Skip to main content
Log in

Proof analysis in intermediate logics

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the explanation of the rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Agostino M. et al.: Handbook of Tableaux Methods. Kluwer, Dordrecht (1998)

    Google Scholar 

  2. Avellone A. et al.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. L. J. IGPL 7, 447–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz M., Iemhoff R.: On Skolemization in constructive theories. J. Symb. Logic 73, 969–998 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brünnler K., Guglielmi A. et al.: A first order system with finite choice of premises. In: Hendricks, V. F. (eds) First-Order Logic Revisited, pp. 59–74. Logos Verlag, London (2004)

    Google Scholar 

  5. Chagrov A., Zakharyaschev M.: Modal Logic. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  6. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: Proceedings of the Logic in Computer Science, IEEE Computer Society, pp. 229–240 (2008)

  7. Ciabattoni, A., Strassburger, L., Terui, K.: Expanding the realm of systematic proof theory. In: Grädel, E., Kahle, R. (eds.) Proceedings of the 18th EACSL Annual Conference on Computer Science Logic, LNCS 5771, pp. 163–178. Springer (2009)

  8. Dummett M.A.E., Lemmon E.J.: Modal logics between S4 and S5. Zeitschrift für Mathematische Logik  und Grundlagen der Mathematik 5, 250–264 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dyckhoff R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic J. IGPL 7, 319–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dyckhoff R., Negri S.: Decision methods for linearly ordered Heyting algebras. Arch. Math. Logic 45, 411–422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with an application to the provability interpretation of intuitionistic logic (in progress)

  12. Ferrari M., Miglioli P.: Counting the maximal intermediate constructive logics. J. Symb. Logic 58, 1365–1401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fitch F.B.: Tree proofs in modal logic (abstract). J. Symb. Logic 31, 152 (1966)

    Google Scholar 

  14. Fitting M.: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol. 169. Kluwer, Dordrecht (1998)

    Google Scholar 

  15. Gabbay D.: Labelled Deductive Systems. Oxford Logic Guides, vol. 33. Oxford University Press, Oxford (1996)

    Google Scholar 

  16. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums, vol. 4, pp. 39–40, 1933. English tr. in Gödel’s Collected Works, vol. I, pp. 300–303 (1986)

  17. Goré, R.: Tableau methods for modal and temporal logics. In: [1], pp. 297–396

  18. Iemhoff R.: On the rules of intermediate logics. Arch. Math. Logic 45, 581–599 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jankov V.A.: The calculus of the weak “law of excluded middle”. Math. USSR Izvestija 2, 997–1004 (1968)

    Article  MATH  Google Scholar 

  20. Kanger S.: Provability in Logic. Almqvist & Wiksell, Stockholm (1957)

    Google Scholar 

  21. Ketonen O.: Untersuchungen zum Prädikatenkalkül. Annales Acad. Sci. Fenn, Ser. A.I. 23, 1–71 (1944)

    Google Scholar 

  22. Kracht, M.: Power and weakness of the modal display calculus. In: [45], pp. 95–122

  23. Kripke, S.A.: Semantical analysis of intuitionistic logic. I. In: Formal Systems and Recursive Functions (Proc. Eighth Logic Colloq., Oxford, 1963), pp. 92–130 (1965)

  24. Kripke S.A.: A completeness theorem in modal logic. J. Symb. Logic 24, 1–14 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maksimova L.: Interpolation properties of superintuitionistic logics. Studia Logica 38, 419–428 (1979)

    Article  MathSciNet  Google Scholar 

  26. Maslov S.J.: An invertible sequential version of the constructive predicate calculus. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 4, 96–111 (1967)

    MATH  Google Scholar 

  27. McKinsey J.C., Tarski A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symb. Logic 13, 1–15 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mints, G.: A Short Introduction to Intuitionistic Logic. CSLI Lecture Notes, vol. 30. Stanford (1992)

  29. Negri S.: Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Arch. Math. Logic 42, 389–401 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Negri S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Negri, S.: Proof analysis in non-classical logics. In: Dimitracopoulos, C., et al. (eds.) Logic Colloquium ’05, ASL Lecture Notes in Logic, vol. 28, pp. 107–128 (2008)

  32. Negri S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds) Acts of Knowledge—History, Philosophy and Logic, pp. 247–282. College Publications, London (2009)

    Google Scholar 

  33. Negri S.: Proof theory for modal logic. Philosophy Compass 6, 523–538 (2011)

    Article  Google Scholar 

  34. Negri S., von Plato J.: Cut elimination in the presence of axioms. Bull. Symb. Logic 4, 418–435 (1998)

    Article  MATH  Google Scholar 

  35. Negri S., von Plato J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  36. Negri S., von Plato J.: Proof systems for lattice theory. Math. Struct. Comput. Sci. 14, 507–526 (2004)

    Article  MATH  Google Scholar 

  37. Negri S., von Plato J., Coquand T.: Proof-theoretical analysis of order relations. Arch. Math. Logic 43, 297–309 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Negri S., von Plato J.: Proof Analysis. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  39. Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8(4) (2007). doi:10.1145/1276920.1276924

  40. Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-intuitionistic propositional logic with labelled sequents. In: Giese, M., Waaler, A. (eds.) Proceedings of Tableaux 2009, Lecture Notes in Artificial Intelligence 5607, pp. 295–309, Springer (2009)

  41. Simpson, A.: Proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, School of Informatics, University of Edinburgh (1994)

  42. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge (2000)

  43. Vigano L.: Labelled Non-classical Logics. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  44. Wallen L.: Automated Deduction in Non-classical Logic. MIT Press, Cambridge (1990)

    Google Scholar 

  45. Wansing, H. (eds): Proof Theory of Modal Logic. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  46. Wansing H.: Displaying Modal Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Dyckhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyckhoff, R., Negri, S. Proof analysis in intermediate logics. Arch. Math. Logic 51, 71–92 (2012). https://doi.org/10.1007/s00153-011-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0254-7

Keywords

Mathematics Subject Classification (2000)

Navigation