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MORE ABOUT A-SUPPORT ITERATIONS OF (<A\)-COMPLETE
FORCING NOTIONS

ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

ABSTRACT. This article continues Rostanowski and Shelah [8] [O] 10| [T} [12]
and we introduce here a new property of (<\)-strategically complete forcing
notions which implies that their A-support iterations do not collapse AT (for
a strongly inaccessible cardinal X).

1. INTRODUCTION

The systematic studies of iterations with uncountable supports which do not
collapse cardinals were intensified with articles Shelah [13[14]. Those works started
the development of a theory parallel to that of “proper forcing in CS iterations”,
but the drawback there was that the corresponding properties were more like those
in the case of “not adding new reals in CS iterations of proper forcings”. If we
want to investigate cardinal characteristics associated with *\ (in a manner it was
done for cardinal characteristics of the continuum), we naturally are interested
in iterating forcing notions which do add new elements of *X. The study of A\~
support iterations of such forcing notions (for an uncountable cardinal \) has a
quite long history already. For instance, Kanamori [6] considered iterations of A—
Sacks forcing notion (similar to the forcing Q*¥; see Definition B.7land Remark [3.8))
and he proved that under some circumstances these iterations preserve A™. Fusion
properties of iterations of other tree—like forcing notions were used in Friedman
and Zdomskyy [4] and Friedman, Honzik and Zdomskyy [3]. In particular, they
showed that A-support iterations of a close relative of Q3 from Definition Bl do
not collapse AT. Several conditions ensuring that A* is not collapsed in A—support
iterations were introduced in a series of previous works Rostanowski and Shelah
[8, @ IO, 11, 12]. Also Eisworth [2] introduced a condition of this type. Each of
those conditions was meant to be applicable to some natural forcing notions adding
a new member of *\ without adding new elements of <*\. In some sense, they
explained why the relevant forcings can be iterated (without collapsing cardinals).

In the present paper we introduce semi—pure properness (Definition 23) and
we show that for an inaccessible cardinal A, A—support iterations of semi—purely
proper forcing notions are proper in the standard sense (Theorem 27]). The cases
of successor A and/or weakly inaccessible A will be treated in a subsequent paper
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The semi-pure properness is designed to cover the forcing notion Q3 mentioned
above (and its relatives given in [B1] B.7)), but we hope it is much more general.
This property has a flavor of fuzzy properness over quasi—diamonds of [L0, Definition
A.3.6] and even more so of being reasonably merry of [11, Definition 6.3]. There is
also some similarity with pure B*~boundedness of [I1], Definition 2.2]. However, the
exact relationships between these and other properness conditions are not clear.

While there are some similarities between conditions studied so far, we are far
from the state that was achieved for CS iterations and the concept of properness.
The considered properties are (unfortunatelly) tailored to fit particular forcing no-
tions and they do not provide any satisfactory general framework covering all ex-
amples. The search for the “right” notion of A—propernes is still far from being
completed.

Basic definitions concerning strategically complete forcing notions, their itera-
tions and trees of conditions are reminded in the further part of the Introduction.
In the second section of the paper we prove our Iteration Theorem 2.7 and in the
following section we present the forcing notions to which this theorem applies. Some
special properties of and relationships between the forcings from the third section
are investigated in the fourth section.

1.1. Notation. Our notation is rather standard and compatible with that of clas-
sical textbooks (like Jech [5]). However, in forcing we keep the older convention
that a stronger condition is the larger one.

(1) Ordinal numbers will be denoted be the lower case initial letters of the Greek
alphabet (a, 8,7,6...) and also by 4, j (with possible sub- and superscripts).
Cardinal numbers will be called k, \; A will be always assumed to be
a regular uncountable cardinal such that A<* = ); in most instances

A is even assumed to be strongly inaccessible.

Also, x will denote a sufficiently large regular cardinal; H () is the family
of all sets hereditarily of size less than y. Moreover, we fix a well ordering
<% of H(x)-

(2) We will consider several games of two players. One player will be called
Generic or Complete or just COM , and we will refer to this player as “she”.
Her opponent will be called Antigeneric or Incomplete or just INC and will
be referred to as “he”.

(3) For a forcing notion P, all P-names for objects in the extension via P will be
denoted with a tilde below (e.g., 7, X ), and Gp will stand for the canonical
P-name for the generic filter in P. The weakest element of P will be denoted
by 0p (and we will always assume that there is one, and that there is no
other condition equivalent to it).

By “A—support iterations” we mean iterations in which domains of con-
ditions are of size < A\. However, on some occasions we will pretend that
conditions in a A-support iteration Q = (P¢, Qc:¢<( *) are total functions
on ¢* and for p € lim(Q) and a € ¢* \ dom(p) we will let p(a) = (g, -

(4) A filter on X is a non-empty family of subsets of A closed under sﬁpersets
and intersections and do not containing @. A filter is (< A)—complete if it
is closed under intersections of <A members. (Note: we do allow principal
filters or even {A}.)



MORE ABOUT A-SUPPORT ITERATIONS 3

For a filter D on A, the family of all D—positive subsets of A is called
DT. (So Ae D" if and only if A C XA and AN B # () for all B € D.) By
a normal filter on A we mean proper uniform filter closed under diagonal
intersections.

(5) By a sequence we mean a function whose domain is a set of ordinals. For
two sequences 77, v we write v <1 17 whenever v is a proper initial segment
of n, and v < n when either v < n or v = 7. The length of a sequence 7 is
the order type of its domain and it is denoted by lh(n).

(6) A tree is a <—downward closed set of sequences. A complete A—tree is a
tree T C <*X such that every <l-chain of size less than A\ has an <-bound
in T" and for each n € T there is v € T such that n < v.

Let T C <*X be a tree. For n € T we let

sucer(n) ={a<A:n(a)eT} and (T),={veT:v<norn<v}

We also let root(T") be the shortest n € T such that |sucer(n)| > 1 and
limy(7T) = {n € *X: Va < N)(nla € T)}.

1.2. Background on trees of conditions.

Definition 1.1. Let P be a forcing notion.

(1) For an ordinal v and a condition r € P, let O] (IP,r) be the following game
of two players, Complete and Incomplete:
the game lasts at most v moves and during a play the
players construct a sequence ((p;,q;) : ¢ < 7) of pairs of
conditions from P in such a way that

(Vi <i<y)(r<pj<aq; <pi)

and at the stage ¢ < =y of the game, first Incomplete chooses

p; and then Complete chooses g;.
Complete wins if and only if for every i < -y there are legal moves for both
players.

(2) We say that the forcing notion P is strategically (<v)-complete (strategically
(<v)—complete, respectively) if Complete has a winning strategy in the
game DJ(P,7) (in the game O (P,r), respectively) for each condition
relP.

(3) Let a model N < (H(x),€,<}) be such that <*N C N, [N| = X and
P € N. We say that a condition p € P is (N,P)—generic in the standard
sense (or just: (N,P)—generic) if for every P-name 7 € N for an ordinal
we have plF“ 7€ N 7.

(4) P is A—proper in the standard sense (or just: A—proper) if there is x € H(x)
such that for every model N < (H(x), €, <} ) satisfying

SANCN, |N|=X and P,zecN,

and every condition ¢ € N NP there is an (N, P)-generic condition p € P
stronger than gq.

Definition 1.2 (Compare [10, Def. A.1.7], see also [9, Def. 2.2]). (1) Letybe
an ordinal, § # w C . A (w,1)7—tree is a pair T = (T, k) such that
o rk: T — wU{v},
o if t € T and rk(t) = ¢, then ¢ is a sequence ((t)¢ : ( € wNe),
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e (T,<) is a tree with root () and
e if ¢t € T, then there is ¢’ € T such that ¢t < ¢ and rk(t') = ~.
(2) If, additionally, T = (T,rk) is such that every chain in T has a <—upper
bound it T, we will call it a standard (w, 1) —tree
We will keep the convention that 7" is (T, rk}).
(3) Let Q = (P;,Q; : i < ) be a A-support iteration. A tree of conditions in
Q is a system p = (p; : t € T') such that
o (T,rk) is a (w, 1)7—tree for some w C =,
o py € Py fort €T, and
o if 5, €T, s <t, then ps = pi[rk(s).
If, additionally, (T,rk) is a standard tree, then p is called a standard tree
of conditions.
(4) Let p¥, p* be trees of conditions in Q, p* = (pi : t € T). We write p° < p!
whenever for each t € T we have p) < p;.

Note that our standard trees and trees of conditions are a special case of that
[10, Def. A.1.7] when o = 1.

2. SEMI-PURITY AND ITERATIONS

In this section we introduce a new property of (<A)—complete forcing notions:
semi—pure properness. Then we prove that if X\ is strongly inaccessible, then A
support iterations of semi—pure proper forcing notions are proper in the standard
sense (so they preserve stationarity of relevant sets and do not collapse A™).

Definition 2.1. Let f: A — A+ 1. A forcing notion with f-complete semi-purity
is a triple (Q, <, <,,;) such that <, = (St < A) and <, <5, are transitive and
reflexive (binary) relations on Q satisfying for each a < A:
(a) < € <,
(b) (Q, <) is strategically (<A)-complete and (Q, <5,) is strategically (<r)-
complete for all infinite cardinals x < f(«).

If (Q, <, <,,) is a forcing notion with semi-purity, then all our forcing terms (like
“forces”, “name”, etc) refer to (Q, <). The relations <5, have an auxiliary character
only and if we want to refer to them we add “a—purely” (so “stronger” refers to <

and “a—purely stronger” refers to <{.).

Remark 2.2. Note that unlike in [II Definition 2.1], in semi-purity we do not
require any kind of pure decidability.

Definition 2.3. Let f: X — XA+ 1 and let (Q, <, <.,,) be a forcing notion with
f—complete semi-purity. Suppose that D is a normal filter on A (e.g., the club
filter).

(1) A sequence Y = (Y, : a < )) is called an indezing sequence whenever
0 #Ys C X\ and |Y,] < A for each oo < A

(2) For an indexing sequence Y, a system ¢ = (ga,y, : @ < A& 1 € Y,) C Q
and a condition p € Q we define a game 0% (p, ¢, Q, <, <p,;, D) between
two players, COM and INC as follows. A play of 03™*(p,q,Q, <, <, D)
lasts A steps during which the players choose successive terms of a sequence
((Ta, Ao, Mo, Th) = @ < A). These terms are chosen so that
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(a) rq,7, €Q, Ay € D, o € “N and for a < g < A:
p=ro<rqa <7, <rg and AgC A, and 1, <,

(b) at a stage a of the play, first COM chooses (7, An, M) and then INC
picks rl, > rq.

At the end, COM wins the play ((ra,Aa,Na, ) : @ < A) if and only if

both players had always legal moves (so the play really lasted A steps) and

(@) ifye A}\ Aq is limit, then n, € Y, and gy, <], 7.
a<
(3) If COM has a winning strategy in 03" (p, ¢, Q, <, <prs D) then we say that

the condition p is auzx-generic over q, D.

(4) Let Y be an indexing sequence and p € Q. A game Dr;,’ain(p,(@, <, <prs D)
between two players, Generic and Antigeneric, is defined as follows. A play
of the game lasts A steps during which the players construct a sequence
(p*, @ : a < ). At stage a < X of the play, first Generic chooses a system
DY = (Pa,n : n € Y,) of pairwise incompatible conditions from Q. Then
Antigeneric answers by picking a system ¢* = (ga,, : 7 € Ya) of conditions
from Q satisfying

Pan <pr Qo for all n € Y,.

At the end, Generic wins the play (p%,q* : a < A) if and only if, letting
§={Gan:a<A&nely,),
() there is an aux-generic condition p* > p over g, D. -

(5) A forcing notion Q is f—semi-purely proper over an indexing sequenceY and
a filter D if for some sequence <, of binary relations on Q, (Q, <, <) is a
forcing with the f—complete semi-purity and for every p € Q Generic has a
winning strategy in Dgain(p, Q, <, <pr, D). We then say that the sequence
<pr witnesses the semi-pure properness of Q. ' )

(6) If D is the club filter on A, then we omit it and we write Op*"(p, Q, <, <p,;)
ete. If ggrzgpr for all & < A, then we write <, instead of épr, like in
DnYlai“(p,Q, <, <pr)- If f(a) = A for all a, then we write \ instead of f (in
phrases like A-complete semi—purity etc).

Observation 2.4. If f,g: A — A+ 1 and f < g, then “g-semi-purely proper”
implies “f —semi-purely proper”.

The proof of the following proposition may be considered as an introduction to
the more complicated and general proof of Theorem [2.7] dealing with the iterations.

Proposition 2.5. Assume that f: A — A+ 1, w+a < f(a) fora <X and D is
a normal filter on X\. Let Y = (Y, : a < \) be an indeving sequence. If a forcing
notion Q is f—semi-purely proper over Y D, then it is A—proper in the standard
sense.

Proof. Let épr be a sequence witnessing the semi-pure properness of Q. Assume
N < (H(x), €, <}) satisfies

ANCN, |N|=X and (Q,<,<,),Y,D...€N.
Let p € NN Q. Fix a winning strategy st € N of Generic in E)r;,’ai“(p, Q, <, ipr, D)
and pick a list (74 : @ < A) of all Q-names for ordinals from N.

Consider a play of Dgain(p,(@, <, <pr, D) in which Generic uses st and Anti-
generic chooses his answers as follows. At stage a < A of the play, after Generic
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played p* = (pa,y : 7 € Ya), Antigeneric picks the <}-first sequence ¢* = (qa, :
n € Y,) such that for each n € Y,:

(*)77 Pa,n Sgr da,n,
(xx), if B < a and there is a condition ¢ opurely stronger than ¢,,, and forcing
a value to 73, then ¢, , already forces a value to 73.

Note that since (Q, <5,) is strategically (<|a|)-complete, there are conditions ¢ € Q
satisfying (%), + (x%),. One checks inductively that p*,¢* € N for all & < A
(remember st € N and the choice of “the <}-first”). The play (p%,q% : @ < A)
is won by Generic, so there is a condition p* > p which is aux-generic over § =
Qo <X & n €Y, and D. We claim that p* is (N, Q)-generic. So suppose
towards contradiction that p* > p*, p™ IF 75 = ¢, 8 < A but ¢ ¢ N. Consider
a play ((ra, AasNasTh) + a0 < A) of 0¥%(p*, q,Q, <, <pr» D) in which COM follows
her winning strategy and INC plays:

e r(, =p", and for @ > 0 he lets 7/, = 4.

Let vy € A A, be a limit ordinal greater than . Since the play was won by COM,

a<A
we have n, € Y, and ¢, <], 7. Since pt <r,, we know that r, IF 75 = ¢ and

hence (by (%)) ¢y,5, IF 75 = (. However, ¢,, € N, contradicting ¢ ¢ N. O

Lemma 2.6. Assume that X\ is a regular uncountable cardinal, f : X — A+ 1 and

Q= (Pe, Q¢ : £ < ) is a A-support iteration such that for every & < \:
e, “(Qe, <, <) is a forcing notion with f-complete semi-purity ”.

Let T = (T,rk) be a standard (w, 1) ~tree, w € [y]<*, and let p= (p, : t € T) be a
tree of conditions in P. Suppose that o < X and T is a set of P,—names for ordinals
such that |T| - |T| < f(a). Then there exists a tree of conditions § = (g : t € T)
such that

(@1 p<qandifteT,{cwnrk(t), then ¢l IFp, pi(§) <5 a:(§), and
(®)2 ifT €Y, t €T, rk(t) =+ and there is a condition g € P., such that
* gt < g, and q[§ IFp, q:(§) <p, (&) for all § € w, and
e g forces a value to T,
then q; forces a value to T.

Proof. Let k = |T| - |T| < f(«) (and we may assume £ is infinite as otherwise
arguments are trivial). Let <P be a binary relation on P, defined by

p <P¥ ¢ if and only if

p <p, q and for each § € w, q[¢ IFp, p(§) <, (&)

The relation <P is extended to trees of conditions in the natural way.

For € € v\ w let s~tg be a Pe—name for a wining strategy of Complete in
DSH((@E, S),@@g) such that it instructs her to play (g, as long as Incomplete
plays 0g,. For £ € w let Sjé be a name for a similar strategy for the game
DS+1 ((@E? Sgr)v @Qg)

Let ((ti,7:) : © < k) list all members of {t € T : rk(t) = v} x T (with possible
repetitions). By induction on i < k we choose trees of conditions ¢* = (¢¢ : t € T')
and 7 = (r{ : t € T') such that

(a) p<Br g q' <hr ' <br @7 <Pr i fori < j <,
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(B) foreach t €T, j <k and & € tk(t) \ w,

¢ e IFp, ¢ the sequence ((gf(€),7{(€) : i < j) is a legal partial play of
967 ((Qe, <), 0g, ) in which Complete follows st? 7,

(v) foreacht € T, j < k and £ € rk(t) Nw,

¢ e IFp, ¢ the sequence ((gf(€),7{(€) : i < j) is a legal partial play of
26 ((Qe, <5), 0, ) in which Complete follows st 7,

(0) for each i < k, if there is a condition ¢ € P, such that
(a) g, <t g, and
(b) g forces a value to T,
then already ¢;, forces the value to 7;.

So suppose we have defined ¢/, 7 for j < i. Stipulating 7! =p, t, = tg, and

Tr = To we ask if there is a condition ¢ € P, such that r{, <P' ¢ for all j < i which
forces a value to 7;. If there are such conditions, let qg be one of them. Otherwise
let ¢f, be any <P'~bound to {ril : j < i} (there is such a bound by (8) + (v)). Then
for t € T'\ {t;} define ¢} so that letting s =t N¢;:

o if{ < rk(s)v then qz(ﬁ) = qzlﬁi (5)7 )

o if rk(s) < & <rk(t), £ ¢ w, then g;(€) is the <} -first Pe-name such that

qi 1€ Ip, qi (&) is a <—upper bound to {r{ (&) :j<i}”,
e if rk(s) < & <rk(t), £ € w, then ¢}(§) is the <% first Pe-name such that

g€ ke, “qi(€) is a <pr—upper bound to {ri(€):j <i}”.

It should be clear that the above demands correctly define a tree of conditions
q' = (g} : t € T) (note the choice of “the <%-first names”). Finally, we choose i so
that (the respective instances of) conditions (8) + (y) are satisfied. To ensure we
end up with a tree of conditions, at each coordinate we choose “the <}—first names
for the answers given by the respective strategies”.

After the inductive process is completed, put g = g*. O

Theorem 2.7. Assume that X\ is a strongly inaccessible cardinal, f: A — A+ 1
and & = (Kkq : o < ) is a sequence of infinite cardinals such that (ko)®! < f(a)
for all a < X, and suppose also that D is a normal filter on X. For &€ <y let Y& =
(YE 1 a < A\) be an indexing sequence such that |YS| < ko. Let Q = (Pe, Q¢ : € < 7)
be a A\—support iteration such that )

IFp. “ Qg is f-semi-purely proper over Y¢, DV’

for every & <~ (where DV’ s the normal filter on X\ generated in VF¢ by D).
Then P, = lim(Q) is A-proper in the standard sense.

Proof. The proof is very similar to that of [T, Theorem 2.7].

Abusing our notation, the names for the forcing relation and a witness for the
semi-pure properness of Q¢ will be denoted < and <), = (<81 a < ), respectively.
For each £ < v let th be the <} ~first Pe-name for a winning strategy of Complete
in 0y (Q¢, Pg, ) such that it instructs Complete to play (g, as long as her opponent

plays 0g, .
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Let N < (H(x), €, <%) be such that <*N C N, [N| = X and Q, D, (Y¢, (@E,S
 <pr) 1€ <7),...€ N. Let pe NNP, and let (74 : & < A) list all P,,—names for
ordinals from N. Note that if £ € yN N, then sj:g e N.

By induction on § < A we will choose

(®)s Ts,ws, 7y, 75,02, 30 and Pse, Gs.¢, ste for £ € NNy
so that the following demands are satisfied.

(¥)o All objects listed in (®)s belong to N. After stage & < A of the construction,

these objects are known for § and £ € ws.

()1 75,75 € Py, 75(0) = r0(0) = p(0), ws € v, |ws| = |6 + 1], wo = {0},

ws C wst1, and if 0 is limit then ws = |J wq, and
a<d

U dom(ry) = U we = N N7.
a<A a<A
()2 For each a < § < X we have (V€ € was1)(ra(§) = rs(€)) and p < 1y <
o <15 ST
(¥)3 If £ € (v \ ws) NN, then
rs|€IF “ the sequence (r; (£),74(€) : a < §) is a legal partial play of
09 (@5,@@5) in which Complete follows st?
and if & € wsy1 \ ws, then ste € N is a Pe—name for a winning strategy
of Generic in 028" (rs5(€), Qe, <, épr,Dvpg). (And sto € N is a winning
strategy of Generic in 23" (p(0), Qo, <, <py, D).)

(x)a Ts = (Ts,1ks) is a standard (ws, 1)7—tree, Ts = U [] Yf (so Ts con-
a<ly{EwsNa
sists of all sequences t = (t¢ : € € ws N ) where a < and t¢ € Yf).
()5 DS = (pd, :t € Ts) and @2 = (¢0, : t € Tj) are standard trees of conditions,
<.
(¥)¢ For t € Ts we have that dom(p? ;) = (dom(p) U |J dom(rs) Uws) Nrks(t)
a<d
and for each £ € dom(pJ ;) \ wj:

pit[g IFp.  “if the set {ro(£) : @ < d} U {p(£)} has an upper bound in Q,
then p? ,(£) is such an upper bound ”.

(%)7 For§ € NN, pse = <p§)n in € Yf) and g5 ¢ = (ggm tnE Yf) are P¢e—names
for systems of conditions in Q¢ indexed by Yf.
(x)s If £ € w1 \ wa, B < A, then

. . - P
IFpe “ (Pags o+ o < A) is a play of O (rg(£), Qe, <, <y, DV'®)
in which Generic uses st¢ ”.

(x)g If t € Ts, rks(t) = £ < v, then for each n € Yf

@2 Fee “ P50 =P ey (©) and 5, = @ ey (6) 7
(¥)10 If t € Ty, rks(t) = v and « < § and there is a condition ¢ € P, such that
(a) ¢, <g¢,and
(b) ql€ ke, a2 (&) <p: q(€) for all £ € ws and
(¢c) g forces a value to 74,
then already the condition qffﬁt forces the value to 7.
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(¥)11 dom(ry ) =dom(rs) = | dom(qit) and if t € T, £ € dom(rs)Nrks(t)\ws,
teTs

and ¢2 ;1€ < q € P¢, 751¢ < g, then

qlFp,  “if the set {ro(£) 1 <} U {qit({),p({)} has an upper bound in Q,
then 75 (§) is such an upper bound ”.

We start with fixing an increasing continuous sequence (w,, : < A) of subsets
of N N~ such that the demands of (x); are satisfied. Now, by induction on d < A
we choose the other objects. So assume that we have defined all objects listed in
(®)q for a < 0.

To ensure (*)g, whenever we say “choose an X such that...” we mean “choose
the <}-first X such that...”. This convention will guarantee that our choices are
from N.

If ¢ is a successor ordinal and £ € ws \ ws—1, then let st € N be a Pe—name

”

for a winning strategy of Generic in D%gi“ (r5-1(€), Qe, <, <pr, DV ). We also pick

Pags Gae for a < § so that ()7 + (x)s hold (note that we already know r5_1(§) and
by ()2 it is going to be equal to r5(&)). B
Clause ()4 fully describes 7s. Note that, by the assumptions on Y, &,

()12 |T5] < (ks)1®l < £(0) so also |Ts| - |6] < f(6).

For each § € ws we choose a Pe—name ps ¢ such that

IFpe  “ Pse = <]3§ n i€ Y55> is given to Generic by st¢ as an answer to
@a,&aga,& : v < 0) in the game D“}—}gin(rﬂ ({),@5, <, épr, DVIPg)7 ”
where § < § is such that £ € wgy1 \ wg. (Note that for each { € ws and distinct

No,M1 € Yf we have IFp, “ the conditions pg . pg o are incompatible”.) Next we
choose a tree of conditions pJ = (pi)t : t € Ts) such that for each t € Tj:

e dom(p? ) = (dom(p) U U6 dom(ry) Uws) Nrks(t) and

o for £ € dom(pi)t) \ ws, pit(f) is the <} first P¢—name for a condition in
Q¢ such that

Pl 1€ ke, “if the set {rq(€) : v < 8} U {p(£)} has an upper bound in Q,
then pi)t(f) is such an upper bound 7,

L pi,t(f) = ?g;(t)s for £ € dom(p£7t) Nws.
Because of (*)12 we may use Lemma 28] to pick a tree of conditions 0 = (¢}, : t €
Ts) such that
R
o if t € Ty, £ € ws Nrks(t), then ¢° 1€ Ikp, pd ,(€) <8, ¢2,(€),
o if t € Tj, rks(t) = v and o < ¢ and there is a condition ¢ € P such that
(a) ¢2, <q, and

(b) ql€ IFp ¢2 (&) <y q(€) for all € € ws and
(c) ¢ forces a value to 74,
then qit forces a value to 7,.

Note that if £ € ws, t € Ty, rks(t) = € and g, m € Yf are distinct, then

qfﬂt IFp, “ the conditions qf)tu{@m)}({), qf)tu{@mﬂ(f) are incompatible 7.
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Therefore we may choose P¢—names q 5. (for & € ws) such that

o IFp, “Gse = <£15 n 1€ Yf} is a system of conditions in Q¢ indexed by Yf”,
o lkp, “(Vn e Yf)(pgm Sgr ggm) 7,

o if ¢ € T5, tks(t) > & then g2 ¢ IFe, ¢ 4(6) = 65 .

Finally, we define ry ,rs € P, so that

dom(ry ) = dom(rs) U dom(q? +)
teTs
and
e 7 (0) = ro(0) = p(0),
o if £ € woq1, a0 < 0, then ry (&) =rs(&) = ra(§),
e if £ € dom(ry ) \ ws, then ry (§) is the <} -first P¢-—name for an element of
Q¢ such that

rs5 [E1Fp, 75 (£) is an upper bound of {ra( ):ra<dtU{p()} and
if t € Ts, 1ks(t) > &, and ¢° +1€ € Gp, and the set
{ra(€) :a <8y U{ (&), p(¢ )} has an upper bound in Q,
then 75 (§) is such an upper bound 7,
and r5(§) is the <}-first Pe—name for an element of Q¢ such that

rs1€ Ik, “7s(€) is given to Complete by sj:(gJ as the answer to
(ra (€),ma(8) 1 v < 8)(ry () in the game 95(Qe, Do)
It follows from ()2 + (*)3 from the previous stages that r; ,r; are well defined and
p.Ta <15 <15 for o < 0 (using induction on § € dom(rs)).

This completes the description of the inductive definition of the objects listed in
(®)s; it should be clear from the construction that demands (x)o—(*)11 are satisfied.
For each £ € wgy1 \ wg, B < A, look at the sequence (s ¢, @se : 6 < A) and use (x)s
to choose a Pg—name ¢(§) for a condition in Q¢ such that

IFpe “ q(§) > rp(§) is aux-generic over (ggm 0<A&ne Y§> and DV ¢ 7

(if € = 0 then (0) > 70(0) is aux-generic over (g3, : d < X\ & 1 € Yy), D). This
determines a condition ¢ € P, with dom(¢) = N N~. It follows from (x)2 that
p<rg<gqforall B <A

Let us argue that ¢ is (N, P, )-generic. Let 7 € N be a P,name for an ordinal,
say T = Ta+, @ < A, and let us show that ¢ IF 7 € N. So suppose towards
contradiction that ¢’ > ¢, ¢ IF 7 =(, ( ¢ N. For each £ € N N~ fix a Pe—name
sNtzr such that

lFp, stgr is a winning strategy of COM in
= P i
O3 (q(€), (g5, 1 0 < A& n €Yy),Qe, <, Zp, DV ) 7.

Construct inductively a sequence

(rd s 10 (€),1a(6), (A4 (6), AL(E) 11 < X), Aa(§) ta <A & E€NNY)
such that the following demands (x)13—(*)15 are satisfied.
()13 rErl €Py v =q, 10 >4 andrﬂ <rp <rffor f<a<A
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()14 For each £ € NNy and a < X we have that 7,(£) € *X, AL (§) € D, 74(¢)
is a P¢—name for a member of @\, A% (£) is a Pe—name for a member of D

and A, (§) is a Pe—name for a member of DV, and

IFp, ((ri(f),Aa(ﬁ),ga(f),r;(ﬁ)) ta< ) isa resultmof a play of
D3 (a(8), (g5, : 6 < A & n € Y5),Qe, <, DY)
in which COM follows the strategy S~t2_ 7.

(%)15 For j,8 < a < A and £ € w, we have

I “na(€) = 1a(€) & ,gAg(f)gAa@ & AL = AL .

(It should be clear how to carry out the construction; remember P, is (<A)-
strategically complete, so in particular it does not add new members of “\ for

a < A.) Take a limit ordinal ¢ > o* such that e € () [ A4(§). Then, by
fewe 1,j<e
(*)13—(%)15, for each & € w. we have

rf 1€k, “c€ %Aa(ﬁ) and 7:() = | na(§) =ne(¢) € Y7
@ a<e

and consequently, by ()14,

(%)16 T 1€ IFp“ gins(@ <&, 73 (€) 7 for each £ € we.
Also note that

(x)17 p<rs < g<rtforall§j <A
Let t € T, be such that rk.(¢) = v and (t)¢ = n.(€) for £ € w.. By induction
on § <, { €N, we show that ¢ ,[§ <p, rF1€. So let us assume that & < ~
and we have shown that ¢ ,[§ <p, ri 1€ If € € we then by (x)g + (x)16 we have
g 1(€+1) <peyy rF1(§41). So assume € ¢ w.. Now, by (x)s, pS ;1€ < 1T [E, so

1€ Ihpe < ra(€) < ply() foralla <e”
(remember ()17 + (*)6), and hence
€I, “ra(€) < g5, (€) foralla <e .
Consequently, it follows from (x)q; that
18 e < g5, (€) S v (§) Sre(§) <1l () 7

and thus ¢Z ,[(§ + 1) <p., 77 [(§+1).
Now, since ¢ ; < rt and ()16 holds, we may use the condition (*)10 to conclude
that ¢;, IFp, 7 = ¢ (remember ¢’ < r}, a* < ) and consequently ( € N, a

contradiction. O

Remark 2.8. Semi-pure properness is very similar to being reasonably merry of
[11, Section 6]. Despite of some differences in the parameters involved, one may
suspect that the games are essentially the same if ggrzg. This would suggest that
semi—pure properness is a weaker condition than being reasonably merry. However,
the index sets Yy here are known before the master game starts, while in [I1] the
index sets Is are decided at the stage ¢ of the game. This makes our present notion
somewhat stronger. Note that in our proof of the Iteration Theorem [2.7] we really
have to know Yj’s in advance — we cannot decide names for them and take care of
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(¥)s + (*)o at the same time. (This obstacle was not present in the proof of [11]
Theorem 6.4] as there we did not deal with the auxilary relations Sgr.)

It should be noted that some of the A—semi-purely proper forcing notions dis-
cussed in the next section (see Proposition [B.0]) are not reasonably merry as they
do not have the bounding property of [11, Theorem 6.4(b)].

Problem 2.9. Are there any relationships between semi—pure properness and the
properties introduced in [10, Definition A.3.6], [I1, Defnitions 2.2, 6.3] ?

3. THE FORCINGS

In this section we will show that our “last forcing standing” Q3 and some of its
relatives fit the framework of semi—pure properness (so their A-support iterations
preserve AT). A slight modification of Q3 was used in iterations in Friedman and
Zdomskyy [] and Friedman, Honzik and Zdomskyy [3]. It was called Miller(\)
there and the main difference between the two forcings is in condition [4, Definition
2.1(vi)].

The filter D from the previous section will be the club filter, so it is not men-
tioned; also until Proposition the auxiliary relations <7, do not depend on «,
so instead of <, we have just <;, and f(a) = X so we write X instead of f (see
Definition 2:3(6)).

For our results we have to assume that A is strongly inaccessible; the case of
successor A remains untreated here (we will deal with it in a subsequent paper).

Definition 3.1. (1) Let TP be the family of all complete A\—trees T C <*\
such that
e if t € T, then |succy(t)| = 1 or sucer(t) is a club of A, and
o (VteT)(IseT)(t s & |succr(s)] > 1).
(2) We define a forcing notion Q3 as follows:
a condition in Qi is a tree T € TP such that
o if (t; : i < j) C T is <-increasing, |succy(t;)| > 1 for all ¢ < j and
t = U t;, then (t € T and) |succr(t)| > 1,
i<j
the order < of Q3 is the inverse inclusion, i.e., T3 < T3 if and only if
T, CTh.
(3) Forcings notions Q%,Q3, Q3 are defined analogously, but
a condition in Q} is a tree T' € TP such that for every A-branch n €
limy (T') the set {a € X : [sucer(nfa)| > 1} contains a club of A,
a condition in Q‘;’\ is a tree T € TP such that for some club C C \ we
have
(Vt € T)(Ih(t) € C = |[sucer(t)] > 1),

a condition in Q‘/{ is a tree T € TP such that
(Vt € T)(root(T) <t = |sucer(t)| > 1).

(4) For £ =1,2,3,4 we define a binary relation <,, on Q4 by
Ty <py T3 if and only if 77 < T and root(17) = root(T3).
5) Let Ql"* consists of all conditions T € Q! such that for each A-branch
A A
n € limy (T') the set {« € A : |[succr(nla)| > 1} is a club of A.
6) Let QS’* consists of all conditions T € Q3 such that for some club C C A
A A
we have
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e if t € T and lh(t) € C, then [succr(t)| > 1, and
e if t € T and 1h(¢) ¢ C, then |sucer(t)] = 1.

Observation 3.2. Let T € TP, Then T € Q}\’* if and only if there exists a
sequence (Fy : o < \) of fronts of T such that

o ifa < B <A\, t € Fg, then there is s € F, such that s < t,

o if 0 < A s limit, to € Fy (for a < §) are such that t, < tg whenever

a< B <0, then | ta € Fy,
a<d
o for eacht € T, |succr(t)| > 1 if and only ift € |J Fla.
a<

Observation 3.3. Q3 C @i’* CQ? = ;* C Q} and Q?)’\’* C Q3 CQl, and Q?)’\’*
is a dense subforcing of Q3.

Observation 3.4. Let ¢ € {1,2,3,4}.
(1) (Q, <, <) is a forcing notion with A—complete semi-purity.
(2) Moreover, the relations (Q%, <) and (QY, <p:) are (< \)-complete.

Lemma 3.5. Let 0 < ¢ < 4. Assume that T® € Qﬁ and Fs CT? (for § < \) are
such that
(i) Fs is a front of T°, T C T°, and F5 C T+,
(ii) of 8 is limit, then T° = (\ T" and Fs = {t € T° : (V€ < §)(Fi < 1h(t))(t]i €
<9
Fe) and (Vi <1h(t))(3 <6)3Fj <lhw)(i<j & vlje Fg)},
(ili) (Vt € Fs541)(3s € F5)(s <),
(iv) if t € F5 and |succys(t)| > 1, then |succrs+1(t)| > 1.
def
Then S = () T° € Qf.
<A
Proof. Plainly, S is a tree closed under unions of <i—chains shorter than A, and by
(i)—(iii) we see that for each ¢t € S there is s € S such that ¢ < s. Hence S is a
complete A\—tree.
Also, for each @ < \ we have

(v) Fy is a front of S and for all 8 > «
{teS:(FseF)(tLs)}={teTs: (s € F,)(t <s)}.

Hence every splitting node in S splits into a club. Suppose now that s € S and
let n € limy(S) be such that s < 7. Since 7% € Q} (remember B3)), the set
{a < X : |succpi(nla)] > 1} contains a club (for each ¢ < A). Also the set
{a < X :nla € F,} is a club (remember (iii)+(ii)). So we may pick a limit
ordinal § < X such that lh(s) < §, n[d € F5 and |succr:(n[d)| > 1 for all i < 4.
Then (by (ii)) also [succys (n]d)| > 1 and hence (by (iv)+(iil)+(v)) [succs(n[d)] > 1
(and s <1 ]8). So we may conclude that S € TP, We will argue that S € Qf
considering the four possible values of ¢ separately.

Case /=1

Suppose 7 € limy(S). Then for each § < A the set {& < A : |succys (nfa)| > 1}
contains a club and thus the set

At {a < A:ais limit and (V6 < «)(|suceys (nla)| > 1) and nla € Fa}

contains a club. But if & € A, then also |succra ()| > 1 and hence [succg(nla)| >
1 (remember (ii)4(iv)).
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Case (=2

Suppose that a sequence (s; : i < j) C

all i < j. Let s = |J s; and 6 = lh(s).
i<j

and hence |succrs(s)| > 1. By (v)+(iv)+(iii)+(i) we easily conclude |succg(s)| > 1

(note that s <t for some t € Fy).

Case (=3

Let Cs C X be a club such that

a€Cs&teT’N\ = |succps(t)] > 1.

Set C'= A Cs. Then for each limit o € C'and t € SN\ we have that [succrs ()| >
o<
1 for all § < «, and hence also [sucera(t)| > 1 (by (ii)). Invoking (v)+(iv) we see

that |succg(t)| > 1 whenever t € S, Ih(t) € C is limit.

S is <-increasing and |succg(s;)| > 1 for
Then also |succys(s;)| > 1 (for all ¢ < j)

Case (=4
If root(S) < s € S, then |succys(s)| > 1 for all 6 < A and hence [succg(s)| > 1
(remember (v)). O

Proposition 3.6. Let A\ be a strongly inaccessible cardinal, Y5 = 0§ for & < A
and Y = (Y5 : § < A). Then the forcing notions (Q4, <, <) for £ € {2,3,4} are
A-semi—purely proper over Y .

Proof. Let 1 <€ <4, T € Qﬁ. Consider the following strategy st of Generic in the
game D)g/lain (Tv in S7 Spr)-

In the course of the play, in addition to her innings (T5, : 7 € Ys), Generic
chooses also sets A5 C Y5 and conditions 79 € Qg\ so that T is decided before the

stage ¢ of the game. Suppose that the two players arrived to a stage § < A. If

§ = 0 then Generic lets 7° = T and if § is limit, then she puts 7° = () 7" (in both
<4

cases T° € Qf). Now Generic determines As and (Ts,, : n € Y5) as follows. She
sets As = T° N'Ys and then she lets (Tsn:meYs) C Qﬁ be a system of pairwise
incompatible conditions chosen so that

e if € As then Ty, = (T7),,.
Generic’s inning at this stage is (T, : 7 € Y5). After this Antigeneric answers with
a system (S5, : n € Ys) C Qf such that Ts, <pr Ss., and then Generic writes
aside
o+1 def {t eT: (Eln IS A(;) (77 dt&te S(s_,n) or (Va < lh(t)) (t[a ¢ A(;)}.
It should be clear that T°*! is a condition in Qf.
After the play is finished and sequences
<T5-,777‘S’5>77 0<AN&ne Y5> and <A5,T5 10 < )\>
have been constructed, Generic lets
S=[(1°cT.
O<A

Claim 3.6.1. S € Qf is auz-generic over S = (S5, : 6 < X & n € Ys).

Proof of the Claim. First note that the sequence (T?, F5 = TN\ : § < \) satisfies
the assumptions of Lemma 3.5 and hence S € Qf.
Now we consider the three possible cases separately.
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CASE (=2.
Let us describe a strategy st* of COM in the game D?—,“X(S,S’,Qi, <, <pr). It in-
structs COM to play as follows. Aside, COM picks also ordinals £5 < A so that
after arriving at a stage § < A\, when a sequence ((Sq, Aa; Moy Sh),&a : o < §) has
been already constructed, she answers with Ss, As, 75 (and &5) chosen so that the
following demands are satisfied.

(A) S() = S, 50 = 1h(I‘OOt(S)) + 942, AO = [50, A) and Mo = <>

(B) If 6 is a successor ordinal, say 6 = o + 1, then

Na <Ans €S, NN, & = Ea +sup(ns(i) 11 < 8) + Ih(root ((S%)ns)) + 942,
As = [&5, M) and Ss = (5),)n,. (Note: then we will also have ns € S5.)
(C) If § is a limit ordinal, then ns = U 74, & = sup(&y : a < ) + 942,
<5

A5 =€) and S5 = N Su= N 2= N (S5)

a<d a<d a<d

. (Note: then we will

also have 75 € S5.)

Note that if ((Sa, Aa,Na,Sh) : @ < A) is a play in which COM follows st* and

0 € A A, is alimit ordinal, then ns € Y5 N.S and it is a limit of splitting points in
a<

Sy, 80 also [succs: (ns)| > 1 for all a < 0. Therefore, by (C), ns is a splitting node

in Ss (and in S as well). It follows from the description of the dth move of Generic

in OPA(T, Q3, <, <pyr), that
(T5)775 <pr 857775 = (T6+1)775 <pr (S)ﬁa Spr Ss.

Consequently, st* is a winning strategy for COM.

CAse (=3.

The winning strategy st* of COM in the game D%}‘X(S, 5’,@?{, <, <pr) is almost
exactly the same as in the previous case. The only difference is that now COM
shrinks the answers S/ of INC to members of Qi’* pretending they were played
in the game. The argument that this is a winning strategy is exactly the same as
before (as Q3" C Q3).

CASE ¢ =4. Similar. O

O

The forcing notions considered above can be slightly generalized by allowing the
use of filters other than the club filter on A. The forcing notions QZ of [11] Definition
1.11] and PE of [I1, Definition 4.2] follow this pattern. However, to apply the
iteration theorems of [I1] we need to assume that the filter E controlling splittings
along branches is concentrated on a stationary co-stationary set. Therefore the
case of F being the club filter seems to be of a different character. Putting general
filters on the splitting nodes only and controlling the splitting levels by the club
filter leads to Definition B7l

The forcing notion Q% was studied by Brown and Groszek [I] who described
when this forcing adds a generic of minimal degree.

Definition 3.7. Suppose that E = (E; : t € <*)) is a system of (<\)-complete
filters on A. (These could be principal filters.) We define forcing notions QYF for
{=1,2,3,4 as follows:
(1) A condition in Q2% is a complete A-tree T C <*X such that
(a) if t € T, then |succp(t)| = 1 or succr(t) € E, and
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(b) (VteT)(3s € T)(t < s & |sucer(s)| > 1), and

(c)? if (t; : i < j) C T is <-increasing, |succr(t;)| > 1 for all i < j and
t = ti, then (¢t € T and) |succr(¢)| > 1,

i<j
the order < of Q%% is the inverse inclusion, i.e., T} < T» if and only if
Ty C T -
(2) Forcings notions Q¥ , Q%# Q*¥ are defined analogously, but the demand

(c)? is replaced by the respective (c)*:

(c)! for every A-branch n € limy(T) the set {a € A : |sucer(nla)| > 1}
contains a club of A,

(c)? for some club C' C X\ we have
(Vt e T)(Ih(t) € C = |[succr(t)| > 1),
(c)* (Vt € T)(root(T) <t = [sucer(t)] > 1). .
(3) For £ =1,2,3,4 we define a binary relation <p, on Q% by
Ty <p: T5 if and only if T7 < Tb and root(11) = root(Ts).

Remark 3.8. Since in Definition 3.7 we allow the filters E; to be principal, we may
fit some classical forcings into our schema. If Ey = {A} for each t € <*\, then Q*¥
is the A\-Cohen forcing C, (see Definition E.2(1)) and Q¥ is the forcing D, from
[8, Definition 4.9(b)]. If for each ¢ € <*X we let E; be the filter of all subsets of A
including {0, 1}, then the forcing notion @2’E will be equivalent with Kanamori’s
A-Sacks forcing of [6] Definition 1.1].

Proposition 3.9. Let E = (E; : t € <*\) be a system of (<\)-complete filters on
Aand l € {1,2,3,4}.
(1) (QZ’E, <, <pr) 18 a forcing notion with A—complete semi-purity. Moreover,
the relations (Q“F, <) and (Q“F, <,,) are (< \)-complete.
(2) If X is strongly inaccessible, Ys = %6 for § < X\ and Y = (Y5 : § < \), then
the forcing notions (Q4E, <, <pr) for € € {2,3,4} are A-semi—purely proper
over'Y.

Proof. Same as[3.4] O

Close relatives of the forcing notions Q%% were considered in [10, Section B.8]
and [11] Definition 4.6]. The modification now is that we consider trees branching
into less than A successor nodes (but there are many successors from the point of
view of suitably complete filters).

Definition 3.10. Assume that

e ) is strongly inaccessible, f : A — A is a increasing function such that each
f(a) is a regular uncountable cardinal and [] f(€)!*l < f(a) (for a < N),

§<a
o F=(F :te U [I f(&) where F; is a <f(a)-complete filter on f(«)
a<Aé<a
whenever ¢ € [[ f(§), a < A
§<a

(1) We define a forcing notion Q} 7 as follows.
A condition in Q},F is a complete A-tree T' C L<J)\ 51;[ (&) such that
(a) for every t € T, either |succr(t)| = 1 or sucer(t) € Fi, and
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(b) (VteT)(Is € T)(t < s & |sucer(s)| > 1), and
(c)! for every n € limy(T) the set {a < X : sucer(nla) € Fy1q} contains a
club of A .
The order of Q}. 7 1s the reverse inclusion.
(2) Forcing notions Q? 7 for £ =2,3,4 are defined similarly, but the demand
(c)! is replaced by the respective (c)*:
(c)? if (t; 1 i < j) C T is <—increasing, |succr(t;)] > 1 for all i < j and
t = ti, then (¢t € T and) |succr(¢)| > 1,
i<j
(c)? for some club C of A we have
(Vt € T)(Ih(t) € C = sucer(T) € Fy).
(c)* (Vt € T)(root(T) <t = [sucer(t)] > 1).
(3) For £ =1,2,3,4 and a < A we define a binary relation <g on ch 7 by
T <5, Ty if and only if either Ty = Ty or T1 < Ty, root(T1) = root(T) and
lh(root(T3)) > a.
Proposition 3.11. Assume ), f, F are as in[310
p 3 3
(1) ( l;F, <, <pr) is a forcing notion with f-complete semi-purity.
(2) If Ys = [] f(&) for 6 < Xand Y = (Y5 : 6 < \), then Y is an indexing
£<o

sequence and the forcing notions (Qf, -, <, <,,) for ¢ € {2,3,4} are f-semi-

¢
_ £,
purely proper over Y.

Proof. Similar to 3.4] O

Observation 3.12. Let n € *X and Y, = {nla} for a < \. Suppose that (Q, <)
is a strategically (<\)—complete forcing notion and let <pr be < (for « < X\). Then
Q is A-semi-purely proper over (Ye : & < A) and the club filter with (<50 a < A)
witnessing this.

Corollary 3.13. Let A be a strongly inaccessible cardinal. Suppose that E is as
n[37 and f,F are as in[Z10 Let Q = (P¢, Q¢ : § < ) be a A\-support iteration
such that for every §& < v the iterand Q¢ is either strategically (<\)-complete, or

it is one of Q3%,Q3, ‘/{,Q2>E,Q?”E,Q4’E,Q§7F,Q§.1F,Q‘;ﬁ. Then P., = lim(Q) is
A—proper in the standard sense.

4. ARE Q3, Q) VERY DIFFERENT?

The forcing notions Q} and Q3 appear to be very close. In this section we will
show that, consistently, they are equivalent, but also consistently, they may be
different.

Lemma 4.1. Assume T € T"Y and consider (T, <1) as a forcing notion. Let n be
a T-name for the generic A-branch added by T. Suppose that

-7 “the set {a < A : |sucer(nla)| > 1} contains a club 7.
Then there is T* C T such that T* € Q3.
Proof. Let C be a T-name for a club of A such that

r * (o € €) (jsucer(pla)] > 1) ™,
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and put
S = {t €T :1h(t) is a limit ordinal and ¢ Iy “ (Vo < 1h(t))(C'N(a,1h(t)) # 0)} .

One easily verifies that

(i) if t € S, then t Ik “1h(t) € C' 7 and hence |sucer(t)| > 1,
(ii) if a sequence (to : @ < a*) C S is <-increasing, a* < A, then |J ¢, € 5,

a<la*
(ili) (VteT)(3s e S)(t < s).
Consequently we may choose T* C T so that T* € T'"P and for some fronts F, of
T* (for a < A) we have

o [, C S, and if o < B < A, t € F3, then for some s € F,, we have s < t,
e if § < \is limit and ¢t € Fi, for a < 6 are such that o < f <6 = to < g,

then U to € Fs,
a<d
e |succy-(t)] >1ifand onlyif t € |J Fa.
a<A

Then also T* € Q)" = Q3 (remember Observations 521 [3:3). O

Definition 4.2. (1) The A-Cohen forcing notion Cy is defined as follows:
a condition in Cj is a sequence v € <M\,
the order < of C, is the extension of sequences (i.e., 1 < vy if and only
if %1 S] VQ).
(2) The axiom AX(?:LA is the following statement:
if §'is a Cy-—name and k¢, “ S is a stationary subset of A 7, and O, C Cy
are open dense sets (for a < A) then there is a J-directed <—-downward
closed set H C C, such that
e HNO, # ( for all & < A, and
e the interpretation S[H| of the name S is a stationary subset of A.

Lemma 4.3. Let T € TP, Then the following conditions are equivalent:
(a) there is T* C T such that T* € Q3,
(b) there is T* C T such that T* € TP and
IFe, (Vn € imy(T™))(the set {d<A : |[succp«(n]d)| > 1} contains a club of N).

Proof. Assume (a). By the (<\)-completeness of Cy we see that I-¢, 7% € Q3,
and hence IF¢, T* € Q) (remember Observation B.3). Consequently (b) follows.

Now assume (b). Since (T*, <) (as a forcing notion) is isomorphic with C, we
have

IFrs (VY € limy (7)) (the set {d<A : |[succy(n[d)| > 1} contains a club of A),
so in particular

IFp- “ the set {0 < A : |succp(n[d)| > 1} contains a club of A 7,

where n is a T*-name for the generic A-branch. It follows now from Lemma [£.1]

that (a) holds. O

Proposition 4.4. Assume Axa. Then Q3 is a dense subset of Q) (so the forcing
notions Q%, Q3 are equivalent).



MORE ABOUT A-SUPPORT ITERATIONS 19

Proof. Let T € Q3 and let us consider (7, <) as a forcing notion. Let S be a
T-—name given by
IFr S = {0 < A:|sucer(n[d)| > 1}

where 7 is a T-name for the generic A-branch. Ask the following question

e Does IFr “ S contains a club of A7 7
If the answer is “yes”, then by Lemma [£1] there is 7% C T such that T* € Q3.

So assume that the answer to our question is “not”. Then there is t € T such
that
tlkr “ X\ S is stationary 7.

Let §' = {(&,s) : s € T and a = lh(s) and |succr(s)| = 1}. Then S’ is a T-name
for a subset of A and IFp §" = A\ S. Therefore, ¢ IFp“ S’ is stationary ” and since
the forcing notion T" above ¢ is isomorphic with C,, we may use the assumption of
Axa to pick a <—directed <—downward closed set H C T such that t € H and

e HN{seT:1h(s) > a}#0forall a <\, and

e S'[H] is stationary in A.
Then for each a < A the intersection H N*\ is a singleton, say H N*X = {1, }, and

o if o < f3 then n, <1 ng, and

e o € §'[H] if and only if |succr(nq)] = 1.

Let n = |J na. Then n € limy(7T) and the set {a < A : [sucer(nla)] = 1} is
a<
stationary, contradicting 7' € Q3. (]

Proposition 4.5. It is consistent that @i is not dense in (@}\.

Proof. We will build a (<\)-strategically complete A™—cc forcing notion forcing

that Q3 is not dense in Q). It will be obtained by means of a (<\)-support

iteration of length 2*. First, we define a forcing notion Qo:

a condition in Qq is a tree ¢ C <*\ such that |q| < \;

the order <=<g, of Qy is defined by

g <¢ if and only if ¢ C ¢’ and (V5 € ¢)(Jsuccy(n)| =1 = |succy (n)| =1).
Plainly, Qp is a (<A)—complete forcing notion of size A. Let Ty be a Qp—name

such that IFg, “To = U Gg, 7. Then

kg, “ To € T and (Vn € To) (Jsucer, (n)] > 1 = sucer, (n) = A) ™.

For a set A C X let Q4 be the forcing notion shooting a club through A. Thus
a condition in Q4 is a closed bounded set ¢ included in A,
the order <=<ga of QA4 is defined by
¢ < ¢ if and only if ¢ = ¢ N (max(c) + 1).
Now we inductively define a (<\)-support iteration Q = (P, @5 1€ < 2%) and
a sequence (Ae, ne &< 2*) so that the following demands are satisfied.
(i) Qo is the forcing notion defined above, T is the Qp—name for the generic
tree added by Qy.
(ii) Pg is strategically (<\)—complete, satisfies AT —cc and has a dense subset of
size 22 (for each & < 2%).
(iii) 7e¢, A¢ are Pg-names such that

IFp, “ ne € limy(To) and A¢ = {a < A : [sucer, (nela)| > 1} 7.
(iv) IFp, @5 = Q4 7,
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(v) If n is a Pox—name for a member of limy (7o), then for some £ < 2* we have
Fec™n="ne "

Clause (ii) will be shown soon, but with it in hand using a bookkeeping device
we can take care of clause (v). Then the iteration Q will be fully determined. So let
us argue for clause (ii) (assuming that the iteration is constructed so that clauses
(i), (iii) and (iv) are satisfied).

For 0 < & < 2* we let P consist of all conditions p € P¢ such that 0 € dom(p)
and for some limit ordinal §? < A, for each ¢ € dom(p) \ {0} we have:

(a) p(0) C =9"*+1\ and for some 1, ; € %" XN p(0), pli lFp, “ 0[P =1y 7,
(b) p(i) is a closed subset of 7 + 1 (not just a P;—name) and 67 € p(i),
(c) if B € p(i), then |[succy ) (np,i[B)] > 1.

Claim 4.5.1. (1) Ifp,p’ € P, then p <p, p' if and only if dom(p) C dom(p'),
p(0) <g, p'(0) and (Vi € dom(p) \ {0})(p(i) = p'(i) N (67 + 1)).

(2) [Pl = A-Jg<™

(3) P¢ is a (<\)-complete AT —cc subforcing of Pe. Moreover, if (po : o < )
is a <p,—increasing sequence of members of Pg, v <A, then there is p € Py
such that po <p, p for all a < X and 0P = sup(6P> : a < 7).

(4) P¢ is dense in P¢. Moreover, for every p € P¢ and ov < X there is q € Pz
such that p <p, q and 67 > a.

Proof of the Claim. (1), (2), (3) Straightforward.
(4) Induction on & € (0,2%].
CASE g = 50 +1
Let p € Pc. Construct inductively a sequence (p,, : n < w) C Pg, such that for each
n < w we have
® plo <p, Pn <P, Pnt+1 and a < 6P < 5Pt
e for some closed set ¢ C 67 we have po lFp, “ p(&) =c¢”,
e for some sequence v, € " AN p,41(0) we have p, ;1 Fpe, “eo 1077 = v

(The construction is clearly possible by our inductive hypothesis.) Now we define
a condition ¢ € P{. We declare that dom(q) = nL<Jw dom(p,,) U {&} and for i €
dom(q) \ {0,&} we set g = U{np,: : ¢ € dom(p,), n € w} and we also put
Ngco = U vn. We define

° §1= sup 6P, q(0) = L<J Pn(0)U{ng,i,1q,:(0),mg,i (1) : i € dom(q) \ {0}},
e (i) = L<J pn(1) U {09} for i € dom(q) \ {0,&p} and

o q(&) = cU{d}.
One easily verifies that ¢ € P{ and it is stronger than p.
CASE £ is limit and cf(§) < A
Let p € Pe. Fix an increasing sequence (& : € < cf(€)) C ¢ cofinal in £ and then
use the inductive assumption (and properties of an iteration) to choose inductively
a sequence (pe : € < cf(§)) such that for each € < &’ < cf(£) we have

Pe € ]P)za, a < 6P < §Pe and pfﬁs SIF’& Pe SIF’gE De r§5

Then define a condition ¢ € P} as follows. Declare that dom(q) = (J dom(p:)
' e<cf(§)
and for i € dom(q) \ {0} set ng,; = U{np.,i : # € dom(p:), € < cf(§)}. Put
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e j7 = sup 0P,

e<cf(&)
e q(0) = Lg(g)z?a(o) U {"g,i»Mq,i(0),mq,i (1) : i € dom(q) \ {0}},
e<c
e q(i)= U pe(i) U{d?} for i € dom(q) \ {0}.
e<cf(&)
CASE ¢ is limit and cf(&) > A
Immediate as then Pe = (J Pe. O

¢<¢

It follows from 5.1l that the clause (ii) of the construction of the iteration is
satisfied. In particular, the limit Pyx is strategically (<A)-complete AT—cc and has
a dense subset of size 2*. It should be also clear that IFp,, “ To € Q} 7 (remember

(iil)—(v)).
Claim 4.5.2. Ihp2A “To contains no tree from Qi 7,

Proof of the Claim. Suppose towards contradiction that 7" is a Pox—name such that
plre,, “T € Q% and TCTo” for some p € Pya.

Note that, by E5.1](3,4),
(x) if p <p, ¢ V€ <A\, g IFp,, v € T, and k£ < A and p; are Pyx—names for
members of *\ (for i < k),
then there are ¢* € 7, and v* € ¢*(0) such that ¢ <p_, ¢*, v < v* and

g lrp,, “v eT & |sucer(v™)| >1 & (Vi <r)(pillh(v™) #v7) 7.

Using (*) repeatedly w times we may construct a sequence (p,,v* : n < w) such
that

® Dp € P;/\; p §P2A Pn SIP’2,\ Pn+1, oPn < 5;Dn+1, and

o Ui € <N\ v € prpa(0), v <vii g, and

pnt1 lbe,, “vy €T & [sucer(vy)| > 1 & (Viedom(p,) \ {0})(n:[Th(vy,) # vy,) 7.
Then we define a condition ¢ € P;: we declare that dom(q) = (J dom(p,) and

n<w
for i € dom(q) \ {0} we set ng; = U{np,,i : ¢ € dom(p,), n € w}. We also put
v = | v}, §2 = sup 6P, and then:
n<w n<w

e q(0)= ngwpn(O)U{nq,unq,ﬁ<0>ﬂ7qf<1> ri € dom(q)\ {0} }U{r™, " (0)},
e q(i) = U pn(i) U{d?} for i € dom(q) \ {0}.

n<w

Note that v* ¢ {n,,:/lh(v*) : i € dom(q) \ {0}} and lh(v*) < 67 = lh(n,,) for
i € dom(q) \ {0}. Now we easily check that ¢ € P}, is stronger than p and it forces
that v* € T is a limit of splitting points of T, but itself it is not a splitting point
(even in T). A contradiction with p IF T € Q3. O

d

Proposition 4.6. Assume that the complete Boolean algebras RO(Q}) and RO(Q3)
are isomorphic. Then (@i is a dense subset of (@i

Proof. Since RO(Q}) and RO(Q3) are isomorphic, we may find Qi_tnames Ho,me
(for £ =1,2) such that
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()1 lh@ﬁ “Hs_, C Qi_é is generic over V and 13— € A\ is the corresponding
generic branch 7,
(B)2 if G, C QY is generic over V and G3_y = H3_¢[Gy], then G, = H[Gs_].
Consider Q} x Q3 with the product order and for £ = 1,2 put

Ry ={(T1,Tz) € Q) x Q% : Ty lFqe Ts—e € Hs—¢}
and R = Ry N Ry.
Claim 4.6.1. R is a dense subset of both Ry and Rs.

Proof of the Claim. First note that
(@)s if (T1,T) € Q) x Q3% and T} Hé@i “Ty ¢ Hy”, then there is T} > T
such that (77,T2) € R; (and symmetrically when the roles of 1 and 2 are
interchanged).
Also,
(D)4 if (Tl,Tz) € Ry, £ =1,2, then T3_y4 HéQifz Ty ¢ Hy.

[Why? Assume towards contradiction that T5_, lFQi”'] T, ¢ Hy. Let Gy C Qﬁ
be a generic over V such that Ty € Gy. Put Gs—y = Hs_¢[Gy]. Then Gs_y C
@i_é is generic over V and H¢[G5_¢] = Gy. Since (T1,T2) € Ry we know T5_; €
Hs_¢|Gy] and hence (by our assumption towards contradiction) Ty ¢ H/[G3—¢] =
Gy, contradicting the choice of Gy.]
Now suppose (T1,T3) € Ry, £ € {1,2}. Choose inductively a sequence (17", T3") :

n < w) such that (T, 79) = (T1,T5) for all n < w:

e if n is even, then (T7*,T3') € Ry,

o if n is odd, then (T7",T}') € Rs_,

o (I7.T3) < (T7", T3
By ()3 + ()4 there are no problems with carrying out the inductive process. Put

TP = () Ty and Ty = () T3
n<w n<w
Then T}’ is the least upper bound of (T}* : n < w) and hence easily (T, T5’) € R,
(1, 1) < (TF, T5). -

Claim 4.6.2. Let ¢ € {1,2}, T € QY. Then there is T* > T such that for some
v € <2\ we have

lh(v) =Ih(root(T7)) and T lrqe “v <Amz—p .

Proof of the Claim. By induction on o < A choose a sequence (T}, : a < A) so that
for all & < 8 < X\ we have

()5 To < Tg, root(Ty) < root(Ts) and

()6 Ta+1 forces a value to nz—¢[lh(root(7y)), and

()7 if « is limit then T = () Tg.

E<a
Let n = {J root(Ty) € *X. Then n € limy(T,) for each a < X so the sets
a<A

{§ < A :|sucer, (n[d)] > 1} contain clubs (for each o < \). Consequently we may

pick limit ¢ < X such that |sucer, ()] > 1 for all @ < §. Then also, by (&),
N[0 = root(Ts) and clearly (by ([J)g) T5 forces a value to 13—¢[d. O
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Claim 4.6.3. Let ¢ € {1,2}, T € Q4. Then there is T* > T such that for every
t € T*, for some v € <*X\ we have

Ih(v) =1h(t) and (T7)ilrqe “v <mz—e ™.

Proof of the Claim. We choose inductively conditions T, € Qf and fronts F, of T,
so that for all @ < 8 < A:

(s To =T, Fo = {0},
(D)o Tn < Ts, Fa C T and (V¢ € F)(3i < Ia(t))(t]i € Fy),
(D)1 if is limit, then T, = () Tz and F, = {t € T, : (V€ < o) (Fi < 1h(t))(t]i €

E<a
F¢) and (Vi < 1h(t))(3¢ < a)(3j <1h(t)(i < j & t]j € Fe)},
()11 if t € F,, ¢ € sucer, (t) then t7(¢) € Th41 and for some s = s;¢ € Foqq
we have

100t ((Tat1)i~()) = s and (Taq1)s forces a value to n3—¢[1h(s),
()12 Fag1 = {stc 1t € Fy & ¢ € sucer, (t)} (where s;¢ are determined by

(©)11).
It should be clear that the construction is possible (at successor stages use .6.2)).
Set T* = (| Ta. By Lemma [B.5] we know that T* € Q4 and F, C T* are fronts of

a<
T* (for a < X). Moreover,
()13 if s € T* and |succr=(s)| > 1, then s € |J Fh.
a<A
It follows from ()11 + ()12 + ()10 that for every ¢ € F, the condition (7*),
forces a value to nz_¢[lh(t). If t € T*\ |J Fa, then choose the shortest s € |J Fu

a<A a<A
such that ¢ < s. Then (T%); = (T*)s (remember ([J)13) and hence in particular the
condition (7*); forces a value to 13—,[1h(t). O

Now suppose that 77 € Q). Use ClaimL6.3] to choose a condition T} € Q} such
that Ty < T} and
(D)lTi*’2 for every ¢ € T} the condition (77), forces a value to 7z [Th(t).
Then use Claim 6.1 to pick (77,T3) € R so that T} < T7. Note that then also
(E)11° holds. Apply Claim [LG.3 to T3 and £ = 2 to find a condition T3’ > T} such
that the suitable demand (D)lTZ "' holds, and then use Claim EL6.1 again to choose

(T;,T;7) € R such that T;" > T} and T, > T4. Note that then

T;,Bfl + .. +
()14 for every ¢ € T, the condition (7)) forces a value to 73— [lh(t).

For ¢ = 1,2 and t € T, let py(t) € <*X be such that Ih(pe(t)) = 1h(t) and
(T, )e IF“po(t) tms—¢”. Since (T}, T5") € R we know that
(D)5 @e(t) € Ty, for each t € T,
and by ()2 we also have
()16 @1 0 2 is the identity on T2+ and @ 0 ¢ is the identity on T1+- Moreover,
if t € T{, then ((T7")¢, (T3 )y (1)) € R and
if s € Ty, then ((T1) gy (s), (T57)s) € R.
Thus ¢y : T;' — T;i , 1s a bijection preserving levels and the extension relation <,
and (1 is the inverse of ¢o. Consequently, t € Te‘Ir is a splitting of Te‘Ir if and only
if ¢o(t) is a splitting in T3 ,. Therefore we may conclude that T, € Q3. O
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Conclusion 4.7. It is consistent that the forcing notions Q}, Q3 are not equivalent.

Proof. By Propositions and O
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