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Abstract

We introduce the notion of normal hyperimaginary and we develop its basic theory.

We present a new proof of Lascar-Pillay’s theorem on bounded hyperimaginaries based

on properties of normal hyperimaginaries. However, the use of Peter-Weyl’s theorem on

the structure of compact Hausdorff groups is not completely eliminated from the proof.

In the second part, we show that all closed sets in Kim-Pillay spaces are equivalent

to hyperimaginaries and we use this to introduce an approximation of ϕ-types for

bounded hyperimaginaries.

As usual, we work in the monster model C of a complete theory T of language L.
For background on hyperimaginaries we refer to [2]. Recall that a hyperimaginary is an
equivalence class e = aE of a possibly infinite tuple a under a 0-type-definable equivalence
relation E. We use the notation E(x, y) for the partial type defining the equivalence relation
E.

For a hyperimaginary e, let Fix(e) = Aut(C/e) be the group of automorphisms of the
monster model C fixing e. A hyperimaginary d is definable over e if f(d) = d for all
f ∈ Fix(e). The definable closure dcl(e) of e is the class of all hyperimaginaries definable
over e. Two hyperimaginaries e, d are equivalent, written e ∼ d, if they are interdefinable,
that is, if dcl(e) = dcl(d). This notation can also be applied to the case where e or d are
sequences of hyperimaginaries. If A is a set of hyperimaginaries e ∼ A means that e ∼ d for
a sequence d enumerating A. In some cases we will be interested in automorphisms fixing
A set-wise. We write e

sw
∼ A to mean that Fix(e) is the set of all automorphisms f such that

f(A) = A (set-wise). If (Ai : i ∈ I) is a sequence of sets, we write e
sw
∼ (Ai : i ∈ I) meaning

that Fix(e) is the set of all automorphisms f such that f(A) = A for all i ∈ I.

The cardinality |e| of a hyperimaginary e is the minimal cardinality of a set A of real
elements (i.e., A ⊆ C) such that e ∈ dcl(A). In this case, for any cardinal κ ≥ |e| there
is a 0-type-definable equivalence relation E on κ-tuples and there is a κ-tuple a such that
e ∼ aE . The hyperimaginary e is called finitary if |e| < ω. Equivalently, e is finitary if
e ∼ aE for some finite tuple a and some 0-type-definable equivalence relation E.

A hyperimaginary e is bounded if it has a small orbit (an orbit of cardinality smaller
than the size of the monster model). We denote by bdd(∅) the class of all bounded hyper-
imaginaries. There is a single hyperimaginary e which is interdefinable with bdd(∅), in the
sense that dcl(e) = bdd(∅). More generally, for any definably closed class A ⊆ bdd(∅) there
is a single e ∈ A such that A = dcl(e). For any index set I, the relation ≡bdd(∅) of having
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the same type over bdd(∅) restricted to I-tuples is the smallest bounded (i.e., with a small
number of classes) 0-type-definable equivalence relation on I-tuples. It is also called the
Kim-Pillay equivalence relation and its classes are called KP-strong types. The set of all
KP-classes of α-tuples is Cα/KP.

We see the class of all definably closed classes of hyperimaginaries as a lattice with the
order of inclusion. Hence inf(A,B) = A ∩ B and sup(A,B) = dcl(A ∪ B). By abuse of
notation we write something like inf(e1, e2) ∼ d or even inf(e1, e2) = d for hypermaginaries
e1, e2, d to mean that inf(dcl(e1), dcl(e2)) = dcl(d). Note that sup(ei : i ∈ I) = dcl(ei : i ∈
I).

Lascar and Pillay proved in [3] that every bounded hyperimaginary is equivalent to a
sequence of finitary hyperimaginaries. Their proof rely on an application of Peter-Weyl’s
theorem on the structure of compact Hausdorff groups according to which each such group
is an inverse limit of compact Lie groups. We seek for a purely model-theoretical proof of
the same result, avoiding the use of Peter-Weyl’s theorem. There are particular cases where
the existence of such a sequence of finitary hyperimaginaries is easy to guarantee: normal
hyperimaginaries and KP-classes (see Proposition 8 and Lemma 18 below)

1 Normal hyperimaginaries

The group G = Aut(bdd(∅)) of elementary permutations of bdd(∅) is a topological group,
with a compact Hausdorff topology. Its closed subgroups are all subgroups of the form
FixG(e) = {f ∈ G : f(e) = e} with e ∈ bdd(∅). For a complete description of the topology
see [3] or [4]. If we endow Aut(C) with the topology of point-wise convergence (a basis
of open sets is given by all sets of the form {f ∈ Aut(C) : f(a) = b} for all finite tuples
a, b ∈ C) then Aut(C) is a topological group and the canonical projection Aut(C) → G is
continuous. Notice that G ∼= Aut(C)/Aut(C/bdd(∅)). According to Peter-Weyl’s theorem,
there is a family (Gi : i ∈ I) of normal closed subgroups Gi of G such that

⋂
i∈I Gi = {1}

and each G/Gi is a compact Lie group, and hence it has the descending chain condition
(DCC) on closed subgroups. Each Gi is of the form FixG(ei) for some ei ∈ bdd(∅). Let
Hi = Fix(ei) be the corresponding subgroup of Aut(C). Then

⋂
i∈I Hi = Aut(C/bdd(∅))

and therefore (ei : i ∈ I) is interdefinable with any tuple enumerating bdd(∅). Moreover
the DCC of G/Gi translates as follows: there is no strictly ascending chain (Gi,j : j < ω) of
closed subgroups Gi,j ≤ Gi,j+1 of G extending Gi. This explains the following definitions:

Definition 1 A hyperimaginary e is normal if Fix(e) is a normal subgroup of Aut(C).
A hyperimaginary e is DCC if there is no sequence (en : n < ω) of hyperimaginaries
en ∈ dcl(e) such that en ∈ dcl(en+1) and en+1 6∈ dcl(en) for each n < ω.

Peter-Weyl’s theorem give us a sequence (ei : i ∈ I) of normal DCC hyperimaginaries
ei ∈ bdd(∅) such that (ei : i ∈ I) ∼ bdd(∅). We will see that normal hyperimaginaries are
bounded and that normal DCC hyperimaginaries are finitary. We will show that in order to
prove Lascar-Pillay’s theorem it is in fact enough to find a sequence (ei : i ∈ I) of finitary
normal hyperimaginaries ei such that (ei : i ∈ I) ∼ bdd(∅).

Definition 2 We call Peter-Weyl’s condition the statement that there is a sequence (ei :
i ∈ I) of finitary normal hyperimaginaries ei such that (ei : i ∈ I) ∼ bdd(∅).

We have not found a proof of Peter-Weyl’s condition avoiding the use of Peter-Weyl’s
theorem, but we can offer an easy-to-follow proof of Lascar-Pillay’s theorem assuming this
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condition.

Proposition 3 The following are equivalent for any hyperimaginary e:

1. e is normal.

2. For any e′ ≡ e, e′ ∈ dcl(e).

3. e ∼ (f(e) : f ∈ Aut(C))

4. e is equivalent to a sequence enumerating an orbit of a hyperimaginary.

Proof: 1 ⇔ 2. By definition, e is normal iff for any f, g ∈ Aut(C) such that f(e) = e, we
have g−1fg(e) = e, that is f(g(e)) = g(e). Therefore, e is normal iff {g(e) : g ∈ Aut(C)} ⊆
dcl(e).

2 ⇒ 3. Clear, since f(e) ≡ e for every f ∈ Aut(C).

3 ⇒ 4. Obvious.

4 ⇒ 2. If e is equivalent to an enumeration of an orbit and e′ ≡ e, then e′ is equivalent
to an enumeration of the same orbit and therefore e′ ∈ dcl(e). ✷

Remark 4 Normal hyperimaginaries are bounded.

Proof: Let e be normal. If (ei : i < κ) is a long enough sequence of different conjugates
of e, then we can find i < j < κ with ei ≡e ej . Since ei, ej are definable over e, ei = ej , a
contradiction. ✷

Proposition 5 A hyperimaginary e is normal if and only if for any index set I, the equiv-
alence relation ≡e on I-tuples is 0-type-definable.

Proof: Let (ej : j ∈ J) be a (bounded) orbit equivalent to e. Then ≡e=≡(ej:j∈J), which
is clearly invariant and type-definable, hence 0-type-definable.

If ≡e is 0-type definable, then also ≡e as a relation between hyperimaginaries is 0-type-
definable. Let f ∈ Fix(e) and g ∈ Aut(C) such that g(e) = e′. Then e′ ≡e f(e′). If we
apply g−1 we see that e ≡e g−1f(e′) and hence g−1f(e′) = e. If we apply g we conclude
that f(e′) = g(e) = e′. Therefore e′ ∈ dcl(e). ✷

Remark 6 If each ei is normal, then (ei : i ∈ I) is normal.

Lemma 7 Let e = aE be normal.

1. e ∼ a≡e
.

2. For any tuple m enumerating a model, e ∼ m≡e
.

Proof: 1. If e is normal, then ≡e is 0-type-definable and a≡e
is a hyperimaginary.

Assume first f ∈ Fix(e). Then a ≡e f(a) and therefore f(a≡e
) = a≡e

. For the other
direction, assume now f(a≡e

) = a≡e
. Then f(a) ≡e a. Since aE = e, f(aE) = e, that is,

f(e) = e.

2. Assume m enumerates a model. Clearly, m≡e
∈ dcl(e). On the other hand, if f fixes

m≡e
then m ≡e f(m) and there is some g ∈ Fix(e) such that g(m) = f(m). It follows that

fg−1 fixes point-wise a model and it is a strong automorphism, which implies it fixes every
element of bdd(∅). Hence f(e) = fg−1g(e) = fg−1(e) = e. ✷
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Proposition 8 Every normal hyperimaginary is equivalent to a sequence of finitary hyper-
imaginaries.

Proof: Let e be normal. By the previous lemma, ≡e is type-definable over ∅ and e ∼ a≡e

for some tuple a. Let a = (ai : i < κ) and for each finite X ⊆ κ let EX be defined for
κ-tuples b, c by

EX(b, c) ⇔ b ↾ X ≡e c ↾ X.

If eX = aEX , then each eX is finitary and e ∼ (eX : X ⊆ κ finite ). ✷

Lemma 9 Every normal DCC hyperimaginary is finitary.

Proof: Let e be normal DCC. Choose, like in the proof of Proposition 8, a tuple a = (ai :
i < κ) such that e ∼ a≡e

and define EX and eX as in that proof. Clearly, eX ∈ dcl(e) and
if X ⊆ Y , then eX ∈ dcl(eY ). Since e is DCC, there is some finite X such that for all finite
Y ⊇ X , eY ∈ dcl(eX). It follows that e ∼ eX and hence e is finitary. ✷

Proposition 10 1. For any 0-type-definable equivalence relation on κ-tuples F , for any
hyperimaginary e, if E =≡e, then the relational product E ◦ F = F ◦ E = E ◦ F ◦ E
is an equivalence relation.

2. Given normal e and d ∈ bdd(∅), there are a κ-tuple m and a 0-type-definable equiva-
lence relation F on κ-tuples such that, if E is the 0-type-definable equivalence relation
≡e on κ-tuples, then mE ∼ e, mF ∼ d and mE◦F ∼ inf(e, d).

Proof: 1. We must check symmetry and transitivity of E ◦ F . For symmetry, assume
a ≡e bFc and choose an automorphism f such that f(e) = e and f(a) = b. Let c′ be
such that f(c′) = c. Then ac′ ≡ bc and therefore F (a, c′). Hence c ≡e c′Fa. Using now
symmetry, for transitivity it is enough to prove that if a ≡e bFc ≡e d, then aE◦Fd. Choose
f ∈ Fix(e) such that f(c) = d. Then a ≡e f(b)Fd.

2. Let d = aG for a tuple a, and extend a to a tuple m = (mi : i < κ) enumerating a
model. Let I ⊆ κ be such that a = (mi : i ∈ I) and define F by

F (x, y) ↔ G(x ↾ I, y ↾ I).

It is a 0-type-definable equivalence relation andmF ∼ d. Let E =≡e. By Lemma 7, mE ∼ e.
It is clear that mE◦F ∈ dcl(mE) ∩ dcl(mF ). Now we assume e′ ∈ dcl(mE) ∩ dcl(mF )
and we check that e′ ∈ dcl(mE◦F ). For this purpose, let f be an automorphism fixing
mE◦F . Then E ◦ F (m, f(m)) and by symmetry F ◦ E(m, f(m)). Let b be such that
F (m, b) ∧ E(b, f(m)). Since b ≡e f(m), there is an automorphism g ∈ Fix(e) such that
g(b) = f(m). Then F (g(m), g(b)), that is F (m, g−1f(m)). Let h = g−1f . Since h fixes mF ,
h(e′) = e′. Since g ∈ Fix(e), m ≡e g(m) and hence g fixes mE and g(e′) = e′. Therefore
f(e′) = gh(e′) = g(e′) = e′. ✷

Remark 11 Under the Galois correspondence, inf(e, d) corresponds to sup(Fix(e),Fix(d))
in the lattice of closed subgroups. If Fix(e) is a normal subgroup, this sup is the product
Fix(e) · Fix(d) (the product of two compact subgroups is compact, hence closed). So in
Proposition 10, Fix(e) · Fix(d) = Fix(mE◦F ).

Remark 12 To prove Peter-Weyl’s condition it is enough to prove that for every finitary
bounded hyperimaginary e there is a family (ei : i ∈ I) of finitary normal hyperimaginaries
ei such that e ∈ dcl(ei : i ∈ I).
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Proof: There is a normal e such that e ∼ bdd(∅). Since e is equivalent to a family of
finitary bounded hyperimaginaries and each finitary bounded hyperimaginary is definable
over a family of finitary normal hyperimaginary, we conclude that e is definable over a
family (ei : i ∈ I) of finitary normal hyperimaginaries. It follows that e ∼ (ei : i ∈ I). ✷

Corollary 13 (Lascar-Pillay) Every bounded hyperimaginary is equivalent to a sequence
of finitary hyperimaginaries.

Proof: (Assuming Peter-Weyl’s condition) Let d be a bounded hyperimaginary and choose
a family (ei : i ∈ I) of finitary normal hyperimaginaries such that (ei : i ∈ I) ∼ bdd(∅).
Let κ ≥ |I|, |d|, |T |, and for each i ∈ I let Ei be the equivalence relation ≡ei on κ-tuples.
Let E be the Kim-Pillay equivalence relation ≡bdd(∅) on κ-tuples. We may assume that
the family is closed under finite composition (that is, for any i, j ∈ I there is some k ∈ I
such that ek ∼ eiej), which implies E =

⋂
i∈I Ei. Choose with Proposition 10 a 0-type-

definable bounded equivalence relation F on κ-tuples and some κ-tuplem such that d ∼ mF ,
ei ∼ mEi

and inf(ei, d) ∼ mEi◦F . Since ei is finitary, inf(ei, d) is finitary too. We claim
that d ∼ (inf(ei, d) : i ∈ I). Notice that F = E ◦ F . Hence d ∼ mE◦F and it is enough
to check that mE◦F ∈ dcl(mEi◦F : i ∈ I). Let f be an automorphism fixing each mEi◦F .
Then for each i ∈ I there is some ai such that

Ei(m, ai) ∧ F (ai, f(m)).

By compactness there is some a such that E(m, a) ∧ F (a, f(m)). Hence f fixes mE◦F . ✷

Remark 14 The Galois correspondence provides another proof of Corollary 13 in terms
of groups. Let d be a bounded hyperimaginary and let (ei : i ∈ I) be a family of finitary
normal hyperimaginaries such that (ei : i ∈ I) ∼ bdd(∅). As above, we may assume that
the family is closed under finite composition. Let Hi = Fix(ei), a closed normal subgroup
of the Galois group of T . Under the Galois correspondence, the conditions on the ei’s
means that

⋂
iHi = {1}, and for each i, j there is some k such that Hi ∩ Hj = Hk. Let

H = Fix(d), and consider Li = H.Hi, a closed subgroup of the Galois group. Again, the
Galois correspondence tells us that Li = Fix(hi) for some bounded hyperimaginary hi, and
certainly hi is finitary since ei is. Now

⋂
i Li =

⋂
iH.Hi = H.

⋂
iHi = H, which means

that d ∼ (hi : i ∈ I).

2 Local types of hyperimaginaries

Definition 15 Let e, d be hyperimaginaries. The orbit of e over d is the set O(e/d) of all
hyperimaginaries e′ such that e ≡d e′.

Remark 16 Notice that for an automorphism f , the condition f(O(e/d)) = O(e/d) is
equivalent the conjunction of e ≡d f(e) and e ≡d f−1(e).

Next lemma is due to Buechler, Pillay and Wagner (Lemma 2.18 in [1]). It basically
says that we can consider O(e/d) as a hyperimaginary if e ∈ bdd(d). In our Proposition 20
below we have generalized this fact to any closed set in a Kim-Pillay space. We apply this
to some closed sets Oϕ(e/d) obtaining thus some hyperimaginaries hp,ϕ,d. For d ∈ bdd(∅)
and p(x) = tp(e/∅) we understand tp(e/hp,ϕ,d) as an approximation to the ϕ-type of e over
d.
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Remark 17 If e ∈ bdd(d), then O(e/d) is
sw
∼-equivalent to some hyperimaginary h, in the

sense that the automorphisms of the monster model fixing h is the set of automorphisms
fixing set-wise O(e/d).

Lemma 18 If e = (ai : i < ω)KP and en = (ai : i ≤ n)KP, then e ∼ (en : n < ω).

Proof: For every automorphism f , f ∈ Fix(e) iff (ai : i < ω) ≡bdd(∅) (f(ai) : i < ω) iff
(ai : i ≤ n) ≡bdd(∅) (f(ai) : i ≤ n) for all n < ω iff f(en) = en for all n < ω. ✷

Proposition 19 If d ∈ bdd(∅), then d
sw
∼ (O(e/d) : e ∈ C

ω/KP) and d
sw
∼ (O(e/d) : e ∈

C
n/KP, n < ω)

Proof: If f ∈ Fix(d), then f permutes every orbit O(e/d).

Assume f permutes every O(e/d) for every countable KP-class e ∈ C
ω/KP. It is well

known that each hyperimaginary is equivalent to a sequence of countable hyperimaginaries.
Hence d ∼ (di : i ∈ I), where every di is a countable hyperimaginary. Choose an ω-tuple ai
and a bounded 0-type-definable equivalence relation Ei such that di = aiEi

. By hypothesis,
f(aiKP) ∈ O(aiKP/d) and therefore f(aiKP) = gi(aiKP) for some gi ∈ Fix(d). Note that
di is a union of KP-classes of ω-tuples. Since gi fixes di, f permutes these KP-classes and
then f(di) = di. Since f fixes each di, f(d) = d.

Assume now f permutes every O(e/d) for every finitary KP-class e ∈ C
n/KP. We show

that f permutes O(e/d) for every countable KP-class e ∈ C
ω/KP. Let e = (ai : i < ω)KP

and let en = (ai : i ≤ n)KP. Since en ≡d f(en) for all n < ω, (en : n < ω) ≡d (f(en) : n <
ω). Choose g ∈ Fix(d) such that g(en : n < ω) = (f(en) : n < ω). Then f−1g(en) = en for
all n < ω and by Lemma 18 f−1g(e) = e. It follows that e ≡d f(e) and hence f permutes
O(e/d). ✷

Proposition 20 Every closed set C in a Kim-Pillay space is
sw
∼-equivalent to a hyper-

imaginary hC, that is, the automorphisms of the monster model fixing set-wise C are the
automorphisms fixing hC.

Proof: Let E be a bounded 0-type-definable equivalence relation on α-tuples and let
X = C

α/E be the corresponding Kim-Pillay space. If C ⊆ X is closed, then for some partial
type π(x, z), for some tuple b, π(C, b) = {a : aE ∈ C}. For each formula θ(x, y) ∈ E(x, y)
there is a maximal length n = nθ < ω of a sequence of tuples (ai : i < n) such that aiE ∈ C
and |= ¬θ(ai, aj) for all i < j < n. Let (aθi : i < nθ) witness it, let Σθ(z, z

′) be the partial
type

∃(xi : i < nθ)(
∧

i<j<nθ

¬θ(xi, xj) ∧
∧

i<nθ

π(xi, z) ∧
∧

i<nθ

π(xi, z
′))

and
F (z, z′) =

∧

θ∈E

Σθ(z, z
′)

Claim: For every automorphism f , f(C) = C if and only if |= F (b, f(b)).
Proof of the claim: From left to right it is straightforward. For the other direction, assume
|= F (b, f(b)) and choose (cθi : i < nθ, θ ∈ E) witnessing it. Let aE ∈ C. Then |= π(a, b), and
hence |= π(f(a), f(b)). By maximality of nθ, for every θ ∈ E there is some i < nθ such that
|= θ(f(a), cθi ). By compactness, E(f(a), x) ∪ π(x, b) is consistent and therefore f(aE) ∈ C.
This shows that f(C) ⊆ C. By the same reason, f−1(C) ⊆ C, that is, C ⊆ f(C).

It follows from the claim that F defines a 0-type-definable equivalence relation on re-
alizations of p(x) = tp(b). By standar arguments it can be extended to a 0-type-definable
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equivalence relation defined for all tuples of the length of b. The hyperimaginary bF satisfies
the requirements. ✷

Definition 21 Let e, d be hyperimaginaries. If ϕ(x, y) ∈ L, |= ϕ(e, d) means that |= ϕ(a, b)
for some representatives a, b of e, d respectively. Notice that e ≡d e′ iff |= ϕ(e, d) ⇔|=
ϕ(e′, d) for all ϕ(x, y) ∈ L. Let Oϕ(e/d) = {e′ : e′ ≡ e and |= ϕ(e′, d)}. Let p(x) = tp(e)
and assume e ∈ bdd(∅). Then e = aE for some tuple a and some bounded 0-type-definable
equivalence relation E. The set of all E-classes is a Kim-Pillay space and Oϕ(e/d) defines
a closed subset. By Lemma 20 there is some hyperimaginary hp,ϕ,d such that

hp,ϕ,d
sw
∼ Oϕ(e/d).

The equivalence relation E(e, e′) defined by |= ϕ(e, d) ⇔|= ϕ(e′, d) is not, in general,
type-definable. This is the reason why an adequate treatment of local types (or ϕ-types) is
missing in the model theory of hyperimaginaries. The following results show that the types
tp(e/htp(e),ϕ,d) are (for e bounded) a substitute for the ϕ-type of e over d and we apply
this in Corollary 24 to obtain a new decomposition of a bounded hyperimaginary in terms
of orbits.

Remark 22 Let d be a hyperimaginary, e ∈ bdd(∅), p(x) = tp(e) and ϕ(x, y) ∈ L.

1. If e′ ≡hp,ϕ,d
e then |= ϕ(e, d) ⇔|= ϕ(e′, d).

2. hp,ϕ,d ∈ dcl(d).

Proof: Clear. ✷

Proposition 23 Let d be a hyperimaginary, e ∈ bdd(∅) and p(x) = tp(e). For any e′ |= p:

e′ ≡d e if and only if e′ ≡hp,ϕ,d
e for every ϕ(x, y) ∈ L

Proof: By Remark 22. ✷

Corollary 24 If d ∈ bdd(∅), then d
sw
∼ (O(e/htp(e),ϕ,d) : e ∈ C

n/KP, n < ω).

Proof: Let d ∈ bdd(∅). If f ∈ Fix(d), then f fixes htp(e),ϕ,d and permutes O(e/htp(e),ϕ,d).
On the other hand, if e ∈ C

n/KP and f permutes all the orbits (O(e/htp(e),ϕ,d), then
e ≡htp(e),ϕ,d

f(e) for all ϕ and by Proposition 23 e ≡d f(e). Similarly, e ≡d f−1(e). It
follows that f permutes O(e/d). By Proposition 19, f(d) = d. ✷
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