Skip to main content
Log in

On extendible cardinals and the GCH

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooke-Taylor, A.: Large Cardinals and L-Like Combinatorics. Ph.D. Dissertation, University of Vienna (2007)

  2. Brooke-Taylor A.: Indestructibility of Vopěnka’s principle. Arch. Math. Logic 50(5), 515–529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brooke-Taylor A., Friedman S.D.: Large cardinals and gap-1 morasses. Ann. Pure Appl. Logic 159(1–2), 71–99 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corazza P.: Laver sequences for extendible and super-almost-huge cardinals. J. Symb. Logic 64(3), 963–983 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dobrinen N., Friedman S.D.: Homogeneous iteration and measure one covering relative to HOD. Arch. Math. Logic 47(7–8), 711–718 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman S.: Accessing the switchboard via set forcing. Math. Logic Q. 58(4–5), 303–306 (2012)

    MATH  Google Scholar 

  7. Friedman, S.D.: Large cardinals and L-like universes. In: Andretta, A. (ed.) Set Theory: Recent Trends and Applications, Quaderni di Matematica, vol. 17, pp. 93–110. Seconda Università di Napoli (2005)

  8. Gitman, V., Hamkins, J.D., Johnstone, T.: What is the theory ZFC without power set? Preprint (2011). http://arxiv.org/abs/1110.2430

  9. Hamkins J.D.: Fragile measurability. J. Symb. Logic 59(1), 262–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamkins J.D.: The lottery preparation. Ann. Pure Appl. Logic 101(2–3), 103–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamkins, J.D.: A class of strong diamond principles. Preprint (2002). http://arxiv.org/abs/math/0211419

  12. Jech T.: Set Theory, The Third Millennium Edition. Springer, Berlin (2002)

    Google Scholar 

  13. Jensen, R.B.: Measurable cardinals and the GCH. In: Jech, T. (ed.) Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, vol. 13 (II), pp. 175–178. American Mathematical Society (1974)

  14. Kunen, K.: Set theory, an introduction to independence proofs. In: Barwise, J., Keisler, H.J., Suppes, P., Troelstra, A.S. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam (1980)

  15. Laver R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math. 29, 385–388 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Menas T.K.: Consistency results concerning supercompactness. Trans. Am. Math. Soc. 223, 61–91 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Tsaprounis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaprounis, K. On extendible cardinals and the GCH. Arch. Math. Logic 52, 593–602 (2013). https://doi.org/10.1007/s00153-013-0333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0333-z

Keywords

Mathematics Subject Classification

Navigation