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The taming of recurrences in computability logic through

cirquent calculus, Part I

Giorgi Japaridze∗

Abstract

This paper constructs a cirquent calculus system and proves its soundness and completeness
with respect to the semantics of computability logic. The logical vocabulary of the system consists
of negation ¬, parallel conjunction ∧, parallel disjunction ∨, branching recurrence ◦

|
, and branching

corecurrence ◦
| . The article is published in two parts, with (the present) Part I containing prelimi-

naries and a soundness proof, and (the forthcoming) Part II containing a completeness proof.
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1 Introduction

Computability logic (CoL) is a project for redeveloping logic as a formal theory of computability. In
much the same way classical logic’s objects of study are predicates and their truth conditions, CoL
talks about computational problems and their algorithmic solvability. Computational problems, in
turn, understood in the most general — interactive — sense, are defined as games played by a machine
against its environment, with computability meaning existence of a machine that always wins. Among
the main pursuits of CoL is to provide a systematic, universal-utility tool for telling what can be
computed and how.

1.1 A brief informal look at the language and semantics of CoL

The approach of CoL induces a rich collection of logical operators, standing for various natural and
basic operations on problems/games. An incomplete — in fact, open-ended and still expanding — list of
those includes: negation ¬; parallel, choice, sequential and toggling conjunctions ∧,⊓,△,∧ together with

corresponding disjunctions ∨,⊔,▽,∨ and quantifiers ∧x,∨x,⊓x,⊔x,△x,▽x,∧x,∨x; branching,

parallel, sequential and toggling recurrences ◦
| , ∧

| ,−∧
| , ∧| together with their dual corecurrences ◦| , ∨| ,

−∨
| , ∨| .

In a quick intuitive tour of this zoo of operations, ¬ can be characterized as a role switch operation:
¬A is the same from the point of a given player as what A is from the point of view of the other player.
That is, the machine’s moves and wins become those of the environment, and vice versa. For instance,
if Chess is the game of chess as seen by the white player, then ¬Chess is the same game as seen by the
black player.

Next, A∧B and A∨B are games playing which means playing both A and B in parallel. In A∧B,
the machine is considered to be the winner if it wins in both components, while in A ∨ B winning in
just one component is sufficient. In contrast, A ⊓ B (resp. A ⊔ B) is a game where the environment
(resp. machine) has to choose, at the very beginning, one of the two components, after which the
play continues according to the rules of the chosen component. To appreciate the difference, compare
¬Chess∨Chess and ¬Chess⊔Chess. The former is a two-board game, where the machine plays black on
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the left board and white on the right board. It is very easily won by the machine by just mimicking on
either board the moves made by its adversary on the other board. On the other hand, ¬Chess ⊔Chess
is not at all easy to win. Here the machine has to choose between playing black or white, after which
the game continues as the chosen one-board game. Generally, the principle ¬P ∨ P is valid in CoL (in
the sense of being “always winnable” by a machine) while ¬P ⊔ P is not.

The combination A△B (resp. A▽B) is a game that starts as an ordinary play of A. It will also
end as A unless, at some point, the environment (resp. machine) decides to make a switch to the second
component, in which case the game restarts, continues and ends as B. As for A∧B (resp. A ∨B), here
the environment (resp. machine) is allowed to make a switch back and forth between the components
any finite number of times.

All of the above four (parallel, choice, sequential and toggling) sorts of conjunction and disjunction
naturally extend to corresponding universal and existential quantifiers. Namely, with the universe of
discourse being the set of natural numbers,∧xA(x) can be defined as A(0)∧A(1)∧A(2)∧ . . ., ∨xA(x)
as A(0)∨A(1)∨A(2)∨. . ., ⊓xA(x) as A(0)⊓A(1)⊓A(2)⊓. . ., and so on. To get a feel for the associated
computational intuitions, consider a function f(x). CoL sees standard propositions such as f(3) = 81
as special, moveless sorts of games, automatically won by the machine when true and lost when false.
If so, the meaning of ∧x∨y(f(x) = y) can be seen to be exactly classical (here with ∧ = ∀ and
∨ = ∃). Namely, this is a moveless game won by the machine if and only if the function f(x) is total.
In contrast, ⊓x⊔y(f(x) = y) is a two-move game. The first move is by the environment, consisting in
choosing a particular value m for x and intuitively amounting to asking the question “what is the value
of f(m)?”. The second move is by the machine, which should choose a value n for y. This amounts to
answering/claiming that f(m) = n. The machine wins if and only if such a claim is true. We thus see
that ⊓x⊔y(f(x) = y) in fact expresses the problem of computing function f(x). Namely, the machine
has a(n algorithmic) winning strategy in this game if and only if f(x) is (total and) computable in
the standard sense. In a similar fashion, where p(x) is a predicate, ⊓x(¬p(x) ⊔ p(x)) can be seen to
express the problem of deciding p(x), ⊓x(¬p(x)▽ p(x)) as the problem of semideciding (recursively
enumerating) p(x), and ⊓x(¬p(x) ∨ p(x)) as the problem of recursively approximating p(x).

An infinite variety of other relations and operations on computational problems, only very few of
which have established names in the literature, can be systematically expressed and studied using the
formalism of CoL. This includes various sorts of reduction relations or operations, such as mapping
(many-to-one) reduction or Turing reduction. Expressions capturing reduction will typically involve
the operator → (possibly in combination with some other operators), defined by A → B = ¬A∨B. To
see why the game/problem A → B is indeed about reducing B to A, note that, in it, from the machine’s
prospective, the antecedent A can be viewed as a computational resource. Resources are symmetric to
problems: what is a computational problem for one player to solve, is a computational resource that
the other player can use. Since the roles of the players are interchanged in negated games, A in the
antecedent of A → B is a resource rather than a problem for the machine. During a play of A → B,
the goal of the machine is to successfully solve (win) B as long as the environment successfully solves
(wins) A. The effect is that the environment, in fact, provides an oracle for A, which can be used by
the machine in solving B.

What is common to all members of the family of recurrence operations is that, when applied to A,
they turn it into a game playing which means repeatedly playing A. In terms of resources, recurrence
operations generate multiple “copies” of A, thus makingA a reusable/recyclable resource. The difference
between the various sorts of recurrences is how “reusage” is exactly understood. To get an intuitive feel
for recurrence operations, here we compare three sorts of them: −∧

| , ∧
| and ◦

| .
Imagine a computer that has a program successfully playing Chess. The resource that such a

computer provides is obviously something stronger than just Chess, for it permits to play Chess as
many times as the user wishes, whereas Chess, as such, only assumes a single play. Even the simplest
operating system would allow to start a session of Chess, then — after finishing or abandoning and
destroying it — start a new play again, and so on. The game that such a system plays — i.e. the
resource that it supports/provides — is nothing but the sequential recurrence −∧

| Chess, which assumes
an unbounded number of plays of Chess in a sequential fashion and which can be defined as the infinite
sequential conjunction Chess△Chess△Chess△ . . .. A more advanced operating system, however,
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would not require to destroy the old sessions before starting new ones; rather, it would allow to run as
many parallel sessions as the user needs. This is what is captured by the parallel recurrence ∧

| Chess,
defined as the infinite parallel conjunction Chess∧Chess∧Chess∧. . .. As a resource, ∧| Chess is obviously
stronger than −∧

| Chess as it gives the user greater flexibility. But ∧
| is still not the strongest form of

reusage. A really good operating system would not only allow the user to start new sessions of Chess
without destroying old ones; it would also make it possible to branch/replicate each particular stage
of each particular session, i.e. create any number of “copies” of any already reached position of the
multiple parallel plays of Chess, thus giving the user the possibility to try different continuations from
the same position. What corresponds to this intuition is the branching recurrence ◦

| Chess.
So, the user of the resource ◦

| A does not have to restart A from the very beginning every time it
wants to reuse it; rather, it is allowed to backtrack to any of the previous — not necessarily starting
— positions and try a new continuation from there, thus depriving the adversary of the possibility to
reconsider the moves it has already made in that position. This is in fact the type of reusage every
purely software resource allows or would allow in the presence of an advanced operating system and
unlimited memory: one can start running process A; then fork it at any stage thus creating two threads
that have a common past but possibly diverging futures (with the possibility to treat one of the threads
as a “backup copy” and preserve it for backtracking purposes); then further fork any of the branches at
any time; and so on. The less flexible type of reusage of A assumed by ∧

| A, on the other hand, is closer
to what infinitely many autonomous physical resources would naturally offer, such as an unlimited
number of independently acting robots each performing task A, or an unlimited number of computers
with limited memories, each one only capable of and responsible for running a single thread of process
A. Here the effect of replicating/forking an advanced stage of A cannot be achieved unless, by good luck,
there are two identical copies of the stage, meaning that the corresponding two robots or computers
have so far acted in precisely the same ways. As for −∧

| A, it models the task performed by a single
reusable physical resource — the resource that can perform task A over and over again any number of
times.

Most interesting and important of all recurrences is branching recurrence ◦
| , on which the present

paper is going to be focused. As noted, ◦
| is the strongest form of recurrence in that it allows to use

and re-use its argument (as a computational resource) in the strongest algorithmic sense possible. This
immediately translates into a well-justified claim that the compound operation ◦

| A → B, abbreviated as
A ◦–B, captures our most general intuition of algorithmically reducing B to A. The well-known concept
of Turing reduction has the same claims. But the latter is defined only for traditional sorts of problems,
such as the problem of computing a function or the problem of deciding a predicate. A ◦–B, on the
other hand, is meaningful for all interactive computational problems. As expected, A ◦–B turns out
to be a conservative generalization of Turing reduction in the sense that, when A and B are traditional
sorts of problems, B is Turing reducible to A if and only if there is a machine that always wins the
game A ◦–B. As for the logical behavior of this generalized Turing reduction operation, the paper [10]
showed that the set of the principles validated by ◦– is precisely described by (the implicative fragment
of) Heyting’s intuitionistic calculus, with ◦– understood as intuitionistic implication. This result was
further extended in [13] to the principles additionally involving ⊓ and ⊔, with the latter understood
as intuitionistic conjunction and disjunction, respectively. This can be viewed as a corroboration of
Kolmogorov’s [28] well-known yet rather abstract thesis, according to which intuitionistic logic is a
“logic of problems”.

All in all, the logical behavior of ◦
| is reminiscent of Girard’s [3] storage operator ! and (especially)

Blass’s [2] repetition operator R, yet different from either. For instance, as will be seen later from
Section 5.6, the principle

◦
| ◦

| P → ◦
| ◦

| P

(◦| means ¬◦
| ¬) is valid in CoL while linear of affine logics do not prove it with ◦

| , ◦| understood as !, ?
and → understood as linear implication; on the other hand, as shown in [23], the principle

P ∧ ◦
| (P → P ∧ P ) ∧ ◦

| (P ∨ P → P ) → ◦
| P

is not valid in CoL (nor provable in affine logic) while its counterpart is validated by Blass’s semantics.
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1.2 CoL versus other logical traditions

As noted, CoL sees classical propositions and predicates (the latter being nothing but generalized
propositions) as special sorts of games, automatically won or lost depending on whether they are true
or false. Such moveless games — problems of zero degree of interactivity — are termed elementary.
As a result, classical logic re-emerges as a modest conservative fragment of the otherwise much more
expressive CoL. Namely, the former is nothing but the latter restricted to elementary games and the
vocabulary {¬,∧,∨,∧,∨}. The game-semantical meanings of these five operations turn out to be
conservative generalizations of the corresponding classical connectives and quantifiers, naturally and
fully coinciding with the latter when applied to propositions and predicates, i.e. elementary games.

A number of non-classical logics and/or their variations also re-emerge as special fragments of CoL.
Those include intuitionistic logic (cf. [10, 12, 13, 17, 31]), linear logic (cf. [16]) and independence-friendly
logic (cf. [20]). CoL with its game semantics thus acts as a unifying framework for various, sometimes
seemingly incompatible or even antagonistic philosophical traditions in logic. Accommodating and
reconciling this sort of diversity is possible due to the fact that, as [21] puts it, “CoL gives Caesar what
belongs to Caesar and God what belongs to God”. For instance, CoL settles the fruitless controversy
around the law of excluded middle between classical and intuitionistic logics by simply pointing out
that the meaning associated with disjunction in classical logic is ∨ while in intuitionistic logic it is
(or should be) ⊔ instead, so that ¬A ∨ A is indeed valid just as it is in classical logic, and ¬A ⊔ A is
indeed invalid just as it is in intuitionistic or other constructive logics. Next, the differences between
classical and linear logics (the latter understood in a generous sense and not necessarily identified with
Girard’s [3] canonical version of it) are explained by the fact that the two deal with different sorts
of “games”: classical logic exclusively deals with elementary (moveless) games, while linear logic with
not-necessarily-elementary ones. CoL typically insists on having two different sorts of atoms in its
language: p, q, . . . ranging over elementary games, and P,Q, . . . ranging over all games.1 As a result,
(for instance) the principle p → p ∧ p goes through just as it does in classical logic, and the principle
P → P ∧ P fails just as it does in linear logic. As for independence-friendly logic, its expressive power
(and far beyond) is achieved through generalizing the syntax of formulas to the more flexible syntax
of so called cirquents — a generalization which, as will be seen shortly, is naturally and independently
called for in CoL.

Non-classical logics have often been constructed syntactically rather than semantically, essentially
by taking an axiomatization of classical logic and deleting or modifying axioms that are otherwise
inconsistent with the intuitions and philosophy underlying the non-classical approach. CoL finds this
way of developing new logics less than satisfactory, warning that it may result in throwing out the baby
with the bath water. Namely, there is no guarantee that, together with the clearly offending principles
such as excluded middle in intuitionistic logic or contraction in linear logic, some other, deeply hidden
innocent principles will not be automatically expelled as well. The earlier mentioned ◦

| ◦
| P → ◦

| ◦
| P

is among such “innocent victims”. In CoL, the starting point is semantics rather than syntax, with
the function of the latter seen to be acting as a faithful servant to the former rather than vice versa,
for it is semantics that provides a bridge between logic and the real, outside word, thus making the
former a meaningful and useful tool for navigating the latter. One should explicate the philosophy and
intuitions underlying a logic — its informal semantics, that is — through an adequate formal semantics
(rather than try to do so directly through an “adequate syntax”), and only after that start looking for
a corresponding syntax/axiomatization, accompanying any adequacy claims for such a syntax with
rigorous soundness and completeness proofs. In comparing the semantics-based approach of CoL with
the essentially syntax-driven approaches of intuitionistic or linear logics, [16] tries to make a point about
the circularity of the latter through the following sarcasm:

The reason for the failure of A ⊔ ¬A in CoL is not that this principle ... is not included in
its axioms. Rather, the failure of this principle is exactly the reason why this principle, or
anything else entailing it, would not be among the axioms of a sound system for CoL.

1This however is not the case for the system CL15 dealt with in the present paper, whose formal language only has
the second sort of atoms.
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1.3 Utility

While at this point the ambitious and long-term CoL project still remains in its infancy, a wide range
of applications, mainly in computer science, are already in sight. The applicability of CoL is related
to the fact that it provides a systematic answer to not only the question “What can be computed?”,
but also “How can be computed?”. Namely, all known axiomatizations of (various fragments of) CoL
enjoy the so called uniform-constructive soundness property, according to which every proof of a valid
formula F can be effectively — in fact, efficiently — translated into an algorithmic — in fact, efficient
— solution for F (for the problem represented by F , that is) regardless of how the non-logical atoms of
F are interpreted. This phenomenon further extends from proofs to derivations: given a derivation of
F from some set ~F of formulas, one can effectively — in fact, efficiently — extract a solution S for F
from any set ~S of solutions for the elements of ~F ; furthermore, if all solutions in ~S are efficient, so is S;
and, as in the preceding case, such a solution S or its extraction do not depend on the actual meanings
associated with the atoms of F, ~F . To summarize, CoL is a problem-solving formal tool, allowing us to
systematically find solutions for new problems from already known solutions for old problems.

Other than theory of interactive computation and interactive algorithms, the actual or potential ap-
plication areas for CoL include knowledge base systems ([16, 33]), systems for resource-oriented planning
and action ([16]), logic programming ([29, 30]) and declarative programming languages ([21]), implicit
computational complexity ([21, 26]), constructive applied theories ([18, 21, 26, 27]). Discussing those,
even briefly, could take us too far. Here we shall only point out that, as expected, in CoL-based applied
systems, such as CoL-based axiomatic theories of (Peano) arithmetic developed in [18, 21, 26, 27], every
formula represents a(n interactive) computational problem, every theorem represents a problem with
an algorithmic solution, and every proof efficiently encodes such a solution. Furthermore, by varying
the underlying set of non-logical axioms (usually only induction), one can obtain elegant and amazingly
simple systems sound and (representationally) complete with respect to various classes of computa-
tional complexity, such as polynomial time computability2 ([21]), polynomial space computability ([26],
elementary recursive computability ([26]), primitive recursive computability ([26]), provably recursive
computability ([27]), and so on. Such systems can be viewed as programming languages where pro-
gramming reduces to proof-search, and where the generally undecidable problem of whether a program
meets its specification is fully neutralized because every proof automatically also serves as verification of
the correctness of the program extracted from it. In a more ambitious and, at this point, somewhat fan-
tastic perspective, developing reasonable theorem-provers would turn CoL-based applied systems into
declarative programming languages in an extreme sense, where human “programming” reduces merely
to specifying the goal, with the rest of the job — finding a proof of the goal formula and extracting a
program from it — delegated to a CoL-based compiler.

1.4 On the present contribution

Since CoL evolves by the scheme “from semantics to syntax”, among its main pursuits at this early
stage of development is finding sound and complete axiomatizations for various fragments of it. Recent
years ([6]-[15], [17]-[20], [24], [31], [35], etc.) have seen rapid and sustained progress in this direction,
at both the propositional and the first-order levels, including axiomatizations for the rather expressive
first-order fragments of CoL on which the above mentioned systems of arithmetic from [18, 21, 26, 27]
are based. All fragments axiomatized so far, however, have been recurrence-free,3 and finding syntactic
descriptions of the logic induced by ◦

| (the most important of all recurrence operations) has been
remaining among the greatest challenges in the entire CoL enterprise since its inception.

The present paper signifies a long-awaited breakthrough in overcoming that challenge. It constructs
a sound and complete axiomatization CL15 of the basic logic of branching recurrence — namely, the
one in the signature {¬,∧,∨, ◦

| , ◦| }. By the standards of CoL, this is a relatively modest fragment, of
course. But taming it is a necessary first step, providing a platform for launching attacks on further,

2Meaning that every proof in such a system encodes not merely an algorithmic solution, but a polynomial time solution,
and vice versa: to every polynomial time algorithm corresponds a proof in the system.

3The so called intuitionistic fragment of CoL, studied in [10, 12, 13, 31], is the only exception. There, however, the
usage of ◦.

...

.

is limited to the very special form/context ◦.
...
.

E → F .
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incrementally more expressive recurrence-containing fragments. This article is published in two parts,
with (the present) Part I containing preliminaries and a soundness proof, and (the forthcoming) Part
II ([25]) containing a completeness proof.

CL15 is a system built in cirquent calculus. The latter is a new proof-theoretic approach introduced
in [9] and further developed in [14, 20, 34, 35]. It manipulates graph-style constructs termed cirquents,
as opposed to the traditional tree-style objects such as formulas (Frege, Hilbert), sequents (Gentzen),
hypersequents (Avron [1], Pottinger [32]) or structures (Guglielmi [4]). Cirquents come in a variety of
forms, and what is characteristic to all of them, making them different from the traditional objects of
syntactic manipulation, is allowing to explicitly account for presence or absence of shared subcomponents
between different components. Among the advantages of cirquent calculus are higher expressiveness,
flexibility and efficiency. Due to the first two, cirquent calculus also appears to be the only suitable
systematic deductive framework for CoL. Attempts to axiomatize even the simplest (¬,∧,∨) fragment
of CoL in any of the above-mentioned “traditional” frameworks have failed hopelessly, for apparently
inherent reasons.

From the technical point of view, the present paper is self-contained in that it includes all relevant
definitions. For detailed elaborations on the associated motivations, explanations and illustrations, if
necessary, the reader may additionally see the first 10 sections of [16], which provide a tutorial-style
introduction to CoL.

2 Basic concepts

The present section provides a quick account on the basic relevant concepts of CoL, and some basic
notational conventions that the rest of the paper will rely on. The account is formal/technical and, as
mentioned, a reader wishing to get deeper insights, may want to consult [16].

2.1 Constant games

As we already know, CoL is a formal theory of interactive computational problems, and understands
the latter as games between two players: machine and environment. The symbolic names for these
two players are ⊤ and ⊥, respectively. ⊤ is a deterministic mechanical device (thus) only capable of
following algorithmic strategies, whereas there are no restrictions on the behavior of ⊥. The letter

℘

is always a variable ranging over {⊤,⊥}, with

¬℘

meaning ℘’s adversary, i.e. the player which is not ℘.
We agree that a move means any finite string over the standard keyboard alphabet. A labeled

move (labmove) is a move prefixed with ⊤ or ⊥, with its prefix (label) indicating which player has
made the move. A run is a (finite or infinite) sequence of labmoves, and a position is a finite run.
Runs will be usually delimited by “〈” and “〉”, with 〈〉 thus denoting the empty run. When Γ is a run,
by

¬Γ

we mean the same run but with each label ℘ changed to its opposite ¬℘.
The following is a formal definition of the concept of a constant game, combined with some less

formal conventions regarding the usage of certain terminology.

Definition 2.1 A constant game is a pair A = (LrA,WnA), where:

1. LrA is a set of runs satisfying the condition that a finite or infinite run is in LrA iff all of
its nonempty finite — not necessarily proper — initial segments are in LrA (notice that this implies
〈〉 ∈ LrA). The elements of LrA are said to be legal runs of A, and all other runs are said to be illegal

6



runs of A. We say that α is a legal move for ℘ in a position Φ of A iff 〈Φ, ℘α〉 ∈ LrA; otherwise α is
an illegal move. When the last move of the shortest illegal initial segment of Γ is ℘-labeled, we say
that Γ is a ℘-illegal run of A.

2. WnA is a function that sends every run Γ to one of the players ⊤ or ⊥, satisfying the condition
that if Γ is a ℘-illegal run of A, then WnA〈Γ〉 = ¬℘.4 When WnA〈Γ〉 = ℘, we say that Γ is a ℘-won
(or won by ℘) run of A; otherwise Γ is lost by ℘. Thus, an illegal run is always lost by the player
who has made the first illegal move in it.

It is clear from the above definition that, when defining the Wn component of a particular constant
game A, it is sufficient to specify what legal runs are won by ⊤. Such a definition will then uniquely
extend to all — including illegal — runs. We will implicitly rely on this observation in the sequel.

2.2 Game operations

Throughout this paper, a bitstring means a finite or infinite sequence of bits 0, 1. For bitstrings x and
y, we write

x � y

to mean that x is a (not necessarily proper) initial segment — i.e. prefix — of y.

Notation 2.2 Let Θ be a run.
1. Where α is a move, we will be using the notation

Θα

to mean the result of deleting from Θ all moves (together with their labels) except those that look
like αβ for some move β, and then further deleting the prefix “α” from such moves. For instance,
〈⊤0.β, ⊥1.γ, ⊥0.δ〉0. = 〈⊤β, ⊥δ〉.

2. Where x is an infinite bitstring, we will be using the notation

Θ�x

to mean the result of deleting from Θ all moves (together with their labels) except those that look like
u.β for some move β and some finite initial segment u of x, and then further deleting the prefix “u.”
from such moves. For instance, 〈⊤00.α, ⊥001.β, ⊥0.δ〉�000... = 〈⊤α, ⊥δ〉.

Definition 2.3 Below A, A0, A1 are arbitrary constant games, α ranges over moves, i ranges over
{0, 1}, w ranges over finite bitstrings, x ranges over infinite bitstrings, Γ ranges over all runs, and Ω
ranges over all legal runs of the game that is being defined.

1. ¬A (negation) is defined by:

(i) Γ ∈ Lr¬A iff ¬Γ ∈ LrA.

(ii) Wn¬A〈Ω〉 = ⊤ iff WnA〈¬Ω〉 = ⊥.

2. A0 ∧ A1 (parallel conjunction) is defined by:

(i) Γ ∈ LrA0 ∧ A1 iff every move of Γ is i.α for some i, α and, for both i, Γi. ∈ LrAi .

(ii) WnA0 ∧ A1〈Ω〉 = ⊤ iff, for both i, WnAi〈Ωi.〉 = ⊤.

3. A0 ∨ A1 (parallel disjunction) is defined by:

(i) Γ ∈ LrA0 ∨ A1 iff every move of Γ is i.α for some i, α and, for both i, Γi. ∈ LrAi .

(ii) WnA0 ∨ A1〈Ω〉 = ⊤ iff, for some i, WnAi〈Ωi.〉 = ⊤.

4We write Wn
A〈Γ〉 for Wn

A(Γ).
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4. ◦
| A (branching recurrence) is defined by:

(i) Γ ∈ Lr◦
....
.

A iff every move of Γ is w.α for some w,α and, for all x, Γ�x ∈ LrA.

(ii) Wn◦.
....A〈Ω〉 = ⊤ iff, for all x, WnA〈Ω�x〉 = ⊤.

5. ◦| A (branching corecurrence) is defined by:

(i) Γ ∈ Lr
◦
....
.A iff every move of Γ is w.α for some w,α and, for all x, Γ�x ∈ LrA.

(ii) Wn
◦
....
.A〈Ω〉 = ⊤ iff, for some x, WnA〈Ω�x〉 = ⊤.

Intuitively, as noted in Section 1.1, ¬ is a role switch operation: it turns ⊤’s (legal) runs and wins
into those of ⊥, and vice versa.

Next, A ∧ B and A ∨ B are parallel plays in the two components (two “boards”). The intuitive
meaning of a move 0.α (resp. 1.α) by either player is making the move α in the A (resp. B) component
of the game. So, when Γ is a legal run of either play, Γ0. can and will be seen as the run that took
place in A, and Γ1. as the run that took place in B. In order to win A ∧ B, ⊤ needs to win in both
components, while for winning A ∨B winning in just one of the components is sufficient.

Next, ◦
| A and ◦

| A can be seen as parallel plays of a continuum of “copies”, or “threads”, of A.5

Each thread is denoted by an infinite bitstring and vice versa: every infinite bitstring denotes a thread.
The meaning of a move w.α, where w is a finite bitstring, is making the move α simultaneously in all
threads (whose names are) of the form wy. Correspondingly, when Γ is a legal run of ◦

| A or ◦| A and x

is an infinite bitstring, Γ�x represents the run of A that took place in thread x. In order to win ◦
| A, ⊤

needs to win in all threads, while for winning ◦
| A winning in just one thread is sufficient.

A correspondence between the above intuitive characterization of ◦
| and the characterization of this

operation provided in Section 1.1 may not be obvious. The point is that two versions of ◦
| have been

studied in the earlier literature on CoL. The old, “canonical” version, called tight, was defined in [5, 16],
while the newer version, called loose, was introduced only very recently in [22]. It is the definition of the
tight rather than the loose version that directly materializes the intuitions presented in Section 1.1. On
the other hand, Definition 2.3 and the rest of this paper exclusively deal with the loose version. There
is nothing to be confused about here: all results of this paper automatically extend to the tight version
as well because, as shown in [22], the two versions are equivalent in all relevant respects, including (but
not limited to) equivalence in the sense of validating identical principles.

Later we will seldom rely on the strict definitions of the operations ¬,∧,∨, ◦
| , ◦| when analyzing

games. Rather, based on the above-described intuitions, we will typically use a rather relaxed informal
or semiformal language and say, for instance, “⊤ made the move α in the A component of A ∧ B”
instead of “⊤ made the move 0.α”. In either case, instead of saying “⊤ made the move γ”, we can
simply say “the labmove ⊤γ was made”. And so on.

Note the perfect symmetry between ∧ and ∨, as well as between ◦
| and ◦

| : the definition of either
operation of a pair can be obtained from the definition of its dual by simply interchanging ⊤ with ⊥.
With this observation, the following fact is easy to verify:

Fact 2.4 For any constant games A and B, we have:

¬¬A = A;
¬(A ∧B) = ¬A ∨ ¬B; ¬(A ∨B) = ¬A ∧ ¬B;

¬◦
| A = ◦

| ¬A; ¬◦| A = ◦
| ¬A.

2.3 Games in general

Constant games can be seen as generalized propositions: while the propositions of classical logic are
just elements of {⊤,⊥}, constant games are functions from runs to {⊤,⊥}. As we are going to see,

5Nothing to worry about: “playing a continuum of copies” does not destroy the “finitary” or “playable” character of
our games. Every move or position is still a finite object, and every infinite run is still an ω-sequence of (lab)moves.
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our concept of a (simply) game generalizes that of a constant game in the same sense as the classical
concept of a predicate generalizes that of a proposition.

We fix a countably infinite set of expressions called variables, and another countably infinite set
of expressions called constants: {0, 1, 2, . . .}. Constants are thus decimal numerals, which we shall
typically identify with the corresponding natural numbers.

By a valuation we mean a mapping e that sends each variable x to a constant e(x). In these terms,
a classical predicate p can be understood as a function that sends each valuation e to a proposition, i.e.,
to a constant predicate. Similarly, what we call a game is a function that sends valuations to constant
games:

Definition 2.5 A game is a function A from valuations to constant games. We write e[A] (rather
than A(e)) to denote the constant game returned by A on valuation e. Such a constant game e[A] is
said to be an instance of A.

Just as this is the case with propositions versus predicates, constant games in the sense of Definition
2.1 will be thought of as special, constant cases of games in the sense of Definition 2.5. In particular,
each constant game A′ is the game A such that, for every valuation e, e[A] = A′. From now on we will
no longer distinguish between such A and A′, so that, if A is a constant game, it is its own instance,
with A = e[A] for every e.

We say that a game A is unary iff there is a variable x such that, for any two valuations e1 and e2
that agree on x, we have e1[A] = e2[A].

Just as the Boolean operations straightforwardly extend from propositions to all predicates, our
operations ¬,∧,∨, ◦

| , ◦| extend from constant games to all games. This is done by simply stipulating
that e[. . .] commutes with all of those operations: ¬A is the game such that, for every valuation e,
e[¬A] = ¬e[A]; A ∧B is the game such that, for every valuation e, e[A ∧B] = e[A] ∧ e[B]; etc.

2.4 Static games

While the operations of Section 2.2 — as well as all other operations studied in CoL — are meaningful
for all games, CoL restricts its attention (more specifically, possible interpretations of the atoms of its
formal language) to a special yet very wide subclass of games termed “static”. Intuitively, static games
are interactive tasks where the relative speeds of the players are irrelevant, as it never hurts a player
to postpone making moves. In other words, these are games that are contests of intellect rather than
contests of speed. Below comes a formal definition of this concept.

For either player ℘, we say that a run Υ is a ℘-delay of a run Γ iff:

• for both players ℘′ ∈ {⊤,⊥}, the subsequence of ℘′-labeled moves of Υ is the same as that of Γ,
and

• for any n, k ≥ 1, if the n’th ℘-labeled move is made later than (is to the right of) the k’th
¬℘-labeled move in Γ, then so is it in Υ.

The above conditions mean that in Υ each player has made the same sequence of moves as in Γ, only,
in Υ, ℘ might have been acting with some delay. For instance, of the two runs 〈⊥α,⊤β,⊥δ〉 and
〈⊥α,⊥δ,⊤β〉, the latter is a ⊤-delay of the former while the former is is a ⊥-delay of the latter.

Let us say that a run is ℘-legal iff it is not ℘-illegal. That is, a ℘-legal run is either simply legal, or
the player responsible for (first) making it illegal is ¬℘ rather than ℘.

Now, we say that a constant game A is static iff, whenever a run Υ is a ℘-delay of a run Γ, we have:

• if Γ is a ℘-legal run of A, then so is Υ;6

• if Γ is a ℘-won run of A, then so is Υ.

6In some papers on CoL, the concept of static games is defined without this (first) condition. In such cases, however,
the existence of an always-illegal move ♠ is stipulated in the definition of games. The first condition of our present
definition of static games turns out to be simply derivable from that stipulation. This and a couple of other minor
technical differences between our present formulations from those given in other pieces of literature on CoL only signify
presentational and by no means conceptual variations.

9



Next, a not-necessarily-constant game is static iff so are all of its instances.
It is known ([5, 22]) that the class of static games is closed under the operations ¬,∧,∨, ◦

| , ◦| , as well as
any other operations studied in CoL. Other than being comprehensive (in a sense including “everything
that we may ever want to talk about”), this class is very natural and robust from various aspects, one
of which is explained later in Remark 2.6. A central thesis on which CoL philosophically relies is that
static games are adequate formal counterparts of our broadest intuition of “pure”, speed-independent
interactive computational problems/tasks.

2.5 Strategies

CoL understands ⊤’s effective strategies as interactive machines. Two versions of such machines were
introduced in [5], called hard-play machine (HPM) and easy-play machine (EPM). A third kind,
called block-move EPM (BMEPM), was introduced in [18]. All three are sorts of Turing machines
with an additional capability of making moves. Together with the ordinary read/write work tape,
such machines have two additional tapes, called the run tape and the valuation tape, both read-
only. The run tape serves as a dynamic input, at any time (“clock cycle”, “computation step”)
spelling the current position, i.e. the sequence of the (lab)moves made by the two players so far: every
time one of the players makes a move, that move — with the corresponding label — is automatically
appended to the content of this tape. As for the valuation tape, it serves as a static input, spelling some
valuation e by listing constants in the lexicographic order of the corresponding variables. Its content
remains fixed throughout the work of the machine.

In the HPM model, the machine can make at most one move on a clock cycle but there is no
restriction on the frequency of environment’s moves, so, during a given cycle, any finite number of
environment’s moves can be nondeterministically appended to the content of the run tape. In the EPM
model, either player can make at most one move on a given clock cycle, but the environment can move
only when the machine explicitly allows it to do so. We refer to this sort of an action by the machine as
granting permission. An BMEPM only differs from an EPM in that either player can make any finite
number of moves — rather than only one — at once (the machine whenever it wants, the environment
only when permission is granted).

Where M is an HPM, EPM or BMEPM, a configuration of M is defined in the standard way: this
is a full description of the (“current”) state of the machine, the contents of its three tapes, and the
locations of the corresponding three scanning heads. The initial configuration on a valuation e is the
configuration where M is in its start state, the work and run tapes are empty, and the valuation tape
spells e. A configuration C′ is said to be a successor of a configuration C if C′ can legally follow C in the
standard sense, based on the transition function (which we assume to be deterministic) of the machine
and accounting for the possibility of the above-described nondeterministic updates of the content of
the run tape. For a valuation e, an e-computation branch of M is a sequence of configurations
of M where the first configuration is the initial configuration on e, and each other configuration is a
successor of the previous one. Thus, the set of all computation branches captures all possible scenarios
corresponding to different behaviors by ⊥. Each e-computation branch B of M incrementally spells
— in the obvious sense — a run Γ on the run tape, which we call the run spelled by B. We will
subsequently refer to any such Γ as a run generated by M on e.

When M is an EPM or BMEPM and B is a computation branch of M, we say that B is fair iff, in
it, permission has been granted by M infinitely many times.

In these terms, an algorithmic solution (⊤’s winning strategy) for a given game A is understood
as an HPM, EPM or BMEPM M such that, for every valuation e, whenever B is an e-computation
branch of M and Γ is the run spelled by B, Γ is a ⊤-won run of e[A]; if here M is an EPM or BMEPM,
an additional requirement is that B should be fair unless Γ is a ⊥-illegal run of e[A]. When the above
is the case, we say that M wins, or solves, or computes A, and that A is a computable game.

Remark 2.6 In the above outline, we described HPMs, EPMs and BMEPMs in a relaxed fashion,
without being specific about technical details such as, say, how, exactly, moves are made by the ma-
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chine,7 what happens (in the case of HPM) if both players move during the same cycle,8 how permission
is exactly granted by an EPM or BMEPM,9 etc. These details are irrelevant and can be filled arbitrarily
because, as in the case of ordinary Turing machines, all reasonable design choices yield equivalent (in
computing power) models for static games. Furthermore, according to Theorem 17.2 of [5] and Propo-
sition 4.1 of [18], all three models (HPM, EPM and BMEPM) yield the same class of computable static
games. And this is so in the following strong, constructive sense: there is an effective procedure for
converting any machine M of any of the three sorts into a machine M′ of any of the other two sorts
such that M′ wins every static game that M wins.

Since we exclusively deal with static games, the three models are thus equivalent in all relevant
respects. Therefore, in what follows, we may simply say “a machine M” without being specific about
whether M is meant to be an HPM, EPM or BMEPM.

2.6 Formulas and their semantics

We fix a some nonempty collection of (nonlogical) atoms and use the letters P,Q as metavariables
for them. Throughout this paper, unless otherwise specified, a formula means one constructed from
atoms in the standard way using the unary connectives ¬, ◦

| , ◦| and binary connectives ∧,∨. If we write
F → G, it is to be understood as an abbreviation of ¬F ∨ G. Furthermore, officially all formulas are
required to be written in negation normal form. That is, ¬ is only allowed to be applied to atoms. ¬¬F
is to be understood as F , ¬(F ∧G) as ¬F ∨¬G, ¬(F ∨G) as ¬F ∧¬G, ¬◦

| F as ◦| ¬F , and ¬◦| F as ◦
| ¬F .

In view of Fact 2.4, this restriction does not yield any loss of expressive power. As always, a literal
means P or ¬P , where P is an atom.

An interpretation is a function ∗ that sends every atom P to a static game P ∗. This function
extends to all formulas by seeing the logical connectives as the same-name game operations. That is,
(¬E)∗ = ¬(E∗), (E ∧ F )∗ = E∗ ∧ F ∗, etc. When F ∗ = A, we say that ∗ interprets F as A.

Definition 2.7 We say that a formula F is:

• uniformly valid iff there is a machine M, called a uniform solution of F , such that, for every
interpretation ∗, M wins F ∗;

• multiformly valid iff, for every interpretation ∗, there is a machine that wins F ∗.

As will be seen later, the two concepts of validity are extensionally equivalent (characterize the same
classes of formulas), so we may sometimes simply say “valid” without being specific about whether we
mean uniform or multiform validity. The main goal of the present paper is to axiomatize the set of
valid formulas.

3 Cirquents

Definition 3.1 A cirquent (in this paper) is a triple C = (~F , ~U, ~O) where:

1. ~F is a nonempty finite sequence of formulas, whose elements are said to be the oformulas of C.
Here the prefix “o” is for “occurrence”, and is used to mean a formula together with a particular
occurrence of it in ~F . So, for instance, if ~F = 〈E,F,E〉, then the cirquent has three oformulas
even if only two formulas.

2. Both ~U and ~O are nonempty finite sequences of nonempty sets of oformulas of C. The elements of
~U are said to be the undergroups of C, and the elements of ~O are said to be the overgroups of
C. As in the case of oformulas, it is possible that two undergroups or two overgroups are identical

7Perhaps this is done by constructing the moves on the work tape, delimiting their beginnings and ends by some special
symbols, and then entering one of the specially designated “move states”.

8An arrangement here can be that the machine’s move will appear after the environment’s move(s).
9A natural arrangement would be that permission is granted through entering one of the specially designated “per-

mission states”.
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as sets (have identical contents), yet they count as different undergroups or overgroups because

they occur at different places in the sequence ~U or ~O. Simply “group” will be used as a common
name for undergroups and overgroups.

3. Additionally, every oformula is required to be in (the content of) at least one undergroup and at
least one overgroup.

While oformulas are not the same as formulas, we may often identify an oformula with the corre-
sponding formula and, for instance, say “the oformula E” if it is clear from the context which of possibly
many occurrences of E is meant. Similarly, we may not always be very careful about differentiating
between undergroups (resp. overgroups) and their contents.

We represent cirquents using diagrams such as the one shown below:

r r❛❛❛
✦✦✦

❛❛❛
✦✦✦

F1 F2 F3 F4

◗◗ ◗◗ ✑✑ ◗◗ ✑✑r r r

This diagram represents the cirquent with four oformulas (in the order of their occurrences) F1,
F2, F3, F4, three undergroups {F1}, {F2, F3}, {F3, F4} and two overgroups {F1, F2, F3}, {F2, F4}. We
typically do not terminologically differentiate between cirquents and diagrams: for us, a diagram is
(rather than represents) a cirquent, and a cirquent is a diagram. Each group is represented by (and
identified with) a •, where the arcs (lines connecting the • with oformulas) are pointing to the oformulas
that the given group contains.

4 The rules of CL15

We explain the inference rules of our system CL15 in a relaxed fashion, in terms of deleting arcs, swap-
ping oformulas, etc. Such explanations are rather clear, and translating them into rigorous formulations
in the style and terms of Definition 3.1, while possible, is hardly necessary.

4.1 Axiom

Axiom is a “rule” with no premises. It introduces (its conclusion is) the cirquent

(〈¬F1, F1, . . . ,¬Fn, Fn〉, 〈{¬F1, F1}, . . . , {¬Fn, Fn}〉, 〈{¬F1, F1}, . . . , {¬Fn, Fn}〉),

where n is any positive integer, and F1, . . . , Fn are any formulas. Such a cirquent looks like an array of
n “diamonds”, as shown below for the case of n = 3:

¬F1 F1

❧❧✱✱r

✱✱❧❧
r

¬F2 F2

❧❧✱✱r

✱✱❧❧
r

¬F3 F3

❧❧✱✱r

✱✱❧❧
r

4.2 Exchange

This and all of the remaining rules take a single premise. The Exchange rule comes in three flavors:
Undergroup Exchange, Oformula Exchange and Overgroup Exchange. Each one allows us
to swap any two adjacent objects (undergroups, oformulas or overgroups) of a cirquent, otherwise
preserving all oformulas, groups and arcs.

Below we see three examples. In each case, the upper cirquent is the premise and the lower cirquent
is the conclusion of an application of the rule. Between the two cirquents — here and later — is placed
the name of the rule by which the conclusion follows from the premise.
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r r r

F G H

✟✟✟
r r r✟✟✟❍❍❍

Undergroup Exchange

r r r

F G H

✟✟✟
r r r✟✟✟

Oformula Exchange

r r❍❍❍
r✟✟✟

F H G

✘✘✘✘✘
r r r✟✟✟❍❍❍

r r r

F G H

✟✟✟
r r r✟✟✟

Overgroup Exchange

r❍❍❍
r✟✟✟

r

F G H

✟✟✟
r r r✟✟✟

r r r

F G H

✟✟✟
r r r✟✟✟

Note that the presence of Exchange essentially allows us to treat all three components (~F , ~U, ~O) of
a cirquent as multisets rather than sequences.

4.3 Weakening

The premise of this rule is obtained from the conclusion by deleting an arc between some undergroup U

with ≥ 2 elements and some oformula F ; if U was the only undergroup containing F , then F should also
be deleted (to satisfy Condition 3 of Definition 3.1), together with all arcs between F and overgroups;
if such a deletion makes some overgroups empty, then they should also be deleted (to satisfy Condition
2 of Definition 3.1). Below are three examples:

❍❍❍
r r

E F

r r

Weakening

❍❍❍
r r

E F

✟✟✟
r r

❍❍❍
r r

F

✟✟✟
r r

Weakening

❍❍❍
r r

E F

✟✟✟
r r

r

F

✟✟✟
r r

Weakening

✟✟✟
r r

E F

✟✟✟
r r

4.4 Contraction

The premise of this rule is obtained from the conclusion through replacing an oformula ◦
| F by two

adjacent oformulas ◦
| F, ◦| F , and including them in exactly the same undergroups and overgroups in

which the original oformula was contained. Example:

r rPPP
rPPP

✏✏✏
H ◦

| F ◦
| F G

r rPPP
✏✏✏

✏✏✏
PPP

Contraction

r r

◗◗
rPPP✑✑

H ◦
| F G

r rPPP
✏✏✏

✑✑ ◗◗

4.5 Duplication

This rule comes in two versions: Undergroup Duplication and Overgroup Duplication. The
conclusion of Undergroup Duplication is the result of replacing, in the premise, some undergroup U
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with two adjacent undergroups whose contents are identical to that of U . Similarly for Overgroup
Duplication. Examples:

Undergroup Duplication

r r❍❍❍
F G H

✟✟✟
r r✟✟✟

r r❍❍❍
F G H

✟✟✟
r r r✟✟✟❍❍❍

Overgroup Duplication

r r❍❍❍
F G H

✟✟✟
r r✟✟✟

r r❍❍❍
r✟✟✟

F G H

✟✟✟
r r✟✟✟

4.6 Merging

In the top-down view, this rule merges any two adjacent overgroups, as illustrated below.

Merging

r r

F G

r

�❅
F G

❅�r

Merging

r❍❍❍
r

F G

r❅�r❅�

r

�❅
F G

❅�r

Merging

r❍❍❍
✟✟✟
r

F G

r❅❅��

r

�❅
F G

❅�r

Merging

r r✟✟✟
r✟✟✟

F G H

✟✟✟
r r r✟✟✟

r r✟✟✟
❍❍❍

F G H

✟✟✟
r r r✟✟✟

4.7 Disjunction Introduction

The premise of this rule is obtained from the conclusion by replacing an oformula F ∨G by two adjacent
oformulas F,G, and including both of them in exactly the same undergroups and overgroups in which
the original oformula was contained, as illustrated below:

Disjunction Introduction

r

❅�
E F

r�❅

r

E ∨ F

r

Disjunction Introduction

r❍❍✟✟
r

H F G E

r r r✟✟❍❍ ❍❍ ✟✟

r✟✟ ❅
r

H F ∨G E

r r r�❍❍ ❅✟✟

4.8 Conjunction Introduction

The premise of this rule is obtained from the conclusion by applying the following two steps:

• Replace an oformula F ∧G by two adjacent oformulas F,G, and include both of them in exactly
the same undergroups and overgroups in which the original oformula was contained.

• Replace each undergroup U originally containing the oformula F ∧ G (and now containing F,G

instead) by the two adjacent undergroups U − {G} and U − {F}.
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Below we see three examples.

Conjunction Introduction

r

❅�
E F

r r

r

E ∧ F

r

Conjunction Introduction

r

❅�
r❍❍
❳❳❳❳
E F G

r r r❍❍ ❳❳❳❳

rrPPP
E F ∧G

r rPPP

Conjunction Introduction

r

❅�
r❳❳❳❳❍❍

r

E F G H

r✟✟
r r✟✟✟✟❍❍ ❍❍

r❍❍

rrPPP
r

E F ∧G H

r❭✟✟
r✜❍❍

4.9 Recurrence Introduction

The premise of this rule is obtained from the conclusion through replacing an oformula ◦
| F by F (while

preserving all arcs), and inserting, anywhere in the cirquent, a new overgroup that contains F as its
only oformula. Examples:

Recurrence Introduction

r r

�
G

r

r

◦
| G

r

Recurrence Introduction

r r✟✟✟
❍❍❍

r

F G H

✟✟✟
r r r✟✟✟

r r✟✟✟
❍❍❍

F G ◦
| H

✟✟✟
r r r✟✟✟

4.10 Corecurrence Introduction

The premise of this rule is obtained from the conclusion through replacing an oformula ◦
| F by F , and

including F in any (possibly zero) number of the already existing overgroups in addition to those in
which the original oformula ◦

| F was already present. Examples:

Corecurrence Introduction

r r✟✟✟
❍❍❍

F G H

✟✟✟
r r r✟✟✟

r r✟✟✟
❍❍❍

F G ◦
| H

✟✟✟
r r r✟✟✟

Corecurrence Introduction

r❳❳❳❳❳
r✟✟✟
❍❍❍

F G H

✟✟✟
r r r✟✟✟

r r✟✟✟
❍❍❍

F G ◦
| H

✟✟✟
r r r✟✟✟

Corecurrence Introduction

r❳❳❳❳❳
r✟✟✟
❍❍❍

r

F G H

✟✟✟
r r r✟✟✟

r r✟✟✟
r

F G ◦
| H

✟✟✟
r r r✟✟✟

5 Some taste of CL15

A CL15-proof (or simply a proof) of a cirquent C is a sequence of cirquents ending in C such that
the first cirquent is an axiom, and every subsequent cirquent follows from the immediately preceding
cirquent by one of the rules of CL15.

For any formula F , we let
F♣

15



denote the cirquent (〈F 〉, 〈{F}〉, 〈{F}〉), i.e. the cirquent

r

F

r

Correspondingly, by a proof of a formula F we mean one of the cirquent F♣.
A formula or cirquent X is said to be provable (symbolically CL15 ⊢ X) if and only if it has a

proof. As expected, 6⊢ means “not provable”.
The following subsections of this section contain proofs of several formulas, serving the purpose of

helping the reader to get a better feel for the system.

5.1 First example

The following is a proof of ◦
| F → F , which, according to our conventions from Section 2.6, is an

abbreviation of ◦| ¬F ∨ F :

Axiom

❍❍✟✟
r

¬F F

✟✟❍❍
r

Corecurrence Introduction

❍❍✟✟
r

◦
| ¬F F

✟✟❍❍
r

Disjunction Introduction

r

◦
| ¬F ∨ F

r

5.2 Second example

The present example shows a proof of the recurrence-free formula F ∧ F → F :

Axiom

❍❍✟✟
r

¬F F

✟✟❍❍
r

Weakening

❍❍✟✟
r

¬F ¬F F

✟✟❍❍
r

Disjunction Introduction

❍❍✟✟
r

¬F ∨ ¬F F

✟✟❍❍
r

16



Disjunction Introduction

r

(¬F ∨ ¬F ) ∨ F

r

At the same time, it is easy to see that the converse F → F ∧ F of the above formula has no proof.
However, the latter becomes provable with ◦

| F instead of F , as seen from the following example.

5.3 Third example

Below is a proof of ◦
| F → ◦

| F ∧ ◦
| F . In informal terms, the meaning of the principle expressed by this

formula can be characterized by saying that solving two copies of a problem of the form ◦
| F does not take

any more resources (“is not any harder”) than solving just a single copy. Note that the same does not
hold in the general case, i.e., when F is not necessarily ◦

| -prefixed. For instance, Chess → Chess∧Chess
cannot be (easily) won.

Axiom

❩❩✚✚ ❩❩✚✚
r r

◦
| ¬F ◦

| F ◦
| ¬F ◦

| F

r✚✚❩❩ r✚✚❩❩

Merging

❳❳❳❳❳
✘✘✘✘✘ ❝❝★★
r

◦
| ¬F ◦

| F ◦
| ¬F ◦

| F

r✚✚❩❩ r✚✚❩❩

Oformula Exchange

❳❳❳❳❳
✘✘✘✘✘ ❝❝★★
r

◦
| ¬F ◦

| ¬F ◦
| F ◦

| F

r✏✏✏
PPP

r✏✏✏
PPP

Weakening (twice)

❳❳❳❳❳
✘✘✘✘✘ ❝❝★★
r

◦
| ¬F ◦

| ¬F ◦
| F ◦

| F

r✏✏✏
PPP
☎☎ r✏✏✏

❤❤❤❤❤❤❤
PPP

Contraction

❵❵❵❵❵❍❍✟✟
r

◦
| ¬F ◦

| F ◦
| F

r✏✏✏
❅ r✏✏✏

❳❳❳❳

Conjunction Introduction

PPP
✏✏✏
r

◦
| ¬F ◦

| F ∧ ◦
| F

✏✏✏
PPP
r

Disjunction Introduction

r

◦
| ¬F ∨ (◦

| F ∧ ◦
| F )

r
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5.4 Fourth example

Below is a proof of ◦
| F → ◦

|
◦
| F . Unlike the previously seen examples, proving this formula requires

using Duplication:

Axiom

◗◗✑✑
r

¬F F

✑✑◗◗ r

Overgroup Duplication

◗◗✑✑
r✏✏✏

r

¬F F

✑✑◗◗ r

Corecurrence Introduction

◗◗✑✑
r r

◦
| ¬F F

✑✑◗◗ r

Overgroup Duplication

◗◗✑✑
r r

✑✑
r

◦
| ¬F F

✑✑◗◗ r

Recurrence Introduction

◗◗✑✑
r r

◦
| ¬F ◦

| F

✑✑◗◗ r

Recurrence Introduction

◗◗✑✑
r

◦
| ¬F ◦

|
◦
| F

✑✑◗◗ r

Disjunction Introduction

r

◦
| ¬F ∨ ◦

|
◦
| F

r

5.5 Fifth example

Now we prove ◦
| E ∨ ◦

| F → ◦
| (E ∨ F ). The converse ◦

| (E ∨ F ) → ◦
| E ∨ ◦

| F , on the other hand, can be
shown to be unprovable.

Axiom

r

◗◗✑✑
r

◗◗✑✑
¬E ¬FE F

r✑✑◗◗ r✑✑◗◗
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Merging

r

❅❅��
✘✘✘✘✘
❳❳❳❳❳

¬E ¬FE F

r✑✑◗◗ r✑✑◗◗

Weakening (twice)

r

❅❅��
✘✘✘✘✘
❳❳❳❳❳

¬E ¬FE F

r✑✑◗◗ ✘✘✘✘✘
r❳❳❳❳❳
✑✑◗◗

Disjunction Introduction

r✘✘✘✘✘
❳❳❳❳❳

¬E ¬FE ∨ F

r✏✏✏
◗◗ r✑✑PPP

Oformula Exchange

r✭✭✭✭✭✭✭
✏✏✏✏
❍❍

¬E ¬F E ∨ F

r✟✟PPP
r✭✭✭✭✭✭

PPP

Overgroup Duplication

❤❤❤❤❤❤
✦✦✦ ❙❙
r r✭✭✭✭✭✭✭

✏✏✏✏
❍❍

¬E ¬F E ∨ F

r✟✟PPP
r✭✭✭✭✭✭

PPP

Corecurrence Introduction (twice)

❤❤❤❤❤❤
✦✦✦ ❙❙
r r❍❍

◦
| ¬E ◦

| ¬F E ∨ F

r✟✟PPP
r✭✭✭✭✭✭

PPP

Recurrence Introduction

❤❤❤❤❤❤
✦✦✦ ❙❙
r

◦
| ¬E ◦

| ¬F ◦
| (E ∨ F )

r✟✟PPP
r✭✭✭✭✭✭

PPP

Conjunction Introduction

❳❳❳❳
✘✘✘✘
r

◦
| ¬E ∧ ◦

| ¬F ◦
| (E ∨ F )

r✘✘✘✘
❳❳❳❳

Disjunction Introduction

r

(◦| ¬E ∧ ◦
| ¬F ) ∨ ◦

| (E ∨ F )

r

5.6 Sixth example

The formulas proven so far are also provable in affine logic (with ∧,∨ understood as multiplicatives,

◦
| , ◦| as exponentials, and ¬F as F⊥). The present example shows the CL15-provability of the formula
◦
| ◦

| F → ◦
| ◦

| F , which is not provable in affine logic. The converse ◦
| ◦

| F → ◦
| ◦

| F , on the other hand, is
unprovable in either system.
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Axiom

❍❍✟✟
r

¬F F

r✟✟❍❍

Overgroup Duplication (twice)

❳❳❳❳
✘✘✘✘

r r❍❍✟✟
r

¬F F

r✟✟❍❍

Corecurrence Introduction (twice)

r r❍❍✟✟
r

◦
| ¬F ◦

| F

r✟✟❍❍

Recurrence Introduction (twice)

❍❍✟✟
r

◦
| ◦

| ¬F ◦
| ◦

| F

r✟✟❍❍

Disjunction Introduction

r

◦
| ◦

| ¬F ∨ ◦
| ◦

| F

r

Another — longer but recurrence-free — example separating CL15 from affine logic is

(E ∧ F ) ∨ (G ∧H) → (E ∨G) ∧ (F ∨H)

(Blass’s [2] principle); constructing a proof of this formula is left as an exercise for the reader.

6 Main theorem

For the terminology used in the following theorem, refer to Section 2.6. In addition, by a constant
(resp. unary) interpretation we mean one that interprets all atoms as constant (resp. unary) games.

Theorem 6.1 For any formula F , the following conditions are equivalent:

(i) CL15 ⊢ F ;

(ii) F is uniformly valid;

(iii) F is multiformly valid.

Furthermore:
(a) The implication (i) ⇒ (ii) holds in the strong sense that there is an effective procedure which

takes any CL15-proof of any formula F and constructs a uniform solution of F .
(b) The implication (ii) ⇒ (i) holds in the strong sense that, if CL15 6⊢ F , then, for every HPM H,

there is a constant interpretation ∗ such that H fails to compute F ∗.
(c) The implication (iii) ⇒ (i) holds in the strong sense that, if CL15 6⊢ F , then there is a unary

interpretation † such that F † is not computable.
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Proof outline: The implication (i) ⇒ (ii) (soundness), in the form of clause (a), will be proven
in Sections 7 through 10. Uniform validity is stronger than multiform validity, so the implication
(ii) ⇒ (iii) is trivial. And the implication (iii) ⇒ (i) (multiform completeness), in the form of clause
(c), as well as clause (b) (uniform completeness), will be proven in the forthcoming Part II ([25]) of the
paper.

Of course, CL15 (i.e., the set of its theorems) is recursively enumerable. At this point, however, we
do not have an answer to the following question:

Open Problem 6.2 Is CL15 decidable?

As we already know, branching recurrence ◦
| is the strongest and best motivated, yet not the only,

sort of recurrence-style operators studied in CoL. Among the most natural weakenings of ◦
| are parallel

recurrence ∧
| and countable branching recurrence ◦

|ℵ0 (of these two, only ∧
| was discussed in Section 1.1).

Here we qualify ∧
| and ◦

|ℵ0 as “weakenings” of ◦
| in the sense that the principles ◦

| P → ∧
| P and ◦

| P → ◦
|ℵ0

P

are valid (whether it be uniformly and multiformly so) while their converses are not. Semantically, as

we probably remember, ∧
| A is nothing but the infinite conjunction A ∧ A ∧ A ∧ . . .. As for ◦

|ℵ0

A, it
is just like ◦

| A, with the only intuitive difference that, while playing ◦
| A means playing a continuum

of copies of A, in ◦
|ℵ0

A only countably many copies are played — more precisely, it is only countably
many copies that eventually matter. This effect can be technically achieved by, say, exclusively limiting
our attention to the threads represented by bitstrings that contain only finitely many 1’s. While never

proven, it is believed ([23, 31]) that ◦
|ℵ0 is “equivalent” to Blass’s [2] repetition operator R — at least,

in the precise sense that the two operators validate the same logical principles. Strict definitions of ∧
|

and ◦
|ℵ0 as game operations can be found in [16, 17, 23], and we will not reproduce them here.

Our system CL15 becomes incomplete if ◦
| , ◦| are understood as (replaced by) either ∧

| , ∨| or ◦
|ℵ0

, ◦|
ℵ0 ,

where ∨
| and ◦

|
ℵ0 are dual to ∧

| and ◦
|ℵ0 in the same sense as ◦| is dual to ◦

| . For instance, as shown in
[23], the formula

P ∧ ◦
| (P → P ∧ P ) ∧ ◦

| (P ∨ P → P ) → ◦
| P,

already mentioned in Section 1, is not uniformly valid and hence, in view of the soundness of CL15, is
not provable in the latter. Yet, this formula turns out to be uniformly valid with either operator ∧

| or

◦
|ℵ0 instead of ◦

| . The operator ◦
| turns out to be also logically separated from ∧

| (but not from ◦
|ℵ0) by

the simpler principle
P ∧ ◦

| (P → P ∧ P ) → ◦
| P,

which is not provable in CL15 but is uniformly valid when written as P ∧ ∧
| (P → P ∧ P ) → ∧

| P .

While CL15 is thus incomplete with respect to ∧
| or ◦

|ℵ0 , the author has practically no doubts that
it however remains sound, meaning that the basic logic induced by ◦

| (i.e., the set of valid formulas in

the signature (¬,∧,∨, ◦
| , ◦| )) is a common proper subset of the basic logics induced by ∧

| and ◦
|ℵ0 :

Conjecture 6.3 The soundness part of Theorem 6.1, in the strong form of clause (a), continues to
hold with ◦

| and ◦
| understood as ∧

| and ∨
| , respectively.

Conjecture 6.4 The soundness part of Theorem 6.1, in the strong form of clause (a), continues to

hold with ◦
| and ◦

| understood as ◦
|ℵ0 and ◦

|
ℵ0 , respectively.

At the same time, the author does not have any guess regarding whether one should expect the
answers to the following questions to be positive or negative:

Open Problem 6.5 Is the set of (uniformly or multiformly) valid formulas in the logical signature
(¬,∧,∨, ∧| , ∨| ) decidable or, at least, recursively enumerable?

Open Problem 6.6 Is the set of (uniformly or multiformly) valid formulas in the logical signature

(¬,∧,∨, ◦
|ℵ0

, ◦|
ℵ0) decidable or, at least, recursively enumerable?
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If the answer in either case is positive, it would be very interesting to find a syntactically reasonable
axiomatization. An expectation here is that, if found, such an axiomatization would be more complex
than CL15.

7 Preliminaries for the soundness proof

The remaining sections of this article are devoted to a proof of the following lemma:

Lemma 7.1 There is an effective procedure which takes any CL15-proof of any formula F and con-
structs a machine M such that, for any constant interpretation ∗, M wins F ∗.

Clause (a) of Theorem 6.1 is an immediate corollary of the above lemma. To see this, consider an
arbitrary CL15-proof of an arbitrary formula F . Let M be the corresponding machine returned by
the procedure whose existence is claimed in Lemma 7.1. Now we claim that M is a uniform solution of
F , and hence clause (a) of Theorem 6.1 holds. Indeed, consider an arbitrary (not necessarily constant)
interpretation ∗. How do we know that M wins F ∗? Let, for every valuation e, ∗e be the interpretation
that interprets each atom P as the game e[F ∗]. Note that such a ∗e is a constant interpretation. In
view of Remark 2.6, we may assume M is an HPM. By definition, M wins F ∗ iff, for every valuation
e and every run Γ generated by M on e, Γ is a ⊤-won run of e[F ∗]. Consider an arbitrary valuation
e and an arbitrary run Γ generated by M on e. A straightforward induction on the complexity of F
shows that the game e[F ∗] is the same as F ∗e . The latter, in turn, as a constant game, is the same as
e[F ∗e ]. Thus, e[F ∗] = e[F ∗e ]. Lemma 7.1 promises that M wins F ∗e . This, in turn, implies that Γ is
a ⊤-won run of e[F ∗e ], and hence a ⊤-won run of e[F ∗]. Since e and Γ were arbitrary, we find that M
wins F ∗, as desired.

An advantage of proving clause (a) of Theorem 6.1 through proving Lemma 7.1 is that this allows
us to exclusively limit our attention to constant games. Winning strategies/machines for such games
can fully ignore the valuation tape, as its content is irrelevant. With this remark in mind, throughout
the present part of the paper, with a couple of exceptions, there will be no mention of valuation or the
valuation tape in our descriptions of such strategies.

8 The semantics of cirquents

Lemma 7.1 will be proven by induction on the lengths of CL15-proofs. To make such an induction
possible, we first need to extend our semantics from formulas to cirquents. In rough intuitive terms, such
a semantics treats overgroups as generalized ◦

| s, with the main difference between the ordinary ◦
| and

an overgroup being that the latter can be shared by several arguments (oformulas). Next, undergroups
are like disjunctions (or, rather, disjunctions prefixed with generalized ◦

| s), with the main difference
between ordinary disjunctions and undergroups being that the latter may have shared arguments with
other undergroups. As noted earlier, sharing is the main feature distinguishing cirquents from the other,
traditional syntactic objects studied in logic, such as formulas or sequents. Finally, the whole cirquent
is like a conjunction of its undergroups.

To define our semantics formally, we need the following notational convention. Let Ω be a run, a be
(the decimal numeral for) a positive integer, and ~x = x1, . . . , xn be a nonempty sequence of n infinite
bitstrings. We shall write

Ω�a;~x

to mean the result of deleting from Ω all moves (together with their labels) except those that look like
a;u1, · · · , un.β for some move β and some finite initial segments u1, . . . , un of x1, . . . , xn, respectively,
and then further deleting the prefix “a;u1, · · · , un.” from such moves. For instance, if x = 000 . . . and
y = 111 . . ., then

〈⊤3; 00, 1.α, ⊥3; 001, 11.β, ⊥5; 00, 1.δ, ⊤3; 0, 111.γ〉�3;x,y = 〈⊤α, ⊤γ〉.

See Remark 8.2 below for an explanation of the intuitions associated with the Ω�a;~x notation.
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Throughout this paper, the letter
ǫ

is used to denote the empty bitstring. The latter is a prefix (initial segment) of every bitstring.

Definition 8.1 Consider a constant interpretation ∗ (in the old, ordinary sense) and a cirquent

C = (〈F1, . . . , Fk〉, 〈U1, . . . , Um〉, 〈O1, . . . , On〉)

with k oformulas, m undergroups and n overgroups. Then C∗ is the constant game defined as follows,
with Γ ranging over all runs and Ω ranging over the legal runs of C∗:

(i) Γ ∈ LrC
∗

iff the following two conditions are satisfied:

• Every move of Γ looks like a; ~u.α, where α is some move, a ∈ {1, . . . , k}, and ~u = u1, . . . , un

is a sequence of n finite bitstrings such that the following condition is satisfied:

whenever an overgroup Oj (1 ≤ j ≤ n) does not contain the oformula Fa, uj = ǫ. (1)

• For every a ∈ {1, . . . , k} and every sequence ~x of n infinite bitstrings, Γ�a;~x ∈ LrF
∗
a .

(ii) WnC∗

〈Ω〉 = ⊤ iff, for every i ∈ {1, . . . ,m} and every sequence ~x of n infinite bitstrings, there is

an a ∈ {1, . . . , k} such that the undergroup Ui contains the oformula Fa and WnF∗
a 〈Ω�a;~x〉 = ⊤.

Remark 8.2 Intuitively, when C and ∗ are as above, a (legal) play/run Ω of C∗ consists of parallel
plays of a continuum of threads of each of the games F ∗

a (1 ≤ a ≤ k). Namely, every thread of such an
F ∗
a is Ω�a;~x for some array ~x = x1, . . . , xn of n infinite bitstrings. In the context of a fixed Ω, we may

refer to Ω�a;~x as the thread ~x of F ∗
a . Next, for an undergroup Ui, let us say that ⊤ is the winner in

Ui iff, for every array ~x of n infinite bitstrings, there is an oformula Fa in Ui such that the thread ~x of
F ∗
a is won by ⊤. Now, ⊤ wins the overall game C∗ iff it wins in all undergroups of C.
As for the condition (1) of the definition, it can be seen as saying that, for any array ~x = x1, . . . , xn

of infinite bitstrings, only some of the elements of ~x are really relevant to any given oformula Fa of
the cirquent. In particular, an element xj of ~x is relevant if the overgroup Oj contains Fa. This
relevance/irrelevance is in the precise sense that, if an array ~y only differs from ~x in “irrelevant”
elements, then, as it is easy to see from condition (1) and the fact that ǫ is a prefix of every bitstring,
we have Ω�a;~x = Ω�a;~y.

Definition 8.3 We say that a cirquent C is uniformly valid iff there is a machine M, called a
uniform solution of C, such that, for every constant interpretation ∗, M wins C∗.

9 The generalized soundness of CL15

Lemma 9.1 There is an effective function f from machines to machines such that, for every machine
M, formula F and interpretation ∗, if M wins ◦

| F ∗, then f(M) wins F ∗.

Proof. Theorem 37 of [16] establishes the soundness of affine logic with respect to uniform validity.
But affine logic proves ◦

| P → P . So, this formula is uniformly valid, meaning that there is a machine —
let us denote it by N0 — that wins ◦

| F ∗ → F ∗ for any formula F and interpretation ∗. Next, Proposition
21.3 of [5] establishes that computability of static games is closed under modus ponens in the strong
sense that any pair (N ,M) of machines can be effectively converted into a machine h(N ,M) such that,
for any static games A and B, if N wins A → B and M wins A, then h(N ,M) wins B. Now it is clear
that the function f(M) defined by f(M) = h(N0,M) satisfies the promise of our present lemma.

Lemma 9.2 There is an effective function g from machines to machines such that, for every machine
M, formula F and constant interpretation ∗, if M wins (F♣)∗, then g(M) wins F ∗.
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Proof. In view of Lemma 9.1, it is sufficient to prove our present lemma for F♣ vs. ◦
| F instead of

F♣ vs. F . Consider an arbitrary EPM M and an arbitrary interpretation ∗ (on which the function g is
not going to depend). The idea of our proof is very simple and can be summarized by saying that the
games (◦

| F )∗ and (F♣)∗ are essentially the same, with only a minor technical difference in the forms of
their legal moves. Specifically, while every legal move of (F♣)∗ looks like 1;w.α for some finite bitstring
w and move α, the corresponding move of (◦

| F )∗ simply looks like w.α instead, and vice versa. So, if
M wins (F♣)∗, then an “essentially the same” strategy g(M) wins (◦

| F )∗.
In more detail, we construct g(M) as an EPM that plays (◦

| F )∗ through simulating and mimicking
— with certain minor readjustments — a play of (F♣)∗ by M (call the latter the imaginary play).10

Namely, g(M) grants permission whenever it sees that the simulated M does so11 and, if the environ-
ment responds by a move w.α for some finite bitstring w and move α,12 it translates it as the move
1;w.α made by the imaginary adversary of M. And “vice versa”: whenever the simulated M makes a
move 1;w.α in the imaginary play of (F♣)∗, g(M) translates it as the move w.α in the play of (◦

| F )∗

— makes the move w.α in the real play, that is. What g(M) achieves by playing this way is that it
“synchronizes” each thread x of F ∗ in the real play of (◦

| F )∗ with the same thread x of F ∗ in the
imaginary play of (F♣)∗.

Consider any run Γ generated by g(M). Let Ω be the corresponding run in the imaginary play of
(F♣)∗ by M, i.e., the run of (F♣)∗ emerged during the simulation in the scenario which made g(M)
generate Γ. It is rather obvious that g(M) never makes illegal moves unless its environment or the
simulated M does so first. Hence we may safely assume that Γ is a legal run of (◦

| F )∗ and Ω is a legal
run of (F♣)∗, for otherwise either Γ is a ⊥-illegal run of (◦

| F )∗ and thus g(M) is an automatic winner
in (◦

| F )∗, or Ω is a ⊤-illegal run of (F♣)∗ and thus M does not win (F♣)∗.13 Now observe that, for any
infinite bitstring x, Γ�x = Ω�1;x. It is therefore obvious that, as long as Ω is a ⊤-won run of (F♣)∗, Γ
is a ⊤-won run of (◦

| F )∗. In other words, if M wins (F♣)∗, then g(M) wins (◦
| F )∗. Needless to point

out that our construction (the function g) is effective, as promised in the lemma.

We say that a rule of CL15 other than Axiom is uniform-constructively sound iff there is an
effective procedure that takes any instance (A,B) (a particular premise-conclusion pair, that is) of
the rule, any machine MA and returns a machine MB such that, for any constant interpretation ∗,
whenever MA wins A∗, MB wins B∗. Then, of course, as long as MA is a uniform solution of A,
MB is a uniform solution of B. As for Axiom, by its uniform-constructive soundness we simply mean
existence of an effective procedure that takes any instance B of (the “conclusion” of) Axiom and returns
a uniform solution MB of B.

Theorem 9.3 All rules (including Axiom) of CL15 are uniform-constructively sound.

Proof. Given in Section 10.

Theorem 9.4 Every cirquent provable in CL15 is uniformly valid.
Furthermore, there is an effective procedure that takes an arbitrary CL15-proof of an arbitrary

cirquent C and constructs a uniform solution of C.

Proof. Immediately from Theorem 9.3 by induction on the lengths of CL15-proofs.

Now, Lemma 7.1, proving which was our goal, is an immediate corollary of Theorem 9.4 and Lemma
9.2. Our only remaining duty is to prove Theorem 9.3. This job is done in the following section.

10While the contents of valuation tapes are irrelevant as we deal with constant games, for clarity let us say that M is
simulated in the scenario where the valuation spelled on its valuation tape sends every variable to 0.

11Later, in similar descriptions, we shall no longer explicitly mention this obvious detail common to all simulations.
12If the environment responds by a move that does not look like w.α, such a move is illegal and g(M) can retire with

a spectacular victory; and if the environment does not respond at all, g(M) feeds “no response” back to the simulation.
13Later, in similar arguments, the assumption of Γ and Ω being legal will usually be made only implicitly, leaving a

routine observation of the legitimacy of such an assumption to the reader.
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10 The uniform-constructive soundness of the rules of CL15

Below, one by one, we prove the uniform-constructive soundness of all rules of CL15. In each case,
A stands for the premise of an arbitrary instance of the rule and B for the corresponding conclusion
(except the case of Axiom, where we only have B). Next, MA always stands for an arbitrary machine,
andMB for the machine constructed fromMA and (subsequently) shown to win B∗ as long asMA wins
A∗, for whatever constant interpretation ∗. It will usually be immediately clear from our description
of MB that it can be constructed effectively (so that the soundness of the rule is “constructive”), and
that its work in no way depends on an interpretation ∗ applied to the cirquents involved (so that the
soundness of the rule is “uniform”). Since an interpretation ∗ is never relevant in such proofs, we can
take the liberty to omit it and write simply X where, strictly speaking, X∗ is meant. That is, we will
— both notationally and terminologically — identify formulas or cirquents with the games into which
they turn once an interpretation is applied to them.

Also, since we only deal with constant games, the (content of the) valuation tape is never relevant,
and we may safely pretend that such a tape simply does not exist. Technically, this effect can be
achieved by assuming that the valuation tape of any — real or simulated — machine always spells the
same valuation, say, the one that sends every variable to 0.

In each non-axiom case, it will be implicitly assumed that MA wins A. It is important to note that
our construction of the corresponding MB will never depend on this assumption; only the subsequent
conclusion that MB wins B will depend on it. Also, MB will always be implicitly assumed to be an
EPM, and so will be MA unless otherwise specified.

10.1 Axiom

Assume that B is an axiom, namely, that it is

¬F1 F1

❧❧✱✱r

✱✱❧❧
r

. . . ¬Fn Fn

❧❧✱✱r

✱✱❧❧
r

The EPMMB that wins B works as follows. It keeps granting permission. Every time the adversary
makes a move a; ~w.α, where 1 ≤ a ≤ 2n and ~w is an array of n finite bitstrings (note that every legal
move of B should indeed look like this), MB responds by the move b; ~w.α, where b is a+ 1 if a is odd,
and a− 1 if a is even.

Notice that what such an MB does is applying copycat between the two oformulas/games of each
thread of each diamond. Namely, when a, b are as above, Γ is any run generated by MB and ~x is any
array of n infinite bitstrings, we have Γ�a;~x = ¬Γ�b;~x. It is therefore obvious that Γ is a ⊤-won run of
B, meaning that MB wins B.

10.2 Exchange

Undergroup Exchange does not affect anything relevant: as a game, the conclusion is the same as the
premise.

Assume now B follows from A by Oformula Exchange. Namely, oformulas #a and #b (b = a + 1)
of A have been swapped when obtaining B from A. We construct MB as a machine that works by
simulating and mimicking MA in the style that we saw in the proof of Theorem 9.2. Note that A and
B, as games, are “essentially the same”. Hence, all that MB needs to do to account for the minor
technical difference between A and B is to make a very simple “translation” or “reinterpretation” of
moves. Namely, any move α made within a given thread of the Fa (resp. Fb) component of the real
play of B MB sees exactly as MA would see the same move α in the same thread of Fb (resp. Fa),
and vice versa. In more precise terms, with ~w ranging over sequences of as many finite bitstrings as the
number of overgroups in either cirquent, every move (by either player) a; ~w.α (resp. b; ~w.α) of the real
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play is understood as the move b; ~w.α (resp. a; ~w.α) made by the same player in the imaginary play,
and vice versa. All other moves are understood exactly as they are, without any reinterpretation.

With a moment’s thought, it can be seen that MB wins B because MA wins A.
A similar idea applies to the case of Overgroup Exchange. The only difference is that here, instead

of reinterpreting the occurrence of either oformula as the occurrence of the oformula with which it was
swapped, MB reinterprets the occurrence of either overgroup as the occurrence of the overgroup with
which it was swapped.

10.3 Weakening

Assume B is obtained from A by Weakening. Turning MA into MB is very easy. If, when moving
from B to A, no oformula of B was deleted, then the old MA obviously wins not only A but B as well,
because every ⊤-won run of A is automatically also a ⊤-won run of B. Now suppose an oformula Fa

of B was deleted. In view of the presence of Exchange in the system, we may assume that Fa is the
last oformula of B. In this case MB is a machine that plays by simulating and mimicking MA. In
its simulation/play routine, MB ignores the moves within Fa, and otherwise (in all other oformulas)
plays exactly as MA does, except that moves need to be slightly readjusted if the deletion of Fa also
resulted in the deletion of some overgroups of B. Namely, MB interprets every move b; ~u.α made in B

as the move b; ~u′.α made in A and vice versa, where ~u′ is the result of removing from ~u the bitstrings
(all empty, by the way) corresponding to the deleted overgroups.

10.4 Contraction

In this and the remaining subsections of the present section, as was done in the preceding subsection, in
view of the presence of Exchange in the system and the already verified fact of its uniform-constructive
soundness, we can and will always assume that the objects — namely, oformulas or overgroups —
affected by the rule are at the end of the corresponding lists of objects of the corresponding cirquents.

Assume B is obtained from A by Contraction, with ◦
| F being the contracted oformula, located at

the end of the list of oformulas of B. Let a be the number of oformulas of B, and let b = a+ 1. Thus,
the a’th oformula of B is ◦| F , and so are the a’th and b’th oformulas of A. Next, let n be the number
of overgroups in either cirquent. In what follows, we let ~w range over sequences of n finite bitstrings.
Also, in the present case we assume that MA is a BMEPM rather than an EPM. In view of Remark
2.6, such an assumption is perfectly legitimate.

As usual, we define MB as an EPM that works by simulating MA and mimicking it after reinter-
preting moves. Nothing is to be reinterpreted in the case of moves that take place within the oformulas
other than ◦

| F . As for the ◦
| F parts, we have:

• MB translates every move a; ~w.0u.α (by either player) in the real play of B as the move a; ~w.u.α
(by the same player) of the imaginary play of A, and vice versa.

• MB translates every move a; ~w.1u.α (by either player) in the real play of B as the move b; ~w.u.α
(by the same player) of the imaginary play of A, and vice versa.

• If the (real) environment ever makes a move a; ~w.ǫ.α in the play of B, MB translates it as a block
of the two moves a; ~w.ǫ.α and b; ~w.ǫ.α by the imaginary adversary of MA in the play of A.

Since MA is a BMEPM, it may occasionally make a block of several moves at once. In this case
MB still acts as described above, with the only difference that it will correspondingly make several
consecutive moves in the real play, rather than only one move.

The effect achieved byMB’s strategy can be summarized by saying that it synchronizes every thread
y of F of every thread ~w of the first (resp. second) copy of ◦| F in A with the thread 0y (resp. 1y) of F
of the thread ~w of the (single) copy of ◦| F in B.14

14Of course, strictly speaking, either cirquent may contain additional copies of ◦
....
.F . But, as hopefully understood, “the

first (resp. second) copy of ◦
....
.F in A” in the present context means the a’th (resp. b’th) oformula of A. Similarly for B.
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Consider any run Γ of B generated by MB. Let Ω be the corresponding run emerged in the
imaginary play of A by MA. Since MA wins A, Ω is a ⊤-won run of A. Next, let us fix some array ~x

of n infinite bitstrings. Let us agree that, in what follows, when we talk about playing, winning, etc. in
A (resp. B) or any of its components, it is to be understood in the context of the array/thread ~x and
the play/run Ω (resp. Γ) or the corresponding subruns of it. Our goal is to see that MB is the winner
in B. This, in turn, means showing that MB is the winner in every undergroup of B (see Remark 8.2).

Indeed, consider any (i’th) undergroup UB
i of B. Since MA wins A, the corresponding (i’th)

undergroup UA
i of A is won by MA. This, in turn, means that there is an MA-won oformula E in UA

i .
If E is not one of the two copies of ◦| F , then the oformula E of B is also won by MB, because MB

plays in E exactly as MA does. Hence UB
i is won by MB.

If E is the left copy of ◦| F , its being ⊤-won means that there is an infinite bitstring y such that the
thread y of F is won by MA. But, as we have already observed, MB plays in the thread 0y of F (within
the ◦

| F component of B) exactly as MA plays in the thread y of F within the left ◦| F component of A.
Therefore, the thread 0y of F is won by MB, and hence so is the ◦

| F component of B, and hence so is
(the ◦

| F -containing) undergroup UB
i .

The case of E being the right copy of ◦| F is similar.

10.5 Duplication

In this and the remaining subsections of the present section, whenever MA is assumed to be a BMEPM,
for simplicity we will pretend that it (unlike its imaginary adversary) never makes more than one move
at once. For, otherwise, a block of several moves made by MA at once will be translated through several
consecutive moves (or several consecutive series of moves) by MB as was pointed out in the preceding
subsection.

Undergroup Duplication does not modify the game associated with the cirquent, so we only need to
consider Overgroup Duplication.

For two (finite or infinite) bitstrings x and y, we say that a bitstring z is a fusion of x and y iff z

is a shortest bitstring such that, for any natural numbers i, j such that x has at least i bits and y has
at least j bits, we have:

• the (2i− 1)’th bit15 of z exists and it is the i’th bit of x;

• the (2j)’th bit of z exists and it is the j’th bit of y.

For instance, the strings 000 and 11 have only one fusion, which is 01010; the strings 000 and 111 also
have one fusion, which is 010101; the strings 000 and 1111 have two fusions, which are 01010101 and
01010111. Note that when both x1 and x2 are infinite, they have a unique fusion.

The defusion of a bitstring z is the pair (x1, x2) where x1 (resp. x2) is the result of deleting from z

all bits except those that are found in odd (resp. even) positions. For instance, the defusion of 01011010
is (0011, 1100).

Assume B is obtained from A by Overgroup Duplication. We further assume that the machine
MA is a BMEPM, and that the duplicated overgroup is the last overgroup of the premise. Let n + 1
be the number of overgroups in A. Thus, every legal move of A (resp. B) looks like a; ~w, u.α (resp.
a; ~w, u1, u2.α), where a is a positive integer not exceeding the number of oformulas, ~w is a sequence of
n finite bitstrings, u, u1, u2 are finite bitstrings, and α is some move.

As always, MB works by simulating MA. Whenever the simulated MA makes a move a; ~w, u.α,
MB makes the move a; ~w, u1, u2.α, where (u1, u2) is the defusion of u. Next, whenever the adversary of
MB makes a move a; ~w, u1, u2.α in the real play of B, MB translates it as a block of MA’s imaginary
adversary’s moves in B. Namely, as the block a; ~w, v1.α, . . . , a; ~w, vp.α of p moves, where v1, . . . , vp
are all the fusions of u1 and u2.

The idea behind the above strategy can be summarized by saying that MB sees (and plays) every
thread ~y, x1, x2 of every oformula Fa of B exactly as MA sees (and plays) the thread ~y, x of the same
oformula Fa of A, where x is the fusion of x1 and x2. In precise terms this means that whenever Γ is

15Here and later the count of bits starts from 1, and goes from left to right.
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a run of B generated by MB and Ω is the corresponding run of the imaginary play of A by MA, for
every oformula #a of either cirquent, every array ~y of n infinite bitstrings and any infinite bitstrings
x1 and x2, we have Γ�a;~y,x1,x2 = Ω�a;~y,x, where x is the fusion of x1 and x2 (and hence (x1, x2) is the
defusion of x). For this reason, it is obvious that, as long as (because) MA wins A, MB wins B.

10.6 Merging

In this and the remaining subsections of the present section, we shall limit ourselves to explaining the
work of MB, leaving it to the reader to verify that such an MB wins B as long as MA wins A. In each
case, as before, MB works by simulating and mimicking MA after reinterpreting certain moves. We
shall limit our descriptions of MB to explaining what moves need to be properly reinterpreted and how,
implicitly stipulating that any unmentioned sorts of moves are mimicked exactly as they are, without
any changes.

Assume B is obtained from A by Merging. Namely, B is the result of merging in A the overgroups
On+1 and On+2, with A having n+ 2 overgroups. Note that every legal move of A (resp. B) looks like
a; ~w, u1, u2.α (resp. a; ~w, u.α), where a is a positive integer not exceeding the number of oformulas in
either cirquent, ~w is a sequence of n finite bitstrings, u, u1, u2 are finite bitstrings, and α is some move.
We further assume that MA is a BMEPM.

This is what MB does for every integer a not exceeding the number of oformulas in either cirquent:
If the a’th oformula of A is neither in On+1 nor in On+2, MB interprets every move a; ~w, ǫ, ǫ.α made

by MA in the imaginary play of A as the move a; ~w, ǫ.α that MB itself should make in the real play of
B. And vice versa: MB interprets every move a; ~w, ǫ.α by its environment in the real play of B as the
move a; ~w, ǫ, ǫ.α by MA’s adversary in the imaginary play of A.

If the a’th oformula of A is in On+1 but not in On+2, MB interprets every move a; ~w, u, ǫ.α made
by MA in the imaginary play of A as the move a; ~w, u.α that MB itself should make in the real play
of B. And vice versa: MB interprets every move a; ~w, u.α by its environment in the real play of B as
the move a; ~w, u, ǫ.α by MA’s adversary in the imaginary play of A.

The case of the a’th oformula of A being in On+2 but not in On+1 is similar.
Now assume the a’th oformula of A is in both On+1 and On+2. MB interprets every move

a; ~w, u1, u2.α by MA in the imaginary play as the series a; ~w, v1.α, . . . , a; ~w, vp.α of its own moves
in the real play, where v1, . . . , vp are all the fusions of u1 and u2. And MB interprets every move
a; ~w, u.α by its environment as the move a; ~w, u1, u2.α by MA’s imaginary environment, where (u1, u2)
is the defusion of u.

10.7 Disjunction Introduction

Assume B follows from A by Disjunction Introduction. Namely, the last — a’th — oformula of B is
E ∨ F , and the last two — a’th and b’th (b = a+ 1) — oformulas of A are E and F .

In its simulation/play routine, MB reinterprets every move a; ~w.α (resp. b; ~w.α) made by either
player in the imaginary play of A as the move a; ~w.0.α (resp. a; ~w.1.α) by the same player in the real
play of B, and vice versa.

10.8 Conjunction Introduction

Assume B follows from A by Conjunction Introduction. Namely, the last — a’th — oformula of B is
E ∧ F , and the last two — a’th and b’th (b = a+ 1) — oformulas of A are E and F .

Our description of the work of MB in this case is literally the same as in the case of Disjunction
Introduction.

10.9 Recurrence Introduction

Assume B follows from A by Recurrence Introduction. Namely, the a’th oformula of B is ◦
| F , and the

a’th oformula of A is F . We also assume that n is the number of overgroups in B, and that the new
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overgroup emerged when moving from B to A is the last, (n + 1)’th overgroup of A. Below we let ~w

range over sequences of n finite bitstrings, and let u range over finite bitstrings.
If b is an integer other than a, MB simply reinterprets every move b; ~w, ǫ.α made by either player

in the imaginary play of A as the move b; ~w.α by the same player in the real play of B, and vice versa.
As for a, MB reinterprets every move a; ~w, u.α made by either player in the imaginary play of A as

the move a; ~w.u.α by the same player in the real play of B, and vice versa. Note that the only difference
between the two moves is that, in one case, we have a comma before u, and in the other case we have
a period. That is because, in A, u is associated with an overgroup (the overgroup #n+ 1), while in B

it is associated with a ◦
| (the ◦

| applied to F ) instead.

10.10 Corecurrence Introduction

Assume B follows from A by Corecurrence Introduction. Namely, the a’th oformula of B is ◦
| F , and

the a’th oformula of A is F . We also assume that n (n ≥ 0) is the number of the overgroups Uj such
that the a’th oformula is contained in Uj within A but not within B (i.e., n is the number of the new
overgroups in which the a’th oformula was included when moving from B to A), and that all of such
n overgroups are at the end of the list of overgroups of either cirquent. Below we let ~w range over
sequences of m finite bitstrings, where m is the total number of overgroups of either cirquent minus n.
Our construction of MB depends on whether n = 0 or n ≥ 1. We consider these two cases separately.

10.10.1 The case of n = 0

Intuitively, winning ◦
| F is at least as easy for ⊤ as winning F . This is so because, when playing ◦

| F , ⊤
can focus on one single thread — say, the thread 000 . . . — of (the otherwise many threads of) F , play
in that thread as it would simply play in F , and safely ignore all other threads, for winning in a single
thread is sufficient. Next, notice that, in the present case (of n = 0), A only differs from B in that the
latter has ◦| F where the former has F . Therefore, winning B is at least as easy as winning A.

In more detail, let z stand for the infinite string of 0’s. In its simulation/play routine, MB reinter-
prets every move a; ~w.α made by MA in the imaginary play as its own move a; ~w.u.α in the real play,
where u is a “sufficiently long” finite initial segment of z — namely, such that u is not a proper prefix of
any other finite bitstring v already used in the real play within some move a; ~w′.v.β.16 Next, whenever
the environment makes a move a; ~w.v.β in the real play, if v is not a prefix of z, MB simply ignores it,
and if v is a prefix of z, MB translates it as the move a; ~w.β by MA’s adversary in the imaginary play.

10.10.2 The case of n ≥ 1

First we generalize to n (n ≥ 1) the concepts of fusion and defusion introduced in Section 10.5 for the
special case of n = 2.

Consider any n finite or infinite bitstrings x1, . . . , xn. We say that a bitstring z is a fusion of
x1, . . . , xn iff z is a shortest bitstring such that, for any i ∈ {1, . . . , n} and any positive integer j not
exceeding the length of xi, the following condition is satisfied:

• the (jn− n+ i)’th bit of z exists and it is the j’th bit of xi.

For instance, the strings 11, 00 and 111 have four fusions, which are 101101001, 101101011, 101101101
and 101101111. As before, when all n strings are infinite, they have a unique fusion.

Next, the n-defusion of a bitstring z is the n-tuple (x1, . . . , xn), where each xi (1 ≤ i ≤ n) is the
result of deleting from z all bits except those that were found in positions j such that j modulo n equals
i. For instance, the 3-defusion of 01011010 is (011, 110, 00).

In its simulation/play routine, MB reinterprets every move a; ~w, u1, . . . , un.α made by MA in the
imaginary play of A as the series

a; ~w, ǫ, · · · , ǫ.v1.α, . . . , a; ~w, ǫ, · · · , ǫ.vp.α

16If u is not “sufficiently long”, the move a; ~w.u.α may turn out to be illegal.
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(n occurrences of ǫ after ~w in each move; p moves altogether) of its own moves in the real play of
B, where v1, . . . , vp are all the fusions of u1, . . . , un. And “vice versa”: MB reinterprets every move
a; ~w, ǫ, · · · , ǫ.u.α made by its environment in the real play of B as the move a; ~w, u1, · · · , un.α made by
MA’s environment in the imaginary play of A, where (u1, . . . , un) is the n-defusion of u.
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