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Abstract

We introduce the notion of normal hyperimaginary and we develop its basic theory.
We present a new proof of Lascar-Pillay’s theorem on bounded hyperimaginaries based
on properties of normal hyperimaginaries. However, the use of Peter-Weyl’s theorem on
the structure of compact Hausdorff groups is not completely eliminated from the proof.
In the second part, we show that all closed sets in Kim-Pillay spaces are equivalent
to hyperimaginaries and we use this to introduce an approximation of ¢-types for
bounded hyperimaginaries.

As usual, we work in the monster model € of a complete theory T of language L.
For background on hyperimaginaries we refer to [2]. Recall that a hyperimaginary is an
equivalence class e = ag of a possibly infinite tuple a under a 0-type-definable equivalence
relation F. We use the notation E(z,y) for the partial type defining the equivalence relation
E.

For a hyperimaginary e, let Fix(e) = Aut(€/e) be the group of automorphisms of the
monster model € fixing e. A hyperimaginary d is definable over e if f(d) = d for all
f € Fix(e). The definable closure dcl(e) of e is the class of all hyperimaginaries definable
over e. Two hyperimaginaries e, d are equivalent, written e ~ d, if they are interdefinable,
that is, if dcl(e) = dcl(d). This notation can also be applied to the case where e or d are
sequences of hyperimaginaries. If A is a set of hyperimaginaries e ~ A means that e ~ d for
a sequence d enumerating A. In some cases we will be interested in automorphisms fixing
A set-wise. We write e ~ A to mean that Fix(e) is the set of all automorphisms f such that
f(A) = A (set-wise). If (A4; : i € I) is a sequence of sets, we write e ~ (4; : i € I) meaning
that Fix(e) is the set of all automorphisms f such that f(A) = A for all i € I.

The cardinality |e| of a hyperimaginary e is the minimal cardinality of a set A of real
elements (i.e., A C €) such that e € dcl(4). In this case, for any cardinal k > |e| there
is a O-type-definable equivalence relation E on k-tuples and there is a k-tuple a such that
e ~ ag. The hyperimaginary e is called finitary if |e|] < w. Equivalently, e is finitary if
e ~ ap for some finite tuple a and some 0-type-definable equivalence relation E.

A hyperimaginary e is bounded if it has a small orbit (an orbit of cardinality smaller
than the size of the monster model). We denote by bdd () the class of all bounded hyper-
imaginaries. There is a single hyperimaginary e which is interdefinable with bdd((), in the
sense that dcl(e) = bdd(0). More generally, for any definably closed class A C bdd(() there
is a single e € A such that A = dcl(e). For any index set I, the relation =j,qq(g) of having
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the same type over bdd(() restricted to I-tuples is the smallest bounded (i.e., with a small
number of classes) 0-type-definable equivalence relation on I-tuples. It is also called the
Kim-Pillay equivalence relation and its classes are called KP-strong types. The set of all
KP-classes of a-tuples is €*/KP.

We see the class of all definably closed classes of hyperimaginaries as a lattice with the
order of inclusion. Hence inf(A, B) = AN B and sup(4, B) = dcl(A U B). By abuse of
notation we write something like inf(ey, e2) ~ d or even inf(ey, es) = d for hypermaginaries
e1, ez, d to mean that inf(dcl(eq), dcl(es)) = dcl(d). Note that sup(e; : i € I) = dcl(e; 1 i €
I).

Lascar and Pillay proved in [3] that every bounded hyperimaginary is equivalent to a
sequence of finitary hyperimaginaries. Their proof rely on an application of Peter-Weyl’s
theorem on the structure of compact Hausdorff groups according to which each such group
is an inverse limit of compact Lie groups. We seek for a purely model-theoretical proof of
the same result, avoiding the use of Peter-Weyl’s theorem. There are particular cases where
the existence of such a sequence of finitary hyperimaginaries is easy to guarantee: normal
hyperimaginaries and KP-classes (see Proposition [8 and Lemma [I§ below)

1 Normal hyperimaginaries

The group G = Aut(bdd(()) of elementary permutations of bdd((}) is a topological group,
with a compact Hausdorff topology. Its closed subgroups are all subgroups of the form
Fixg(e) = {f € G : f(e) = e} with e € bdd(0). For a complete description of the topology
see [3] or [M]. If we endow Aut(€) with the topology of point-wise convergence (a basis
of open sets is given by all sets of the form {f € Aut(€) : f(a) = b} for all finite tuples
a,b € €) then Aut(€) is a topological group and the canonical projection Aut(€) — G is
continuous. Notice that G = Aut(€)/Aut(€/bdd()). According to Peter-Weyl’s theorem,
there is a family (G : i € I) of normal closed subgroups G; of G such that (,.; G; = {1}
and each G/G; is a compact Lie group, and hence it has the descending chain condition
(DCC) on closed subgroups. Each G; is of the form Fixg(e;) for some e; € bdd(f). Let
H; = Fix(e;) be the corresponding subgroup of Aut(¢). Then (,c; H; = Aut(¢/bdd(0))
and therefore (e; : ¢ € I) is interdefinable with any tuple enumerating bdd(()). Moreover
the DCC of G/G; translates as follows: there is no strictly ascending chain (G, ; : j < w) of
closed subgroups G; ; < Gj; j+1 of G extending G;. This explains the following definitions:

Definition 1 A hyperimaginary e is normal if Fix(e) is a normal subgroup of Aut(¢).
A hyperimaginary e is DCC if there is no sequence (e, : n < w) of hyperimaginaries
en € dcl(e) such that e, € dcl(ent1) and e,41 € del(ey,) for each n < w.

Peter-Weyl’s theorem give us a sequence (e; : @ € I) of normal DCC hyperimaginaries
e; € bdd (D) such that (e; : i € I) ~ bdd(f)). We will see that normal hyperimaginaries are
bounded and that normal DCC hyperimaginaries are finitary. We will show that in order to
prove Lascar-Pillay’s theorem it is in fact enough to find a sequence (e; : ¢ € I) of finitary
normal hyperimaginaries e; such that (e; : ¢ € I) ~ bdd(0).

Definition 2 We call Peter-Weyl’s condition the statement that there is a sequence (e; :
i € I) of finitary normal hyperimaginaries e; such that (e; : i € I) ~ bdd(0).

We have not found a proof of Peter-Weyl’s condition avoiding the use of Peter-Weyl’s
theorem, but we can offer an easy-to-follow proof of Lascar-Pillay’s theorem assuming this



condition.

Proposition 3 The following are equivalent for any hyperimaginary e:

1. e is normal.

2. For any e’ = e, ¢ € dcl(e).

3. e~ (f(e): f e Aut(€))

4. e is equivalent to a sequence enumerating an orbit of a hyperimaginary.

Proof: 1 < 2. By definition, e is normal iff for any f, g € Aut(€) such that f(e) = e, we
have g~! fg(e) = e, that is f(g(e)) = g(e). Therefore, e is normal iff {g(e) : g € Aut(€)} C
del(e).

2 = 3. Clear, since f(e) = e for every f € Aut(€).
8 = 4. Obvious.

4 = 2. If e is equivalent to an enumeration of an orbit and ¢’ = e, then ¢’ is equivalent
to an enumeration of the same orbit and therefore e’ € dcl(e). O

Remark 4 Normal hyperimaginaries are bounded.

Proof: Let e be normal. If (e; : i < k) is a long enough sequence of different conjugates
of e, then we can find ¢ < j < k with e; = e;. Since e;, e; are definable over e, e¢; = ¢;, a
contradiction. O

Proposition 5 A hyperimaginary e is normal if and only if for any index set I, the equiv-
alence relation =, on I-tuples is 0-type-definable.

Proof: Let (e; : j € J) be a (bounded) orbit equivalent to e. Then =, ==(,,.jc sy, which
is clearly invariant and type-definable, hence O-type-definable.

If =, is O-type definable, then also =, as a relation between hyperimaginaries is 0-type-
definable. Let f € Fix(e) and g € Aut(€) such that g(e) = ¢’. Then ¢’ =. f(¢). If we

apply g~! we see that e =, g~ f(¢/) and hence g~ 1 f(e’) = e. If we apply g we conclude
that f(e’) = g(e) = e’. Therefore ¢’ € dcl(e). 0

Remark 6 If each e; is normal, then (e; : i € I) is normal.

Lemma 7 Let e = ag be normal.

1. e~a=,.
2. For any tuple m enumerating a model, e ~ m=,.

Proof: 1. If e is normal, then =, is O-type-definable and a=_ is a hyperimaginary.
Assume first f € Fix(e). Then a =, f(a) and therefore f(a=.) = a=,. For the other
direction, assume now f(a=,) = a=,. Then f(a) =. a. Since ap = e, f(ag) = e, that is,
fle) =e.

2. Assume m enumerates a model. Clearly, m=_ € dcl(e). On the other hand, if f fixes
m=, then m =, f(m) and there is some g € Fix(e) such that g(m) = f(m). It follows that
fg~* fixes point-wise a model and it is a strong automorphism, which implies it fixes every
element of bdd(()). Hence f(e) = fg~'g(e) = fg~t(e) = e. O



Proposition 8 Every normal hyperimaginary is equivalent to a sequence of finitary hyper-
mmaginaries.

Proof: Let e be normal. By the previous lemma, =, is type-definable over {) and e ~ a=,
for some tuple a. Let a = (a; : i < k) and for each finite X C & let EX be defined for
k-tuples b, ¢ by

EX(b,c)eb| X =.c]X.

If eX = apx, then each eX is finitary and e ~ (eX : X C & finite ). O

Lemma 9 FEvery normal DCC hyperimaginary is finitary.

Proof: Let e be normal DCC. Choose, like in the proof of Proposition[§ a tuple a = (a; :
i < k) such that e ~ a=, and define EX and e as in that proof. Clearly, eX € dcl(e) and
if X C Y, then eX € dcl(eY). Since e is DCC, there is some finite X such that for all finite
Y 2 X, e¥ edcl(e¥). Tt follows that e ~ eX and hence e is finitary. O

Proposition 10 1. For any O-type-definable equivalence relation on k-tuples F', for any
hyperimaginary e, if E ==, then the relational product EoF = FoE=FoFoFE
is an equivalence relation.

2. Given normal e and d € bdd(D), there are a k-tuple m and a 0-type-definable equiva-
lence relation F' on k-tuples such that, if E is the 0-type-definable equivalence relation
=. on k-tuples, then mg ~ e, mp ~ d and mpgop ~ inf(e, d).

Proof: 1. We must check symmetry and transitivity of £ o F'. For symmetry, assume
a =, bFc and choose an automorphism f such that f(e) = e and f(a) = b. Let ¢’ be
such that f(¢/) = ¢. Then ac’ = bc and therefore F(a,c’). Hence ¢ =, ¢/ Fa. Using now
symmetry, for transitivity it is enough to prove that if a =, bFc =, d, then aFo Fd. Choose
f € Fix(e) such that f(c) =d. Then a =, f(b)Fd.

2. Let d = ag for a tuple a, and extend a to a tuple m = (m; : i < k) enumerating a
model. Let I C x be such that a = (m; : i € I) and define F by

F(z,y) < Gz [ Ly I).

It is a O-type-definable equivalence relation and mp ~ d. Let F ==.. By Lemmalll mg ~ e.
It is clear that mgop € dcl(mg) Ndcl(mp). Now we assume e’ € dcl(mg) N del(mp)
and we check that ¢ € dcl(mpor). For this purpose, let f be an automorphism fixing
mpor. Then E o F(m, f(m)) and by symmetry F o E(m, f(m)). Let b be such that
F(m,b) A E(b, f(m)). Since b =, f(m), there is an automorphism g € Fix(e) such that
g(b) = f(m). Then F(g(m),g(b)), that is F'(m,g~'f(m)). Let h = g~ f. Since h fixes mp,
h(e') = €. Since g € Fix(e), m =. g(m) and hence g fixes mg and g(e’) = €’. Therefore
f(€') = gh(e') = g(€') = €. O

Remark 11 Under the Galois correspondence, inf(e, d) corresponds to sup(Fix(e), Fix(d))
in the lattice of closed subgroups. If Fix(e) is a normal subgroup, this sup is the product
Fix(e) - Fix(d) (the product of two compact subgroups is compact, hence closed). So in
Proposition [I0, Fix(e) - Fix(d) = Fix(mgor).

Remark 12 To prove Peter-Weyl’s condition it is enough to prove that for every finitary
bounded hyperimaginary e there is a family (e; : i € I) of finitary normal hyperimaginaries
e; such that e € dcl(e; : i € I).



Proof: There is a normal e such that e ~ bdd(f)). Since e is equivalent to a family of
finitary bounded hyperimaginaries and each finitary bounded hyperimaginary is definable
over a family of finitary normal hyperimaginary, we conclude that e is definable over a
family (e; : 4 € I) of finitary normal hyperimaginaries. It follows that e ~ (e; : ¢ € I). O

Corollary 13 (Lascar-Pillay) Fvery bounded hyperimaginary is equivalent to a sequence
of finitary hyperimaginaries.

Proof: (Assuming Peter-Weyl’s condition) Let d be a bounded hyperimaginary and choose
a family (e; : ¢ € I) of finitary normal hyperimaginaries such that (e; : ¢ € I) ~ bdd(0).
Let x > |I],]d|,|T|, and for each i € I let E; be the equivalence relation =., on s-tuples.
Let E be the Kim-Pillay equivalence relation =y,qq(p) on k-tuples. We may assume that
the family is closed under finite composition (that is, for any i,7 € I there is some k € T
such that e ~ e;e;), which implies £ = (,c; E;. Choose with Proposition [0 a 0-type-
definable bounded equivalence relation F' on k-tuples and some k-tuple m such that d ~ mp,
e; ~ mg, and inf(e;,d) ~ mg,op. Since e; is finitary, inf(e;, d) is finitary too. We claim
that d ~ (inf(e;,d) : ¢ € I). Notice that F = F o F. Hence d ~ mgor and it is enough
to check that mgor € del(mp,or : 4 € I). Let f be an automorphism fixing each mg,op.
Then for each i € I there is some a; such that

Ei(m,a;) A\ F(ai, f(m)).

By compactness there is some a such that F(m,a) A F(a, f(m)). Hence f fixes mgop. O

Remark 14 The Galois correspondence provides another proof of Corollary [I3 in terms
of groups. Let d be a bounded hyperimaginary and let (e; : i € I) be a family of finitary
normal hyperimaginaries such that (e; : i € I) ~ bdd(D). As above, we may assume that
the family is closed under finite composition. Let H; = Fix(e;), a closed normal subgroup
of the Galois group of T'. Under the Galois correspondence, the conditions on the e;’s
means that (|, H; = {1}, and for each i, j there is some k such that H; N H; = Hy. Let
H = Fix(d), and consider L; = H.H;, a closed subgroup of the Galois group. Again, the
Galois correspondence tells us that L; = Fix(h;) for some bounded hyperimaginary h;, and
certainly h; is finitary since e; is. Now (), Ly = (;, H.H; = H.(\; H; = H, which means
that d ~ (h; 1 i € I).

2 Local types of hyperimaginaries

Definition 15 Let e, d be hyperimaginaries. The orbit of e over d is the set O(e/d) of all
hyperimaginaries e’ such that e =4 €’.

Remark 16 Notice that for an automorphism f, the condition f(O(e/d)) = O(e/d) is
equivalent the conjunction of e =4 f(e) and e =4 f~1(e).

Next lemma is due to Buechler, Pillay and Wagner (Lemma 2.18 in [I]). It basically
says that we can consider O(e/d) as a hyperimaginary if e € bdd(d). In our Proposition 20
below we have generalized this fact to any closed set in a Kim-Pillay space. We apply this
to some closed sets O, (e/d) obtaining thus some hyperimaginaries h, , 4. For d € bdd ()
and p(z) = tp(e/0) we understand tp(e/hy,,.q4) as an approximation to the ¢-type of e over
d.



Remark 17 If e € bdd(d), then O(e/d) is ~-equivalent to some hyperimaginary h, in the
sense that the automorphisms of the monster model fixing h is the set of automorphisms

fizing set-wise O(e/d).

Lemma 18 Ife = (a;:i <w)kp and e, = (a; : i < n)gp, then e ~ (e, : n < w).

Proof: For every automorphism f, f € Fix(e) iff (a; : i < w) =paae) (f(a:) 11 < w) iff
(a; i <n) =paae) (f(ai) i <n)for all n <wiff f(e,) = e, for all n < w. O

Proposition 19 If d € bdd(0), then d =~ (O(e/d) : e € €“/KP) and d ~ (O(e/d) : e €
¢"/KP,n < w)

Proof: If f € Fix(d), then f permutes every orbit O(e/d).

Assume f permutes every O(e/d) for every countable KP-class e € €“/KP. It is well
known that each hyperimaginary is equivalent to a sequence of countable hyperimaginaries.
Hence d ~ (d; : i € T), where every d; is a countable hyperimaginary. Choose an w-tuple a;
and a bounded 0-type-definable equivalence relation E; such that d; = a;p,. By hypothesis,
flaixp) € O(aikp/d) and therefore f(a;xp) = gi(a;xp) for some g; € Fix(d). Note that
d; is a union of KP-classes of w-tuples. Since g; fixes d;, f permutes these KP-classes and
then f(d;) = d;. Since f fixes each d;, f(d) = d.

Assume now f permutes every O(e/d) for every finitary KP-class e € €"/KP. We show
that f permutes O(e/d) for every countable KP-class e € €¥/KP. Let e = (a; : i < w)kp
and let e, = (a; : i < n)gp. Since e, =4 f(e,) for all n < w, (e, :n < w) =4 (f(en) :n <
w). Choose g € Fix(d) such that g(e, : n < w) = (f(en) : n < w). Then f~lg(e,) = e, for
all n < w and by Lemma[I8 f~'g(e) = e. It follows that e =4 f(e) and hence f permutes
O(e/d). O

Proposition 20 Every closed set C in a Kim-Pillay space is ~-equivalent to a hyper-
imaginary ho, that is, the automorphisms of the monster model fixing set-wise C are the
automorphisms fixing he.

Proof: Let E be a bounded 0-type-definable equivalence relation on a-tuples and let
X = €%/ E be the corresponding Kim-Pillay space. If C' C X is closed, then for some partial
type m(x,z), for some tuple b, 7(€,b) = {a : ag € C}. For each formula 0(x,y) € E(z,y)
there is a maximal length n = ng < w of a sequence of tuples (a; : ¢ < n) such that a;p € C
and = —0(a;,a;) for all i < j < n. Let (af : i < ng) witness it, let $g(z,2’) be the partial
type
A 11 < ng)( /\ =0(zi, ;) A /\ w(xi, z) A /\ (2, 2"))
1<j<ng i<ng i<ng

and

F(z,2') = /\ Yo(z,2")

0cE

Claim: For every automorphism f, f(C) = C if and only if = F (b, f(b)).
Proof of the claim: From left to right it is straightforward. For the other direction, assume
= F(b, f(b)) and choose (¢! : i < ng,0 € F) witnessing it. Let ag € C. Then |= 7(a,b), and
hence = 7(f(a), f(b)). By maximality of ng, for every 6 € E there is some i < ng such that
= 0(f(a),c?). By compactness, E(f(a),z) U r(x,b) is consistent and therefore f(ag) € C.
This shows that f(C) C C. By the same reason, f~(C) C C, that is, C C f(C).

It follows from the claim that F' defines a 0-type-definable equivalence relation on re-
alizations of p(x) = tp(b). By standar arguments it can be extended to a 0-type-definable



equivalence relation defined for all tuples of the length of b. The hyperimaginary b satisfies
the requirements. O

Definition 21 Let e, d be hyperimaginaries. If ¢(z,y) € L, = ¢(e, d) means that = ¢(a, b)
for some representatives a,b of e,d respectively. Notice that e =4 €' iff = p(e,d) &F
(€', d) for all p(z,y) € L. Let O, (e/d) = {e' : ¢ = e and = ¢(¢/,d)}. Let p(z) = tp(e)
and assume e € bdd(()). Then e = ag for some tuple a and some bounded 0-type-definable
equivalence relation E. The set of all E-classes is a Kim-Pillay space and O (e/d) defines
a closed subset. By Lemma 20 there is some hyperimaginary h,, , 4 such that

hp,p.d ~ Op(e/d).

The equivalence relation E(e,e’) defined by = ¢(e,d) < ¢(€/,d) is not, in general,
type-definable. This is the reason why an adequate treatment of local types (or ¢-types) is
missing in the model theory of hyperimaginaries. The following results show that the types
tp(e/hip(e),p,a) are (for e bounded) a substitute for the o-type of e over d and we apply
this in Corollary 4] to obtain a new decomposition of a bounded hyperimaginary in terms
of orbits.

Remark 22 Let d be a hyperimaginary, e € bdd(D), p(z) = tp(e) and ¢(z,y) € L.

1 Ife =p,,, e then = @(e, d) < o€, d).
2. hy.p.q € del(d).

Proof: Clear. O

Proposition 23 Let d be a hyperimaginary, e € bdd(0) and p(x) = tp(e). For any €' |= p:

e =g e if and only if ¢ =5, e for every o(x,y) € L

p,p,d

Proof: By Remark 221 O

Corollary 24 Ifd € bdd(0), then d ~ (O(e/hip(e),p,a) - € € € /KP,n < w).

Proof: Let d € bdd(0). If f € Fix(d), then f fixes hip(e),p,a and permutes O(e/hip(e),p.d)-
On the other hand, if e € €"/KP and f permutes all the orbits (O(e/h¢p(e),p,q); then
€ =hperpa J(€) for all o and by Proposition B3l e =4 f(e). Similarly, e =4 f~'(e). Tt
follows that f permutes O(e/d). By Proposition 9, f(d) = d. O
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