Having fixed the definitions of Fml(L), ZFC and (x,∈) |= φ, we can now
consider the axiom Loc(ZFC) given above and set

LZFC = BST + Loc(ZFC).

For simplicity henceforth we shall write x |= φ instead of (x,∈) |= φ. Some-
times we drop also the predicate Tr(x) if implicitly understood, so Loc(ZFC)
is usually written ∀x∃y(x ∈ y ∧ y |= ZFC).

First let us note, as already mentioned above, that the axioms of Choice
and Foundation are deduced from Loc(ZFC).

Lemma 2.3 Loc(ZFC) implies the axioms of Choice and Foundation.

Proof. Let x 6= ∅ be a set such that for every y ∈ x, y 6= ∅. By Loc(ZFC),
there is a transitive model M of ZFC such that x ∈M . Then in M x has a
choice function and also has a ∈-least member. ⊣

Given a tuple of sets x̄ = (x1, . . . , xn) let x̄ ∈ y abbreviate the formula
x1 ∈ y ∧ · · · ∧ xn ∈ y.

Lemma 2.4 (i) LZFC ⊢ ∀x̄ ∃y(x̄ ∈ y ∧ Tr(y) ∧ y |= ZFC).
(ii) Let Π2(ZFC) be the set of Π2 consequences of ZFC. Then Π2(ZFC) ⊆

LZFC.

Proof. (i) Let x̄ = (x1, . . . , xn). Given any a1, . . . , an, {a1, . . . , an}
exists in BST. So by Loc(ZFC) there is a transitive model b such that
{a1, . . . , an} ∈ b. Then {a1, . . . , an} ⊂ b and b |= ZFC.

(ii) Let φ ∈ Π2(ZFC). φ has the form ∀x̄ ∃ȳψ(x̄, ȳ), where x̄ is an n-tuple
of variables, ȳ is an m-tuple of variables and ψ is bounded. Let us work in
LZFC. Pick any n-tuple of sets ā. It suffices to show that there is a ȳ such
that ψ(ā, ȳ). By (i) above there is a transitive model b |= ZFC such that
ā ∈ b. Since φ is a consequence of ZFC, b |= φ, or b |= ∃ȳψ(ā, ȳ). Hence
∃ȳψ(ā, ȳ) since ψ is ∆0. Thus LZFC ⊢ φ. ⊣
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Remark 2.5 In contrast to ZFC, LZFC should not in general allow axioms
with unbounded quantifiers, since its truths are “local”, and so the variables
must range in some set-model. However certain Π2 statements expressing
elementary, indisputable facts (like e.g. ∀x, y∃z(z = {x, y})), cannot but be
accepted, despite the occurrence of two alternating unbounded quantifiers.
This is the case with the axioms of BST. All of them are Π2 sentences, as
one can easily check by inspecting the formulations given above.

Remark 2.6 The axioms of BST are necessary only to make possible the
strict formulation of Loc(ZFC). Otherwise, that is, if we assume that
Loc(ZFC) is sensible, by assuming for example that the notions “for-
mula” and “x |= φ” are primitive, then we can easily prove lemma 2.4
by working in Loc(ZFC)+Pair+Emptyset rather than LZFC. Since all ax-
ioms of BST are Π2 consequences of ZFC, it follows from 2.4 (ii) that from
Loc(ZFC)+Pair+Emptyset we can recover the rest of the axioms of BST.

Remark 2.7 Throughout we are going to make heavy use of the well-known
fact that every ∆ZFC

1 (and hence every ΣZFC
0 ) formula is absolute for tran-

sitive models of ZFC. However a word of caution is needed here. ∆ZFC
1

formulas are absolute between transitive models of ZFC and the universe,
when we work in ZFC (and this is done most of the time), i.e., when V is
supposed to satisfy ZFC. If V 6|= ZFC absoluteness of ∆ZFC

1 formulas is no
longer guaranteed. For instance let φ be Σ1 and ψ be Π1 and ZFC ⊢ φ↔ ψ.
Then M |= φ ↔ ψ for any model of ZFC. But if V 6|= ZFC we cannot infer
that V |= φ↔ ψ, so we cannot infer absoluteness of φ and ψ. In our case V
satisfies LZFC rather than ZFC, so this observation is in order. However, if
S is a set theory such that V |= S and S ⊢ φ ↔ ψ whenever ZFC ⊢ φ ↔ ψ,
for φ,ψ as above, then φ,ψ are still absolute between V and the models of
ZFC. The next lemma says that this is the case for S = LZFC.

Lemma 2.8 If φ ∈ Σ1 and ψ ∈ Π1 and ZFC ⊢ φ↔ ψ, then LZFC ⊢ φ↔ ψ.
Consequently for any transitive M |= ZFC, any ∆ZFC

1 formula φ(x̄) and any
ā ∈M , φ(ā) ↔M |= φ(ā).

Proof. Let φ ∈ Σ1 and ψ ∈ Π1 and ZFC ⊢ φ↔ ψ. Then φ↔ ψ belongs
to Π2(ZFC), so the claim follows from lemma 2.4 (ii). ⊣

For brevity we express the fact established in lemma 2.8 by saying that
every ∆ZFC

1 formula of L is also ∆LZFC
1 .

It follows from lemma 2.8 that every set defined by a ∆ZFC
1 formula

inside any transitive model M of ZFC with parameters in M is the same as
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when defined in LZFC. We often express this by saying that this set exists
in LZFC, in the sense that its definition in LZFC does not provide a proper
class. In particular this is the case with sets defined inductively by some
positive inductive operator Γφ in any transitive model, for some Σ1 formula
φ.

Remark 2.9 Let us remark at this point, for later use, that the sentence

Loc(ZFC) = ∀x∃y(x ∈ y ∧ y |= ZFC)

is itself ΠZFC
2 , since “φ is a formula”, “φ ∈ ZFC” and “x |= φ” are ∆ZFC

1 .
Moreover, by lemma 2.8, Loc(ZFC) is also ΠLZFC

2 .

Ordinals are defined in LZFC as usual (transitive sets linearly ordered,
and hence well-ordered, by ∈). Lower case Greek letters α, β, . . . denote
ordinals. We often write α < β instead of α ∈ β. We denote the class of all
ordinals by On. (On,∈) is well-ordered, but we must be careful with the
meaning of this assertion. (On,∈) is well-ordered means that every subset
of On has a least element, as a consequence of Foundation. Things however
may be different for subclasses of On. If X = {α : φ(α)} is a subclass of
On, then there is no way to ensure that X has a least element. The usual
argument that amounts to pick an α ∈ X and then take the trace α ∩X of
X on α does not work in LZFC since, in absence of full separation, α ∩X
need not be a set. It works only for ∆0-classes (i.e., classes defined by ∆0-
formulas). So let us denote by FoundOn the scheme “every subclass of On
has a least element”. Namely:

(FoundOn) ∃α ∈ On φ(α) → ∃α ∈ On[φ(α) ∧ ∀β < α¬φ(β)].

FoundOn is apparently a weak form of the full ∈-induction scheme
Found∗ which says that “every class has an ∈-least element”:

(Found∗) ∃xφ(x) → ∃x[φ(x) ∧ ∀y ∈ x¬φ(y)]

However we shall see below (Lemma 2.11) that FoundOn and Found∗ are
in fact equivalent over LZFC.

A remarkable situation where FoundOn is involved is the following. Let
us call sets x, y equinumerous and write x ∼ y if there is a bijection f : x→ y.
Also let us write x - y if there is an injection f : x→ y, and x � y if there
is an injection f : x → y, but x 6∼ y. Given any x, let Ord(x) = {α ∈ On :
x ∼ α}. By Choice, for every x, Ord(x) 6= ∅. However the formula x ∼ α is
Σ1, hence, since Σ1-Separation is not available in LZFC, we cannot ensure
that Ord(x) has a least element. The least element of Ord(x), if it existed,
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would be the (absolute) cardinality of x, what we usually denote |x|. It
follows that in LZFC alone, without FoundOn (or Found∗ according to the
previous lemma), absolute cardinalities of sets cannot be defined.3 This is
rather in accordance with the spirit of LZFC, whose primary motivation was
to challenge the existence of absolute infinite cardinalities and powersets. So
further discussion on this issue is provided in section 3.

Given a model M , let Def(M) denote the collection of its first-order
definable subsets, i.e.,

Def(M) = {X ⊆M : (∃φ(x, ȳ) ∈ ω)(∃b̄ ∈M)[M |= ∀x(x ∈ X ↔ φ(x, b̄))]}.

The definition is absolute so Def(M) exists in V . Further, if X is a subset of
P(M), then Def(M,X ) denotes the collection of subsets of M second-order
definable in (M,X ).

The Ramified Analytical hierarchy over M is the collection RA(M) =
⋃

α∈OnRAα(M), where
RA0(M) = Def(M),
RAα+1(M) = Def(M,RAα(M)),
RAα(M) =

⋃

β<αRAβ(M).

Lemma 2.10 The following facts are provable in LZFC and are absolute
with respect to transitive models of ZFC:

(i) ∃x(x = Vω) (the set of hereditarily finite sets exists).
(ii) ∀x∃y(TC(x) = y) (every set has a transitive closure).
(iii) ∀x∃α ∈ On(rank(x) = α), where rank(x) = sup{rank(y) + 1 : y ∈

x}.
(iv) ∀α ∈ On ∃x(x = Lα), where Lα is the α-th level of the ordinary

constructible hierarchy.
(v) ∆1-Separation.
(vi) For every model M , (M,Def(M)) as well as (M,RA(M)) exist

and are models of the theories of classes GBC (Gödel-Bernays) and KM
(Kelley-Morse), respectively.

Proof. All objects involved in the clauses (i)-(vi) above have ∆ZFC
1 def-

initions, therefore ∆LZFC
1 definitions by 2.8, and hence they have absolute

definitions inside any transitive model of ZFC containing the appropriate
parameters. For instance to show existence of Lα, take a transitive model

3Consequently the notation |x| will not be used when x is a set of LZFC. Sometimes
this notation is employed without actual reference to existent cardinalities as sets. For
example, the notation |x| = |y| is another way to say x ∼ y, while |x| < |y| means just
x � y.
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M |= ZFC such that α ∈M , and construct in M the levels Lβ, β ≤ α, of L.
⊣

Lemma 2.11 Found∗ and FoundOn are equivalent over LZFC.

Proof. Since the ordering < on On coincides with ∈, obviously Found∗

implies FoundOn. Conversely, suppose FoundOn holds and let ∃xφ(x) be
true. Consider the subclass of On

Rφ = {α ∈ On : ∃x(φ(x) ∧ rank(x) = α)}.

By Lemma 2.10 (iii), every set in LZFC has a rank, hence Rφ 6= ∅. By
FoundOn, Rφ has a least element α0. Thus ∃x(φ(x)∧ rank(x) = α0) is true.
Pick such a x. Then ∀y ∈ x¬φ(y). ⊣

In view of the non-derivability of FoundOn in LZFC we have the following
important consequence.

Remark 2.12 The familiar transfinite induction along On is not available
in LZFC, except for ∆1 subclasses of On.

Because of 2.10 (iii), we can define (non-inductively!) for every α ∈ On
the class

Vα = {x : rank(x) < α}.

Vα, α ∈ On, are the layers of the universe, since Vα ⊂ Vβ for α < β and
V =

⋃

α Vα. Except Vα for α ≤ ω, Vα in general need not be sets. However
it is straightforward that the relativization of Vα’s to any transitive model
M of ZFC generates the usual cumulative hierarchy of M .

Lemma 2.13 Let M be a transitive model of ZFC. Then for every α ∈
OnM , VM

α =Mα =M ∩ Vα.

Let also
L =

⋃

α∈On

Lα

be the class of constructible sets. In contrast to Vα, each Lα is a set.4 So
the picture of the universe of LZFC is roughly that of Figure 1.

4However one should not expect LZFC to prove that L is an inner model of ZFC, since
for that one would need the Replacement Axiom. After all such a requirement would not
comply with the localistic spirit of LZFC, according to which only set models of ZFC make
sense.
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Remark 2.14 The picture of Figure 1 suggests that the levels Vα for α > ω
are all proper classes. This however need not be always true and some
Vα may be sets in some cases. Of course if Vα is a proper class, so is
every Vβ for β > α. LZFC simply does not give any information about
the status of the Powerset axiom and, by so doing, is generally compatible
with ZFC (see 2.23 below), although its intended interpretation points to
the opposite direction. In order to refute the Powerset axiom, we need
localization principles stronger than Loc(ZFC), of the form Loc(ZFC + φ)
or {Loc(ZFC + φ) : φ ∈ Γ}. See section 6.

Beside the Powerset axiom, the axiom scheme of Collection/Replacement
is also questionable when referred to V . In general for a set of formulas Γ
we have the scheme:

(Γ-Collection) ∀z̄∀a∃b[∀x ∈ a∃yφ(x, y, z̄) → ∀x ∈ a∃y ∈ b φ(x, y, z̄)], for
every formula φ ∈ Γ not containing b free.

Γ-Replacement is weaker than Γ-Collection, so we consider only the lat-
ter.

Also the following scheme of Π2-Reflection is of interest here:

(Π2-Reflection) φ→ ∀x∃y[x ∈ y∧Tr(y)∧φy], for every Π2 sentence φ.

(Clearly, working in LZFC we may use in the above scheme ΠLZFC
2 sen-

tences instead of just Π2.)

Proposition 2.15 (i) ∆0-Collection and Σ1-Collection are equivalent over
LZFC.

(ii) LZFC + Π2-Reflection ⊢ Σ1-Collection.

12



Proof. (i) One direction is trivial. It suffices to show that ∆0-Collection
implies Σ1-Collection over LZFC. Let ψ(x, y) := ∃z̄φ(x, y, z̄) be a Σ1-
formula, and let ∀x ∈ a∃yψ(x, y) be true in LZFC. Then ∀x ∈
a∃y∃z̄φ(x, y, z̄). Let n be the length of the tuple z̄. Using pairing and the ∆0

functions (u)0, . . . , (u)n, for an (n+1)-tuple u, such that u = ((u)0, . . . , (u)n),
∀x ∈ a∃y∃z̄φ(x, y, z̄) is written ∀x ∈ a∃uφ(x, (u)0, (u)1, . . . , (u)n). Since
φ(x, (u)0, (u)1, . . . , (u)n) is (an abbreviation of) a ∆0 formula, by ∆0-
Collection there is a b such that ∀x ∈ a∃u ∈ b φ(x, (u)0, (u)1, . . . , (u)n).
If c = TC(b), then ∀x ∈ a∃y ∈ c∃z̄φ(x, y, z̄), i.e., ∀x ∈ a∃y ∈ c ψ(x, y).

(ii) We work in LZFC+Π2-Reflection. Let φ(x, y, z̄) be a Σ1 formula, a,
c̄ be sets and let ∀x ∈ a∃yφ(x, y, c̄) hold true. We have to show that there
is b such that

∀x ∈ a∃y ∈ b φ(x, y, c̄).

Since φ is Σ1, ∀x ∈ a∃yφ(x, y, c̄) is a Π2 formula. By Π2-Reflection there is a
transitive b such that a∪ {c1, . . . , cn} ∈ b and (∀x ∈ a∃yφ(x, y, c̄))b, or ∀x ∈
a∃y ∈ b φ(x, y, c̄)b. Since φ is Σ1, φ

b implies φ, so ∀x ∈ a∃y ∈ b φ(x, y, c̄). ⊣

Let TM(LZFC) denote the principle “there is a transitive model of
LZFC”.

Proposition 2.16 LZFC + Π2-Reflection ⊢ TM(LZFC). Consequently
LZFC + Π2-Reflection ⊢ Con(LZFC). Therefore if LZFC is consistent,
then LZFC 6⊢ Π2-Reflection.

Proof. We work in LZFC + Π2-Reflection. By Remark 2.9, the axiom
Loc(ZFC) of LZFC is a true Π2 sentence, hence Π2-Reflection applies to
Loc(ZFC). Consider the conjunction Φ = Loc(ZFC)∧Pair. Clearly Φ is Π2,
and by assumption it holds in V , so by Π2-Reflection there is a (nonempty)
transitive set b such that Φb = (Loc(ZFC))b ∧Pairb is the case. It suffices to
show that b |= LZFC. Already b |= Loc(ZFC) ∧ Pair, so it remains to show
that b satisfies the rest of the axioms of BST. Emptyset and Extensionality
are obvious in view of the transitivity of b. For Union, let x ∈ b. Then
x ∈ M ∈ b for some model M , so

⋃

x ∈ M ∈ b. For Cartesian Product,
given any x, y ∈ b, {x, y} ∈ b by Pair, so there is, by Loc(ZFC), a model
M ∈ b such that {x, y} ∈M . Then x, y ∈M , hence x×y ∈M ∈ b. Similarly
for Infinity. It remains to verify ∆0-Separation. Let c ∈ b and φ(x, ā) be ∆0,
with ā ∈ b. Let X = {x ∈ c : b |= φ(x, ā)}. We have to show that X ∈ b. By
Pair and Loc(ZFC) there is a modelM ∈ b of ZFC such that c, ā ∈M . Then
clearly X = {x ∈ M : M |= x ∈ c ∧ φ(x, ā)}. Therefore X ∈ M and hence
X ∈ b. The proof that LZFC + Π2-Reflection ⊢ TM(LZFC) is complete.
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So LZFC + Π2-Reflection ⊢ Con(LZFC). Since by lemma 2.1 PA ⊆ LZFC,
Gödel’s incompleteness implies that LZFC 6⊢ Π2-Reflection. ⊣

It is open whether LZFC proves ∆0-Collection. Also it is open whether
the converse of 2.15 (ii) above is true, i.e., whether LZFC + Σ1-Collection
proves Π2-Reflection. (If it does, then, in view of 2.15 (i) and 2.16, LZFC 6⊢
∆0-Collection).

As a byproduct of the proof of the last proposition we have the following
simple fact that gives a sufficient condition in order for a set to be a model
of LZFC. A transitive set (a,∈) is said to be directed if it is upward directed
as a poset, i.e., if for all x, y ∈ a there is a z ∈ a such that x, y ∈ z.

Corollary 2.17 Let a be a transitive set which is the union of the transitive
models of ZFC contained in it, that is, a =

⋃

{x ∈ a : x |= ZFC}. If a
satisfies also Pair, then a |= LZFC. In particular, if (a,∈) is a directed set
of models of ZFC, such that ∪a = a, then a |= LZFC.

In the preceding result we can even replace models of ZFC with models
of LZFC. Namely the following holds.

Lemma 2.18 Let (a,∈) be a directed set of models of LZFC, such that
∪a = a. Then a |= LZFC.

Proof. By directedness a satisfies Pair. So it suffices to show that a |=
Loc(ZFC). Let x ∈ a. Then there is b ∈ a such that x ∈ b and b |=
Loc(ZFC). Therefore b |= ∃y(x ∈ y ∧ y |= ZFC). But then a |= (∃y(x ∈
y ∧ y |= ZFC))b, hence a |= ∃y(x ∈ y ∧ y |= ZFC), or a |= Loc(ZFC). ⊣

Clearly if ZFC and LZFC are consistent theories, then ZFC 6⊆ LZFC and
LZFC 6⊆ ZFC. Of the other set theories of the literature, close to the BST
part of LZFC is Kripke-Platek set theory with infinity (KP + Infinity) (see
[1], where rather the system KPU=KP+ urelements is considered). This is
the system of axioms:

KP = {Empty,Ext,Pair,Union,Found∗,∆0-Separation,∆0-Collection},

where Found∗ is the scheme of ∈-induction we already saw above to be
equivalent to FoundOn (see Lemma 2.11 and before) and does not seem to
follow from LZFC. It follows that

KP + Infinity− {∆0-Collection,Found
∗} ⊂ LZFC.
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In connection with Remark 2.12, let us cite here the reasonable extensions
of LZFC in which induction is valid.

Lemma 2.19

LZFC+FoundOn ⊆ LZFC+Separation ⊆ LZFC+Replacement ⊆ LZFC+Collection.

Proof. The first inclusion follows from the discussion after Remark
2.9. The third inclusion is obvious. Concerning the inclusion LZFC +
Separation ⊆ LZFC+Replacement, the proof is no different from the famil-
iar one that is used in ZFC. ⊣

The systems LZFC + Separation and LZFC + Replacement, apart from
the fact that they restore transfinite induction, seem to be interesting in
themselves extensions of LZFC.

A few further existence results for LZFC are given below.

Lemma 2.20 (i) The Löwenheim-Skolem theorem is provable in LZFC.
Namely, for every first-order language L, every L-structure A = (A, . . .)
and every S ⊆ A such that S - L, there is an L-structure B = (B, . . .) such
that S ⊆ B, B - L and B � A.

(ii) The Mostowski’s isomorphism theorem is provable in LZFC. Namely
if x is a set and E is a binary relation on x such that (a) E is well-founded
and (b) (x,E) |= Ext, then there is a (unique) transitive set y such that
(x,E) ∼= (y,∈).

(iii) The Completeness Theorem is provable in LZFC.

Proof. All three theorems, when formalized, are Π2 sentences provable
in ZFC, so the claim follows from lemma 2.4. ⊣

Lemma 2.21 ACA ⊂ LZFC.

Proof. First-order Peano axioms, when transcribed into L = {∈}, be-
come ∆0 sentences, since all quantifiers are restricted to ω. The induction
axiom

∀X[(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)) → ∀n(n ∈ X)]

becomes a Π1 sentence, since ∀X becomes ∀x ⊆ ω. The arithmetic compre-
hension axiom is

∀X̄ ∃Y ∀n(n ∈ Y ↔ φ(n, X̄)),
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where φ has no set quantifiers. In L = {∈} it becomes

∀x̄ ∃y∀z ∈ ω(z ∈ y ↔ ψ(z, x̄)),

where ψ now is bounded, hence a Π2 sentence provable in ZFC. Thus, in
view of 2.4 (ii), both the induction axiom and the comprehension scheme of
ACA are provable in LZFC, hence ACA ⊂ LZFC. ⊣

Lemma 2.22 (i) Let M be a countable transitive model of ZFC and let
B ∈ M be a Boolean algebra. Then it is provable in LZFC that there are
M -generic filters G ⊆ B.

(ii) For every M and generic G as above the generic extension M [G]
exists in LZFC.

Proof. (i) Given a countable M and the algebra B ∈ M , an M -generic
filter G ⊆ B is constructed by Choice as usual.

(ii) Given M , B an G as above, M [G] is constructed by two inductive
definitions: One that provides the set MB of B-names over M , and another
that leads from MB and G to the G-interpretations of MB, I ′′GM

B =M [G].
Both definitions are inductive and absolute. So carrying them out inside
any model N such that M,B,G ∈ N , is the same as carrying them out in
V . ⊣

Consistency. What about the truth and consistency of LZFC? Let
IC be the axiom “there exists a strongly inaccessible cardinal”, IC∞ be the
axiom “there is a proper class of strongly inaccessible cardinals” and NM
be the axiom “there is a natural model of ZFC” (i.e., of the form Vα). It is
well known that the implications IC∞ → IC → NM are strict over ZFC.

Proposition 2.23 (i) LZFC ⊂ ZFC + IC∞.
(ii) ZFC + IC ⊢ Con(ZFC+ LZFC).
(iii) ZFC+NM ⊢ Con(LZFC + “Every set is countable”).

Proof. (i) Work in ZFC+IC∞. It suffices to prove that Loc(ZFC) holds.
Then every set a belongs to some Vκ, where κ is strongly inaccessible. Since
every such Vκ is a transitive model of ZFC, it follows that ∀x∃y(x ∈ y∧ y |=
ZFC).

(ii) Let κ be an inaccessible in the ZFC universe. Then Vκ |= ZFC +
Loc(ZFC). Indeed, obviously Vκ |= ZFC. It is well known (see [8], or [6, Ex.
12.12]) that {α ∈ Vκ : (Vα,∈) ≺ (Vκ,∈)} is closed unbounded in κ. Hence
∀x ∈ Vκ∃y(x ∈ y ∧ y |= ZFC). Thus Vκ |= Loc(ZFC).
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(iii) Let Vκ be a natural model of ZFC. It is well-known that κ is suffi-
ciently large so that H(ω1) ∈ Vκ. H(ω1) is the required model. Indeed, let
x ∈ H(ω1). Then x ∈ Vκ and by Löwenheim-Skolem there is a countable
model N ≺ Vκ such that x ∈ N . If N ′ is the Mostowski collapse of N , then
N ′ is a transitive model that contains x and belongs to H(ω1). Therefore,
H(ω1) |= Loc(ZFC). Moreover H(ω1) |= “Every set is countable”. ⊣

It follows from 2.23 (ii) that the consistency strength of LZFC is no
greater than that of ZFC + NM. Also by 2.23 (iii), the consistency
of ZFC + Loc(ZFC) is no greater than that of ZFC + IC. Moreover,
ZFC+Loc(ZFC) is a good mild substitute of ZFC+IC∞. It’s worth mention-
ing that IC∞ is equivalent to what in category theory is called “the axiom
of universes”, the origin of which goes back to Grothendieck. Roughly a
“Grothendieck universe” is a transitive set closed under pairing, powerset
and replacement. The axiom of universes says that every set belongs to a
Grothendieck universe. It is likely that most or all of what the category
theorists prove by the help of the axiom of universes, can be proved within
ZFC + Loc(ZFC).

3 Cardinals and powersets in LZFC

Typically, we may keep talking about cardinals in LZFC, much the same way
as we do in ZFC, but without expecting to prove the familiar ZFC results,
due to the lack of Powerset, Replacement and also transfinite induction
(Remark 2.12). The landscape of LZFC is hazy as far as absolute infinite
cardinalities are concerned, and pitfalls are lurking everywhere for the visitor
accustomed to ZFC.

We can define cardinals as usual. An ordinal α is a said to be a cardinal
(in the sense of V ) if it is an initial ordinal, i.e., if there is no β ∈ On such
that β < α and β ∼ α. For instance ω is a cardinal. In fact ω may be
the only infinite cardinal (as it follows from Proposition 2.23 (ii)). ω1 is the
class of countable ordinals, i.e.,

ω1 = {α ∈ On : α - ω}.

In general this is a (proper) class. A class X = {x : φ(x)} is said to exist,
if it is a set. So if ω1 exists, it is a cardinal. If ω1 is a proper class, can
we infer that ω1 = On? Actually not. Because ω1 is an initial segment of
On, but in order to draw a contradiction from On− ω1 6= ∅, the latter class
should have a least element, which we cannot guarantee. If β ∈ On − ω1,
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then ω1 would be a proper subclass of β. If M is a model of ZFC containing
β, then ω1 ⊆ β ⊆ M , but ωM

1 $ ω1, i.e., ω
M
1 ∈ ω1, otherwise ω1 = ωM

1 and
ω1 would have to be a set.

If ω1 exists, then we set ω2 = {α ∈ On : α - ω1}, and similar remarks
apply to this class. If ω1 exists, then by Loc(ZFC) there is a model M of
ZFC such that ω1 ∈ M . ω1 is clearly a cardinal in M but not necessarily
an absolute one with respect to M . It may be the case that ωM

1 < ω1, and
hence ω1 = ωM

α , for some α > 1. But even if ωM
1 = ω1, ω

M
2 (which is a set)

need not be absolute, and ω2 may be a proper class. In general, the class
X = {α ∈ On : ωα exists} is defined, but we know neither whether X = On
nor whether On−X has a least element.

Analogous comments hold about the power-class P(ω) and the class

H(ω1) = {x : TC(x) - ω}

of hereditarily countable sets. If P(ω) exists, then P(ω) belongs to a model
M and, obviously, P(ω)M = P(ω). Since however M need not be a natural
model, it is possible that (P2(ω))M 6= P2(ω) and, moreover, P2(ω) be a
proper class. Again for the class Y = {α : Pα(ω) exists} we can say nei-
ther whether Y = On, nor whether On − Y has a least element. Also, if
Pn(ω) exists for every n ∈ ω, we cannot conclude that Pω(ω) exists, since
Replacement is missing.

Concerning H(ω1), it is well-known that in ZFC we can code its elements
by elements of P(ω), constructing thus an embedding f : H(ω1) → P(ω).
This is done by induction on the rank of the elements of H(ω1) which goes
up to ω1. So this embedding cannot be carried out in LZFC.

The above uncertainties about absolute infinite cardinalities seem to fit
to the spirit of LZFC. They prompt one to deal exclusively with models
and let aside absolute uncountable infinities. However the uncertainties
are settled as soon as we augment LZFC with Separation, which restores
transfinite induction (see Lemma 2.19).

At this point I would like to address an ambiguity (that occurs also in
the ZFC environment), concerning the meaning of the symbols ωα. ωα is
allowed to denote alternatively (depending on the context) either an object,
i.e., a specific ordinal, or a property, the property of being the α-th infinite
cardinal. The ambiguity arises from the interplay of the two meanings within
models of ZFC. For instance if M |= ZFC, β ∈ On ∩ M and we write
M |= β = ωα, we refer to ωα as a property, namely, the property “β is the
α-th infinite cardinal number” (in the sense of M). The last assertion is
alternatively denoted β = ωM

α . Similarly, in the expression M |= |x| = ωα,
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ωα is construed as a property. Now assume that ωα is a set. By Loc(ZFC)
there is a model M such that ωα ∈ M . If for some x ∈ M we write
M |= x ∼ ωα, then we refer to ωα as an object which is involved in a property
that is true in M . On the other hand, ωα is still a cardinal in M , but it
need not preserve also its size, i.e., we may have ωα = ωM

β for some β > α.
According to the usage of ωβ as a property, the latter is written equivalently
M |= ωα = ωβ, which seems to be absurd. The absurdity is simply due to
the ambiguity of the symbols ωα, ωβ: In the formula M |= ωα = ωβ, ωα is
construed as an object, while ωβ is construed as a property. The situation is
no different in ZFC. Simply the (set) models we deal with there are, mostly,
either countable, hence they do not contain real uncountable cardinals, or
natural, in which all powersets and cardinals are absolute. The problematic
situation is exactly when ωα is uncountable, ωα ∈M and ωM

α 6= ωα.
We can raise the ambiguity if we avoid using the symbols ωα as properties

and employ instead a predicate Card(α, x) for the property “x is the α-th
infinite cardinal number”. The predicate Card(α, x) is defined as follows.
Let

Card(x) := x ∈ On ∧ ∀β < x(β 6∼ x)

be the property “x is a cardinal”. Then the formula Card(α, x) is defined
by the following clauses:































Card(0, x) := [x = ω]
Card(α+ 1, x) := [Card(x) ∧ ∀y(Card(α, y) → y � x ∧

∀z(Card(z) → z - y ∨ x - z))]
Card(α, x) := [(∀β < α∀y(Card(β, y) → y � x) ∧

∀z(Card(z) → x - z ∨ ∃γ < α∃u(Card(γ, u) ∧ z - u))],
for α limit.

Note that Card(α, x) is intended to be used inside models of ZFC, so the
induction on α needed to verify M |= Card(α, x) is legitimate. Using the
predicate Card(α, x), we write M |= Card(α, β) instead of M |= β = ωα.
If ωα ∈ M and ωα happens to be the β-th cardinal of M , we express it by
writing M |= Card(β, ωα) instead of the puzzling M |= ωα = ωβ. This way
the ambiguity is removed.

Below we shall keep using the notation β = ωM
α as an abbreviation of

M |= Card(α, β). Also M |= |x| = ωα will be an abbreviation of

M |= ∃β(x ∼ β ∧ Card(α, β)).

If ωα exists and M is a model such that ωα ∈M , we say that ωα is absolute
in M if ωM

α = ωα, i.e., if M |= Card(α, ωα). The following is easy to verify.
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Lemma 3.1 (LZFC) If M,N are models of ZFC such that M ⊆ N , x ∈M ,
α ∈M , and M |= |x| = ωα, then N |= |x| ≤ ωα.

Proof. We just argue as usual inside the model N . ⊣

In general, if n ∈ ω and ωn exists, we set H(ωn+1) = {x : TC(x) - ωn}
and ωn+1 = {α ∈ On : α - ωn}.

Lemma 3.2 In LZFC, for all n ∈ ω, the following hold.
(i) If H(ωn+1) exists, then so do P(ωn) and ωn+1. In particular, if M

is a model of ZFC such that H(ωn+1) ∈ M , then P(ωn)
M = P(ωn) and

ωM
n+1 = ωn+1.
(ii) If P(ωn) exists and P(ωn) ∈M then ωM

n+1 = ωn+1 and H(ωn+1)
M =

H(ωn+1).
(iii) Suppose Pn+1(ω) exists and Pn+1(ω) ∈ M . Then P(ωn) ∈ M ,

hence ωM
n+1 = ωn+1. Also Pn+1(Vω)

M = V M
ω+n+1 = Vω+n+1.

Moreover in LZFC+Separation, the above claims are proved for every
α ∈ On. Namely:

(iv) If H(ωα+1) ∈M , then P(ωα)
M = P(ωα) and ω

M
α+1 = ωα+1.

(v) If Pα(ω) ∈M , then ωM
α = ωα and V M

ω+α = Vω+α = Pα(Vω).

Proof. For clarity and simplicity we show clauses (i) and (ii) for n = 0
and clause (iii) for n = 1. The inductive steps are straightforward and left
to the reader.

(i) SupposeH(ω1) is a set andM is a model such that H(ω1) ∈M . Then
P(ω) ⊆ H(ω1) ⊆M , therefore P(ω) = P(ω)M . Also, ωM

1 = {α ∈ On ∩M :
M |= α - ω}. Hence ωM

1 ⊆ ω1. For the converse, let α ∈ ω1 be an infinite
ordinal. Then there is a bijection f : α→ ω. Clearly f ∈ H(ω1), and hence
f ∈M . Since α = dom(f), α ∈M , therefore α ∈ ωM

1 . So ωM
1 = ω1.

(ii) Suppose P(ω) exists and let P(ω) ∈M . We show first that ωM
1 = ω1.

As we saw above, ωM
1 ⊆ ω1. To show the converse, pick some infinite α ∈ ω1.

It suffices to show that α ∈ M and M |= α ∼ ω. Now there is (in V ) a
bijection f : ω → α. Let

R = {〈m,n〉 ∈ ω × ω : f(m) ∈ f(n)}.

ω×ω is a set and the defining property of R is ∆0, so by ∆0-Separation, R is a
set too. Moreover R is a well-ordering of ω and R ∈ P(ω×ω). Since P(ω) ∈
M , also P(ω×ω) ∈M . Hence R ∈M andM |= “(ω,R) is a well-ordering”.
So the order type of (ω,R) exists inM . But this order-type is α, i.e., α ∈M
and M |= (α,∈) ∼= (ω,R). Therefore M |= α ∼ ω.
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We come to the second claim of this clause, and let P(ω) ∈M . We have
to show that H(ω1)

M = H(ω1), or H(ω1) ⊆ H(ω1)
M .5 Let x ∈ H(ω1),

and let f : TC(x) → ω be a bijection. Let N be a model of ZFC such
that {P(ω), f} ⊂ N . In N we can define as usual a coding g : H(ω1)

N →
P(ω)N = P(ω). Now the pair 〈x, f〉 is an element of H(ω1)

N and it is
coded by g(〈x, f〉) ∈ P(ω). But since P(ω) ∈M , g(〈x, f〉) is in M and from
g(〈x, f〉) we can fully restore 〈x, f〉, i.e., 〈x, f〉 ∈M . Thus x ∈ H(ω1)

M .
(iii) We show the claim for n = 1. Let P2(ω) ∈ M . Then P(ω) ∈ M ,

and hence ωM
1 = ω1, by (ii). Every α ∈ ω1 is coded by some well-ordering

R ∈ P(ω × ω) of ω, as we saw in (ii). Hence every x ⊆ ω1 is coded by some
element of P2(ω × ω), or equivalently, of P2(ω). So P(ω1) is (coded by) a
subset of P2(ω). This means that P(ω1) ∈ M and, by (ii), ωM

2 = ω2. The
other claim also follows easily.

(iv) and (v) need induction on α. Here we cannot work in any particular
model of LZFC, so the induction must be carried out in V . This explains
the use of Separation. ⊣

Concerning the converse of the claims (i)-(iii) above, some of them can
be shown to be false (assuming the consistency of some basic theory). For
instance it is consistent relative to ZFC +LZFC that in LZFC ω1 exists,
while P(ω) is a proper class. Indeed, if ZFC +LZFC is consistent, then so is
ZFC +LZFC +P(ω) ∼ ω2. If K is a model of the last theory, then H(ω2)

K

is a model of LZFC + “ω1 exists” + “P(ω) does not exist”.

4 Mahlo models

Transitive models of ZFC bear obvious analogies with inaccessible cardinals.
Roughly a transitive M |= ZFC is a “first-order counterpart” of an inacces-
sible cardinal, since both are transitive sets closed under the same basic
closure conditions. These closure conditions are related with the two most
powerful axioms of ZFC, Replacement and Powerset. First, a (strongly)
inaccessible cardinal κ is closed under all functions f , in the sense that for
every α ∈ κ, f ′′α is bounded in κ. The corresponding property of a model
M is that, in view of Replacement, for every x ∈ M , f ′′x ∈ M , provided f
is first-order definable in M . (That is what we mean by saying that M is a
first-order counterpart of an inaccessible cardinal). Second, for every cardi-
nal λ < κ, 2λ < κ, and this obviously corresponds to the truth of Powerset

5The proof of this implication was provided by the referee.
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in M , i.e., the fact that for every x ∈M , PM (x) ∈M .6

Consequently, a transitiveM such thatM |= ZFC+Loc(ZFC) is the ana-
logue of a “quasi 1-Mahlo” cardinal in the following sense: M |= Loc(ZFC)
says that every x ∈ M belongs to a y ∈ M such that y |= ZFC. That is,
the set of transitive models contained in M form an unbounded (= cofinal)
subclass of M under ∈ (and ⊆). This is just the property of being 1-Mahlo
cardinal, except that “unbounded” should be replaced by “stationary”. So
M is “quasi 2-Mahlo” if M |= ZFC + Loc(ZFC + Loc(ZFC)), and so on.7

Stationarity, however, is a relative notion: It depends on what closed un-
bounded sets (clubs) are available. Absoluteness is obtained only if one is
confined to the collection of definable clubs and stationary subsets of a model
M . Before coming to the definition of stationary subsets of models, let us
define inductively the iterated localization principles Locn(ZFC), for n ∈ ω,
as follows:

Loc0(ZFC) = Loc(ZFC),
Locn+1(ZFC) = Loc(ZFC + Locn(ZFC)).

It is easy to check that for every n ∈ ω, the sentence Locn(ZFC) is Π2.
Moreover inductively we can see that

Locn+1(ZFC) → Locn(ZFC). (1)

Remark 4.1 Can we continue the definition of Locα(ZFC) for α ≥ ω? The
definition can be carried out at least along the constructive ordinals in a way
analogous to that used in [5] for the definition of transfinite progressions of
theories using the consistency operator: T0 = T, Tα+1 = Tα + Con(Tα),
Tα =

⋃

β<α Tβ. In ZFC one may also define Locα(ZFC) by using ordinals
β < α as parameters. For example suppose that Locβ(ZFC), for β < α, have
been defined, so that the mapping β 7→ Locβ(ZFC) is definable. Then, by
Replacement, {Locβ(ZFC) : β < α} is a definable set, so, in view of footnote

6Even in ZFC, the existence of a transitive model of ZFC can be thought as a weak
large cardinal axiom, in view of the non-reversible implications

IC → NM → TM → Cns(ZFC),

where
IC “There is an inaccessible cardinal”,
NM: “There is a natural (i.e., of the form Vα) model of ZFC”,
TM: “There is a transitive model of ZFC”,
Cns(ZFC): “ZFC is consistent”.
7Note that the operator Loc can be applied not only to ZFC, but to any set theory S

in the obvious way. Namely Loc(S) := ∀x∃y(x ∈ y ∧ y |= S). In order however for the
latter to make sense, S must be a definable set of axioms in a language L′ ⊇ L. If S is
defined by φ, then Loc(S) is the L′-sentence ∀x∃y(x ∈ y ∧ ∀z(φ(z) → y |= z)).
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7, we can set Locα(ZFC) = Loc(ZFC∪{Locβ(ZFC) : β < α}). But in LZFC
Replacement is not available, so {Locβ(ZFC) : β < α} need not be a set,
and therefore iteration of Loc cannot go beyond constructive ordinals.

Recall that a cardinal κ is said to be Mahlo if the set of inaccessibles
below κ is stationary in κ. Since the axioms Locn(ZFC) involve only the
unboundedness of the class of models, just Mahloness of κ suffices in order
for Vκ to satisfy Locn(ZFC).

Proposition 4.2 (ZFC) Let κ be a Mahlo cardinal. Then Vκ |= Locn(ZFC)
for all n ∈ ω.

Proof. Let us define inductively for n ∈ ω, that a cardinal κ is n-
unbounded if it is inaccessible and for every m < n, the m-unbounded car-
dinals are unbounded in κ.

Claim 1. If κ is Mahlo, then κ is n-unbounded for all n ∈ ω.
Proof. By induction on n. Trivially κ is 0- and 1-unbounded. Suppose κ

is n-unbounded for n ≥ 1. Then the (n−1)- unbounded cardinals are cofinal
in κ. Let α < κ. Let S be the set of limit points of (n−1)-unbounded above
α. It is easy to check that S is a club. So, since κ is Mahlo, S contains
an inaccessible β. This β is also a limit of (n − 1)-unbounded cardinals, so
it is an n-unbounded and lies above α. This means that the n-unbounded
cardinals are cofinal in κ. Hence κ is (n+ 1)-unbounded.

Claim 2. If κ is (n+ 1)-unbounded, then Vκ |= Locn(ZFC).
Proof. By induction on n. Let κ be 1-unbounded. Then the set S ⊂ κ

of inaccessibles below κ is unbounded in κ. For every λ ∈ S, Vλ |= ZFC.
Therefore Vκ satisfies ∀x∃y(x ∈ y ∧ y |= ZFC), i.e., Vκ |= Loc0(ZFC).

We assume that the claim holds for n+ 1 and we show it for n+ 2. Let
κ be (n + 2)-unbounded. The set S ⊂ κ of (n + 1)-unbounded cardinals
is unbounded in κ. By the induction hypothesis, for every λ ∈ S, Vλ |=
Locn(ZFC). Therefore Vκ satisfies ∀x∃y(x ∈ y ∧ y |= ZFC + Locn(ZFC)).
The last sentence is Loc(ZFC + Locn(ZFC)) = Locn+1(ZFC).

Claims 1 and 2 yield the proof of the proposition. ⊣

The iterated localization principles Locn(ZFC) are “weak Mahlo” princi-
ples intended to motivate the full Mahlo notion for models considered below.
The latter presumes the notion of club and stationary set adapted here for
that purpose. Unless otherwise stated, the definitions below are given in
LZFC.
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Definition 4.3 LetM be a transitive model of ZFC. A set X ∈ Def(M) is
said to be unbounded in M , if (∀x ∈ M)(∃y ∈ X)(x ⊆ y). A X ∈ Def(M)
is said to be closed, if

(∀y ∈M)(y ⊆ X ∧ (y,⊆) is a chain → ∪y ∈ X).

A X ∈ Def(M) is said to be a club of M if it is unbounded and closed.
A X ∈ Def(M) is said to be stationary in M if X ∩ Y 6= ∅ for every club
Y ∈ Def(M).

For a model M |= ZFC, a typical club of M is the set

{Mα : α ∈ On ∩M},

where Mα = VM
α . For every M |= ZFC, let

Club(M) = {x ∈ Def(M) : x is closed unbounded in M},

Stat(M) = {x ∈ Def(M) : x is stationary in M}.

SinceDef(M) is absolute, it follows that Club(M) and Stat(M) are absolute
too. It is easy to see that for every M , Club(M) is a proper subset of
Stat(M). For instance, if X is a club, (y,⊆) is a chain of X and we set
Y = X − {∪y}, then Y ∈ Stat(M)\Club(M).

Given a transitive M |= ZFC and any unbounded X ∈ Def(M), let
FM
X : OnM → OnM be defined as follows:

FM
X (α) = least{β : (∃x ∈ X)(Mα ⊆ x ⊆Mβ)}.

Clearly FM
X ∈ Def(M). FM

X is said to be the associated function to X
with respect to M . We write simply FX instead of FM

X whenever M is
understood. It follows from the definition that

(∀α ∈ OnM )(∃x ∈ X)(Mα ⊆ x ⊆MFX(α)). (2)

Lemma 4.4 For every M and every definable unbounded X ⊆ M , (a) FX

is nondecreasing, i.e., for all α < β ∈ M , FX(α) ≤ FX(β). (b) For every
α ∈M , α ≤ FX(α).

Proof. (a) Let α < β. Then ∃x ∈ X(Mβ ⊆ x ⊆ MFX(β)). Since
Mα ⊆ Mβ, we have ∃x ∈ X(Mα ⊆ x ⊆MFX(β)). Since FX(α) is the least γ
such that ∃x ∈ X(Mα ⊆ x ⊆Mγ), it follows that FX(α) ≤ FX(β). (b) Just
note that, by definition, Mα ⊆MFX(α), therefore α ≤ FX(α). ⊣
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With the help of the function FX one can prove the following closure
properties of clubs. Since they are not going to be used in the proof of the
main result of the section, Proposition 4.11, we omit the proofs.

Lemma 4.5 (i) For any X1,X2 ∈ Club(M), X1 ∩ X2 ∈ Club(M).
(ii) Let X ∈ Def(M) be a set of pairs coding a family of clubs of M .

i.e., for every x ∈ dom(X), X(x) = {y : (x, y) ∈ X} is a club. Then for
every set A ⊆ dom(X), A ∈M ,

⋂

x∈AX(x) ∈ Club(M).
(iii) If X(x), x ∈M , is an M -family of clubs of M , then △x∈MX(x) is a

club (where △x∈MX(x) is the usual diagonal intersection of X(x)). A fortiori

△x∈SX(x) is a club for every S ∈ Def(M).

We come to the definition of α-Mahlo models of ZFC.

Definition 4.6 (LZFC) α-Mahlo models of ZFC are defined inductively as
follows:

(i) x is 0-Mahlo if x is transitive and x |= ZFC.
(ii) x is (α + 1)-Mahlo, if x is transitive, x |= ZFC and {y ∈ x :

(y,∈ ) is an α-Mahlo model} is a stationary subset of x.
(iii) For α limit, x is α-Mahlo if it is β-Mahlo for all β < α.

The above definition of α-Mahloness is formalized by the formula
mahlo(α, x) defined by the following clauses (we omit only transitivity of x
as implicitly understood):







mahlo(0, x) := [x |= ZFC]
mahlo(α+ 1, x) := [x |= ZFC ∧ (∀y ∈ Club(x))(∃u ∈ y)(mahlo(α, u))]
mahlo(α, x) := ∀β < α mahlo(β, x), for α limit.

(3)
The lack of induction on α does not preventmahlo(α, x) from having a truth
value for all α and x. This is because mahlo(α, x) is absolute, since Club(x)
is a ∆1 property. Hence the induction on α needed to verify mahlo(α, x)
can be carried out inside any model M containing x and α.

Lemma 4.7 (LZFC) For each α, the sentence mahlo(α, x) is first-order
and absolute for transitive models. That is, for every transitive model M |=
ZFC such that α, x ∈M , mahlo(α, x) iff M |= mahlo(α, x).

Proof. By an easy induction on α, taking into account that the right-
hand sides of the clauses of (3) are absolute. ⊣
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Note that Mahloness alone (i.e., 1-Mahloness) implies the iterated local-
ization axiom Locn(ZFC).

Proposition 4.8 (LZFC) For every n ∈ ω, if M is Mahlo then M |=
Locn(ZFC).

Proof. The proof is similar to that of proposition 4.2 so it is omitted. ⊣

Recall that the clubs of a cardinal κ are exactly the ranges of normal
(i.e., strictly increasing and continuous) functions f : κ → κ (see e.g. [6,
p. 92]). For every unbounded X ⊆ M (in particular for every club), we
defined above (see (2)) the associated function FX : OnM → OnM , which is
nondecreasing rather than strictly increasing, and satisfies FX(α) ≥ α. Such
functions can also be called normal when they are continuous.8 Obviously
every such function has fixed points above any ordinal, as usual. Using clubs
X such that FX is normal, we can relate clubs of M with clubs of κ.

Definition 4.9 Call a club X ⊆ M normal, if the associated function FX

is normal.

Given M |= ZFC, let

UM = {Mα : α ∈M}

be the typical club of M . For every X ∈ Club(M), let us set

X∗ = X ∩ UM .

By lemma 4.5 X∗ ∈ Club(M).

Lemma 4.10 For every X ∈ Club(M), X∗ is a normal club.

Proof. Since, by 4.4 (b), FX∗ is already nondecreasing, it suffices to show
that FX∗ is continuous, i.e., for every limit α, FX∗(α) = sup{FX∗(β) : β <
α}. Now the elements of X∗ are setsMβ. Let X

− = {β ∈ OnM :Mβ ∈ X∗}.
Then, by definition, for every β,

FX∗(β) = least{γ : (∃x ∈ X∗)Mβ ⊆ x ⊆Mγ} = least{γ ∈ X− :Mβ ⊆Mγ}.

8If f is simply nondecreasing, i.e., α < β → f(α) ≤ f(β), rng(f) may be bounded,
which trivializes f . But if rng(f) is unbounded, e.g. if f(α) ≥ α, then strictness of
monotonicity can be relaxed. This is the case with functions FX .
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Therefore, for every β < α, Mβ ⊆MFX∗(β) and MFX∗(β) ∈ X∗. So
⋃

β<α

Mβ =Mα ⊆
⋃

β<α

MFX∗(β) =Mγ , (4)

where sup{FX∗(β) : β < α} = γ. But {MFX∗(β) : β < α} ⊆ X∗, and the
chain {MFX∗ (β) : β < α} is in M . So, since X∗ is a club,

⋃

β<αMFX∗(β) =
Mγ ∈ X∗. Then (4) implies FX∗(α) ≤ γ. On the other hand, by monotonic-
ity of FX∗ (see 4.4 (a)), FX∗(α) ≥ sup{FX∗(β) : β < α} = γ. So FX∗(α) = γ
as required. ⊣

In view of lemma 4.10, a definable Y ⊆ M is stationary iff it meets all
normal clubs of M of the form X∗ for X ∈ Club(M). For every model
M |= ZFC, let ht(M) (the height of M) be the supremum of the ordinals in
M , that is, ht(M) =M ∩On.

Recall that
(i) κ is 0-Mahlo if it is strongly inaccessible.
(ii) κ is (α + 1)-Mahlo, if the set of α-Mahlo cardinals below κ is a

stationary subset of κ.
(iii) For limit α, κ is α-Mahlo if it is β-Mahlo for all β < α.

Proposition 4.11 (i) Let M |= ZFC with ht(M) = α. If X ∈ Club(M),
then {β < α :Mβ ∈ X∗} is a club of α.

(ii) (ZFC) If κ is β-Mahlo, for β < κ, then Vκ is β-Mahlo.

Proof. (i) Let X ∈ Club(M) and let X− = {β < α :Mβ ∈ X∗}. We have
to show that X− is a club of α. Let β < α. It is clear that rng(FX∗) ⊆ X−.
Since FX∗ is normal, it has a fixed point γ > β. Now FX∗(γ) = γ means that
γ ∈ X−, so X− is unbounded. Further, let {βξ : ξ < δ} be an increasing
sequence of X−. Then {Mβξ

: ξ < δ} is an increasing sequence of X∗. If
β = sup{βξ : ξ < δ}, thenMβ =

⋃

ξ<δMβξ
, andMβ ∈ X∗, by the closedness

of X∗. Therefore β ∈ X− and X− is closed.
(ii) By induction on β. If κ is 0-Mahlo, then κ is strongly inaccessible,

hence Vκ |= ZFC, and thus Vκ is a 0-Mahlo model according to (3).
Suppose the claim holds for β and let κ be (β + 1)-Mahlo. Then the set

Y = {λ < κ : λ is β-Mahlo} is stationary in κ. Let Y + = {Vλ : λ ∈ Y }.
Both Y and Y + are definable in Vκ. By the induction hypothesis, for every
x ∈ Y +, x is a β-Mahlo model. So it suffices to show that Y + is stationary
in Vκ, or, in view of 4.10, that it meets all clubs X∗ for X ∈ Club(Vκ). Let
X ∈ Club(Vκ). Since Vκ ∩On = κ, by (i), the set X− = {α < κ : Vα ∈ X∗}
is a club of κ. Therefore Y ∩X− 6= ∅, hence Y + ∩X∗ 6= ∅.

If β is limit then the claim follows immediately from the definitions. ⊣
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5 Π1
1-Indescribable models

The next question is whether models resembling higher large cardinals
can be reasonably defined. After Mahlo the next candidate notion is
that of a weakly compact model. However as is well-known weakly com-
pact cardinals have several equivalent characterizations, through a parti-
tion property, a tree property, a compactness property, Π1

1-indescribability,
etc (see for example [6], §17). Although the most intuitively appeal-
ing characterization is the partition property, the one that seems to fit
better to our context is Π1

1-indescribability. Recall that a cardinal κ is
Πn

m-indescribable if for every U ⊆ Vκ and every Πn
m sentence φ (con-

taining in prenex form m alternations of n-th order quantifiers start-
ing with ∀), if (Vκ,∈, U) |= φ, then there is α < κ such that (Vα,∈,
U ∩ Vα) |= φ. The following is standard (see [6, p. 297] for a proof).

Theorem 5.1 (Hanf-Scott) A cardinal κ is weakly compact iff it is Π1
1-

indescribable.

Definition 5.2 (LZFC) A transitive model M |= ZFC is said to
be Π1

1-indescribable if for every U ∈ Def(M) and every Π1
1 sen-

tence φ, if (M,∈, U,Def(M)) |= φ, then there is a transi-
tive model N ∈ M such that U ∩ N ∈ Def(N) and (N,∈,
U ∩N,Def(N)) |= φ.

In the above notation Def(M), Def(N) indicate the ranges for the
second order quantifiers of φ. Π1

1-indescribability is first-order definable
and absolute for transitive models. That is, “M is Π1

1-indescribable” iff
K |= “M is Π1

1-indescribable” for any transitive model K such thatM ∈ K.
That Π1

1-indescribable models (can be consistently assumed to) exist is
a consequence of the following:

Proposition 5.3 (ZFC) If κ is weakly compact, then the model Vκ is Π1
1-

indescribable.

Proof. This is immediate from 5.1 and lemma 5.4 below. ⊣

Lemma 5.4 (ZFC) Let κ be a Π1
1-indescribable cardinal. Then for every

U ∈ Def(Vκ), and every Π1
1 sentence φ of L2∪{S} (where L2 is L augmented

with second order variables and S(·) is a unary predicate interpreted as U),
if

(Vκ,∈, U,Def(Vκ)) |= φ,
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then there is α < κ such that U ∩Vα is (first-order) definable in (Vα,∈) and
(Vα,∈, U ∩ Vα,Def(Vα)) |= φ.

Proof. Let κ be Π1
1-indescribable. Let U ∈ Def(Vκ), and let U =

{x ∈ Vκ : Vκ |= θ(x)}, for a first-order formula θ. Let also φ = ∀Xψ(X)
be a Π1

1 sentence, where ψ(X) has no second order variables. Suppose
(Vκ,∈, U,Def(Vκ)) |= φ. Set σ = ∀x(S(x) ↔ θ(x)). Then clearly (Vκ,∈
, U,Def(Vκ)) |= σ and σ is first-order. So

(Vκ,∈, U,Def(Vκ)) |= ∀Xψ(X) ∧ σ,

or equivalently

(Vκ,∈, U) |= (∀X)(X ∈ Def(Vκ) → ψ(X)) ∧ σ. (5)

Now it is well-known that Def(Vκ) is ∆1
1-definable over Vκ.

9 Therefore
(∀X)(X ∈ Def(Vκ) → ψ(X)) ∧ σ is Π1

1 and hence, by Π1
1- indescribability

of κ, there is α < κ such that

(Vα,∈, U ∩ Vα) |= (∀X)(X ∈ Def(Vα) → ψ(X)) ∧ σ. (6)

By the definition of σ, (Vα,∈, U ∩ Vα) |= σ implies that U ∩ Vα = {x ∈
Vα : Vα |= θ(x)}, that is, U ∩ Vα ∈ Def(Vα). Further (Vα,∈, U ∩ Vα) |=
(∀X)(X ∈ Def(Vα) → ψ(X)) implies that

(Vα,∈, U ∩ Vα,Def(Vα)) |= (∀X)ψ(X),

or (Vα,∈, U ∩ Vα,Def(Vα)) |= φ, as required. ⊣

Proposition 5.5 If M is a Π1
1-indescribable model of ZFC then M is α-

Mahlo for every α ∈ OnM .

Proof. By induction on α. Since M is a model of ZFC, it is 0-Mahlo.
Let α = 1. We have to show that {x ∈ M : (x,∈) |= ZFC} is stationary.
Let C ∈ Club(M). There is a first-order formula θ(x) such that x ∈ C ↔
M |= θ(x). Let σ = ∀x(S(x) ↔ θ(x)). The fact that C is a club definable
by θ(x) is expressed by writing

(M,∈, C,Def(M)) |= σ ∧ “{x : S(x)} is a club”.

9Namely, X ∈ Def(Vκ) := (∃φ)(∀x)(x ∈ X ↔ Sat(φ, x)), where Sat(φ, x) is the ∆1

1

satisfaction predicate for first order formulas with parameters over Vκ.
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The sentence σ ∧ “{x : S(x)} is a club” is first-order so, by Π1
1-

indescribability, there is N ∈M , N |= ZFC, such that

(N,∈, C ∩N,Def(N)) |= σ ∧ “{x : S(x)} is a club”.

This means that θ(x) defines C ∩ N in N and C ∩ N is a club of N . So
if Nα = V N

α for α ∈ N , we can pick by induction, using Choice, sets xα ∈
C ∩ N , α ∈ M , such that Nα ∪ (

⋃

β<α xβ) ⊆ xα. If X = {xα : α ∈ N},
then clearly X ∈ M , X ⊆ C and X is a chain. Therefore

⋃

X ∈ C. But
⋃

X = N , so N ∈ C. It follows that the arbitrary club C of M contains a
model N |= ZFC. Therefore {x ∈M : (x,∈) |= ZFC} is stationary in M .

Suppose M is (α + 1)-Mahlo. Let C ⊆ M be again a club defined by
θ(x) in M and let σ be as above. Then

(M,∈, C,Def(M)) |= σ ∧ {x : S(x)} is a club ∧ ∀X(X is a club →

∃y(y ∈ X ∧mahlo(α, y)).

The last formula is Π1
1 over (M,∈, C,Def(M)) and says that C is a club

and that the definable set {x ∈M : (x,∈) is α-Mahlo} is a stationary set of
M . By definition 5.2, there is N ∈M , N |= ZFC, such that

(N,∈, C ∩N,Def(N)) |= σ ∧ {x : S(x)} is a club ∧ ∀X(X is a club →

∃y(y ∈ X ∧mahlo(α, y)).

This says that C ∩ N is a club of N defined by θ(x) in N and the set of
α-Mahlo models contained in N is a stationary subset of N . It follows that
N is (α+1)-Mahlo. Moreover, by the same argument as before, we see that
N ∈ C. So the arbitrary club C of M contains an (α + 1)-Mahlo model.
Therefore the set {x ∈M : (x,∈) is (α+ 1)-Mahlo} is stationary in M , and
hence M is (α+ 2)-Mahlo.

Suppose α is limit and M is α-Mahlo. To show that M is (α+1)-Mahlo
the proof is essentially the same as before.

Finally, if α is limit and the claim holds for all β < α, then, due to the
definition of α-Mahlo, the claim holds for α. ⊣

Question. What other large cardinal properties (measurability, strong
compactness, etc) can be adjusted to fit to models of ZFC?
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6 Localizing extensions of ZFC

In section 5 we have already considered extensions of Loc(ZFC) of the form
Loc(ZFC + Loc(ZFC)), Loc(ZFC + Loc(ZFC + Loc(ZFC))), etc. Here we
shall consider more general extensions, namely localization principles of the
form Loc(ZFC+φ) for various sentences φ independent from ZFC. In order
however for Loc(ZFC+φ) to make sense we must first assume that ZFC+φ
not only is consistent but has a transitive model. So by analogy with the
axiom TM(ZFC) (“ZFC has a transitive model”), for every such φ one has
to accept

(TM(ZFC+φ)) ∃x(Tr(x)∧(x,∈) |= ZFC+φ).

For several natural sentences like V = L, CH, V 6= L, ¬CH etc, it is
provable in ZFC (by usual forcing techniques, constructible sets, etc) that
TM(ZFC) → TM(ZFC + φ).10 The same proof can be carried out (rela-
tivized) in LZFC. Actually given a transitive model M |= ZFC, there is, by
Loc(ZFC), a transitive N such that M ∈ N . In N we can find a countable
model M ′ of ZFC and then extend it by forcing, e.g. to a model M ′[G] of
ZFC + ¬CH.

In the formulas occurring below as arguments in Loc(· · ·) we allow the
use of a constant “c”. This is not a parameter, but ranges over definable
classes that are proved in ZFC to be sets (like P(ω), ω1, etc). Below we
refer to such classes as “terms”. For the same reason ordinals occurring as
parameters in formulas occurring as arguments in Loc(· · ·) are definable too.

Axioms Loc(ZFC + φ), though local in essence, may have global conse-
quences for the universe V itself. For example:

Lemma 6.1 (LZFC) Let c be a term. Then Loc(ZFC +V = L(c)) → V =
L(c).

Proof. Assume Loc(ZFC + V = L(c)) and V 6= L(c). Let a ∈ V − L(c).
Then there is a transitive model M of ZFC such that {c, a} ∈ M and
M |= V = L(c). But then a ∈M = L(c)M ⊆ L(c), a contradiction. ⊣

More generally, given a set of sentences Γ, we may extend LZFC to

LZFCΓ = LZFC + {Loc(ZFC + φ) : φ ∈ Γ}

10However one cannot prove in ZFC, if ZFC is consistent, the implication TM(ZFC) →
TM(ZFC + TM(ZFC)), otherwise ZFC + TM(ZFC) ⊢ Con(ZFC + TM(ZFC)), contrary
to Gödel’s incompleteness. In particular, ZFC does not prove, if it is consistent, that there
is a forcing extension M [G] of a transitive model, that contains a transitive model of ZFC.
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and consider its consistency and its consequences on V . The following is a
simple general fact concerning the consistency of LZFCΓ.

Proposition 6.2 If Γ is a set of sentences such that {φ,¬φ} ⊆ Γ for some
ΣZFC
1 or ΠZFC

1 sentence φ, then LZFCΓ is inconsistent.

Proof. Let φ be a ΣZFC
1 sentence (the case of ΠZFC

1 is the same). This
means that φ↔ ∃xφ1(x) holds in every model of ZFC, for some ∆0 formula
φ1. ZFCΓ contains the axioms Loc(ZFC + φ) and Loc(ZFC + ¬φ). By
the first of them there is a transitive M such that M |= ZFC + φ. Then
M |= ∃xφ1(x), hence M |= φ1(a) for some a ∈M . By Loc(ZFC+¬φ) there
is N such that a ∈ N and N |= ZFC + ¬φ. Then N |= ∀x¬φ1(x). But
N |= φ1(a), since φ1 is absolute. A contradiction. ⊣

Does any reasonable set Γ affect the status of the axioms of Powerset,
Separation, Replacement, etc? (Remember that LZFC itself is compatible
with ZFC). The answer is positive for Powerset. We show that if Γ contains
the sentences CH and ¬CH, then LZFCΓ refutes Powerset.

Given a term c and a transitive modelM , let cM denote the relativization
of c with respect to M . Let us call a term c stable if for every transitive M ,
c ⊆ M ⇒ cM = c. For instance P(ω) and H(ω1) are stable terms, while ω1

is not.

Proposition 6.3 Let c be a stable term. Then the theory

LZFC+Loc(ZFC+|c| = ω1)+Loc(ZFC+|c| 6= ω1)+ “c exists”+“P(ω) exists”

is inconsistent.

Proof. Suppose the above mentioned theory is consistent and let K
be a model of it. In K, c and P(ω) are sets. By Loc(ZFC + |c| = ω1)
and Pair, we can pick a model M ∈ K of ZFC such that {c,P(ω)} ⊂ M
and M |= |c| = ω1. The last relation says that in M there is a bijection
h : cM → ωM

1 . Since c is stable, cM = c. Also, since P(ω) ∈ M , by Lemma
3.2 (ii), ωM

1 = ω1 ∈ M . Therefore c and ω1 are both absolute in M and
M |= c ∼ ω1. Hence also K |= c ∼ ω1. Let h : c → ω1 be a bijection in
K. By Loc(ZFC + |c| 6= ω1) and Pair, there is a model N ∈ K such that
{c, h,P(ω)} ⊂ N and N |= |c| 6= ω1. Again, by stability cN = c, and by 3.2
(ii), ωN

1 = ω1. Hence N |= c 6∼ ω1. But this contradicts the fact that N
already contains a bijection h : c→ ω1. ⊣
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Corollary 6.4 (i) For every stable term c, the theory

LZFC+Loc(ZFC+ |c| = ω1)+Loc(ZFC+ |c| 6= ω1)+ “c exists”+ Powerset

is inconsistent.
(ii) In particular, the theory

LZFC + Loc(ZFC + |P(ω)| = ω1) + Loc(ZFC + |P(ω)| 6= ω1) + Powerset,

or, equivalently,

LZFC + Loc(ZFC + CH) + Loc(ZFC + ¬CH) + Powerset

is inconsistent.

Proof. (i) This follows immediately from 6.3, if we replace “P(ω) exists”
with the stronger Powerset.

(ii) In (i) above we set c = P(ω), which is stable. Then Powerset implies
“P(ω) exists” and the claim follows.

[It’s worth noting that, for this specific term c = P(ω), the claim can be
alternatively proved (without appealing to 6.3) as follows: Suppose P(ω) is a
set. Pick a modelM such that P(ω) ∈M andM |= |P(ω)| = ω1. Then pick
a model N such that M ∈ N , hence M ⊆ N , and N |= |P(ω)| 6= ω1. Then
either N |= |P(ω)| < ω1, or N |= |P(ω)| > ω1. The first option is obviously
false. So N |= |P(ω)| > ω1. But by Lemma 3.1 (i), M |= |P(ω)| = ω1 and
M ⊆ N imply N |= |P(ω)| ≤ ω1, a contradiction.] ⊣

In relation to clause (ii) of the last Corollary we point out the following
(recall that NM is the assertion “there is a natural model of ZFC”).

Proposition 6.5 The theory

LZFC + Loc(ZFC + CH) + Loc(ZFC + ¬CH)

is consistent relative to ZFC +NM.

Proof. The proof is an easy strengthening of that of Proposition 2.23
(iii). Let M be a model of ZFC + NM. Then HM(ω1) satisfies the theory
in question. Indeed, if Mκ = VM

κ is a natural model of ZFC (in the sense
of M), then by the proof of 2.23 (iii), HM (ω1) |= Loc(ZFC). So for ev-
ery x ∈ HM (ω1), x belongs to a countable transitive model N ∈ HM (ω1).
Now every such model N containing x can be generically extended to count-
able transitive models N1, N2, satisfying CH and ¬CH, respectively. Since
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N1, N2 also belong to HM (ω1), H
M (ω1) satisfies both Loc(ZFC + CH) and

Loc(ZFC + ¬CH). ⊣

Finally we have a variant of 6.3 from which “P(ω) exists” has been
dropped.

Proposition 6.6 Let c be a stable term and let α 6= β be two distinct de-
finable ordinals. Then the theory

LZFC + Loc(ZFC + |c| = ωα) + Loc(ZFC + |c| = ωβ) + “c exists”

is inconsistent.

Proof. We work in the aforementioned theory and suppose α < β. c is a
definable set, absolute for the models they contain it, hence by Loc(ZFC +
|c| = ωα), there is a model M of ZFC such that c ∈ M and M |= |c| = ωα.
Then, by Loc(ZFC+ |c| = ωβ), there is a model N of ZFC such that M ∈ N
and N |= |c| = ωβ. But M ⊆ N and by Lemma 3.1 M |= |c| = ωα implies
N |= |c| ≤ ωα, i.e., β ≤ α, contrary to the assumption α < β. ⊣

7 A digression: Standard compactness

For reasons explained in the introduction, one of the goals of this paper was
to promote transitive models of ZFC to the status of first class citizens of the
universe of sets, especially by postulating their “omnipresence”. In partic-
ular, whenever we talk about models in LZFC, we mean transitive models.
Given that models in general is the stuff of the various notions of compact-
ness, the confinement to transitive models induces natural refinements of
corresponding compactness notions. Specifically, in ordinary compactness
one infers the existence of a model for a set of sentences from the existence
of models for its finite parts. A natural question arisen from this fact is the
following: Can we infer the existence of a transitive model for a set of sen-
tences Σ in a language L′ extending the language L of set theory, from the
existence of transitive models for certain parts of Σ? Although otherwise
unrelated to the rest of the paper, this question is well-motivated by our
insistence on transitive models and shall be dealt with in this section. The
question we formulated above prompts the following definition.

Definition 7.1 (ZFC) A cardinal κ is said to be standard compact if for
every set of sentences Σ of a finitary language L′ ⊇ L such that |Σ| = κ,
if every set A ⊆ Σ such that |A| < κ has a transitive model, then Σ has a
transitive model.
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A first negative result is that the standard version of the classical com-
pactness theorem is false.

Proposition 7.2 (ZFC or LZFC) There is an L′ ⊇ L and a countable set
Σ of sentences of L′ such that every finite subset of Σ has a transitive model,
while Σ does not. Therefore ω is not standard compact.

Proof. Let L′ = L ∪ {cn : n ∈ ω}, and let Σ = {cn+1 ∈ cn : n ∈ ω} be a
set of sentences of L′. Then clearly every finite subset of Σ has a transitive
model, while Σ does not. ⊣

Next let us make sure that standard compact cardinals exist under the
assumption of mild large cardinals. Recall that one of the equivalent defi-
nitions of a weakly compact cardinal is the following: κ is weakly compact
if any set Σ of sentences of the infinitary language Lκ,κ, which uses at most
κ non-logical symbols and is κ-satisfiable (i.e., every A ⊆ Σ with |A| < κ is
satisfiable), is satisfiable.

Recall also that by Mostowski’s theorem 2.20 (ii), if E is a binary relation
on X such that (a) E is well-founded and (b) (X,E) |= Ext, then there is
a (unique) transitive set M such that (X,E) ∼= (M,∈). Ext is the ordinary
extensionality axiom, while well-foundedness is expressed by a sentence of
Lω1,ω1

as follows:

Wf := ¬(∃n<ωxn)(
∧

n<ω

(xn+1 ∈ xn)),

where ∃n<ωxn is an abbreviation of the infinite block of quantifiers
∃x1∃x2 · · · ∃xn · · ·. Every transitive set satisfies Ext and Wf. Conversely,
every L-structure (X,E) such that (X,E) |= Ext ∧ Wf is isomorphic to a
transitive model. This is a key fact by which we can prove the following:

Lemma 7.3 Every weakly compact cardinal κ > ω is standard compact.

Proof. Let κ > ω be a weakly compact cardinal and let Σ be a set of
sentences of L′ ⊇ L such that |Σ| = κ. Suppose that every A ⊆ Σ with
|A| < κ has a transitive model. Let Σ′ = Σ ∪ {Ext,Wf}. Σ′ is a set of
sentences of Lω1,ω1

, and hence of Lκ,κ. From the assumption about Σ and
the remarks concerning Wf, every A ⊆ Σ′ with |A| < κ has a (transitive)
model. By weak compactness of κ, Σ′ has a model (X,E). Since this satisfies
Ext and Wf, it is isomorphic to a transitive modelM . Thus Σ′, and therefore
Σ, has a transitive model. ⊣
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Proposition 7.4 (ZFC) ω1 is not standard compact. Similarly for ωn, for
every n ∈ ω.

Proof. Let L′ = L ∪ {c} ∪ {α̇ : α ≤ ω1}, where c and α̇ are constants.
We shall find a Σ that refutes standard compactness of ω1. Let Σ be the set
of the following sentences of L′:

(1) Ord(c), Ord(α̇), for all α ≤ ω1.
(2) α̇ < β̇, for all α < β ≤ ω1.
(3) c > α̇, for all α < ω1.
(4) c < ω̇1.
(5) ∀x(x < ω̇1 → x is countable).

Clearly |Σ| = ω1. Let A ⊆ Σ with |A| < ω1. Pick some Vξ such that ω1 ∈ Vξ
and let α̇Vξ = α for all α ≤ ω1. Then we easily see that Vξ |= A for some
interpretation cVξ ∈ ω1. On the other hand suppose there is a transitive
structure (K,∈) such thatK |= Σ. AlthoughK need not be a model of ZFC,
K |= Ord(α̇) clearly entails that α̇K is an ordinal. In view of (2) the mapping
α 7→ α̇N is strictly increasing. Therefore α ≤ α̇K for every α ≤ ω1, and hence
ω1 ≤ ω̇1

K . By (5) every x ∈ ω̇1
K is countable, so in particular ω̇1

K = ω1.
In view of this and (3) and (4), we have α ≤ α̇K < cK < ω̇1

K = ω1, hence
α < cK < ω1, for all α < ω1, which is a contradiction.

In the case of ωn we just need to replace “α is countable” with the
appropriate sentence defining ωn, namely: “x is countable or of cardinality
next to countable, or next to next to countable or,...., or nextn to countable”.
⊣

The property of weak compactness (as well as that of standard compact-
ness) contains the condition that the cardinality of non-logical symbols (or
the cardinality) of Σ be ≤ κ. If we drop this condition we have the property
of strong compactness: κ is strongly compact if for every set Σ of sentences
of Lκ,κ, if Σ is κ-satisfiable, then Σ is satisfiable. An equivalent definition
(see [7, p. 37]) is the following:

Definition 7.5 (ZFC) A cardinal κ is strongly compact if for any set X,
every κ-complete filter on X can be extended to a κ-complete ultrafilter on
X.

Proposition 7.6 (ZFC) Let λ > ω be a strongly compact cardinal. Then
every cardinal κ ≥ λ such that κ<κ = κ is standard compact.

Proof. The proof is a variant of the proof of compactness by the use of
ultraproducts (see [2, Cor. 4.1.11]). Let κ ≥ λ > ω, where λ is strongly
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compact and κ<κ = κ. Let Σ be an infinite set of sentences of a language
L′ ⊇ L such that |Σ| = κ. Suppose each A ⊆ Σ with |A| < κ has a transitive
model. Since κ<κ = κ, there is an enumeration Σα, α < κ, of all subsets A of
Σ with |A| < |Σ|. Pick and fix for each α < κ a transitive model Mα |= Σα.
For every φ ∈ Σ, let φ̂ = {β < κ : φ ∈ Σβ}. The family E = {φ̂ : φ ∈ Σ} is

κ-complete, i.e., for every γ < κ and every {φ̂β : β < γ} ⊆ E,
⋂

β<γ φ̂β 6= ∅.
This is because for every γ < κ and every set {φβ : β < γ}, there is a δ < κ

such that {φβ : β < γ} = Σδ, so δ ∈
⋂

β<γ φ̂β . Thus the filter Ē on κ

generated by E is κ-complete. Also Ē is free, otherwise some α would be
in all φ̂, φ ∈ Σ, hence Σ = Σα, which is false. One can see as in [2, Cor.
4.1.11] that if D is any ultrafilter on κ extending Ē, then Πα<κMα/D |= Σ.
Namely for every φ ∈ Σ,

{α < κ :Mα |= φ} ⊇ {α < κ : φ ∈ Σα} = φ̂ ∈ D,

so Πα<κMα/D |= φ by the fundamental theorem of ultraproducts. It suffices
to choose the ultrafilter D ⊇ Ē so that Πα<κMα/D be (isomorphic to) a
transitive model. Now Ē is a κ-complete filter and hence λ-complete since
λ ≤ κ. But λ is strongly compact, so Ē can be extended to a λ-complete
ultrafilter D. Since λ > ω and every Mα is transitive, the ultraproduct
Πα<κMα/D is well-founded. Therefore Πα<κMα/D is isomorphic to a tran-
sitive (N,∈). Then (N,∈) |= Σ as required. ⊣

It follows from the last result that, unless strongly compact cardinals are
inconsistent, it is consistent to have standard compact cardinals which are
accessible, singular and even successor cardinals.

Acknowledgement. Many thanks to the anonymous referee for care-
fully checking the manuscript, pointing out some serious flaws and suggesting
a lot of other improvements.
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