arXiv:1112.2049v3 [math.LO] 5 Dec 2013

Normal hyperimaginaries^{*}

Enrique Casanovas and Joris Potier University of Barcelona

December 3, 2013

Abstract

We introduce the notion of normal hyperimaginary and we develop its basic theory. We present a new proof of Lascar-Pillay's theorem on bounded hyperimaginaries based on properties of normal hyperimaginaries. However, the use of Peter-Weyl's theorem on the structure of compact Hausdorff groups is not completely eliminated from the proof. In the second part, we show that all closed sets in Kim-Pillay spaces are equivalent to hyperimaginaries and we use this to introduce an approximation of φ -types for bounded hyperimaginaries.

As usual, we work in the monster model \mathfrak{C} of a complete theory T of language L. For background on hyperimaginaries we refer to [2]. Recall that a hyperimaginary is an equivalence class $e = a_E$ of a possibly infinite tuple a under a 0-type-definable equivalence relation E. We use the notation E(x, y) for the partial type defining the equivalence relation E.

For a hyperimaginary e, let $\operatorname{Fix}(e) = \operatorname{Aut}(\mathfrak{C}/e)$ be the group of automorphisms of the monster model \mathfrak{C} fixing e. A hyperimaginary d is definable over e if f(d) = d for all $f \in \operatorname{Fix}(e)$. The definable closure dcl(e) of e is the class of all hyperimaginaries definable over e. Two hyperimaginaries e, d are equivalent, written $e \sim d$, if they are interdefinable, that is, if dcl $(e) = \operatorname{dcl}(d)$. This notation can also be applied to the case where e or d are sequences of hyperimaginaries. If A is a set of hyperimaginaries $e \sim A$ means that $e \sim d$ for a sequence d enumerating A. In some cases we will be interested in automorphisms fixing A set-wise. We write $e \stackrel{\text{sw}}{\sim} A$ to mean that $\operatorname{Fix}(e)$ is the set of all automorphisms f such that f(A) = A (set-wise). If $(A_i : i \in I)$ is a sequence of sets, we write $e \stackrel{\text{sw}}{\sim} (A_i : i \in I)$ meaning that $\operatorname{Fix}(e)$ is the set of all automorphisms f such that f(A) = A for all $i \in I$.

The cardinality |e| of a hyperimaginary e is the minimal cardinality of a set A of real elements (i.e., $A \subseteq \mathfrak{C}$) such that $e \in \operatorname{dcl}(A)$. In this case, for any cardinal $\kappa \geq |e|$ there is a 0-type-definable equivalence relation E on κ -tuples and there is a κ -tuple a such that $e \sim a_E$. The hyperimaginary e is called *finitary* if $|e| < \omega$. Equivalently, e is finitary if $e \sim a_E$ for some finite tuple a and some 0-type-definable equivalence relation E.

A hyperimaginary e is *bounded* if it has a small orbit (an orbit of cardinality smaller than the size of the monster model). We denote by $bdd(\emptyset)$ the class of all bounded hyperimaginaries. There is a single hyperimaginary e which is interdefinable with $bdd(\emptyset)$, in the sense that $dcl(e) = bdd(\emptyset)$. More generally, for any definably closed class $A \subseteq bdd(\emptyset)$ there is a single $e \in A$ such that A = dcl(e). For any index set I, the relation $\equiv_{bdd(\emptyset)}$ of having

^{*}Partially supported by grants MTM 2011-26840 of Spanish Ministry of Economy and Competitiveness and 2009SGR-187 of Catalan Government

the same type over $bdd(\emptyset)$ restricted to *I*-tuples is the smallest bounded (i.e., with a small number of classes) 0-type-definable equivalence relation on *I*-tuples. It is also called the *Kim-Pillay* equivalence relation and its classes are called KP-strong types. The set of all KP-classes of α -tuples is \mathfrak{C}^{α}/KP .

We see the class of all definably closed classes of hyperimaginaries as a lattice with the order of inclusion. Hence $\inf(A, B) = A \cap B$ and $\sup(A, B) = \operatorname{dcl}(A \cup B)$. By abuse of notation we write something like $\inf(e_1, e_2) \sim d$ or even $\inf(e_1, e_2) = d$ for hypermaginaries e_1, e_2, d to mean that $\inf(\operatorname{dcl}(e_1), \operatorname{dcl}(e_2)) = \operatorname{dcl}(d)$. Note that $\sup(e_i : i \in I) = \operatorname{dcl}(e_i : i \in I)$.

Lascar and Pillay proved in [3] that every bounded hyperimaginary is equivalent to a sequence of finitary hyperimaginaries. Their proof rely on an application of Peter-Weyl's theorem on the structure of compact Hausdorff groups according to which each such group is an inverse limit of compact Lie groups. We seek for a purely model-theoretical proof of the same result, avoiding the use of Peter-Weyl's theorem. There are particular cases where the existence of such a sequence of finitary hyperimaginaries is easy to guarantee: normal hyperimaginaries and KP-classes (see Proposition 8 and Lemma 18 below)

1 Normal hyperimaginaries

The group $G = \operatorname{Aut}(\operatorname{bdd}(\emptyset))$ of elementary permutations of $\operatorname{bdd}(\emptyset)$ is a topological group, with a compact Hausdorff topology. Its closed subgroups are all subgroups of the form $\operatorname{Fix}_G(e) = \{f \in G : f(e) = e\}$ with $e \in \operatorname{bdd}(\emptyset)$. For a complete description of the topology see [3] or [4]. If we endow $\operatorname{Aut}(\mathfrak{C})$ with the topology of point-wise convergence (a basis of open sets is given by all sets of the form $\{f \in \operatorname{Aut}(\mathfrak{C}) : f(a) = b\}$ for all finite tuples $a, b \in \mathfrak{C}$) then $\operatorname{Aut}(\mathfrak{C})$ is a topological group and the canonical projection $\operatorname{Aut}(\mathfrak{C}) \to G$ is continuous. Notice that $G \cong \operatorname{Aut}(\mathfrak{C})/\operatorname{Aut}(\mathfrak{C}/\operatorname{bdd}(\emptyset))$. According to Peter-Weyl's theorem, there is a family $(G_i : i \in I)$ of normal closed subgroups G_i of G such that $\bigcap_{i \in I} G_i = \{1\}$ and each G/G_i is a compact Lie group, and hence it has the descending chain condition (DCC) on closed subgroups. Each G_i is of the form $\operatorname{Fix}_G(e_i)$ for some $e_i \in \operatorname{bdd}(\emptyset)$. Let $H_i = \operatorname{Fix}(e_i)$ be the corresponding subgroup of $\operatorname{Aut}(\mathfrak{C})$. Then $\bigcap_{i \in I} H_i = \operatorname{Aut}(\mathfrak{C}/\operatorname{bdd}(\emptyset))$ and therefore $(e_i : i \in I)$ is interdefinable with any tuple enumerating $\operatorname{bdd}(\emptyset)$. Moreover the DCC of G/G_i translates as follows: there is no strictly ascending chain $(G_{i,j} : j < \omega)$ of closed subgroups $G_{i,j} \leq G_{i,j+1}$ of G extending G_i . This explains the following definitions:

Definition 1 A hyperimaginary e is normal if Fix(e) is a normal subgroup of $Aut(\mathfrak{C})$. A hyperimaginary e is DCC if there is no sequence $(e_n : n < \omega)$ of hyperimaginaries $e_n \in dcl(e)$ such that $e_n \in dcl(e_{n+1})$ and $e_{n+1} \notin dcl(e_n)$ for each $n < \omega$.

Peter-Weyl's theorem give us a sequence $(e_i : i \in I)$ of normal DCC hyperimaginaries $e_i \in bdd(\emptyset)$ such that $(e_i : i \in I) \sim bdd(\emptyset)$. We will see that normal hyperimaginaries are bounded and that normal DCC hyperimaginaries are finitary. We will show that in order to prove Lascar-Pillay's theorem it is in fact enough to find a sequence $(e_i : i \in I)$ of finitary normal hyperimaginaries e_i such that $(e_i : i \in I) \sim bdd(\emptyset)$.

Definition 2 We call *Peter-Weyl's condition* the statement that there is a sequence $(e_i : i \in I)$ of finitary normal hyperimaginaries e_i such that $(e_i : i \in I) \sim bdd(\emptyset)$.

We have not found a proof of Peter-Weyl's condition avoiding the use of Peter-Weyl's theorem, but we can offer an easy-to-follow proof of Lascar-Pillay's theorem assuming this

condition.

Proposition 3 The following are equivalent for any hyperimaginary e:

- 1. e is normal.
- 2. For any $e' \equiv e, e' \in \operatorname{dcl}(e)$.
- 3. $e \sim (f(e) : f \in \operatorname{Aut}(\mathfrak{C}))$
- 4. e is equivalent to a sequence enumerating an orbit of a hyperimaginary.

Proof: $1 \Leftrightarrow 2$. By definition, e is normal iff for any $f, g \in \operatorname{Aut}(\mathfrak{C})$ such that f(e) = e, we have $g^{-1}fg(e) = e$, that is f(g(e)) = g(e). Therefore, e is normal iff $\{g(e) : g \in \operatorname{Aut}(\mathfrak{C})\} \subseteq \operatorname{dcl}(e)$.

 $2 \Rightarrow 3$. Clear, since $f(e) \equiv e$ for every $f \in Aut(\mathfrak{C})$.

 $3 \Rightarrow 4$. Obvious.

 $4 \Rightarrow 2$. If e is equivalent to an enumeration of an orbit and $e' \equiv e$, then e' is equivalent to an enumeration of the same orbit and therefore $e' \in dcl(e)$.

Remark 4 Normal hyperimaginaries are bounded.

Proof: Let *e* be normal. If $(e_i : i < \kappa)$ is a long enough sequence of different conjugates of *e*, then we can find $i < j < \kappa$ with $e_i \equiv_e e_j$. Since e_i, e_j are definable over *e*, $e_i = e_j$, a contradiction.

Proposition 5 A hyperimaginary e is normal if and only if for any index set I, the equivalence relation \equiv_e on I-tuples is 0-type-definable.

Proof: Let $(e_j : j \in J)$ be a (bounded) orbit equivalent to e. Then $\equiv_e = \equiv_{(e_j: j \in J)}$, which is clearly invariant and type-definable, hence 0-type-definable.

If \equiv_e is 0-type definable, then also \equiv_e as a relation between hyperimaginaries is 0-typedefinable. Let $f \in \text{Fix}(e)$ and $g \in \text{Aut}(\mathfrak{C})$ such that g(e) = e'. Then $e' \equiv_e f(e')$. If we apply g^{-1} we see that $e \equiv_e g^{-1}f(e')$ and hence $g^{-1}f(e') = e$. If we apply g we conclude that f(e') = g(e) = e'. Therefore $e' \in \text{dcl}(e)$. \Box

Remark 6 If each e_i is normal, then $(e_i : i \in I)$ is normal.

Lemma 7 Let $e = a_E$ be normal.

1. $e \sim a_{\equiv_e}$.

2. For any tuple m enumerating a model, $e \sim m_{\equiv_e}$.

Proof: 1. If e is normal, then \equiv_e is 0-type-definable and a_{\equiv_e} is a hyperimaginary. Assume first $f \in \text{Fix}(e)$. Then $a \equiv_e f(a)$ and therefore $f(a_{\equiv_e}) = a_{\equiv_e}$. For the other direction, assume now $f(a_{\equiv_e}) = a_{\equiv_e}$. Then $f(a) \equiv_e a$. Since $a_E = e$, $f(a_E) = e$, that is, f(e) = e.

2. Assume *m* enumerates a model. Clearly, $m_{\equiv_e} \in \operatorname{dcl}(e)$. On the other hand, if *f* fixes m_{\equiv_e} then $m \equiv_e f(m)$ and there is some $g \in \operatorname{Fix}(e)$ such that g(m) = f(m). It follows that fg^{-1} fixes point-wise a model and it is a strong automorphism, which implies it fixes every element of $\operatorname{bdd}(\emptyset)$. Hence $f(e) = fg^{-1}g(e) = fg^{-1}(e) = e$.

Proposition 8 Every normal hyperimaginary is equivalent to a sequence of finitary hyperimaginaries.

Proof: Let e be normal. By the previous lemma, \equiv_e is type-definable over \emptyset and $e \sim a_{\equiv_e}$ for some tuple a. Let $a = (a_i : i < \kappa)$ and for each finite $X \subseteq \kappa$ let E^X be defined for κ -tuples b, c by

$$E^X(b,c) \Leftrightarrow b \upharpoonright X \equiv_e c \upharpoonright X.$$

If $e^X = a_{E^X}$, then each e^X is finitary and $e \sim (e^X : X \subseteq \kappa$ finite).

Lemma 9 Every normal DCC hyperimaginary is finitary.

Proof: Let *e* be normal DCC. Choose, like in the proof of Proposition 8, a tuple $a = (a_i : i < \kappa)$ such that $e \sim a_{\equiv e}$ and define E^X and e^X as in that proof. Clearly, $e^X \in dcl(e)$ and if $X \subseteq Y$, then $e^X \in dcl(e^Y)$. Since *e* is DCC, there is some finite X such that for all finite $Y \supseteq X$, $e^Y \in dcl(e^X)$. It follows that $e \sim e^X$ and hence *e* is finitary. \Box

- **Proposition 10** 1. For any 0-type-definable equivalence relation on κ -tuples F, for any hyperimaginary e, if $E = \equiv_e$, then the relational product $E \circ F = F \circ E = E \circ F \circ E$ is an equivalence relation.
 - Given normal e and d ∈ bdd(Ø), there are a κ-tuple m and a 0-type-definable equivalence relation F on κ-tuples such that, if E is the 0-type-definable equivalence relation ≡_e on κ-tuples, then m_E ~ e, m_F ~ d and m_{E∘F} ~ inf(e, d).

Proof: 1. We must check symmetry and transitivity of $E \circ F$. For symmetry, assume $a \equiv_e bFc$ and choose an automorphism f such that f(e) = e and f(a) = b. Let c' be such that f(c') = c. Then $ac' \equiv bc$ and therefore F(a, c'). Hence $c \equiv_e c'Fa$. Using now symmetry, for transitivity it is enough to prove that if $a \equiv_e bFc \equiv_e d$, then $aE \circ Fd$. Choose $f \in Fix(e)$ such that f(c) = d. Then $a \equiv_e f(b)Fd$.

2. Let $d = a_G$ for a tuple a, and extend a to a tuple $m = (m_i : i < \kappa)$ enumerating a model. Let $I \subseteq \kappa$ be such that $a = (m_i : i \in I)$ and define F by

$$F(x,y) \leftrightarrow G(x \upharpoonright I, y \upharpoonright I).$$

It is a 0-type-definable equivalence relation and $m_F \sim d$. Let $E \equiv \equiv_e$. By Lemma 7, $m_E \sim e$. It is clear that $m_{E \circ F} \in \operatorname{dcl}(m_E) \cap \operatorname{dcl}(m_F)$. Now we assume $e' \in \operatorname{dcl}(m_E) \cap \operatorname{dcl}(m_F)$ and we check that $e' \in \operatorname{dcl}(m_{E \circ F})$. For this purpose, let f be an automorphism fixing $m_{E \circ F}$. Then $E \circ F(m, f(m))$ and by symmetry $F \circ E(m, f(m))$. Let b be such that $F(m, b) \wedge E(b, f(m))$. Since $b \equiv_e f(m)$, there is an automorphism $g \in \operatorname{Fix}(e)$ such that g(b) = f(m). Then F(g(m), g(b)), that is $F(m, g^{-1}f(m))$. Let $h = g^{-1}f$. Since h fixes m_F , h(e') = e'. Since $g \in \operatorname{Fix}(e)$, $m \equiv_e g(m)$ and hence g fixes m_E and g(e') = e'. \Box

Remark 11 Under the Galois correspondence, inf(e, d) corresponds to sup(Fix(e), Fix(d))in the lattice of closed subgroups. If Fix(e) is a normal subgroup, this sup is the product $Fix(e) \cdot Fix(d)$ (the product of two compact subgroups is compact, hence closed). So in Proposition 10, $Fix(e) \cdot Fix(d) = Fix(m_{E \circ F})$.

Remark 12 To prove Peter-Weyl's condition it is enough to prove that for every finitary bounded hyperimaginary e there is a family $(e_i : i \in I)$ of finitary normal hyperimaginaries e_i such that $e \in dcl(e_i : i \in I)$.

Proof: There is a normal e such that $e \sim bdd(\emptyset)$. Since e is equivalent to a family of finitary bounded hyperimaginaries and each finitary bounded hyperimaginary is definable over a family of finitary normal hyperimaginary, we conclude that e is definable over a family $(e_i : i \in I)$ of finitary normal hyperimaginaries. It follows that $e \sim (e_i : i \in I)$. \Box

Corollary 13 (Lascar-Pillay) Every bounded hyperimaginary is equivalent to a sequence of finitary hyperimaginaries.

Proof: (Assuming Peter-Weyl's condition) Let d be a bounded hyperimaginary and choose a family $(e_i : i \in I)$ of finitary normal hyperimaginaries such that $(e_i : i \in I) \sim bdd(\emptyset)$. Let $\kappa \geq |I|, |d|, |T|$, and for each $i \in I$ let E_i be the equivalence relation \equiv_{e_i} on κ -tuples. Let E be the Kim-Pillay equivalence relation $\equiv_{bdd(\emptyset)}$ on κ -tuples. We may assume that the family is closed under finite composition (that is, for any $i, j \in I$ there is some $k \in I$ such that $e_k \sim e_i e_j$), which implies $E = \bigcap_{i \in I} E_i$. Choose with Proposition 10 a 0-typedefinable bounded equivalence relation F on κ -tuples and some κ -tuple m such that $d \sim m_F$, $e_i \sim m_{E_i}$ and $\inf(e_i, d) \sim m_{E_i \circ F}$. Since e_i is finitary, $\inf(e_i, d)$ is finitary too. We claim that $d \sim (\inf(e_i, d) : i \in I)$. Notice that $F = E \circ F$. Hence $d \sim m_{E \circ F}$ and it is enough to check that $m_{E \circ F} \in dcl(m_{E_i \circ F} : i \in I)$. Let f be an automorphism fixing each $m_{E_i \circ F}$. Then for each $i \in I$ there is some a_i such that

$$E_i(m, a_i) \wedge F(a_i, f(m)).$$

By compactness there is some a such that $E(m, a) \wedge F(a, f(m))$. Hence f fixes $m_{E \circ F}$. \Box

Remark 14 The Galois correspondence provides another proof of Corollary 13 in terms of groups. Let d be a bounded hyperimaginary and let $(e_i : i \in I)$ be a family of finitary normal hyperimaginaries such that $(e_i : i \in I) \sim bdd(\emptyset)$. As above, we may assume that the family is closed under finite composition. Let $H_i = Fix(e_i)$, a closed normal subgroup of the Galois group of T. Under the Galois correspondence, the conditions on the e_i 's means that $\bigcap_i H_i = \{1\}$, and for each i, j there is some k such that $H_i \cap H_j = H_k$. Let H = Fix(d), and consider $L_i = H.H_i$, a closed subgroup of the Galois group. Again, the Galois correspondence tells us that $L_i = Fix(h_i)$ for some bounded hyperimaginary h_i , and certainly h_i is finitary since e_i is. Now $\bigcap_i L_i = \bigcap_i H.H_i = H.\bigcap_i H_i = H$, which means that $d \sim (h_i : i \in I)$.

2 Local types of hyperimaginaries

Definition 15 Let e, d be hyperimaginaries. The *orbit* of e over d is the set $\mathcal{O}(e/d)$ of all hyperimaginaries e' such that $e \equiv_d e'$.

Remark 16 Notice that for an automorphism f, the condition $f(\mathcal{O}(e/d)) = \mathcal{O}(e/d)$ is equivalent the conjunction of $e \equiv_d f(e)$ and $e \equiv_d f^{-1}(e)$.

Next lemma is due to Buechler, Pillay and Wagner (Lemma 2.18 in [1]). It basically says that we can consider $\mathcal{O}(e/d)$ as a hyperimaginary if $e \in bdd(d)$. In our Proposition 20 below we have generalized this fact to any closed set in a Kim-Pillay space. We apply this to some closed sets $\mathcal{O}_{\varphi}(e/d)$ obtaining thus some hyperimaginaries $h_{p,\varphi,d}$. For $d \in bdd(\emptyset)$ and $p(x) = tp(e/\emptyset)$ we understand $tp(e/h_{p,\varphi,d})$ as an approximation to the φ -type of e over d. **Remark 17** If $e \in bdd(d)$, then $\mathcal{O}(e/d)$ is \approx -equivalent to some hyperimaginary h, in the sense that the automorphisms of the monster model fixing h is the set of automorphisms fixing set-wise $\mathcal{O}(e/d)$.

Lemma 18 If $e = (a_i : i < \omega)_{\text{KP}}$ and $e_n = (a_i : i \le n)_{\text{KP}}$, then $e \sim (e_n : n < \omega)$.

Proof: For every automorphism $f, f \in \text{Fix}(e)$ iff $(a_i : i < \omega) \equiv_{\text{bdd}(\emptyset)} (f(a_i) : i < \omega)$ iff $(a_i : i \le n) \equiv_{\text{bdd}(\emptyset)} (f(a_i) : i \le n)$ for all $n < \omega$ iff $f(e_n) = e_n$ for all $n < \omega$. \Box

Proposition 19 If $d \in bdd(\emptyset)$, then $d \stackrel{\text{sw}}{\sim} (\mathcal{O}(e/d) : e \in \mathfrak{C}^{\omega}/KP)$ and $d \stackrel{\text{sw}}{\sim} (\mathcal{O}(e/d) : e \in \mathfrak{C}^n/KP, n < \omega)$

Proof: If $f \in Fix(d)$, then f permutes every orbit $\mathcal{O}(e/d)$.

Assume f permutes every $\mathcal{O}(e/d)$ for every countable KP-class $e \in \mathfrak{C}^{\omega}/\mathrm{KP}$. It is well known that each hyperimaginary is equivalent to a sequence of countable hyperimaginaries. Hence $d \sim (d_i : i \in I)$, where every d_i is a countable hyperimaginary. Choose an ω -tuple a_i and a bounded 0-type-definable equivalence relation E_i such that $d_i = a_{iE_i}$. By hypothesis, $f(a_{i\mathrm{KP}}) \in \mathcal{O}(a_{i\mathrm{KP}}/d)$ and therefore $f(a_{i\mathrm{KP}}) = g_i(a_{i\mathrm{KP}})$ for some $g_i \in \mathrm{Fix}(d)$. Note that d_i is a union of KP-classes of ω -tuples. Since g_i fixes d_i , f permutes these KP-classes and then $f(d_i) = d_i$. Since f fixes each d_i , f(d) = d.

Assume now f permutes every $\mathcal{O}(e/d)$ for every finitary KP-class $e \in \mathfrak{C}^n/\mathrm{KP}$. We show that f permutes $\mathcal{O}(e/d)$ for every countable KP-class $e \in \mathfrak{C}^\omega/\mathrm{KP}$. Let $e = (a_i : i < \omega)_{\mathrm{KP}}$ and let $e_n = (a_i : i \leq n)_{\mathrm{KP}}$. Since $e_n \equiv_d f(e_n)$ for all $n < \omega$, $(e_n : n < \omega) \equiv_d (f(e_n) : n < \omega)$. ω . Choose $g \in \mathrm{Fix}(d)$ such that $g(e_n : n < \omega) = (f(e_n) : n < \omega)$. Then $f^{-1}g(e_n) = e_n$ for all $n < \omega$ and by Lemma 18 $f^{-1}g(e) = e$. It follows that $e \equiv_d f(e)$ and hence f permutes $\mathcal{O}(e/d)$.

Proposition 20 Every closed set C in a Kim-Pillay space is \approx -equivalent to a hyperimaginary h_C , that is, the automorphisms of the monster model fixing set-wise C are the automorphisms fixing h_C .

Proof: Let *E* be a bounded 0-type-definable equivalence relation on α -tuples and let $X = \mathfrak{C}^{\alpha}/E$ be the corresponding Kim-Pillay space. If $C \subseteq X$ is closed, then for some partial type $\pi(x, z)$, for some tuple $b, \pi(\mathfrak{C}, b) = \{a : a_E \in C\}$. For each formula $\theta(x, y) \in E(x, y)$ there is a maximal length $n = n_{\theta} < \omega$ of a sequence of tuples $(a_i : i < n)$ such that $a_{i_E} \in C$ and $\models \neg \theta(a_i, a_j)$ for all i < j < n. Let $(a_i^{\theta} : i < n_{\theta})$ witness it, let $\Sigma_{\theta}(z, z')$ be the partial type

$$\exists (x_i : i < n_\theta) (\bigwedge_{i < j < n_\theta} \neg \theta(x_i, x_j) \land \bigwedge_{i < n_\theta} \pi(x_i, z) \land \bigwedge_{i < n_\theta} \pi(x_i, z'))$$

and

$$F(z, z') = \bigwedge_{\theta \in E} \Sigma_{\theta}(z, z')$$

Claim: For every automorphism f, f(C) = C if and only if $\models F(b, f(b))$. Proof of the claim: From left to right it is straightforward. For the other direction, assume $\models F(b, f(b))$ and choose $(c_i^{\theta} : i < n_{\theta}, \theta \in E)$ witnessing it. Let $a_E \in C$. Then $\models \pi(a, b)$, and hence $\models \pi(f(a), f(b))$. By maximality of n_{θ} , for every $\theta \in E$ there is some $i < n_{\theta}$ such that $\models \theta(f(a), c_i^{\theta})$. By compactness, $E(f(a), x) \cup \pi(x, b)$ is consistent and therefore $f(a_E) \in C$. This shows that $f(C) \subseteq C$. By the same reason, $f^{-1}(C) \subseteq C$, that is, $C \subseteq f(C)$.

It follows from the claim that F defines a 0-type-definable equivalence relation on realizations of p(x) = tp(b). By standar arguments it can be extended to a 0-type-definable equivalence relation defined for all tuples of the length of b. The hyperimaginary b_F satisfies the requirements. \Box

Definition 21 Let e, d be hyperimaginaries. If $\varphi(x, y) \in L$, $\models \varphi(e, d)$ means that $\models \varphi(a, b)$ for some representatives a, b of e, d respectively. Notice that $e \equiv_d e'$ iff $\models \varphi(e, d) \Leftrightarrow \models \varphi(e', d)$ for all $\varphi(x, y) \in L$. Let $\mathcal{O}_{\varphi}(e/d) = \{e' : e' \equiv e \text{ and } \models \varphi(e', d)\}$. Let $p(x) = \operatorname{tp}(e)$ and assume $e \in \operatorname{bdd}(\emptyset)$. Then $e = a_E$ for some tuple a and some bounded 0-type-definable equivalence relation E. The set of all E-classes is a Kim-Pillay space and $\mathcal{O}_{\varphi}(e/d)$ defines a closed subset. By Lemma 20 there is some hyperimaginary $h_{p,\varphi,d}$ such that

$$h_{p,\varphi,d} \stackrel{\text{sw}}{\sim} \mathcal{O}_{\varphi}(e/d).$$

The equivalence relation E(e, e') defined by $\models \varphi(e, d) \Leftrightarrow \models \varphi(e', d)$ is not, in general, type-definable. This is the reason why an adequate treatment of local types (or φ -types) is missing in the model theory of hyperimaginaries. The following results show that the types $\operatorname{tp}(e/h_{\operatorname{tp}(e),\varphi,d})$ are (for *e* bounded) a substitute for the φ -type of *e* over *d* and we apply this in Corollary 24 to obtain a new decomposition of a bounded hyperimaginary in terms of orbits.

Remark 22 Let d be a hyperimaginary, $e \in bdd(\emptyset)$, p(x) = tp(e) and $\varphi(x, y) \in L$.

1. If $e' \equiv_{h_{p,\varphi,d}} e$ then $\models \varphi(e,d) \Leftrightarrow \models \varphi(e',d)$. 2. $h_{p,\varphi,d} \in \operatorname{dcl}(d)$.

Proof: Clear.

Proposition 23 Let d be a hyperimaginary, $e \in bdd(\emptyset)$ and p(x) = tp(e). For any $e' \models p$:

 $e' \equiv_d e$ if and only if $e' \equiv_{h_{n,\omega,d}} e$ for every $\varphi(x,y) \in L$

Proof: By Remark 22.

Corollary 24 If $d \in bdd(\emptyset)$, then $d \stackrel{\text{sw}}{\sim} (\mathcal{O}(e/h_{tp(e),\varphi,d}) : e \in \mathfrak{C}^n/KP, n < \omega)$.

Proof: Let $d \in bdd(\emptyset)$. If $f \in Fix(d)$, then f fixes $h_{tp(e),\varphi,d}$ and permutes $\mathcal{O}(e/h_{tp(e),\varphi,d})$. On the other hand, if $e \in \mathfrak{C}^n/KP$ and f permutes all the orbits $(\mathcal{O}(e/h_{tp(e),\varphi,d}))$, then $e \equiv_{h_{tp(e),\varphi,d}} f(e)$ for all φ and by Proposition 23 $e \equiv_d f(e)$. Similarly, $e \equiv_d f^{-1}(e)$. It follows that f permutes $\mathcal{O}(e/d)$. By Proposition 19, f(d) = d.

References

- S. Buechler, A. Pillay, and F. O. Wagner. Supersimple theories. Journal of the American Mathematical Society, 14:109–124, 2000.
- [2] E. Casanovas. Simple theories and hyperimaginaries, volume 39 of Lecture Notes in Logic. Cambridge University Press, 2011.
- [3] D. Lascar and A. Pillay. Hyperimaginaries and automorphism groups. The Journal of Symbolic Logic, 66:127–143, 2001.

•

[4] M. Ziegler. Introduction to the Lascar group. In K. Tent, editor, *Tits Buildings and the Model Theory of Groups*, number 291 in London Mathematical Society Lecture Notes Series, pages 279–298. Cambridge University Press, Cambridge, 2002.

Departamento de Lógica, Historia y Filosofía de la Ciencia Universidad de Barcelona Montalegre 6, 08001 Barcelona ESPAÑA E-mail: e.casanovas@ub.edu and z.-@laposte.net