
Friedberg numberings in the Ershov hierarchy

Serikzhan A. Badaev∗, Mustafa Manat† and Andrea Sorbi‡

Abstract

We show that for every n ≥ 1, there exists a Σ−1
n -computable family

which up to equivalence has exactly one Friedberg numbering which does
not induce the least element of the corresponding Rogers semilattice.

1 Introduction

Minimal numberings became a fashionable research topic in the classical the-
ory of numberings at the end of the sixties.The study of minimal numbering
beginning from the famous theorem of Friedberg [10] on the existence of one-
to-one computable numbering of the family C of all c.e. sets. One of the main
questions on minimal numberings, that is the problem of finding, up to equiva-
lence of numberings, the possible number of minimal numberings, was settled by
Yu.L. Ershov[3]. A Friedberg numbering is a special but very important case of
minimal numbering. The theory of minimal numberings, and in particular Fried-
berg numberings, has many successful applications in classical recursion theory,
recursive model theory ([9], [14]), and theoretical computer science ([15]).The
main powerful methods for constructing families of c.e. sets with a finite number
of Friedberg numberings, due to Goncharov [9],to show that numbers of spec-
trum of the nonautoequivalent constructivizations of recursive models is equal
to {ω, 0, 1, 2 . . .} ([12]). It was the starting point of some of the most important
researches on algorithmic dimension of recursive models. Another application
of this results was found by Kummer ([15]).

We refer to Kleene’s system O of ordinal notations for computable ordinals:
for details, see [18]. In particular, for a ∈ O, the symbol |a|O represents the

∗Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, 050038, Kazakhstan.
Part of the research contained in this paper was carried out while the first author was
GNSAGA-INDAM Visiting Professor at the Department of Mathematics and Computer Sci-
ence “Roberto Magari” of the University of Siena, Italy, July 2011. The first author wishes
to thank INDAM-GNSAGA for supporting the visiting professorship.
†Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, 050038, Kazakhstan.

Part of the research contained in this paper was carried out while the second author was
visiting the Department of Mathematics and Computer Science “Roberto Magari” of the
University of Siena, Italy. The second author wishes to thank the Al-Farabi University for
supporting the visit,and the Department of Mathematics and Computer Science “Roberto
Magari” of siena for its hospitality.
‡Dipartimento di Scienze Matematiche ed Informatiche “Roberto Magari”, Università di

Siena, 53100 Siena, Italy.

1

ordinal of which a is a notation; the symbol <O denotes Kleene’s partial ordering
relation on O; moreover, the symbol +0 denotes a partial computable function,
defined on O, such that |a+O b|O = |a|O + |b|O, and a ≤O a+O b.

Definition 1.1. Any surjective mapping α of the set ω of natural numbers onto
a nonempty set A is called a numbering of A. Let α and β be numberings of
A. We say that numbering α is reducible to numbering β (in symbols, α 6 β) if
there exists a computable function f such that α(n) = βf(n) for any n ∈ ω. We
say that the numberings α and β are equivalent (in symbols, α ≡ β) if α 6 β
and β 6 α.

Definition 1.2. Let θα
 {< x, y >| αx = αy}. Numbering α is called
decidable (positive) if θα is decidable (correspondingly, c.e.) set.Numbering α is
called Fridberg if it is one to one.

It is obvious that if α and β are equivalent numberings then α is decidable
(positive) if and only if β is decidable (positive). Every decidable numbering of
infinite family is equivalent to one-to-one numbering or single-valued numbering
[7], [8].

Rogers semilattice Ria(A) of a family A ⊆ Σia is a quotient structure of all
Σia– computable numberings of the family A modulo equivalence of the number-
ings ordered by the relation induced by reducibility of the numberings. Ria(A)
allows one to measure the different computations of a given family A and used
also as a tool to classify the properties of Σia– computable numberings for the
different families A.

A numbering α of a set A is said to be minimal if β ≤ α implies α ≤ β for
every numbering β of A. The minimal numberings are just those ones which
induce the minimal elements in Ria(A).

We now briefly review the basic notions concerning Ershov hiearchy. There
is several equivalent definitions of the Ershov hierarchy, introduced in [4, 5, 6].
But our presentation is based on [17].

Definition 1.3. If a is a notation for a computable ordinal, then a set of
numbers A is said to be Σ−1a if there are a computable function f(z, t) and a
partial computable function γ(z, t) such that, for all z,

1. A(z) = limt f(z, t), with f(z, 0) = 0; (here, given a set X, and a number
z, the symbol X(z) denotes the value of the characteristic function of X
on z);

2. (a) γ(z, t) ↓⇒ γ(z, t+ 1) ↓ & γ(z, t+ 1) ≤O γ(z, t) <O a;

(b) f(z, t+ 1) 6= f(z, t)⇒ γ(z, t+ 1) ↓6= γ(z, t).

We call the partial function γ the mind–change function for A, relatively to f .
A Σ−1a –approximation to a Σ−1a –set A, is a pair 〈f, γ〉, where f and γ are

respectively a computable function and a partial computable function satisfying
1. and 2., above, for A.

2

Following [13], we give the following:

Definition 1.4. A Σ−1a –computable numbering of a family A of Σ−1a –sets is an
onto function π : ω −→ A, such that

{〈y, x〉 : x ∈ π(y)} ∈ Σ−1a .

Hence there exist a computable function f(z, t) and a partial computable func-
tion γ(z, t), such that π(y)(x) = limt f(〈y, x〉, t), with f(z, 0) = 0 for all z; and
γ is the mind-change function for {〈y, x〉 : x ∈ π(y)} relatively to f .

Note that {〈x,m〉 : x ∈ α(m)} ∈ Σ−1a if and only if {〈x,m〉 : x ∈ α(m)} is
a− computably enumerable in a sense of Putnam [16].
We recall (see e.g. [5]) that there is an indexing {Az}z∈ω of the family of all
Σ−1a sets, such that {〈x, z〉 : x ∈ Az} ∈ Σ−1a . From this, it is possible (for more
details, see [17]) to define an indexing {πk}k∈ω of all computable numberings of
families of Σ−1a sets, for which

{〈k, y, x〉 : x ∈ πk(y)} ∈ Σ−1a ,

i.e. the set {〈k, y, x〉 : x ∈ πk(y)} has a Σ−1a –approximation 〈f, γ〉: an index-
ing satisfying this property is called a Σ−1a –computable indexing of all Σ−1a –
computable numberings. Clearly, from k, y one has an effective way of getting
a Σ−1a –approximation 〈fπk(y), γπk(y)〉 to the set πk(y).

2 The theorem

In [11], S.S. Goncharov showed that there exist classes of recursively enumerable
sets admitting up to equivalence exactly one Friedberg numbering which does
not induce the least element in the corresponding Rogers semilattice. Later,
a simple example of a such a class was found by M. Kummer: This example
appears in the paper of S.A. Badaev and S.S. Goncharov ([1]). We generalize
this result to all successor ordinal levels of the Ershov hierarchy.

Theorem 2.1. for every ordinal notation a of a nonzero successor ordinal,
there exists a Σ−1a -computable family A whose Rogers semilattice has exactly
one Friedberg degree which is not the least element of the semilattice.

Proof. Given a, with |a|O ≥ 1 and |a|O successor. We will construct a Σ−1a -
computable Friedberg numbering α and a Σ−1a -computable numbering β such
that:

1. α(ω) = β(ω).

2. If π is a computable Friedberg numbering of A = α(ω) then π 6 α.

3. α
 β.

3

Requirements. We will define numberings α and β so that, for every e, k,
the following requirements are satisfied:

F : α is a Friedberg numbering,

B : α(ω) = β(ω) = A,
C : α and β are Σ−1a -computable,

Pk : if πk is a Friedberg numbering of A then πk = α ◦ gk,

De : if ϕe is total then α 6= β ◦ ϕe,

where gk is a computable function built by us.

Strategy for F . We fix three one-to-one computable functions

a(k,m), b(k,m), c(k,m),

with pairwise disjoint ranges and construct the numbering α so that for every
m there exist at least one km with the following properties, where for simplicity
we let a = a(km,m), b = b(km,m), c = c(km,m):

α(2m) ∩ {a, b, c} = {a, b, c},
α(2m+ 1) ∩ {a, b, c} = {b, c}

and, for every m′ 6= m,

α(2m′) ∩ {a, b, c} = α(2m′ + 1) ∩ {a, b, c} = ∅.

Strategy for B. For every m, we force β to satisfy the following equalities:
either, for all s,

βs(3m) = αs(2m)

βs(3m+ 1) = βs(3m+ 2) = αs(2m+ 1);

or there exists s0 such that for all s ≤ s0

βs(3m) = αs(2m)

βs(3m+ 1) = βs(3m+ 2) = αs(2m+ 1)

and for all s > s0

βs(3m) = αs(2m)

βs(3m+ 1) = αs(m′)

βs(3m+ 2) = αs(m′′).

Here {m′,m′′} = {2m, 2m+ 1}.

4

Strategy for C. To ensure Σ−1a -computability of the numberings α and β we
do not explicitly construct suitable corresponding changing functions, but in all
the strategies and the construction we implicitly ensure the correct behavior of
the approximations to α and β.

Strategy for Pk in isolation. This strategy aims, for every m, at finding by
some uniform procedure, two πk-indices x 6= y such that α(2m) = πk(x) and
α(2m + 1) = πk(y). In the case when πk is a Friedberg numbering of A, this
will give us a reduction of πk to α.

Initially, for all k ∈ ω, we put a(k,m), b(k,m), c(k,m) into α(2m), and we
put b(k,m), c(k,m) into α(2m+ 1). Note that, for every m, k, we never remove
the numbers b(k,m), c(k,m) from the sets α(2m) and α(2m+ 1).

Due to injectiveness of the functions a(k,m), b(k,m), c(k,m), we can split the
strategy for Pk into independent substrategies Pk,m, with m ∈ ω. Henceforth,
we write “Substrategy Pk,m” to denote the substrategy for Pk,m.

[Note that at any stage of the construction below we use a uniform approxi-
mation to the numbering πk in which at most one change might happen in πk(x)
at any stage.]

Substrategy for Pk,m in isolation.

1. Search for a πk-index x such that

πk(x) ∩ {a(k,m), b(k,m), c(k,m)} = {a(k,m), b(k,m), c(k,m)}.

From now on let a, b, c stand for the numbers a(k,m), b(k,m), c(k,m),
respectively.

Furthermore, we check whether b is in πk(x) every time we start Substrat-
egy Pk,m.

If b is in πk(x) then go to item 3, otherwise go to item 2. In the latter case
wait until b comes back to πk(x) and only after that continue Substrategy
Pk,m in item 3.

2. So, what should we do when b /∈ πk(x)?

Enumerate b into α(z) for all z /∈ {2m, 2m + 1} and wait until b appears
in πk(x), and only when this happens, remove b from α(z) for all z /∈
{2m, 2m+ 1}.
These movements of b from, and into, πk(x) eventually stop, and the
corresponding synchronized changes of b for α(z) are compatible with
having α(z) Σ−1a -computable. When πk is a numbering of A, we have
that b ∈ πk(x)∩α(2m)∩α(2m+ 1) and b /∈ α(z) for all z /∈ {2m, 2m+ 1}.
Thus πk(x) ∈ {α(2m), α(2m + 1)}. (Note that if πk is not a numbering
of A then the option with b ∈ α(z) for all z ∈ ω and b /∈ πk(x) is possible
too.)

5

3. [b ∈ πk(x) and either a ∈ α(2m) or a ∈ α(2m + 1): The construction
guarantees that at each stage, at the beginning of the current item, a ∈
α(2m) if and only if a /∈ α(2m + 1)] Then πk(x) ∩ {a} is equal to either
α(2m)∩{a} or α(2m+1)∩{a}. Go to item 4 if πk(x)∩{a} = α(2m)∩{a},
and go to item 5 otherwise.

4. [πk(x) ∩ {a} = α(2m) ∩ {a}] Check whether a has exhausted all possible
changes in πk(x) (i.e. a ∈ πk(x) and a can not be extracted from πk(x)
anymore, or a /∈ πk(x) and a can not be put into πk(x) anymore). If
so then define gk(x) = 2m and go to item 6, otherwise go to 4a or to 4b
according to whether the question “Is a ∈ πk(x)?” has positive or negative
answer.

(a) [a ∈ πk(x)] Extract a from α(2m) and wait until a leaves πk(x) (if a
never leaves πk(x) then πk is not a numbering of A since a currently
does not belong to any set of A and we prevent a from being put into
any α(z) in the future).

When a leaves πk(x), we put a into α(2m+ 1) and go to 3.

(b) [a /∈ πk(x)] Put a into α(2m) (notice that already a ∈ α(2m + 1)),
and wait until a is enumerated in πk(x) (if a never appears in πk(x)
then πk is not a numbering of A.

When a is enumerated in πk(x), we remove a from α(2m + 1) and
from α(z) for all z 6= 2m, and go to (3).

5. [πk(x)∩{a} = α(2m+1)∩{a}] Check whether a has exhausted all possible
changes in πk(x). If so then define gk(x) = 2m+ 1 and go to 6, otherwise
go to 5a or to 5b according to whether the question “Is a ∈ πk(x)?” has
positive or negative answer.

(a) [a ∈ πk(x)] Extract a from α(2m+ 1) and wait until a leaves πk(x).

When a leaves πk(x), we put a into α(2m), and go to 3.

(b) [a /∈ πk(x)] Put a into α(2m + 1) (notice that already a ∈ α(2m)),
and wait until a is enumerated in πk(x).

When a is enumerated in πk(x), we remove a from α(2m) and from
α(z) for all z 6= 2m+ 1, and go to 3.

6. Let m̃ ∈ {2m, 2m+ 1} be such that gk(x) 6= m̃. Our goal now is to find a
πk-index y 6= x such that πk(y) = α(m̃) if πk is a Friedberg numbering of
A.

Search for a πk-index y such that y 6= x and

πk(y) ∩ {a(k,m), b(k,m), c(k,m)} = α(m̃) ∩ {a(k,m), b(k,m), c(k,m)}.

Define gk(y) = m̃.

After this, every time c(k,m) leaves πk(y), put c(k,m) into α(z) for all
z /∈ {2m, 2m+1}, and wait until c(k,m) is enumerated in πk(y). Whenever

6

the number c(k,m) is enumerated in πk(y) remove it from α(z) for all
z /∈ {2m, 2m+ 1}.
As a result of item 6, πk(y) ∈ {α(2m), α(2m+ 1)} if πk is a numbering of
A since in this case, for every z /∈ {2m, 2m+ 1},

c(k,m) ∈ πk(y)⇔ c(k,m) /∈ α(z).

Moreover, if πk is a Friedberg numbering of A then πk(y) = α(gk(y))
because πk(x) = α(gk(x)), x 6= y, gk(x) 6= gk(y) and {πk(x), πk(y)} =
{α(2m), α(2m+ 1)}.

Observations on Substrategy Pk,m. It is easy to see that whenever x has
been determined, Substrategy Pk,m proceeds through several cycles with start-
ing point at item 3 and possible interruptions of these cycles at item 2. Let
(u, v, w) stand for the triple of current total number of changes (enumerations
and extractions) of a = a(k,m) relative to the sets α(2m), α(2m+1), and πk(x)
respectively. A closer look at the evolution in time of this triple shows

Lemma 2.2. The following hold

(i) if πk is a numbering of A then eventually w = n;

(ii) at the end of every cycle 3 (even when the cycle is not completed because
we define gk), u ≤ w and v < w.

Proof. Statement (i) follows from the instructions of items 4a-5b. In each of
these four cases, πk(x) is forced to move a, otherwise πk can not be a numbering
of A.

In proving (ii), we can ignore item 2 at all, since instructions of item 2 do
not change u and v and can not force w to decrease. By analyzing items 4a-5b,
it is easy to see that, if at the beginning of any cycle at 3 we have a triple
(u, v, w) then a complete cycle, before returning to 3, may be described by one
the following two series of actions, the former due to 4, and the latter due to 5:

(u, v, w) −→ (u+ 1, v, w) −→ (u+ 1, v, w + 1) −→ (u+ 1, v + 1, w + 1),

(u, v, w) −→ (u, v + 1, w) −→ (u, v + 1, w + 1) −→ (u+ 1, v + 1, w + 1).

So, if at the beginning of the cycle, (u, v, w) satisfies (ii), then so does at the
end of the cycle. The claim then follows from the fact that initially, when we
start 3 for the first time, we have u = 1, v = 0, w ≥ 1. Notice that 3 may stop
before completion of the cycle, if w = n at the beginning of the cycle.

Strategy for De in isolation. If ϕe is total then we diagonalize against the
reduction α = β ◦ϕe at the argument x = 2e+1. If ϕe(2e+1) ∈ {3e+1, 3e+2}
then we define β(ϕe(2e+ 1)) = α(2e) from the moment when the computation
ϕe(2e + 1) converges. So, up to the stage when ϕe(2e + 1) becomes defined,
both β(3e + 1) and β(3e + 2) behave like α(2e + 1), but after that stage the

7

set β(ϕe(2e+ 1)) behaves as α(2e) while the second one continues to behave as
α(2e+ 1).

The main idea here is to exploit the possibility to transform

α(2e+ 1) ∩ {a(k, e), b(k, e), c(k, e)}

into
α(2e) ∩ {a(k, e), b(k, e), c(k, e)},

for all k, uniformly. This means that, at the moment when β(ϕe(2e + 1))
switches from behaving like α(2e+ 1) to behave like α(2e), every x ∈ α(2e+ 1)
must have at its disposal the possibility of changing its membership status from
α(2e + 1)(x) to α(2e)(x). In isolation, De can easily achieve this: To this end,
notice also, that the total number of membership changes of every x 6= a(k, e),
relative to α(2e + 1) and α(2e), are the same. So, we only need to control the
changes of a(k, e), with k ∈ ω.

In details, the strategy for De (henceforth referred to also as “Strategy De”)
in isolation proceeds as follows.

1. Wait for the computation ϕe(2e+ 1) to be defined. If ϕe(2e+ 1) /∈ {3e+
1, 3e + 2} then do nothing, since in this case, evidently, α(2e + 1) 6=
β(ϕe(2e+ 1)). Otherwise,

2. Wait until, for every k, if Substrategy Pk,e has acted relatively to a(k, e)
then at least one of 2e or 2e+ 1 has been already put into the range of gk.

3. If we successfully stop waiting for every k, make β(ϕe(2e + 1)) equal to
the current α(2e) as follows:

(a) if a(k, e) ∈ α(2e)\α(2e+1) then enumerate a(k, e) into β(ϕe(2e+1));

(b) if a(k, e) ∈ α(2e+ 1) \ α(2e) then remove a(k, e) from β(ϕe(2e+ 1)).

4. After 3 is done, do not touch anymore a(k, e), k ∈ ω, in any of the sets
α(2e), α(2e+ 1), β(3e), β(3e+ 1), β(3e+ 2).

Interactions between strategies. Obviously, there is no interference be-
tween the various substrategies Pk,m, for k,m ∈ ω. Strategies De, with e ∈ ω,
are pairwise independent too since, if e 6= e′, then we diagonalize against reduc-
tions of α to β via ϕe and ϕe′ , respectively, on different α-indices.

No substrategy Pk,m, k ∈ ω, conflicts with Strategy De, if m 6= e, since they
deal with disjoint pairs of sets, namely, with the pair α(2m), α(2m + 1), and
the pair α(2e), α(2e+ 1), respectively.

Strategy De can conflict with Substrategy Pk,e for an isolated k, or meet
an infinite series of conflicts with the sequence consisting of Substrategies Pk,e,
k ∈ ω. The sequence Pk,e, k ∈ ω, might prevent Strategy De from succeeding,
because it might cause De to wait forever in item 3 because of the following
reasons:

8

• some substrategy Pk′,e has acted, using a(k′, e), before the moment when
ϕe(2e+ 1) has converged, but Pk′,e does not achieve its goal, i.e. neither
of 2e, 2e + 1 becomes a value of gk′ (so, Pk′,e might want to move again
a(k′, e), conflicting with 4 of De); or

• each Pk,e, k ∈ ω, achieves its goal, but at any stage after convergence of
the computation ϕe(2e + 1) there is at least one Pk,e which has already
acted with a(k, e), but is still in progress, i.e. has not as yet contributed
to the definition of gk.

To resolve these conflicts we use, in Substrategy Pk,m, two triples of functions
ai(k,m), bi(k,m), ci(k,m), with i ∈ {0, 1} instead of just a single triple of
functions a(k,m), b(k,m), c(k,m) as above. The subscript i is considered as a
switch for using one triple or another.

For a given k,m, we start with option i = 0. This means that we implement
the instructions of Substrategy Pk,m, with the functions a(k,m), b(k,m), c(k,m)
replaced by the functions a0(k,m), b0(k,m), c0(k,m), respectively. We carry
out this option until ϕm(2m+ 1) is defined (if ever) at a stage sm. We continue
option i = 0 forever if ϕm(2m+1) /∈ {2m, 2m+1}. Otherwise, we go to the end
of stage sm and transform β(ϕm(2m+ 1)) into α(2m) as in item 3 of Strategy
Dm; but for all k ∈ ω, starting from stage sm + 1 we switch to option i = 1,
i.e. we carry out the instructions of Substrategy Pk,m operating with a1(k,m),
b1(k,m), c1(k,m) from the very beginning but only for those k such that by
stage sm the range of the function gk is disjoint from {2m, 2m + 1}: In this
case, from stage sm + 1 the functions a0(k,m), b0(k,m), c0(k,m) play a passive
role while proceeding under option i = 1.

We assume that all these six functions above are injective and have pairwise
disjoint ranges.

Given m, we build approximations to the sets α(2m), α(2m + 1) uniformly
in m by a stage construction. Approximations to the sets β(3m), β(3m + 1),
β(3m+ 2) are built essentially from the approximations for α(2m), α(2m+ 1).
We define simultaneously the sequence gk, with k ∈ ω, of partial computable
functions, or, to be more precise, the preimages of gk on the set {2m, 2m+ 1}.
We denote the option used for constructing the sets α(2m), α(2m+ 1) at stage
s, by is(m).

The construction. The construction is by stages. At each stage, if not ex-
plicitly redefined, every parameter is understood to retain the same value as at
the previous stage.

Stage 0. Let i0(m) = 0,

fα(2m,x, 0) = 1 with γα(2m,x, 0) = a; fα(2m+1, a0(k,m), 0) = 0 with γα(2m+1, a0(k,m), 0) ↑;

fα(2m+ 1, %, 0) = 1 with γα(2m+ 1, %, 0) = a

where x ∈ {a0(k,m), b0(k,m), c0(k,m)} and % ∈ {b0(k,m), c0(k,m)}

9

So, we put a0, b0, c0 to α(2m) and put b0, c0 to α(2m + 1) with maximal
change a . Go to stage 1.

Stage s + 1. Let s = 〈k,m, t〉. At the beginning of stage s + 1 we decide
on the option i = is+1(m), and execute the instructions of Substrategy Pik,m,
i.e. Substrategy Pk,m, but relative to option i.We split the instructions of
Substrategy Pk,m into mutually exclusive parts, named Procedure Iik,m and

Procedure Pi,jk,m, where i is the current option, and j ≤ 2 is a parameter relative
to the procedure, connected with the cardinality of range(gsk) ∩ {2m, 2m+ 1}.

Procedure Iik,m corresponds to the instructions of item 2 of Substrategy

Pk,m, while Procedures Pi,jk,m, with j ≤ 2, correspond to items 3–6 of Substrategy
Pk,m. We complete stage s+ 1 with the procedure End of Stage which aims at
constructing the sets β(3m), β(3m+1), β(3m+2). Thus Strategy Dm is in fact
implemented in End of Stage.

In order to decide on the option i, we go through stage s + 1 by checking
whether ϕs+1

m (2m+1) is defined, and ϕm(2m+1) is in {3m+1, 3m+2}. If this
is not the case then we let is+1(m) = 0 and go to Procedure I0k,m, otherwise we

let is+1(m) = 1. If is(m) = 0 then we go to End of Stage, otherwise we go to
Procedure I1k,m.

For the sake of simplicity, let ai = ai(k,m), bi = bi(k,m), and ci = ci(k,m);
we denote by xi, yi the πk-indices possibly determined by Procedures Pi,jk,m.

Procedure Iik,m. If xi and bi have not been determined by Procedure Pi,0k,m
then go to Procedure Pi,0k,m, otherwise execute the instructions of one of the
following cases.

1. If fπ(k, xi, bi, s+1) = 1 with γπ(k, bi, xi, s+1) ↓ and fα(2m+2, bi, s+1) = 0
then go to Procedure Pi,jk,m, for the relevant j.

2. If fπ(k, xi, bi, s + 1) = 0 and fα(2m + 2, bi, s + 1) = 0 then enumerate bi
into α(z) for all z /∈ {2m, 2m+ 1} with γα(z, bi, s+ 1) = γπ(k, xi, bi, s+ 1)
and go to the next stage.

3. If fπ(k, xi, bi, s+1) = 0 and fα(2m+2, bi, s+1) = 1 with γα(2m+2, bi, s+
1) = γπ(k, xi, bi, s+ 1), then go to the next stage.

4. If fπ(k, xi, bi, s+ 1) = 1 and fα(2m+ 2, bi, s+ 1) = 1 then extract bi from
α(z) for all z /∈ {2m, 2m+ 1} and go to Procedure Pi,jk,m, for the relevant
j.

Procedure Pi,0k,m. This procedure is executed if ai, bi, ci have been chosen
but a πk-index xi has not been determined.

Search for x such that fπ(k, xi, qi, s+ 1) = 1 for all qi, where qi ∈ {ai, bi, ci}.
If x exists then denote by xi the least such x, go to Procedure Pi,1k,m; otherwise

go to the next stage.

10

Procedure Pi,1k,m. This procedure is executed if neither 2m nor 2m + 1 is in

the range of gk and if ai and a πk-index xi have been chosen in Procedure Pi,0k,m.
If ai does exhaust all possible changes in πk(xi) then define

gk(xi) =

{
2m, if fπ(k, xi, ai, s+ 1) = fα(2m, ai, s),
2m+ 1, if fπ(k, xi, ai, s+ 1) = fα(2m+ 1, ai, s),

and go to Procedure Pi,2k,m.
If ai does not exhaust all possible changes in πk(xi) then execute one of the

following nine mutually exclusive cases and after that go to the next stage.

1. If fα(2m, ai, s) = fπ(k, xi, ai, s + 1) = 1 and fα(2m + 1, ai, s) = 0 then
extract ai from α(2m).

2. If fα(2m, ai, s) = fα(2m+1, ai, s) = fπ(k, xi, ai, s+1) = 0 then enumerate
ai into α(2m+ 1).

3. If fα(2m, ai, s) = fπ(k, xi, ai, s + 1) = 0 and fα(2m + 1, ai, s) = 1 then
enumerate ai into α(2m).

4. If fα(2m, ai, s) = fπ(k, xi, ai, s + 1) = fα(2m + 1, ai, s) = fα(2m +
2, ai, s) = 1 then remove ai from α(2m+ 1).

5. If fπ(k, xi, ai, s + 1) = fα(2m + 1, ai, s) = 1 and fα(2m, ai, s) = 0 then
extract ai from α(2m+ 1).

6. If fα(2m, ai, s) = fπ(k, xi, ai, s+1) = fα(2m+1, ai, s) = 0 then enumerate
ai into α(2m).

7. If fα(2m + 1, ai, s) = fπ(k, xi, ai, s + 1) = 0 and fα(2m, ai, s) = 1 then
enumerate ai into α(2m+ 1).

8. If fα(2m, ai, s) = fπ(k, xi, ai, s + 1) = fα(2m + 1, ai, s) = fα(2m +
2, ai, s) = 1 then remove ai from α(2m).

9. Cases 1–8 do not hold. Do nothing, just go to the next stage.

Procedure Pi,2k,m. This procedure is executed when ai, bi, ci have been chosen
and exactly one of numbers 2m or 2m + 1 is in the range of gk. Let m̃ ∈
{2m, 2m+1} be the number which still is not in the range of gk. The procedure
includes m̃ into the range of gk, and after that it continues to control correctness
of m̃ as a value of gk. This procedure corresponds to item 6 of Substrategy Pk,m,
and consists of the following 4 mutually exclusive cases.

1. m̃ /∈ range(gsk) and there exists y such that y 6= x and fπ(k, y, qi, s+ 1) =
fα(m̃, qi, s) for all qi, where qi ∈ {ai, bi, ci}. Let yi stand for the least such
y. Define gk(yi) = m̃ and go the next stage.

2. gk(yi) = m̃ and fπ(k, yi, ci, s + 1) = fα(2m + 2, ci, s) = 0. Enumerate ci
into α(z) for all z /∈ {2m, 2m+ 1} and go to the next stage.

11

3. gk(yi) = m̃ and fπ(k, yi, ci, s+ 1) = fα(2m+ 2, ci, s) = 1.

Remove ci from α(z) for all z /∈ {2m, 2m+ 1} and go to the next stage.

4. Cases 1–3 do not hold. Do nothing, just go to the next stage.

End of Stage. If ϕs+1
m (2m + 1) is defined and ϕm(2m + 1) ∈ {3m + 1, 3m + 2}

then denote ϕm(2m+ 1) = m′, and denote the number from {3m+ 1, 3m+ 2}
different from m′ by m′′.

1. If is+1(m) = 0 then define

βs+1(3m) = αs+1(2m),

βs+1(3m+ 1) = βs+1(3m+ 2) = αs+1(2m+ 1).

2. If is+1(m) = is(k,m) = 1 then define

βs+1(3m) = βs+1(m′) = αs+1(2m),

βs+1(m′′) = αs+1(2m+ 1).

3. If is+1(m) = 1 but is(m) = 0 then define

βs+1(3m) = βs+1(m′) = αs+1(2m)

βs+1(m′′) = αs+1(2m+ 1),

where

αs+1(2m) =

αs(2m) ∪ {a1(l,m), b1(l,m), c1(l,m) | range(gsl) ∩ {2m, 2m+ 1} = ∅}

and

αs+1(2m+ 1) =

αs(2m+ 1) ∪ {b1(l,m), c1(l,m) | range(gsl) ∩ {2m, 2m+ 1} = ∅}.

(Notice that we never choose to operate with either of a1(l,m), b1(l,m),
c1(l,m) if range(gsl) ∩ {2m, 2m + 1} 6= ∅. In other words, once the first

definition has been made for gl by Procedure P0,1
l,m, the procedure does not

need to move again a0(l,m), which then can freely change its membership
status in β(m′′) from that of α(2m+ 1) to that of α(2m)).

Go to the next stage.

12

Verification. By Lemma 2.2, and Procedure End of Stage, we have that α
and β are Σ−1a -computable numberings of the same family A = α(ω).

Lemma 2.3. α 6≤ β.

Proof. Suppose that ϕm is total, and ϕm(2m + 1) = m′ ∈ {3m + 1, 3m + 2}.
Let s+ 1 be the least stage at which is+1(m) = 1. Since up to this stage (i.e. at
all stages t ≤ s) we had βt(m′) = αt(2m + 1), by Lemma 2.2 we have that for
every k such that range(gsk) ∩ {2m, 2m + 1} 6= ∅, the number v of changes of
a0(k,m) in the approximation to β(m′) up to stage s, is v < n, so we can afford
to change βs+1(m′)(a0(k,m)) if needed, in order to switch β(m′′) to α(2m).

Since α 6= β ◦ ϕm, for every total ϕ, we have that α 6≤ β.

Lemma 2.4. For every m, there exist km such that, letting a = a0(km,m), b =
b0(km,m), c = c0(km,m), we have that {a, b, c} ⊆ α(2m), α(2m+1)∩{a, b, c} =
{b, c}, and for every m′ 6= m, α(2m′) ∩ {a, b, c} = α(2m′ + 1) ∩ {a, b, c} = ∅.

Proof. Without loss of generality, we can assume that π0 is a numbering of the
family {∅} and that πs0(x) = ∅ for all s, x ∈ ω. Then, for every m, at stage 0,
numbers a0(0,m), b0(0,m), c0(0,m) are enumerated into α(2m + 1) while the
numbers b0(0,m), c0(0,m) are enumerated into α(2m). Since πs0(x) = ∅ for all
s, x ∈ ω it follows that we will never deal with Procedures P0,j

k,m for j ≥ 1.
Therefore, we will not operate with numbers a0(0,m), b0(0,m), c0(0,m) at all
stages s > 0, so their mebership status relative to any α(z) never changes.

In particular,

Corollary 2.5. α is a Friedberg numbering.

Proof. Immediate.

Lemma 2.6. For every k, if πk is a numbering of A then range(gk) = ω.

Proof. Assume that πk is a numbering of A, and let m ∈ ω. We show in this
case that {2m, 2m+ 1} ⊆ range(gk). We distinguish the following two cases.

Case 1: is(m) = 0 for every s. Thus we implement Substrategy Pk,m,
at each stage of the form 〈k,m, t〉, by executing only procedures relative to
option i = 0, operating on the elements a0 = a0(k,m), b0 = b0(k,m), c0 =
c0(k,m). Since πk is a numbering of the family, Procedure P0,0

k,m gives eventually
a successful number x0: Otherwise, for every s, we would have a0, b0, c0 ∈
αs(2m) but for every x, s, πsk(x)∩{a0, b0, c0} 6= {a0, b0, c0}. Similarly, Procedure
I0k,m eventually exits, after its last execution, at item 1 or item 4, the other
outcomes providing b0 ∈ α(z)\πk(x), for all z: Notice that item 1 or item 4 give
that b0 ∈ πk(x)∩α(2m)∩α(2m+ 1) and b0 /∈ α(z) for every z /∈ {2m, 2m+ 1}.
After last execution of I0k,m, at stages of the form 〈k,m, t〉 we execute procedure

P0,1
k,m. Since πk is a numbering of A, by Lemma 2.2 the only possible exits for

this procedure are when πk(x)(a0) has made n changes, and we define gk(x0) =
2m, or gk(x0) = 2m + 1. After this, again at stages of the form 〈k,m, t〉, we
execute Procedure P0,2

k,m: Since πk is a numbering of A, the procedure exits with

13

determining a number y0 6= x0 such that gk(y0) = m̃, with m̃ ∈ {2m, 2m + 1}
such that gk(x0) 6= m̃: Such a number y0 exists since α(2m) 6= α(2m + 1) by
Corollary 2.5.

Case 2: There exists a least stage s + 1 such that is+1(m) = 1. Up to,
and including, stage s, we have already put some pairs {2m′, 2m′ + 1} in the
range of gk; or for some m′′ we have put only one of {2m′′, 2m′′ + 1} in the
range of gk: If, say, we have put only 2m′ in the range of gk, then arguing
as in Case 1, and using the fact that πk is a numbering of the family, we
conclude that Procedure P0,2

k,m eventually finishes off its job, by putting also
2m′′ + 1 in the range of gk. A similar argument applies if by stage s we have
put only 2m′′ + 1 in the range of gk. For all other numbers m (those for which
range(gsk)∩{2m, 2m+ 1} = ∅), starting from s+1 we stop executing Procedures

P0,0
k,m, I0k,m, P0,1

k,m, P0,2
k,m, and we execute instead P1,0

k,m, I1k,m, P1,1
k,m, P1,2

k,m. An
argument similar to Case 1 allows us to conclude that, by operating with the
elements a1 = a1(k,m), b1 = b1(k,m), c1 = c1(k,m), one eventually defines
{gk(x1), gk(y1)} = {2m, 2m + 1} for suitable numbers x1, y1 determined by
Procedures P1,0

k,m, P1,1
k,m, and P1,2

k,m.

Corollary 2.7. For every k, if πk is a Friedberg numbering of A then gk is a
total function and gk reduces πk to α.

Proof. Suppose that πk is a Friedberg numbering of A. If after executing for
the last time Procedure Pi,1k,m, we define gk(xi) = m′, with m′ ∈ {2m, 2m+ 1},
and after executing for the last time Procedure Pi,2k,m, we define gk(yi) = m′′,
with yi 6= xi, m

′′ 6= m′, and m′′ ∈ {2m, 2m + 1}, then we can argue that
πk(yi) = α(m′′) as follows. Operating on ci (by extracting or enumerating ci
into α(z)) we make sure that πk(yi)(ci) 6= α(z)(ci) for every z /∈ {2m, 2m+ 1}.
Thus πk(yi) ∈ {α(2m), α(2m + 1)}: Since πk is Friedberg and yi 6= xi, we
conclude that πk(yi) = α(m′′).

Finally let us show that gk is total: for every x, there exists m such that
πk(x) = α(m), but since πk is Friedberg there is no y 6= x such that πk(x) =
α(m). So when we put m ∈ range(gk) we in fact define gk(x) = m.

References

[1] S.A. Badaev, S.S. Goncharov. On computable minimal enumera-
tions,.In Algebra. Proceedings of the Third Internation-al Conference on
Algebra, Dedicated to the Memory of M.I. Kargopolov. Krasnoyarsk, Au-
gust 23-28, 1993.- Walter de Gruyter, Berlin- New York, 1995, pp 21-32

[2] Badaev, Serikzhan A. and Goncharov, Sergey S., The theory of numberings:
open problems, in: “Computability theory and its applications. Current
trends and open problems” (eds. Cholak, Peter A.; Lempp, Steffen; Lerman,

14

Manuel; and Shore, Richard A.), Amer. Math. Soc., Providence, RI, 2000,
23–38.

[3] Yu.L. Ershov. Numberings of the families of total recursive functions, Sib.
Math. J., 1967, v.8, n.5., pp.1015-1025 (Russian).

[4] Yu.L. Ershov,On a hierarchy of sets, I. Algebra i Logika, 1968, v.7, n.1,
pp,47–74 (Russian).

[5] Yu.L. Ershov, On a hierarchy of sets, II. Algebra i Logika, 1968, v.7, n.4,
pp,15–47 (Russian).

[6] Yu.L. Ershov, On a hierarchy of sets, III. Algebra i Logika, 1970, v.9, n.1,
pp,20–31 (Russian).

[7] Yu.L. Ershov, Theory of numberings.—Nauka, Moscow, 1977 (Russian).

[8] Yu.L. Ershov, Theorie der Numerierungen. Z. Math. Logik Grundlagen
Math., 1977, v.23, pp.289–371.

[9] , S.S. Goncharov.Computable single-valued numerations. Algebra and
Logic, 1980, v.19, n.5, pp,325–356.

[10] R.M. Friedberg, Three theorems on recursive enumeration. J. Symbolic
Logic, 1958, v.23, n.3, pp.309–316.

[11] S.S. Goncharov.The family with unique univalent but not the smallest
enumeration. Trudy Inst. Matem. SO AN SSSR, v.8, pp.42-48, Nauka,
Novosibirsk, 1988 (Russian).

[12] Goncharov, S. S. Problem of the number of non-self-equivalent construc-
tivizations. Algebra and Logic, v.19, n.6(1980), 401-414.

[13] S.S. Goncharov, A. Sorbi, Generalized computable numerations and non-
trivial Rogers semilattices. Algebra and Logic, 1997, v.36, n.4., pp.359–369.

[14] , Yu.L. Ershov,Goncharov, S. S..Constructive models. Transl. from
the Russian. (English) (Siberian School of Algebra and Logic) Siberian
School of Algebra and Logic. New York, NY: Consultants Bureau. xii, 293
p. (2000) 1980.

[15] , M. Kummer.Some applications of computable one-one numberings. Arch.
Math. Log. v.30, n.4 (1990), 219-230.

[16] H. Putnam, Trial and error predicates and the solution to a problem of
Mostowski. J. Symbolic Logic, 1965, v.30, no.1, 49–57.

[17] S. Ospichev. Computable family of Σ−1a -sets without Friedberg numberings.
In 6th Conference on Computability in Eueope, CiE 2010, 6th Conference
on Computability in Europe, CiE 2010. Ponta Delgada, Azores, pages 311–
315, 2010.

15

[18] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

16

