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ISOMORPHIC AND STRONGLY CONNECTED COMPONENTS
Milo 3 S. Kurili

Abstract

We study the partial orderings of the forfa(X), C), whereX is a binary re-
lational structure with the connectivity components isopiic to a strongly
connected structur® andP(X) is the set of (domains of) substructures of
X isomorphic toX. We show that, for example, for a countaBllethe poset
(P(X), C) is either isomorphic to a finite power &{(Y) or forcing equiva-
lent to a separative atomlessclosed poset and, consistently,gw) /Fin.

In particular, this holds for each ultrahomogeneous stimecX such thatX
or X¢ is a disconnected structure and in this c&sean be replaced by an
ultrahomogeneous connected digraph.

2000 Mathematics Subject Classificati@3C15, 03E40, 06A06, 03C50.
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1 Introduction

We consider the partial orderings of the fofi(X), C), whereX is a relational
structure and(X) the set of the domains of its isomorphic substructures. ghou
classification of countable binary structures related ¢égatoperties of their posets
of copies is obtained in_[6], defining two structures to beiealant if the corre-
sponding posets of copies have isomorphic Boolean coropketr, equivalently,
are forcing equivalent. So, for example, for the structdresn columnD of Di-
agram 1 of[[6] the corresponding posets are forcing equivdtean atomless; -
closed poset and, consistently, dw)/Fin. This class of structures includes all
scattered linear orders|[9] (in particular, all countabidirmals [8]), all structures
with maximally embeddable components [7] (in particuldr,cauntable equiva-
lence relations and all disjoint unions of countable orldiphand in this paper we
show that it contains a large class of ultrahomogeneouststes.

In Theoreni 3.R of Section 3 we show that the poset of copiedbofary struc-
ture with k-many isomorphic and strongly connected components isrdisbmor-
phic to a finite power of the poset of copies of one componantypr@ing equiv-
alent to something liké’(x)/[x]<" and, for countable structures, consistently, to
P(w)/Fin. The main result of Section 4 is that each ultrahomogenemaryb
structure which is not biconnected is determined by anhdiregogeneous digraph
in a simple way and this fact is used in Section 5, where weyappéoreni 3.2 to
countable ultrahomogeneous binary structures.
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2 Preliminaries

The aim of this section is to introduce notation and to giveibadefinitions and
facts concerning relational structures and partial orddrish will be used.

We observébinary structuresthe relational structures of the forkh= (X, p),
wherep is a binary relation on the séf. If Y = (Y, 7) is a binary structure too, a
mappingf : X — Y is anembeddingwe write f : X < Y) iff f is an injection
andzxipry < f(x1)7f(z2), for eachz;,zo € X. Emb(X,Y) will denote the
set of all embeddings af into Y and, in particularEmb(X) = Emb(X, X). If,
in addition, f is a surjection,f is anisomorphismand the structureX and Y
are calledisomorphic in notationX = Y. If, in particular,Y = X, thenf is
called anautomorphisnof the structureX and Aut(X) will denote the set of all
automorphisms oK. If X = (X, p) is a binary structureA C X andpy =
pN(Ax A), then(A, pa) is the correspondingubstructureof X. By P(X) we
denote the set of domains of substructureX evhich are isomorphic t&, that is

P(X) = {A C X : (A, pa) = (X.p)} = {f[X] : f € Bub(X))}.

More generally, ifX = (X, p) andY = (Y, 7) are binary structures we define
PX,Y)={BCY:(B,7/5) 2 (X,p)} ={f[X]: f € Emb(X,Y)}. By Pi(X)
we denote the set of all finite partial isomorphismsXof A structureX is called
ultrahomogeneousf for each ¢ € Pi(X) there isf € Aut(X) such thatp C f.

If X; = (X;,pi), ¢ € I, are binary structures anl; N X; = (), for different
i,j € I, thenthe structurg),.; X; = (U,c; Xi, U, pi) Will be called thedisjoint
unionof the structureX;, : € 1.

If (X,p) is a binary structure, then the transitive clospyg, of the relation
prs = AxUpUp~! (given byz p, yiffthere aren € Nandzy =z, 21, ..., 2, =
y such thatz; p,s z;11, for eachi < n) is the minimal equivalence relation on
containingp. Forx € X the corresponding element of the quotiéntp,s; will
be denoted byz] and called theeomponendf (X, p) containingz. The structure
(X, p) will be calledconnectedff | X/p,s:| = 1. Itis easy to check (see Proposi-
tion 7.2 of [€]) that({J . v [z], U, x P[2)) IS the unique representation X, p) as
a disjoint union of connected structures. Alsopif= (X x X) \ p, then at least
one of the structure&X, p) and (X, p°) is connected (Proposition 7.3 ¢f [6]). The
following facts (Lemma 7.4 and Theorem 7.5 [of [6]) will be dse the sequel.

Fact 2.1 Let (X, p) and(Y, 7) be binary structures antl: X — Y an embedding.
Then for eachr € X

(@) fll]] © [f(x)];

(b) f| [z] : [x] = f[[=]] is an isomorphism;

(c) If, in addition, f is an isomorphism, thefi[[x]] = [f(z)].
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Fact 2.2 Let x be a cardinal, e, = (X,, pa), @ < k, be disjoint connected
binary structures ani their union. TherC' € P(X) iff there is a functionf: x — &
and there are embeddings : X¢ — Xy, £ < &, such that®' = J,_,, e¢[X¢]
and

v{E,C} € [8]* Vo € Xe Vy € X¢ ee() prs ec(y)- (1)

LetP = (P, <) be a pre-order. Thep € P is anatom in notationp € At(P), iff

eachg, r < p are compatible (there is< ¢, r). Pis calledatomlessff At(P) = 0;

atomiciff At(P) is dense irP. If « is a regular cardinal? is calledx-closediff for

eachy < « each sequenc,, : o < v) in P, such thatr < 8 = pg < p,, has
a lower bound inP. Two pre-order® andQ are calledforcing equivalentiff they
produce the same generic extensions. The following factikéore.

Fact 2.3 (a) The direct product of a family af-closed pre-orders is-closed.
(b) If k<% = &k, then all atomless separativeclosed pre-orders of size are
forcing equivalent (for example, to the poset (Cellx))*, or to (P(k)/[x]<%)™).

A partial orderP = (P, <) is calledseparativeiff for each p,q € P satisfying
p £ q there isr < p such thatr L ¢. Theseparative modificatiowf P is the
separative pre-ordem(P) = (P, <*), wherep <* ¢ & Vr < p 3ds <r s <gq.
The separative quotienof P is the separative poset(P) = (P/="*, ), where
p="qep<qrg<*pandp J[qep<Fa

Fact 2.4 (Folklore) LetP, Q andP;, i € I, be partial orderings. Then
(@) P, sm(P) andsq(PP) are forcing equivalent forcing notions;
(b) P is atomless ifsm(P) is atomless ifsq(P) is atomless;
(c) sm(PP) is k-closed iffsq(P) is k-closed;
(d)P = Q implies thatsm P = sm Q andsq P =2 sq Q;
(€)sm([ic; Pi) = [ie; smPs andsa(I [;e; Pi) = [Tie; salPi.

3 Isomorphic and strongly connected components

A relational structureX = (X, p) will be calledstrongly connectedf it is con-
nected and for eacH, B € P(X) there arex € A andb € B such thatz p,5 b.
(The structures satisfying(X) = {X} have the second property, but can be dis-
connected.)

Example 3.1 Some strongly connected structures are: linear ordetggfations,
complete graphs, etc. The binary trge’2, C) is a connected, but not a strongly
connected partial order.
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Theorem 3.2 Let x be a cardinal an& = J,,_,. X, the union of disjoint, isomor-
phic and strongly connected binary structures. Then

(2) (P(X), C) = (P(Xp), C)* andsq(P(X), C) 2 (sq(P(Xo), C))*, if & < w;

(b) sq(P(X), C) is an atomless poset, Af > w;

(c) sq(P(X), C) is ar™-closed poset, it > w is regular;

(d) sq(P(X), C) is forcing equivalent to the poseP(x)/[x]<")", if kK > wis
regular andP(Xy)| < 2% = k™. The same holds fofP?(X), C).

Proof. For A € [s]" andg € [],c 4 P(X,) let us defineCy = | J,c4 9().
Clam 1.P(X) = {Cy: A€ [k]" Ng € [[oea P(Xa)}-

Proof of Claim 1.(C) If C € P(X), then, by Fadt 212, there is a functign « — &
and there are embeddings : X¢ — Xy (), & < &, such thatlC' = (J,c,, e¢[X¢]
and that[(lL) is true.

Suppose thaf (§) = f(¢), for some different, { € . By the assumption we
haVEX£ =X = Xf(f)’ which ImplleSP(Xg,Xﬂg)) = P(XC7Xf(£)) = P(Xf(g))
Thusee[X¢],ec[X¢] € P(Xf)) and, since the structurly g is strongly con-
nected, there are € X, andy € X such thake(z)(pse))rs ec(y), Which, since
prey C p, implieses(z) prs e¢c(y), which is impossible by[{1). Thugis an in-
jection and, henced = f[k] € [k]". For f(&) € f[x]letg(f(§)) := ec[X¢]; then
g(f(§)) € P(Xy (), forall § € x, thatisg(a) € P(X,), foralla € A and, hence,
9 € [[aea P(Xa). Also C = Uge,, 9(f(§)) = Unea 9(a) = Cg and we are done.

(O) Let A € [k]", 9 € [[,eaP(Xy) and letf : k — A be a bijection.
Then for§ € x we haveg(f(€)) € P(Xj)) = P(Xe, Xy(g)) and, hence there
is an embedding: : X¢ — Xy such thatg(f(§)) = e¢[X¢]. ThusC, =
Uaea 9(@) = Ueen 9(F(€)) = UeeneclXel. IF € # ¢ € 5,2 € Xe andy €
X¢, then, sincef is an injection,Xf(g) ande(C) are different components &
containingeg (x) ande¢(y) respectively. Sere¢(x)p,sec(y) and [1) is true. By
Fact{2.2 we have), € P(X). Claim 1 is proved. 0

(@) By Claim 1 we haveP(X) = {{J,..C;i : Vi < v C; € P(X;)}. Itis
easy to see that the mappihgdefined byF' ((C; : i < k)) = U, ,, Ci witnesses
that the poset$], .. (P(X;), C) and(P(X), C) are isomorphic. Since isomorphic
structures have isomorphic posets of copies we REK), C) = (P(Xp), C)"
and, by Fadi 2]4(d) and (&)q(P(X), C) = sq((P(Xp), C)"*) = (sq(P(Xp), C))".

(b) Letk > w, sm(P(X), C) = (P(X), <) andsm(P(X,), C) = (P(Xa), <a),
for a < k. First we prove

Claim 2. For eachf, g € U ¢ [[nea P(Xa) we haveCy < C, if and only if

|(dom f\ dom g) U {a € dom f Ndomg : =f(a) <a g(@)}| <r;  (2)
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Proof of Claim 2.Let f, g, h € U a¢pujr [[nea P(Xq). Clearly we have
CyCCyedomf CdomgAVaedomf fla)C ga). (3)

Let | denote the incompatibility relation in the poséi&X), ) and(P(X,,), C),
o < k. First we prove

Cy, L Cye {aedomhndomg: h(a) L g(a)}| < k. 4

If the setA = {« € domh Ndomyg : h(a) L g(a)} is of sizex, for eacha € A
we choosék(a) € P(X,) such thatk(a) C h(a) Ng(a). SOk € [],c4P(Xa)
and by (a) we hav€;, € P(X). By (3) we haveC;, C C, N C, thusCy, L C,.
Conversely, ifC;, £ C,, then by (a) there i€, € P(X) such thaCy, C Cj, N Cy,.
Now A := domk € [x]* and by [3) we havel C dom/h N dom g andk(a) C
h(a) Ng(e), forall a € A. Thus|[{a € domh Ndomg : h(a) L g(a)}| = k.

Now suppose that’s < C,. Then for eaclC}, € P(X) satisfyingC}, C Cf
we haveC), [ Cy so, by [4) we have

VC, € P(X) (Cp C Cf = |[{a € domhNdomg : h(a) L g(a)}| = k). (5)

Suppose that the set := dom f \ domg is of sizex. Thenh := f | A €
[Toca P(Xy), clearlyCy, € Cy and, by (a)C), € P(X). Also we havedom N
dom g = (), which is impossible by (5). Thus

|dom f \ dom g| < k. (6)

Suppose that the set := {a € dom f Ndomyg : ~f(«) <, g(a)} is of size
k. Fora € A there isC, € P(X,) such thatC,, C f(«a) andC, L g(«) and
we defineh(a) = Co. Now h € [[,c4 P(Xq), by (@) we haveC), € P(X)
and, by [(8),C, ¢ Cy. So by [%) there isx € domh Ndomg = A such that
Co = h(a) L g(a), which is not true. Thus

H{a € dom fNdomg: =f(a) <, g(a)}| < k. (7)

Now from (8) and[(V) we obtaih [2).
Conversely, assumingl(6) arid (7) in order to préye< C, we prove[(5) first.
Let C), € P(X) andC), C Cy. Then, by[(8),

domh C dom f A Va € domh h(a) C f(«), (8)

which by [6) implies|dom & \ dom g| < « and, hence|domh N dom g| = k.
Sincedom h N'dom g C dom f N dom g by (7) we have{a € domh Ndomyg :
-f(a) <4 g(@)}| < k and, henceB := {a € domhNdomyg : f(a) <, g(a)}
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is a set of size:. By (8), fora € B we haveh(a) C f(«) <, g(a) which implies
h(a) £ g(a). SOB C {a € domhNdomg : h(a) L g(a)} and [B) is true. Now,
by (B) and[(4) we haveC), € P(X) (C, C Cf = C), L Cy), thatisCy < Cy.
Claim 2 is proved. O

Let A; and A, be disjoint elements of]*. By Claim 1,Cy = Uaea, Xa and
C2 = Uqen, Xa are disjoint elements d#(X) and, hence, they are incompatible
in (P(X), C). So, by Theorem 2.2(c) of [6], the pos@(X), C) is atomless and,
by Fac{2.4(b), the poset(P(X), C) is atomless too.

(c) Letxk > w be a regular cardinal. By Fact 2.4(c), it is sufficient to gov
that the pre-ordesm(P(X), <) is x*-closed. Let(Cy, : £ < x) be a decreasing
sequence ifP(X), <), that is

VG,G <k (G <@ =Cp, <Cf ). ©)

For(i,(s < K let
K¢, ¢, = {a € dom fe, Ndom f¢, : = fe,(a) <o fe, ()} (10)
Then, by [[9) and (c)
V(i, (e <k (G < (o= |dom fe, \ dom fe| < KA |Kgy o] < K) (11)

and we prove that
VE <k |Ne<edom fe| = k. (12)

Firstﬂng dom fr = ﬂ<<§ dom feNdom f¢ = domfgﬁﬂc<£(domfgudom fe)
= dom fe\U¢¢(dom fe\dom f¢). By (11),| dom fe\dom f¢| < s, forall¢ < £
and, since¢| < «, by the regularity ofc we have| | J,_,(dom f¢ \ dom f¢)| < &
which, since by (a) we havglom f¢| = &, implies [12).

By recursion we define a sequenge : £ < x) in « as follows.

Let cg = min dom fy.

If £ < k anda¢ € « are defined fog < ¢, then for all¢ < ¢ by (11) we have
|K¢c| < wand, clearlyja¢ + 1| < & so, by [I2) and the regularity ef, we can
define

a¢ = min [(ﬂcgg domf<> \ <UC<§ KecUlUpeelae + 1))] (13)

By (3), (a : £ < k) is an increasing sequence and, hentes= {ag : £ < K} €

[k]". By (13) again, for < x we havea; € dom f¢ SO fe(ag) € P(Xq,). So,
for f € H%GAP(X%), defined byf(a¢) = fe(oe), for & < w, by (a) we have
Cf € P(X).
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It remains to be shown that for eagh< ~ we haveC'y < Cféo, that is, by (c),

|A\ dom f¢,| < x and (14)

€ <k :ag € dom fe, A —feag) <ag feolag)} < k. (15)

By (13), for each{ > &y we haveag € (), dom f¢ C dom fg, and, hence,

A\ dom fe, C {ae : £ < &} and [14) is true.
For a proof of [(Ib) it is sufficient to show that

VE> & felag) <ap feolae). (16)

By (A3), for{ > & we havea; € dom fe N dom fe, andag & K¢, that is
ag € {a € dom fe Ndom f¢, : ~fe(a) <a feo ()} thus fe(ag) <o, fe,(ag) and
@@s8) is true.

(d) Letx > w be a regular cardinal ané(X,)| < 2 = ™, for all « < k.
Then for A € []" we have|[[,c4P(Xa)| < (27)" = 2 = kT and, by
Claim 1, [P(X)| < |Uaepx [laea P(Xa)| < 2727 = 2% = £, which im-
plies|sqP(X)| < k™. By (b) and (c)kqP(X) is an atomless ™ -closed poset and,
hence, it contains a copy of the reversed ", D) thus|sqP(X)| = x*. (An-
other way to prove this is to use an almost disjoint farlyC [«]* of size x™;
then{J,c4 Xao : A € A} C P(X) determines an antichain # P(X) of sizex™.)
Since(kT)<F" = (25)F = kT, by FacfZ.B(b) the poset; P(X) is forcing equiva-
lent to the posetP(x)/[x]<")T (since itis an atomless separative-closed poset
of sizex™). By Fac{Z.4(a), the same holds f@(X), C). O

Corrolary 3.3 If x < wandX = |J,,.,. X,, is the union of disjoint, isomorphic
and strongly connected binary structures, then
(2) (P(X), C) = (P(X,), ©)" andsq(P(X), ) 2 (sq(P(Xo), )", if & < w;
(b) If kK = w, thensq(P(X), C) is a separative atomless anrg-closed poset.
Under CH it is forcing equivalent to the poggt(w)/ Fin)*.

The following examples show that for infinite cardinalshe statements of Theo-
rem[3.2 are the best possible.

Example 3.4 The posetsq(P(X), C) and(P(x)/[x]<")* are not forcing equiva-
lent, althoughx > w is regular andP (X, )| < 2.

Let X = (J,,, X; be the union of countably many copils= (X;, <;) of the
linear order(w, <). Then, since linear orders are strongly connected, by Emeor
[3.2 the posetq(P(X), C) is atomlessw;-closed and, clearly, of siz&. If, in ad-
dition 2¢ = wy, thensq(P(X), C) is forcing equivalent to the poséP(w)/ Fin) ™.
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Since, in addition, the components Xfare maximally embeddable (which
means tha?’(X;,X;) = [Xj]|Xi‘, fori,j € w), by the results of[[7] the poset
sq(P(X), C) is isomorphic to the posétP’(w x w)/(Fin x Fin))™, which is not
wo-closed [16] and, consistently, neitheclosed nory-distributive [5]. Thus in
some models of ZFC the posetg(P(X), C) and (P(w)/Fin)™ are not forcing
equivalent.

Example 3.5 In some models of ZFC the pose{(P(X), C) is notx** closed,
although the posetsq([x|”, C) andsq(P(X,),C), o < k are (takex = w, a
model satisfying > w; andX from Exampld 3.4).

Example 3.6 Statement (c) of Theorefn_3.2 is not true for a singwar It is
known that the algebr&(r)/[x]<" is notws-distributive and, hence, the poset
(P(k)/[]<")" is notwy-closed, whenevet is a cardinal satisfying > cf(x) =

w (seell], p. 377). For < r letX, = ({a},0) and letX = | J,,.,. X,. Thenitis
easy to see th&@(X) = [«]" andsq(P(X), C) = (P(x)/[]<%)". Thus the poset
sq(P(X), C) is notws-closed and, since > R,,, itis notx*-closed.

4 Non biconnected ultrahomogeneous structures

A binary structureX = (X, p) is adirected graph (digraph}ff for eachz,y € X
we have-zpx (p is irreflexive) and-xpy vV —ypz (p is asymmetric). If, in addition,
xpy V ypx, for each differentr, y € X, thenX is atournament For convenience
we introduce the following notation. K = (X, p) is a binary structure, then
its complement(X, p°), wherep® = X2\ p, will be denoted byX¢, its inverse
(X, p~ 1), by X1, its reflexification (X, p U Ax), by X,.. and itsirreflexification
(X, p\ Ax), by X;,. The binary relatiorp. on X defined by

zpey & xpyV (T £y A—Tpy A —ypT) 17)

will be called theenlargemenbf p and the corresponding structukex’, p. ), will
be denoted b¥.. A structureX will be calledbiconnectedff both X andX¢ are
connected structures. The following theorem is the maiualre$ this section.

Theorem 4.1 For each reflexive or irreflexive ultrahomogeneous binamycstire
X we have

- EitherX is biconnected,

- Or there are an ultrahomogeneous digrapand a cardinak > 1 such that
the structureX is isomorphic td J,. Ye, (U, Ye)res (U, Ye)¢ Or (U, Ye)re)©.

A proof of Theoren 41 is given at the end of this section. Ibésed on the
following statement concerning irreflexive structures.
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Theorem 4.2 An irreflexive disconnected binary structure is ultrahoerogpus iff
its components are isomorphic to the enlargement of arhaltn@geneous digraph.

Theorem 4.R follows from two lemmas given in the sequel. Aabpmstructure
X = (X, p) is calledcomplete(see [4], p. 393) iff

Vo,y (v #y = zpyVypz). (18)

Lemma 4.3 An irreflexive disconnected binary structukeis ultrahomogeneous
iff its components are isomorphic, ultrahomogeneous antpbete.

Proof. LetX = (X,p) = U,/ Xi, whereX; = (X;, p;), i € I, are disjoint,
irreflexive and connected binary structures aid> 1.

(=) Suppose thaK is ultrahomogeneous. Then, forj € I, x € X; and
y € X; we havep = {(z,y)} € Pi(X) and there isf € Aut(X) such thatp C f.
By (c) and (b) of Fadt 2]1f|X; : X; — X is an isomorphism. Thu¥; = X.

Fori € I andy € Pi(X;) we havey € Pi(X) and there isf € Aut(X) such
thaty C f. Again, by (c) and (b) of Fa€t 2.%,| X; : X; — X is an isomorphism,
that isf|X; € Aut(X;). Thus the structur&; is ultrahomogeneous.

Suppose that for somiee [ there are different elemenisandy of X; satis-
fying —~zpy and—ypz. Letj € I\ {i} andz € X;. Theny = {(z,z), (y,2)} €
Pi(X) and there isf € Aut(X) such thatp C f. But then, by Fadt 2]1(c) we
would have bothf[X;] = X; and f[X;] = X, which is, clearly, impossible. Thus
the structures; are complete.

(<) Suppose that the componeig ¢ € I, of X are ultrahomogeneous, iso-
morphic and complete. Let € Pi(X), wheredomp = Y andy[Y] = Z, let
J={iel:YNX; #0}and, forj € J,letY; = Y NX;andZ; = p[Y;].
By (18), the structure¥; = (Y;, py,) = (Yi, (pi)y;), @ € J, are connected and,
clearly, disjoint, thusy = UiEJYi andY;, i € J, are the components &f. Since
the restrictionsp|Y; : Y; — Z; are isomorphisms, the structurgs = (Z;, pz,),

i € J, are connected too and, singds a bijection, disjoint. Thu& = J,.; Z;
andZ;, i € J, are the components &f.

Sincep : Y — X, by Fact2.1l(a) for each € J there isk; € I such that
Z; C Xy,. Suppose that; = k; = k, for some different, j € J. Then, for
x € Y; andy € Y; we would have-zpy and—ypx and, hencesy(z)pp(y) and
- (y)pe(x), which is impossible since(y), ¢(z) € X} andX}, satisfies[(18).

Thus the mapping — k; is a bijection and there is a bijectigh: 7 — I such
that f (i) = k;, for all i € J. Since the structureX; are isomorphic, for eache I
there is an isomorphism : X; — Xy ;).
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Fori € J we haveg; ' o (¢]Y;) : Y; — X; and, hencey; ' o (¢|Y;) € Pi(X;).
So, since the structurk; is ultrahomogeneous, therefis € Aut(X;) such that
gi_l o (p[Y;) C hi. Nowg; o h; : X; — Xy(;) is an isomorphism and for € Y; we
haveg; (h;(z)) = g;(g7  (o(z))) = ¢(z), which implies

(gi 0 hi)|Y; = |5, (19)

Now it is easy to check that = (J;cp\ ; 9i U Uje, 9i © hi + X — X'is an auto-
morphism ofX and, by [19),, Cc F. ThusX is an ultrahomogeneous structure.
O

In the sequel we will use the following elementary fact.

Fact 4.4 LetX = (X, p) be a binary structure. Then

(@) Pi(X) = Pi(X¢) = Pi(X~!) andAut(X) = Aut(X¢) = Aut(X~!); hence
X is ultrahomogeneous ifk¢ is ultrahomogeneous i€ ~! is ultrahomogeneous.
Also Emb(X) = Emb(X¢) = Emb(X~1); henceP(X) = P(X¢) = P(X1).

(b) If pis an irreflexive relation, theRi(X) = Pi(X,.), Aut(X) = Aut(X,.)
and, henceX is ultrahomogeneous if, . is ultrahomogeneous. Aldomb(X)
Emb(X,.); henceP(X) = P(X,.).

(c) If pis a reflexive relation, theRi(X) = Pi(X;,), Aut(X) = Aut(X;,)
and, henceX is ultrahomogeneous iK;, is ultrahomogeneous. Ald6mb(X) =
Emb(X;,.); henceP(X) = P(X;,).

(d) If X is a digraph, theiX, = ((X~1),.)¢. SoPi(X) = Pi(X,), Aut(X) =
Aut(X,), Emb(X) = Emb(X,) andP(X) = P(X.). HenceX is ultrahomoge-
neous iffX, is.

Proof. The proofs of (a), (b) and (c) are straightforward and we er(l). For
x,y € X we have:x(z,y) € (07 1)re) iff (2,y) & AxUp~iff z £ yA(y.x) & p

iff @ # yA—ypxA(zpyV—zpy)iff (x # yA—ypxAzpy)V(z # yA—yprA-xpY).
Since the relatiom is irreflexive and asymmetric we have# y A —ypx A xpy iff

zpy; thus (z,y) € (07" )re) iff zpy V (x # y A ~ypa A —xpy) iff (z,y) € pe

and the equalityX, = ((X~1),.)¢ is proved. Now applying (a) and (b) we obtain
the remaining equalities. L&t be ultrahomogeneous agde Pi(X,.). Theny €
Pi(X) and, hence, there i € Aut(X) such thatyp C f and, sincef € Aut(X,),

we proved that the structui®. is ultrahomogeneous. The converse has a similar
proof. a

Lemma 4.5 An irreflexive binary structuré is ultrahomogeneous and complete
iff it is isomorphic to the enlargement of an ultrahomogarsedigraph.

Proof. Let X = (X, p) be an irreflexive binary structure.
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(=) Assuming thaK is ultrahomogeneous and complete we define the binary
relation— on X by
T =y & xpy A\ ypr. (20)

Claim 1. For the structur&’ := (X, —) we have:
(@) Pi(X) = Pi(Y), Aut(X) = Aut(Y) andEmb(X) = Emb(Y);
(b) Y is an ultrahomogeneous digraph;
() P(X) = P(Y);
(d) X =Y, that is,p =—-.

Proof of Claim 1.(a) It is sufficient to prove that for each C X and each injection
f: A — X the following two conditions are equivalent:

Vr,y € A (zpy & f(x)pf(y)), (21)
Ve,yc€ A (x—y < f(x) = f(y)). (22)

Suppose thai(21) holds. Fery € A, conditionz — y, that iszpy A —ypz, is, by
(21)), equivalent tof (x)pf (y) A —f(y)pf(x), thatisf(z) — f(y); so [22) is true.

Let (22) hold andr,y € A. If x = y, then [21) follows from the irreflexivity
of p. Otherwise, we havé(x) # f(y).

Now, if =f(z)pf(y), then, by [(18),f(y)pf(z) and, hencef(y) — f(z),
which by [22) impliesy — = and, henceyxpy. Thuszpy = f(z)pf (y).

If —zpy, then by [18) we havepx and, hencey — z, which by [22) implies
f(y) = f(z)and, hencer f(z)pf(y). Thusf(z)pf(y) = zpy and [21) is true.

(b) If ¢ € Pi(Y), then, by (a), € Pi(X) and, sinceX is ultrahomogeneous,
there isf € Aut(X) such thatp C f. By (a) again we havg € Aut(Y) and,
thus,Y is an ultrahomogeneous structure. Since the relatignirreflexive,— is
irreflexive too ande — y A y — x would imply zpy and —zpy; thus,— is an
asymmetric relation antl is a digraph.

(c) By (2),P(X) = {f[X] : f € Emb(X)} = {/[X] : f € Emb(Y)} = P(Y).

(d) We prove that for each, y € X we haverpy < x —. y, that is,

xpysr—yVeFyA-r—yA-y— o). (23)

Let zpy. If —ypz, thenz — y and, hencex —. y. If ypz, then, sincep is
irreflexive, z # y. Also -z — y and—y — x thusz —. y again.

Letx —. y. If x — y, thenzpy and we are done. Hx — y, then, by the
assumptiong # y and—y — x. By (18), ~zpy would imply ypx and, hence,
y — x, which is not true. Thugpy and Claim 1 is proved. |

(<) W.L.o.g. suppose thalf = (X, —) is an ultrahomogeneous digraph and
X =Y, thatisp =—.. Then for eachr,y € X we have

xpysr—yVeFyA-r—yA-y— o). (24)
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For a proof thatX is complete we take different,y € X and show thatpy or
ypx. By (24), if v — y ory — =z, thenzpy or ypxr and we are done. Otherwise
we haver # y A~z — y A =y — x and by [24) again we obtairpy.

SinceY is an ultrahomogeneous digraph, by Hacl 4.4(d) the streicfuis
ultrahomogeneous as well. a

Proof of Theorem[4.]1.Let X be an ultrahomogeneous structure and first suppose
that X is disconnected. IX is irreflexive, then, by Theorem 4.X = (J, Y.,

for some ultrahomogeneous digrafghand some< > 1. If X is reflexive, then

X, is disconnected, irreflexive and, by Factl4.4(c), ultrahgemeous so, by The-
orem4.2,X;. = J, Y., which impliesX = (|, Yc)r.. Now, suppose thax®

is disconnected. By Fatt 4.4(a)¢ is ultrahomogeneous. K¢ is irreflexive, by
Theoren 4.R we havE® = |J,. Y., which impliesX = (|J,. Y.)¢. Finally, If X¢

is reflexive, therX¢  is disconnected, irreflexive and, by Factl4.4(c), ultrahgeao
neous. So, by Theorein 4.2 agaiff, = |J,. Y. which impliesX¢ = (|J,. Y¢)re
andX = (U, Ye)re)©. O

5 Posets of copies of ultrahomogeneous structures

In this section we show that a classification of biconnectt@dhomogeneous di-
graphs, related to the properties of their posets of copiesjdes the correspond-
ing classification inside a much wider class of structures.

Theorem 5.1 Let X be a reflexive or irreflexive ultrahomogeneous non bicon-
nected binary structure and [¥tand x be the corresponding ultrahomogeneous
digraph and the cardinal from Theoréml4.1. Then

(2) (P(X), C) = (P(Y), C)* andsq(P(X), C) = (sq(B(Y), C))", if 5 < w;

(b) sq(P(X), C) is atomless, ik > w;
(c) sq(P(X), C) is k*-closed, ifx > w is regular;
(d) sq(P(X), C)

is forcing equivalent to the poséP(x)/[k]<")T, if k > wis
regular andP(Y)| < 2 = k™. The same holds fofP(X), C).

Proof. By Theorem[4.ll, the structur® is isomorphic tolJ, Y, (U, Ye)res
(U, Ye)¢or (U, Ye)re)© s0, by Fact 44P(X) = P(|J,, Ye). Since the structure
Y. is complete it is strongly connected and the statementvisliisom Theorem
[B.2. The equality?(Y.) = P(Y) is proved in Fadt 414(d). O

Theorem 5.2 Let X be a countable reflexive or irreflexive ultrahomogeneous bi-
nary structure. IX is not biconnected andl and« are the corresponding objects
from Theoreni 411, then
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(i) P(X) = P(Z)™, for some biconnected ultrahomogeneous digrédpand
somen > 2, if kK < w andY has finitely many components;

(i) sq P(X) is an atomless and; -closed poset and, under CH, forcing equiv-
alent to the posetP(w)/ Fin)™, if K = w or Y has infinitely many components.

Proof. By Theoren 41X is isomorphic tolJ, Ye, (U, Ye)re, (U, Ye)© or to
(U, Ye)re)¢, whereY is an ultrahomogeneous digraph ahek « < w. So, by
Facf4.4P(X) = P(, Y.).

If K = w, then (ii) follows from (b), (c) and (d) of Theorem 5.1.

If K = n < w, then, by Theorerh 312 and Fact4.4(#X) = P(Y.)" =
P(Y)™. We have two cases.

Case 1 Y is connected. Then, sincg is a digraph,Y¢ is a complete and,
hence, a connected structure. Bs biconnected and we have (i).

Case 2 Y is disconnected. Then, ¥ has finitely many components, say
Y = U, < Yi, by Lemmée 4.8 the structurés; are isomorphic and complete and,
hence strongly connected; so by Theofem 3.Z&Y,) = P(Y,)™, which implies
P(X) 2 P(Y)" =2 P(Yy)™". SinceY) is a digraph and a complete structure it is a
tournament and, hence, a biconnected structure. So we ihave (

If Y has infinitely many components, sa = (J,., Y;, then, by Lemma
[4.3 the structure¥; are isomorphic and complete and, hence, strongly connected
So by Theorem 32, the posetP(Y) is atomless and;-closed. Sincé?(X) =
P(Y)™, by Faci2.4(e) we hawe; P(X) = (sq P(Y))" and, by Fadt 2]3(a), the poset
sqP(X) is atomless and;-closed. So we have (ii). O

The countable ultrahomogeneous digraphs have been adskifiCherlin [[2] 3],
see alsa [13]. Cherlin’s list includes Schmerl’s list of atable ultrahomogeneous
strict partial orders [14]:

- A, a countable antichain (that is, the empty relation.dn

-B,, =nxQ,forn € [1,w], where(ii, 1) < (i2,q2) < i1 =i2 A q1 < G2,

-C,, =n xQ, forn € [1,w], where(i, q1) < (i2, ¢2) & ¢1 <@ q2.

- D, the unique countable homogeneous universal poset (tdemaposet),
and Lachlan’s list of ultrahomogeneous tournaments [11]:

- Q, the rational line,

- T*°, the countable universal ultrahomogeneous tournament,

- S(2), the circular tournament (the local order),
and many other digraphs. Also we recall the classificatiozoohtable ultrahomo-
geneous graphs given by Lachlan and Woodrow [12]:

- G, the union ofy disjoint copies ofK,,, whereur = w,

- Grado, the unique countable homogeneous universal graph, the gtagh,

- H,,, the unique countable homogeneous univeksafree graph, fom > 3,

- the complements of these graphs.
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Example 5.3 By the main result of [10], for the rational lin€, the poset of copies
(P(Q), C) is forcing equivalent to the two-step iteratiSr =, whereS is the Sacks
forcing andls I “w is aco-closed forcing”. If the equality gI8) = X; (implied
by CH) or PFA holds in the ground model, then in the Sacks siberthe second
iterand is forcing equivalent to the pogét(w)/ Fin)*.

The poset$,,, n € [2,w], from the Schmerl list are disconnected ultrahomo-
geneous digraphs (they are disjoint unions of copie®)éand, by Theorerh 412,
the structures of the forp),.(B,, ). (or its other three variations given in Theorem
[4.2) are ultrahomogeneous structures. For example, byrémgb.2 we have:

P(Us(B2)e) = P(Q)° =fore (S* )%,

P((U,B2)e)¢) andP(((|Uy(Bw)e)re)¢) are atomlesss;-closed posets, which
are forcing equivalent to the posg®(w)/ Fin)* under CH.

Example 5.4 For a cardinal, the empty structure of size A, = (v, (), can be
regarded as an (empty) digraph withcomponents. ThefA,). = K, and for
the graphsG,,, from the Lachlan and Woodrow list we ha@,, = UN(A,,)G.
So, forn € N, by Theoren 52P(G,, ), P(G,.) andP(G, ) are atomless
w1-closed posets, which are forcing equivalent to the peB¢w)/ Fin)* under
CH. But, by [7] these posets are forcing equivalent to theets(&(w)/ Fin)™*,
((P(w)/Fin)™)™and(P(w x w)/(Fin x Fin))" respectively and in some models
of ZFC the last two of them are not forcing equivalent to thegt¢P(w)/ Fin) ™.
For the first one seé [15] and for the second see Examgle 3.4.

Let &/ denote the class of all countable reflexive or irreflexiveallbmogeneous
binary structures and let

B ={X €U : Xis biconnected,

D ={X el : Xis adigraph},

D, = {X.: X e D},

G={XeU: :Xisagraph,

T ={X el : Xis atournamerijt
By Lemmd®’.b, the relations between these classes areydispila Figure 11.

Lemmab5.5 LetY € D. Then
(@)Y € Biff Yis connected iffy, € B;
(b)Y € D, iff Y is a tournament;
) Yegiff Y=A,iff Y. =K, iff Y. € G.

Proof. The first equivalence in (a) is true sinké is connected, for each digraph
Y. SinceY. is connected, by Fatt4.4(d) we haVg € Biff (Y.)¢ = (Y !),¢ is
connected iffY ! is connected iffY is connected. The statements (b) and (c) are
evident. O
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GRado Gw,w

g
Ko
— D,
(Bn). A
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Figure 1: Countable reflexive or irreflexive ultrahomogarebinary structures

By Theorenl 4.1 the clas® of digraphs generates all structures froMm, 5 in a
very simple way. By Theorein 5.2 and Factl4.4(d), a forcirigtegl classification
of the poset®(X) for the structureX € D N B would provide a classification for
the structureX belonging to a much wider clas® U D, UD. U (D), UU \ B,
where for a clasg’” we defineX,.. = {X,. : X € X'}. So, if, in addition, we obtain
a corresponding classification fire G N B and hence, fo§ U G,.., it remains to
investigate the posef®¥X) for biconnected irreflexive structuréswhich are not:
graphs (and, henc&, — X), digraphs (and, henc&, — X), enlarged digraphs
(and, henceA, — X)), thus they do not have forbidden substructures of size 2.
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