Skip to main content
Log in

A decidable theory of type assignment

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

This article investigates a theory of type assignment (assigning types to lambda terms) called ETA which is intermediate in strength between the simple theory of type assignment and strong polymorphic theories like Girard’s F (Proofs and types. Cambridge University Press, Cambridge, 1989). It is like the simple theory and unlike F in that the typability and type-checking problems are solvable with respect to ETA. This is proved in the article along with three other main results: (1) all primitive recursive functionals of finite type are representable in ETA; (2) every term typable in ETA has a unique normal form; (3) there is a function defined by \({{\varepsilon}_0}\)-recursion which takes every typable term to a natural number which is an upper bound to the lengths of all βη-reduction sequences starting with that term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenkirch T., Coquand T.: A finitary subsystem of the polymorphic lambda calculus. In: Abramsky, S. (ed.) Typed Lambda Calculi and Applications (Lecture Notes in Computer Science 2044), pp. 22–28. Springer, Berlin (2001)

    Chapter  Google Scholar 

  2. Barendregt H.P.: The Lambda Calculus: Its Syntax and Semantics. 2nd edn. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  3. Barendregt H.P. et al.: Lambda calculi with types. In: Abramsky, S. (ed.) Handbook of Logic in Computer Science II, pp. 117–309. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Beckmann A.: Exact bounds for lengths of reduction sequences in typed λ-calculus. J. Symbol. Log. 66, 1277–1285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Curry H.B., Feys R.: Combinatory Logic I. North-Holland, Amsterdam (1958)

    Google Scholar 

  6. Curry H.B. et al.: Combinatory Logic II. North-Holland, Amsterdam (1972)

    MATH  Google Scholar 

  7. Girard J.-Y. et al.: Proofs and Types. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  8. Gödel K.: Über eine Bisher noch nicht Benützte Erweiterung des Finiten Standpunktes. Dialectica 12, 280–287 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hindley J.R.: Basic Simple Type Theory. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  10. Hindley J.R., Seldin J.P.: Lambda Calculus and Combinators: An Introduction. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Kfoury A.J., Wells J.B.: A direct algorithm for type inference in the rank-2 fragment of the second-order λ-calculus. LISP Pointers 7, 196–207 (1994)

    Article  Google Scholar 

  12. Leivant D.: Peano’s lambda calculus. In: Anderson, C.A., Zeleny, M. (eds.) Logic, Meaning and Computation, pp. 313–330. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  13. Rathjen M. : The realm of ordinal analysis. In: Cooper, S.B., Truss, J.K. (eds.) Sets and Proofs, pp. 219–279. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  14. Rose H.E.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  15. Schwichtenberg H.: An upper bound for reduction sequences in the typed λ-calculus. Arch. Math. Log. 30, 405–408 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schütte, K.: Proof Theory translated by J. N. Crossley. Springer, Berlin (1977)

  17. Stirton W.R.: How to assign ordinal numbers to combinatory terms with polymorphic types. Arch. Math. Log. 51, 475–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Troelstra A.S., Schwichtenberg H.: Basic Proof Theory. 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Wells J.B.: Typability and type checking in system F are equivalent and undecidable. Ann. Pure Appl. Log. 98, 111–156 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Stirton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirton, W.R. A decidable theory of type assignment. Arch. Math. Logic 52, 631–658 (2013). https://doi.org/10.1007/s00153-013-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0335-x

Keywords

Mathematics Subject Classification (2000)

Navigation