Skip to main content
Log in

Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We give a new characterization of the strict \(\forall {\Sigma^b_j}\) sentences provable using \({\Sigma^b_k}\) induction, for 1 ≤ jk. As a small application we show that, in a certain sense, Buss’s witnessing theorem for strict \({\Sigma^b_k}\) formulas already holds over the relatively weak theory PV. We exhibit a combinatorial principle with the property that a lower bound for it in constant-depth Frege would imply that the narrow CNFs with short depth j Frege refutations form a strict hierarchy with j, and hence that the relativized bounded arithmetic hierarchy can be separated by a family of \(\forall {\Sigma^b_1}\) sentences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckmann A., Buss S.: Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic. J. Math. Log. 9(1), 103–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckmann A., Buss S.: Characterizing definable search problems in bounded arithmetic via proof notations. In: Schindler, R. (eds) Ways of Proof Theory, pp. 65–134. Ontos verlag, Frankfurt (2010)

    Google Scholar 

  3. Buss S.: Bounded Arithmetic. Bibliopolis, Naples (1986)

    MATH  Google Scholar 

  4. Buss S.: Polynomial size proofs of the propositional pigeonhole principle. J. Symb. Log. 52(4), 916–927 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buss, S.: Axiomatizations and conservation results for fragments of bounded arithmetic. In: Logic and Computation, Proceedings of a workshop held at Carnegie Mellon University, pp. 57–84. AMS, (1990)

  6. Buss S.: Relating the bounded arithmetic and polynomial time hierarchies. Ann. Pure Appl. Log. 75(1–2), 67–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buss, S.: Chapter 1: an introduction to proof theory & Chapter 2:first-order proof theory of arithmetic. In: Buss, S. (ed.) Handbook of Proof Theory, Elsevier, Amsterdam (1998)

  8. Buss S., Krajíček J.: An application of boolean complexity to separation problems in bounded arithmetic. Proc. Lond. Math. Soc. 69, 1–21 (1994)

    Article  MATH  Google Scholar 

  9. Chiari M., Krajíček J.: Witnessing functions in bounded arithmetic and search problems. J. Symb. Log. 63(3), 1095–1115 (1998)

    Article  MATH  Google Scholar 

  10. Chiari M., Krajíček J.: Lifting independence results in bounded arithmetic. Arch. Math. Log. 38(2), 123–138 (1999)

    Article  MATH  Google Scholar 

  11. Cook, S.: Feasibly constructive proofs and the propositional calculus. In: Proceedings of the 7th annual ACM symposium on theory of computing, pp. 83–97, (1975)

  12. Ferreira F.: What are the \(\forall{\Sigma^b_1}\)-consequences of \({T^1_2}\) and \({T^2_2}\) ?. Ann. Pure Appl. Log. 75(1), 79–88 (1995)

    Article  MATH  Google Scholar 

  13. Hanika J.: Herbrandizing search problems in bounded arithmetic. Math. Log. Q. 50(6), 577–586 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Håstad J.: Computational Limitations for Small-Depth Circuits. MIT Press, Cambridge (1987)

    Google Scholar 

  15. Krajíček J.: Bounded Arithmetic, Propositional Logic and Computational Complexity. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Krajíček J.: A form of feasible interpolation for constant depth frege systems. J. Symb. Log. 75(2), 774–784 (2010)

    Article  MATH  Google Scholar 

  17. Krajíček J., Pudlák P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36(1), 29–46 (1990)

    Article  MATH  Google Scholar 

  18. Krajíček J., Pudlák P., Takeuti G.: Bounded arithmetic and the polynomial hierarchy. Ann. Pure Appl. Log. 52, 143–153 (1991)

    Article  MATH  Google Scholar 

  19. Krajíček J., Pudlák P., Woods A.: An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Struct. Algorithms 7(1), 15–39 (1995)

    Article  MATH  Google Scholar 

  20. Krajíček J., Skelley A., Thapen N.: NP search problems in low fragments of bounded arithmetic. J. Symb. Log. 72(2), 649–672 (2007)

    Article  MATH  Google Scholar 

  21. Krajíček J., Takeuti G.: On induction-free provability. Ann. Math. Artif. Intell. 6, 107–126 (1992)

    Article  MATH  Google Scholar 

  22. Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In : Methods in Mathematical Logic, vol. 1130 in Lecture notes in mathematics, pp. 317–340. Springer, New York (1985)

  23. Pitassi T., Beame P., Impagliazzo R.: Exponential lower bounds for the pigeonhole principle. Comput. Complex. 3, 97–220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pudlák, P.: Consistency and games: in search of new combinatorial principles. In: Stoltenberg-Hansen, V., Vä änänen, J. (eds.), Logic Colloquium ’03, vol. 24 in Lecture notes in logic, pp. 244–281. ASL (2006)

  25. Pudlák P.: Fragments of bounded arithmetic and the lengths of proofs. J. Symb. Log. 73(4), 1389–1406 (2008)

    Article  MATH  Google Scholar 

  26. Skelley, A., Thapen., N.: The provably total search problems of bounded arithmetic. Proc. Lond. Math. Soc. doi:10.1112/plms/pdq044 (2011)

  27. Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proceedings of 26th annual symposium on foundations of computer science, pp. 1–10. IEEE Press (1985)

  28. Zambella D.: Notes on polynomially bounded arithmetic. J. Symb. Log. 61(3), 942–966 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Thapen.

Additional information

Partially supported by institutional research plan AV0Z10190503 and grant IAA100190902 of GA AV ČR, grants LC505 (Eduard Čech Center) and 1M0545 (ITI) of MŠMT and by a grant from the John Templeton Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thapen, N. Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem. Arch. Math. Logic 50, 665–680 (2011). https://doi.org/10.1007/s00153-011-0240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0240-0

Keywords

Mathematics Subject Classification (2000)

Navigation