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BETWEEN POLISH AND COMPLETELY BAIRE

ANDREA MEDINI AND LYUBOMYR ZDOMSKYY

Abstract. All spaces are assumed to be separable and metrizable. Consider
the following properties of a space X.
(1) X is Polish.
(2) For every countable crowded Q ⊆ X there exists a crowded Q′ ⊆ Q with

compact closure.
(3) Every closed subspace of X is either scattered or it contains a homeo-

morphic copy of 2ω .
(4) Every closed subspace of X is a Baire space.

While (4) is the well-known property of being completely Baire, properties (2)
and (3) have been recently introduced by Kunen, Medini and Zdomskyy, who
named them the Miller property and the Cantor-Bendixson property respec-
tively. It turns out that the implications (1)→ (2)→ (3)→ (4) hold for every
space X. Furthermore, it follows from a classical result of Hurewicz that all
these implications are equivalences if X is coanalytic. Under the axiom of Pro-
jective Determinacy, this equivalence result extends to all projective spaces.
We will complete the picture by giving a ZFC counterexample and a consis-
tent definable counterexample of lowest possible complexity to the implication
(i) ← (i + 1) for i = 1, 2, 3. For one of these counterexamples we will need a
classical theorem of Martin and Solovay, of which we give a new proof, based
on a result of Baldwin and Beaudoin. Finally, using a method of Fischer and
Friedman, we will investigate how changing the value of the continuum affects
the definability of these counterexamples. Along the way, we will show that
every uncountable completely Baire space has size continuum.

1. Introduction

All spaces are assumed to be separable and metrizable. Recall that a space is
crowded if it is non-empty and it has no isolated points. Recall that a space is
scattered if it has no crowded subspaces. We will write X ≈ Y to mean that the
spaces X and Y are homeomorphic. For all undefined topological notions, see [14].
The aim of this paper is to investigate the following topological properties.

Definition 1.1 (Kunen, Medini, Zdomskyy). A space X has the Miller property
(briefly, the MP) if for every countable crowded Q ⊆ X there exists a crowded
Q′ ⊆ Q with compact closure.

Definition 1.2 (Kunen, Medini, Zdomskyy). A spaceX has the Cantor-Bendixson
property (briefly, the CBP) if every closed subspace of X is either scattered or it
contains a homeomorphic copy of 2ω.
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Definition 1.3. A space X is completely Baire1 (briefly, CB) if every closed sub-
space of X is a Baire space.

While CB spaces are well-known (see for example [4], [11] or [12]), theMP and the
CBP have only recently been introduced in [10], inspired respectively by a remark
from [15] and by the classical Cantor-Bendixson derivative. In particular, the MP

turned out to be very useful in the study of the countable dense homogeneity of
filters on ω (viewed as subspaces of 2ω through characteristic functions).

As the title suggests, the MP and the CBP are intermediate in strength between
the property of being Polish and the property of being CB (this is the content of
Section 2). However, in Section 3, we will construct ZFC counterexamples to the
reverse implications.

It follows from a result of Marciszewski in [12] that under combinatorial assump-
tions on X (namely, when X = F is a filter on ω) the three properties defined above
become equivalent (see Theorem 10 in [10]). In Section 5, using a classical result of
Hurewicz and Corollary 5.5, we will show that these properties also become equiv-
alent under definability assumptions on X . In Section 7, we will prove that our
results are sharp, by constructing consistent definable counterexamples of lowest
possible complexity (see Theorem 5.1). For one of these counterexamples (namely,
Proposition 7.1), we will employ a classical result of Martin and Solovay, of which
we will give a new, topological proof in Section 8, using a result of Baldwin and
Beaudoin. Section 4 contains preliminary material for the remainder of the article,
and Section 6 contains preliminary material for Section 7.

Finally, in Section 9, we will investigate how changing the value of the continuum
affects the definability of these counterexamples, using a method of Fischer and
Friedman. As a byproduct of this investigation, we will show that every CB space
is either countable or has size c (see Theorem 9.9). This dichotomy, which is well-
known for Polish spaces, seems to be of independent interest.

2. Arbitrary spaces

The following theorem gives a complete picture of the relationships among the
properties that we are interested in, if one disregards the issue of definability.

Theorem 2.1. Consider the following conditions on a space X.

(1) X is Polish
(2) X has the MP.
(3) X has the CBP.
(4) X is CB.

The implications (1) → (2) → (3) → (4) hold for every space X. There exists a
ZFC counterexample to the implication (i)← (i + 1) for i = 1, 2, 3.

Proof. The implication (1)→ (2) is the content of Proposition 2.3. The implication
(2) → (3) is straightforward. In order to prove the implication (3) → (4), assume
that the space X is not CB. By Corollary 1.9.13 in [14], it follows that X contains
a closed subspace Q homeomorphic to the rationals Q. It is clear that Q witnesses
that X does not have the CBP. The counterexamples are given by Proposition 3.1,
Proposition 3.3 and Proposition 3.4. �

1Some authors use ‘hereditarily Baire’ or even ‘hereditary Baire’ instead of ‘completely Baire’.
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Lemma 2.2. The space ωω has the MP.

Proof. Fix a countable crowded subset Q of ωω. We will construct finite subsets
Fn of Q for n ∈ ω. Start by choosing any singleton F0 ⊆ Q. Now assume that
F0, . . . , Fn are given. Given any x ∈ F0∪· · ·∪Fn, using the fact that Q is crowded,
it is possible to pick x′ ∈ Q such that x′ 6= x and x′ ↾ (n+ 1) = x ↾ (n+ 1). Then
let Fn+1 = {x′ : x ∈ F0 ∪ · · · ∪ Fn}. In the end, let Q′ =

⋃

n∈ω Fn.
It is easy to check that Q′ ⊆ Q is crowded. Now let g : ω −→ ω be defined by

g(n) = max{x(n) : x ∈ Fn}. Notice that K = {x ∈ ωω : x(n) ≤ g(n) for all n ∈ ω}
is compact. Furthermore, our construction guarantees that Q′ ⊆ K. Therefore Q′

has compact closure. �

Proposition 2.3. Every Polish space X has the MP.

Proof. The statement is vacuously true if X is empty, so assume that X is non-
empty. By Exercise 7.14 in [7], there exists a continuous map f : ωω −→ X that is
open and surjective. Fix a countable crowded Q ⊆ X . It is not hard to construct a
countable crowded R ⊆ f−1[Q] such that f ↾ R is injective. This implies that f [R′]
is crowded for every crowded R′ ⊆ R. Since ωω has the MP by Lemma 2.2, there
exists a crowded R′ ⊆ R with compact closure K. Let Q′ = f [R′]. It is clear that
Q′ ⊆ f [K] is the desired subset of Q. �

3. ZFC counterexamples

Recall that a space X is a λ-set if every countable subset of X is Gδ. Recall that
a space X ⊆ 2ω is a λ′-set if X ∪ C is a λ-set for every countable subset C of 2ω.
It is well-known that a λ′-set of size ω1 exists in ZFC (see Theorem 5.5 in [16] and
the argument that follows it).

Proposition 3.1. Let Y ⊆ 2ω be an uncountable λ′-set. Then X = 2ω \ Y has the
MP but it is not Polish.

Proof. Notice that X cannot be a Gδ subset of 2ω, otherwise Y would be an un-
countable Fσ subset of 2ω, hence it would contain a copy of 2ω. In order to show
that X has the MP, let Q ⊆ X be crowded. Since Y is a λ′-set, the set Q is a
Gδ subset of Y ∪ Q. This means that there exists a Gδ subset G of 2ω such that
Q ⊆ G ⊆ X . Therefore, by Proposition 2.3, there exists a crowded Q′ ⊆ Q such
that Q′ has compact closure in G, hence in X . �

The existence of Y as in the next proposition is due to Brendle (take the com-
plement of the set of branches of the tree given by Theorem 2.2 in [2]). We will
also need the following lemma, which can be safely assumed to be folklore.

Lemma 3.2. Fix a countable dense subset D of 2ω, and let Z = 2ω \D. Let N ⊆ Z
be a copy of ωω that is closed in Z. Then D′ = cl(N) ∩ D is crowded, where the
closure is taken in 2ω.

Proof. First observe that D′ = ∅ would imply that N is a closed, hence compact,
subset of 2ω. Since this contradicts the fact that N ≈ ωω, it follows that D′ is
non-empty. Now assume, in order to get a contradiction, that x is an isolated point
of D′. Let U be an open subset of cl(N) such that U ∩ D = {x}. This would
imply that (U ∩ N) = U \ {x} is a non-empty locally compact open subset of N ,
contradicting again the fact that N ≈ ωω. �
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Proposition 3.3. Let Y ⊆ ωω be such that the following conditions hold.

(1) For every copy K of 2ω in ωω there exists a copy K ′ ⊆ K of 2ω such that
K ′ ⊆ Y .

(2) There exists a closed copy N of ωω in ωω such that N ′ * Y whenever
N ′ ⊆ N is a closed copy of ωω in ωω.

Fix a countable dense subset D of 2ω and identify ωω with 2ω\D. Then the subspace
X = Y ∪D of 2ω has the CBP but not the MP.

Proof. Throughout this proof, cl will denote closure in 2ω. First, we will show that
X has the CBP. Let C be a closed subspace of X that is not scattered. Then
there exists a crowded C′ ⊆ C. Notice that K = cl(C′) is a copy of 2ω. Since
D is countable, there exists a copy K ′ ⊆ K of 2ω such that K ′ ⊆ ωω. Hence, by
condition (1), there exists a copy K ′′ ⊆ K ′ of 2ω such that K ′′ ⊆ Y ⊆ X .

Now assume, in order to get a contradiction, that X has the MP. Fix N as in
condition (2). Let Q = cl(N) ∩ D, and notice that Q is crowded by Lemma 3.2.
Therefore, by the MP, there exists a crowded Q′ ⊆ Q with compact closure K in
X . Notice that K is a copy of 2ω. But then N ′ = K \D ⊆ N would be a closed
copy of ωω in ωω, contradicting our assumptions on N . �

Recall that a subset X of an uncountable Polish space Z is a Bernstein set if
X ∩K 6= ∅ and (Z \X) ∩K 6= ∅ for every copy K of 2ω in Z. It is easy to see
that Bernstein sets exist in ZFC (use the same method as in the proof of Example
8.24 in [7]). Since 2ω ≈ 2ω × 2ω, every Bernstein set has size c.

Proposition 3.4. Let X be a Bernstein set in some uncountable Polish space Z.
Then X is CB but it does not have the CBP.

Proof. The space X does not have the CBP because X itself is a non-scattered
closed subspace of X containing no copies of 2ω. Now assume, in order to get a
contradiction, that X is not CB. By Corollary 1.9.13 in [14], it follows that X
contains a closed subspace Q homeomorphic to the rationals Q. Let G = cl(Q) \Q,
where the closure is taken in Z. It is easy to realize that G is an uncountable Gδ

subset of Z. Therefore G contains a copy of 2ω. Since G∩X = ∅, this contradicts
the fact that X is a Bernstein set. �

4. Preliminaries about definability

Our reference for descriptive set theory will be [7]. In this section, Γ will always
denote one of the (boldface) projective pointclasses Σ1

n, Π
1
n or ∆1

n, where n is a
non-zero natural number. It is well-known how to define a subset of complexity Γ

of a given Polish space. Since it seems to be slightly less well-known that this can
be easily extended to arbitrary spaces, we will recall the following definition (which
coincides with the one given at the end of page 315 in [7]). We will say that a space
X embeds in a space Z if there exists a subspace X ′ of Z such that X ′ ≈ X .

Definition 4.1. Let X be a space and Γ a pointclass. We will say that X is a
space of complexity Γ (briefly, a Γ space) if there exists a Polish space in which X
embeds as a subset of complexity Γ. We will say that X is a projective space if it
is a space of complexity Γ for some Γ.

The following ‘reassuring’ proposition, which can be safely assumed to be folk-
lore, shows that the choice of the Polish space in the above definition is irrelevant.
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Proposition 4.2. Let X be a space. The following are equivalent.

(1) X is a Γ space.
(2) X is a Γ subset of every Polish space in which it embeds.

Proof. The implication (2) → (1) follows from the standard fact that every space
embeds in the Polish space [0, 1]ω. In order to prove (1)→ (2), we will proceed by
induction. Clearly, it will be enough to deal with the cases Γ = Σ1

n and Γ = Π1
n.

Notice that the case Γ = Σ1
1 is trivial, because such sets are by definition continuous

images of a Polish space, and this property is preserved by homeomorphisms.
Now assume that the result holds for Γ = Σ1

n, and let X be a Π1
n space. Assume

that X is a subspace of a Polish space Z, and that X is a Π1
n subset of Z. Let X ′ be

a subspace of a Polish space Z ′, and assume that h : X −→ X ′ is a homeomorphism.
We will show that X ′ is a Π1

n subset of Z ′. By Lavrentiev’s Theorem (see Theorem
3.9 in [7]), there exists a homeomorphism f : G −→ G′ that extends h, where
G ⊇ X is a Gδ subset of Z and G′ ⊇ X ′ is a Gδ subset of Z ′. It will be enough to
show that Z ′ \X ′ = (Z ′ \G′)∪ (G′ \X ′) is a Σ1

n subset of Z ′. But Z ′ \G′ is a Σ1
n

subset of Z ′ because it is an Fσ, and G
′ \X ′ is a Σ1

n subset of Z ′ by the inductive
hypothesis, being homeomorphic to the Σ1

n space G \X = (Z \X) ∩G.
Finally, assume that the result holds for Γ = Π1

n, and let X be a Σ1
n+1 space.

Assume that X is a subspace of a Polish space Z, and that X is a Σ1
n+1 subset of Z.

This means that X = π[Y ], where Y is a Π1
n subset of Z×ωω and π : Z×ωω −→ Z

is the projection on the first coordinate. Let X ′ be a subspace of a Polish space
Z ′, and assume that h : X −→ X ′ is a homeomorphism. We will show that X ′ is a
Σ1

n+1 subset of Z ′. Observe that the function h× id : X ×ωω −→ X ′×ωω defined
by (h× id)〈x,w〉 = 〈h(x), w〉 is a homeomorphism, and let Y ′ = (h× id)[Y ]. Notice
that Y ′ is a Π1

n subset of Z ′×ωω by the inductive hypothesis, being homeomorphic
to the Π1

n space Y . It is clear that X ′ = π′[Y ′], where π′ : Z ′ × ωω −→ Z ′ is the
projection on the first coordinate. �

5. Definable spaces

As we mentioned in the introduction, the properties that we are interested in
become equivalent under certain definability assumptions. The following theorem,
which can be viewed as a ‘definable’ analogue of Theorem 2.1, makes this precise.
Theorem 5.1 also states that, under the axiom of Projective Determinacy, these
properties become equivalent for every projective space. This is the reason why the
definable counterexamples that we obtain could not have been constructed in ZFC

alone. Also notice that these counterexamples are optimal, in the sense that their
complexity is as low as possible.

Theorem 5.1. Consider the following conditions on a space X.

(1) X is Polish
(2) X has the MP.
(3) X has the CBP.
(4) X is CB.

If X is Π1
1 then (1)↔ (2)↔ (3)↔ (4). Under the axiom of Projective Determinacy

this holds whenever X is projective. If X is Σ1
1 then (2) ↔ (3) ↔ (4). There

exists a consistent Σ1
1 counterexample to the implication (1)← (2). There exists a

consistent ∆1
2 counterexample to the implication (i)← (i+ 1) for i = 2, 3.
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Proof. By Theorem 2.1, in order to prove the first statement, it will be enough to
show that (4) → (1) whenever X is Π1

1. This is exactly what a classical theorem
of Hurewicz states (see Corollary 21.21 in [7]). Since under the axiom of Projective
Determinacy this theorem extends to every projective space (see Exercise 28.20 in
[7]), the second statement holds. In order to prove the third statement, it will be
enough to show that (4)→ (2) whenever X is Σ1

1. This is the content of Corollary
5.5. The fourth statement follows from Proposition 7.1. The fifth statement follows
from Proposition 7.2 (for the case i = 2) and Proposition 7.3 (in the case i = 3). �

The following two results are well-known. For a proof of Theorem 5.2, see Corol-
lary 21.23 in [7]. Recall that a subset A of ωω is Miller-measurable if for every
closed copy N of ωω in ωω there exists a closed copy N ′ ⊆ N of ωω in ωω such that
N ′ ⊆ A or N ′ ⊆ ωω \A.

Theorem 5.2 (Kechris; Saint Raymond). Assume that A is a Σ1
1 subset of ωω.

Then (exactly) one of the following alternatives holds.

(1) There exist compact subsets Kn of ωω for n ∈ ω such that A ⊆
⋃

n∈ωKn.
(2) There exists a closed copy N of ωω in ωω such that N ′ ⊆ A.

Corollary 5.3. Every Σ1
1 subset of ωω is Miller-measurable.

Theorem 5.4. Assume that Γ is a projective pointclass such that every Γ subset
of ωω is Miller-measurable. Let X be a Γ space that is CB. Then X has the MP.

Proof. Fix a compatible metric d on [0, 1]ω. Given x ∈ [0, 1]ω and ε > 0, let
S(x, ε) = {z ∈ [0, 1]ω : d(x, z) = ε}. Assume, without loss of generality, that X is
a subspace of [0, 1]ω. Fix a countable crowded subset Q of X . Let D ⊇ Q be a
countable dense subset of [0, 1]ω. Since D is countable, there exist εn > 0 for n ∈ ω
such that εn → 0 as n→∞ and {εn : n ∈ ω} ∩ {d(x, y) : x, y ∈ D} = ∅. It is easy
to check that

(

[0, 1]ω \
⋃

{S(x, εn) : x ∈ D,n ∈ ω}
)

∩X

is a zero-dimensional Γ space containing Q. Therefore, we can assume without
loss of generality that X is zero-dimensional. We will actually assume that X is a
subspace of 2ω. Throughout this proof, cl will denote closure in 2ω.

Let Z = cl(Q) \Q, and notice that Z ≈ ωω. Assume, in order to get a contra-
diction, that Z \X contains a copy N of ωω that is closed in Z. Since cl(Q) ≈ 2ω

and Q is a countable dense subset of cl(Q), Lemma 3.2 shows that Q′ = cl(N) ∩Q
is crowded. This contradicts the fact that X is CB because Q′ = cl(N) ∩X is also
closed in X . Since Z ∩X is a Miller-measurable subset of Z, it follows that Z ∩X
contains a copy N of ωω that is closed in Z. Once again, Lemma 3.2 shows that
Q′ = cl(N)∩Q is crowded. Furthermore, the closure of Q′ in X is compact because
Q′ ⊆ cl(N) = N ∪Q′ ⊆ X . Therefore X has the MP. �

Corollary 5.5. Let X be a Σ1
1 space. If X is CB then X has the MP.

6. Preliminaries about the constructible universe

All the result in this section are well-known. The aim of this section is simply
to collect the main results needed to give rigorous proofs of Proposition 7.2 and
Proposition 7.3. However, we will assume some familiarity with the basic theory of
L. Our references will be [6] and [9].
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The following theorem essentially shows that if all the ‘ingredients’ of a con-
struction by transfinite recursion are absolute, then the end result will be absolute
as well. It is obtained by combining Theorem I.9.11 and the proof Theorem II.4.15
from [9] in the case A = ω1, R =∈. We will denote by OC the statement “Every
ordinal is countable”.

Theorem 6.1. Suppose ϕ(x, s, y) is such that ∀x, s ∃!y ϕ(x, s, y). Define G(x, s) to
be the unique y such that ϕ(x, s, y). Then there exists a formula ψ(x, y) such that
the following are provable.

• ∀x∃!y ψ(x, y). (In particular, ψ(x, y) defines a function F , where F (x) is
the unique y such that ψ(x, y) holds.)
• ∀α < ω1 [F (α) = G(α, F ↾ α)].

Assume that Φ is a collection of sentences in the language L∈ of set theory such
that ZF− P+ OC ⊆ Φ. If M is a transitive model for Φ and G is absolute for M ,
then FM (α) is defined for every α ∈M ∩ ω1 and F is absolute for M .

For the proofs of the following three results, see Theorem II.6.22, Theorem II.5.10
and Lemma II.6.16 in [9].

Proposition 6.2. If κ is a regular uncountable cardinal then Lκ � ZF− P.

Proposition 6.3. There exist arbitrarily large δ < ω1 such that Lδ ≺ Lω1
.

Proposition 6.4. Let M be a transitive set such that M � ZF− P, and let δ be
the least ordinal such that δ /∈M . Then M � V = L if and only if M = Lδ.

Next, we recall some notation from the section of [6] entitled “Regularity proper-
ties in L” (which begins on page 167). Let Ez = {〈m,n〉 ∈ ω×ω : x(〈〈m,n〉〉) = 0}
for z ∈ ωω, where 〈〈m,n〉〉 = 2m · 3n. Let Mz = 〈ω,Ez〉 be the structure with
domain ω which interprets ∈ as the binary relation Ez . Whenever Mz is well-
founded and extensional, denote by tr(Mz) the transitive collapse of Mz, and let
πz :Mz −→ tr(Mz) the corresponding isomorphism.

For the proofs of the following three results, see Proposition 13.8 in [6].

Proposition 6.5. Let ϕ(x) be a formula in the language L∈ of set theory. Then
{〈n, z〉 ∈ ω × ωω :Mz � ϕ(n)} is a Borel set.

Proposition 6.6. Let Φ be a collection of sentences in the language L∈ of set
theory. Then {z ∈ ωω : Mz � Φ} is a Borel set.

Proposition 6.7. Given z ∈ ωω such that Mz is well-founded and extensional,
define R(z) = {〈n, x〉 ∈ ω × ωω : πz(n) = x}. Then there exists a Borel set
A ⊆ ω × ωω × ωω such that 〈n, x〉 ∈ R(z) ↔ 〈n, x, z〉 ∈ A for every z ∈ ωω such
that Mz is well-founded and extensional.

7. Consistent definable counterexamples

For our first counterexample, we will employ a classical theorem of Martin and
Solovay (see Theorem 8.1), of which we will give a new proof in Section 8.

Proposition 7.1. Assume MA + ¬CH + ω1 = ωL
1 . Then there exists a Σ1

1 space
that has the MP but is not Polish.

Proof. Let Y ⊆ 2ω be a λ′-set of size ω1. The space X = 2ω \ Y has the MP but is
not Polish by Proposition 3.1, and it is Σ1

1 by Theorem 8.1. �
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The proof of the following Proposition was inspired by the exposition in [8] (in
particular, by Fact 1.2.11 and Fact 1.3.8). Next, we will introduce some terminology
that will be needed in its proof. Let D = {x ∈ 2ω : ∃n ∈ ω ∀m ≥ n (x(m) = 0)}.
We will identify ωω with the subspace 2ω \ D of 2ω. For any given T ⊆ 2<ω, let
[T ] = {x ∈ 2ω : ∀n ∈ ω (x ↾ n ∈ T )} be the set of branches through T . We will say
that C ⊆ 2<ω is a code for a copy of 2ω in ωω if [C] is crowded and [C] ∩D = ∅.
In this case, one sees that [C] ⊆ 2ω \D is in fact a copy of 2ω, and that every such
copy can be obtained this way. We will say that B ⊆ 2<ω is a code for a closed
copy of ωω in ωω if [B] is crowded and [B] ∩ D is dense in [B]. In this case, one
sees that [B]∩ (2ω \D) is in fact a closed copy of ωω, and that every such copy can
be obtained this way (see the proof of Lemma 3.2). It is easy to check that both
notions, as well as x ∈ [T ], are absolute for transitive models of ZF− P.

Proposition 7.2. Assume V = L. Then there exists a ∆1
2 space that has the CBP

but does not have the MP.

Proof. It will be enough to construct a∆1
2 subsetX of ωω that satisfies the following

conditions.

(1′) For every copy K of 2ω in ωω there exists a copy K ′ ⊆ K of 2ω such that
K ′ ∩X = ∅.

(2′) There exists a closed copy N of ωω in ωω such that N ′ ∩X 6= ∅ whenever
N ′ ⊆ N is a closed copy of ωω in ωω.

In fact, it is clear that Y = ωω \ X will be ∆1
2 as well, and it will satisfy the

requirements of Proposition 3.3.
First we describe the construction of such a set X , disregarding the definabil-

ity requirements. Enumerate as {Nα : α < ω1} all closed copies of ωω in ωω.
Enumerate as {Kα : α < ω1} all copies of 2

ω in ωω. For every α < ω1, choose

xα ∈ Nα \
⋃

β<α

Kβ.

Notice that the above choice is always possible because Nα ≈ ω
ω cannot be written

as the union of countably many of its compact subspaces. Let X = {xα : α < ω1}.
One sees that condition (2′) is satisfied by setting N = ωω. Furthermore, the
intersection of X with each Kα is at most countable by construction. Since each
Kα ≈ 2ω ≈ 2ω × 2ω, it follows that condition (1′) is satisfied.

The rest of the proof is devoted to making the above construction definable. The
formula that defines X will be

∃α [(α is a countable ordinal) ∧ (x = F (α))],

where F is the function that will be given by Theorem 6.1. Once F is defined, we
will denote the above formula by χ(x).

For the inductive step, we need to define G(α, s). Let Cα for α < ω1 denote the
α-th code for a copy of 2ω in ωω according to the well-order <L. Let Bα for α < ω1

denote the α-th code for a closed copy of ωω in ωω according to the well-order <L.
If α is not a countable ordinal, simply let G(α, s) = ∅. If α is a countable ordinal,
let G(α, s) = x, where x is uniquely defined by the following conditions. Recall that
we are identifying ωω with the subspace 2ω \D of 2ω. Notice that we will not make
use of the parameter s. However, such parameter is needed in general (consider for
example Proposition 7.3).
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(1) x ∈ ωω.
(2) x ∈ [Bα] \

⋃

β<α[Cβ ].

(3) x /∈ Lα.
(4) x is the <L-least set satisfying (1), (2) and (3).

As in Section 6, we will denote by OC the statement “Every ordinal is countable”.
Let Φ denote the set of sentences ϕ in the language L∈ of set theory such that
Lω1

� ϕ. Notice that ZF− P + V = L + OC ⊆ Φ (use Proposition 6.2 for ZF− P

and Proposition 6.4 for V = L). Furthermore, it is easy to check that the following
sentences also belong to Φ.

(A) “For every ordinal α there exists a set C consisting of codes for copies of 2ω

in ωω, such that the order type of C according to <L is at least α”.
(B) “For every ordinal α there exists a set B consisting of codes for closed copies

of ωω in ωω, such that the order type of B according to <L is at least α”.
(C) “For every ordinal α there exists x satisfying (1) and (2)”.

We claim that G is well-defined and absolute for transitive models of Φ. In fact,
since (A) and (B) guarantee that the functions α 7→ Cα and α 7→ Bα are well-
defined, it will follow from (C) thatG is well-defined too. At this point, absoluteness
is easy to check.

Notice that, since we are not using the parameter s, the absoluteness of F im-
mediately follows from the absoluteness of G. However, in general, one would have
to use the second part of Theorem 6.1 to prove the absoluteness of F .

Let θ(x) denote the statement

∃δ < ω1 [(Lδ � Φ) ∧ (x ∈ Lδ) ∧ (Lδ � χ(x))] .

Next, we will show that χ(x) is equivalent to θ(x) for every x. First assume that
χ(x) holds, and let α < ω1 be such that x = F (α). By Proposition 6.3, there exists
δ < ω1 such that Lδ � Φ and x ∈ Lδ. Notice that α < δ by condition (3). Therefore
Lδ � F (α) = x by the absoluteness of F . Since Lδ � OC, it follows that Lδ � χ(x).
The other direction simply uses the absoluteness of F .

Next, we will show that X is a Σ1
2 space. It is easy to realize, using the transitive

collapse and Proposition 6.4, that θ(x) is equivalent to

∃z ∈ ωω [(Mz is well-founded) ∧ (Mz � Φ) ∧

∧(∃n ∈ ω ((πz(n) = x) ∧ (Mz � χ(n))))],

where we use the same notation of Section 6. The well-known (and easy to prove)
fact that the set {z ∈ ωω : Mz is well-founded} is Π1

1, together with Proposition
6.5, Proposition 6.6 and Proposition 6.7, shows that the above statement defines a
Σ1

2 subset of ωω.
Finally, to see that X is Π1

2, let θ(x) denote the statement

∀δ < ω1 [((Lδ � Φ) ∧ (x ∈ Lδ))→ (Lδ � χ(x))]

and use the same kind of argument as above. �

Proposition 7.3. Assume V = L. Then there exists a ∆1
2 space that is CB but

does not have the CBP.

Proof. Using the same method as in the proof of Proposition 7.2, one can show that
under V = L there exists a ∆1

2 Bernstein set in ωω (this is well-known, see Fact 1.3.8
in [8]). Therefore, the desired conclusion follows from Proposition 3.4. �
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8. A new proof of a theorem of Martin and Solovay

The aim of this section is to give a new proof of the following classical result
(see Theorem 23.3 in [17]), which is perhaps more transparent than the usual one.
The main idea is that ω1 = ωL

1 implies the existence of one space of size ω1 with
the property that we want (see Proposition 8.2), while MA+ ¬CH implies that all
spaces of size ω1 are ‘the same’ for our purposes (see Lemma 8.3).

Recall that, given an infinite cardinal λ, a subsetD of 2ω is λ-dense if |U∩D| = λ
for every non-empty open subset U of 2ω. Given a space X , we will denote by X∗

the space X \ V , where V =
⋃

{U : U is a countable open subset of X}. It is easy
to see that V = X \ X∗ is countable, and that every non-empty open subset of
X∗ is uncountable. Notice that, given any projective pointclass Γ, a space X is of
complexity Γ if and only if X∗ is of complexity Γ.

Theorem 8.1 (Martin, Solovay). Assume MA+¬CH+ω1 = ωL
1. Then every space

of size ω1 is Π1
1.

Proof. By Proposition 8.2 there exists a Π1
1 space D of size ω1. Since any two

uncountable Polish spaces are Borel isomorphic (see Theorem 15.6 in [7]), we can
assume that D ⊆ 2ω. By considering D∗, we can assume that every non-empty
open subset of D is uncountable. In particular D is crowded, hence its closure in
2ω is homeomorphic to 2ω. In conclusion, we can assume without loss of generality
that D is an ω1-dense subspace of 2ω. Now let E be a space of size ω1. As above,
we can assume that E is an ω1-dense subspace of 2

ω. An application of Lemma 8.3
concludes the proof. �

The following proposition is well-known. Actually, it is possible to obtain a space
with the additional property of not containing any copy of 2ω (this is a classical
result of Gödel, see Theorem 13.12 in [6]), but we will not need this stronger version.

Proposition 8.2. Assume ω1 = ωL
1 . Then there exists a Π1

1 space of size ω1.

Proof. It is well-known that the set R = ωω ∩ L = (ωω)L of all constructible reals
is Σ1

2 (see for example Theorem 13.9 in [6]). Also notice that R has size ω1 by
the assumption ω1 = ωL

1 . Let A ⊆ ωω × ωω be a Π1
1 set such that π[A] = R,

where π : ωω × ωω −→ ωω is the projection on the first coordinate. By the Kondô
Uniformization Theorem (see Theorem 12.3 in [6]), there exists a Π1

1 set D ⊆ A
such that π ↾ D : D −→ R is a bijection. In particular, the size of D is ω1. �

The following result first appeared (in a more general form) as Lemma 3.2 in [1].
See also Theorem 2.1 and Corollary 2.2 in [13] for a simpler version of the proof.

Lemma 8.3 (Baldwin, Beaudoin). Assume MA(σ-centered). Let λ < c be an
infinite cardinal. If D and E are λ-dense subsets of 2ω then there exists a homeo-
morphism f : 2ω −→ 2ω such that f [D] = E.

9. Modifying the value of the continuum

At this point, it is natural to wonder whether the counterexamples obtained
in Section 7 are compatible with different values of the continuum. In the case
of Proposition 7.1, it is clear that one can obtain arbitrarily large values of c by
forcing over L with the usual ccc poset that proves the consistency of MA. The
next proposition show that c = ω1 is also possible.
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Proposition 9.1. The existence of a Σ1
1 space that has the MP but is not Polish

is compatible with CH.

Proof. Let Y ⊆ 2ω be a λ′-set of size ω1 in a model MA + ¬CH + ω1 = ωL
1 , and

notice that Y is Π1
1 by Theorem 8.1. Now collapse c to ω1 using a countably closed

forcing poset. It is easy to check that Y will remain a λ′-set of size ω1 in the
extension. Furthermore, X = 2ω \Y will remain Σ1

1. An application of Proposition
3.1 concludes the proof. �

The situation regarding Proposition 7.2 and Proposition 7.3 is more delicate. We
will indicate how to obtain ∆1

3 counterexamples in models of c = ω2 using a general
method introduced by Fischer and Friedman in [5]. We will assume some familiarity
with their article, and use the same notation. The general idea is to perform a
countable support iteration 〈〈Pα : α ≤ ω2〉, 〈Q̇α : α < ω2〉〉 of S-proper posets over
L, where S is a stationary subset of ω1 that has been fixed in advance, as in Section
5 in [5]. Suppose that we have already defined 〈〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉〉 for some

α < ω2. We will set Q̇α = Q̇0
α ∗ Q̇

1
α. Let Q0

α be a proper poset of size ω1 in LPα .
(There are no additional requirements on Q0

α: this poset is “reserved” for future
applications, as in the proofs of Theorem 2 and Theorem 3 in [5].) Suppose also that

σα is a Pα ∗ Q̇0
α-name for a real. Then there exists an S-proper poset Q1

α of size ω1

in LPα∗Q̇0

α such that, at the end of the construction, both {σG
α : α < ω2 is a limit}

and {σG
α : α < ω2 is a successor} will be Σ1

3 for every Pω2
-generic filter G over L.

In fact, this can be obtained by replacing x ∗ y with σG
α in items (1), (2) at the

beginning of page 920 in [5], and by modifying the definition of φα in item (2) by
specifying that Xα codes a limit (resp. successor) ordinal ᾱ < ω2 whenever α < ω2

is a limit (resp. successor).

Proposition 9.2. The existence of a ∆1
3 space that has the CBP but not MP is

compatible with ¬CH.

Proof. We will construct a ∆1
3 subset X of ωω satisfying the same conditions (1′)

and (2′) that appear in the proof of Proposition 7.2. Start by fixing a bookkeping
function F : ω2 −→ H(ω2) such that {α < ω2 : α is a limit and F (α) = x} and
{α < ω2 : α is a successor and F (α) = x} are unbounded in ω2 for each x ∈ H(ω2).

Assume that the iteration 〈〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉〉 has already been defined
for some α < ω2. First assume that α is a limit. If F (α) is a Pα-name for a code B
for a closed copy of ωω in ωω, choose a poset Q0

α adding an unbounded real, then

let σα be a Pα ∗ Q̇0
α-name for an element of ωω such that the following conditions

are satisfied.

(1) 

Pα∗Q̇0

α

“σα ∈ [B]”.

(2) 

Pα∗Q̇0

α

“σα is unbounded over ωω ∩ LPα”.

Otherwise, let Q0
α be the trivial forcing and set σα = 〈0, 0 . . .〉̌ . Now assume

that α is a successor. Let Q0
α be the trivial forcing. If F (α) = τ is a Pα-name

for an element of ωω, proceed as follows, otherwise let σα = 〈1, 1 . . .〉̌ . Define
B = {p ∈ Pα : p 
 “τ /∈ {σβ : β < α and β is a limit}”} and C = {p ∈ Pα : p 


“τ ∈ {σβ : β < α and β is a limit}”}. Since B ∪ C is dense in Pα, we can fix a
maximal antichain A in Pα such that A ⊆ B ∪ C. Let

σα = {〈τ, p〉 : p ∈ A ∩ B} ∪ {〈〈1, 1 . . .〉̌ , p〉 : p ∈ A ∩ C}.

This concludes the construction.
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Let G be a Pω2
-generic filter over L, then set X = {σG

α : α < ω2 is a limit}.
Notice that ωω = X ∪ {σG

α : α < ω2 is a successor} by the successor case of our
construction. Therefore X is a ∆1

3 space. Using condition (2), it is easy to check
that |X ∩K| ≤ ω1 < c for every copy K of 2ω in ωω. This shows that condition
(1′) is satisfied. Finally, it is clear that condition (2′) is satisfied with N = ωω. �

Proposition 9.3. The existence of a ∆1
3 space that is CB but does not have the

CBP is compatible with ¬CH.

Proof. We will construct a ∆1
3 Bernstein subset X of ωω. Fix F as in the proof of

Proposition 9.2. Assume that the iteration 〈〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉〉 has already
been defined for some α < ω2. First assume that α is a limit. If F (α) is a Pα-name
for a code C for a copy of 2ω in ωω, choose a poset Q0

α adding a new real, then let

σα be a Pα ∗ Q̇0
α-name for an element of ωω such that 


Pα∗Q̇0
α

“σα ∈ [C] \ LPα”.

Otherwise, let Q0
α be the trivial forcing and set σα = 〈0, 0 . . .〉̌ . If α is a successor,

proceed as in the proof of Proposition 9.2. This concludes the construction.
Let G be a Pω2

-generic filter over L, then set X = {σG
α : α < ω2 is a limit}. The

same reasoning as in the the proof of Proposition 9.2 shows that X is a ∆1
3 space.

Now let K be a copy of 2ω in ωω, coded by C. Assume that F (α) is a Pα-name for
C at a limit stage α of our construction. Clearly σG

α witnesses that X ∩ K 6= ∅.

Furthermore, since 
Pα∗Q̇0
α

“[C] \ LPα is infinite”, there exists a Pα ∗ Q̇0
α-name τ for

an element of ωω such that 

Pα∗Q̇0

α

“τ ∈ [C] \ LPα and τ 6= σα”. It is easy to check

that τG witnesses that (ωω \X) ∩K 6= ∅. Therefore X is Bernstein set. �

The following questions ask whether the counterexamples constructed in Propo-
sition 9.2 and Proposition 9.3 are of lowest possible complexity. Question 9.5 only
asks for a Π1

2 counterexample, because Corollary 9.10 rules out the existence of
Σ1

2 counterexamples. Also observe that the existence of a Σ1
2 Bernstein set (or,

equivalently, a Π1
2 Bernstein set) is not compatible with ¬CH. In fact, every Σ1

2

space of size at least ω2 contains a copy of 2ω (see Proposition 13.7 in [6]).

Question 9.4. Is ¬CH compatible with the existence of a Σ1
2 or Π1

2 space that has
the CBP but not the MP?

Question 9.5. Is ¬CH compatible with the existence of a Π1
2 space that is CB but

does not have the CBP?

The following corollary shows that none of the counterexamples mentioned in
the above questions is compatible with the assumption d > ω1. For a proof of
Theorem 9.6, see Theorem 6.1 in [3].

Theorem 9.6 (Brendle, Löwe). The following are equivalent.

• ωω ∩ L[a] is not dominating for any a ∈ ωω.
• Every Σ1

2 subset of ωω is Miller-measurable.

Corollary 9.7. Assume that ωω ∩ L[a] is not dominating for any a ∈ ωω. Let X
be a CB space, and assume that X is Σ1

2 or Π1
2. Then X has the MP.

Proof. Simply apply Theorem 5.4. �

Notice that the following theorem generalizes the classical fact that every un-
countable Polish space has size c. In its proof, we will identify 2ω with the power
set of ω through characteristic functions.
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Lemma 9.8. Let X be CB space. Then every Gδ subset of X is CB.

Proof. Throughout this proof, cl will denote closure in X . Let G be a Gδ subset
of X . Let C be a closed subset of G. Notice that cl(C) is CB because X is CB.
Furthermore, tha fact that C = cl(C) ∩ G shows that C is a Gδ subset of cl(C).
Since every Gδ subset of a CB space is Baire (see Proposition 1.2 in [4]), it follows
that C is Baire. �

Theorem 9.9. Let X be an uncountable CB space. Then |X | = c.

Proof. Using the classical Cantor-Bendixson derivative, we can assume that X is
crowded. The same method that we used in the first paragraph of the proof of
Theorem 5.4, together with Lemma 9.8, shows that X can be assumed to be a
subspace of 2ω. Since X is crowded, we can assume that X is dense in 2ω. Since
2ω is countable dense homogeneous (see Theorem 1.6.9 and Lemma 1.9.5 in [14]),
we can also assume that [ω]<ω ⊆ X .

Assume, in order to get a contradiction, that there exists z ∈ [ω]ω such that
[z]ω ∩X = ∅. It is easy to check that [z]<ω is a countable crowded closed subspace
of X , which contradicts the fact that X is CB. Therefore, there exists a function
f : [ω]ω −→ [ω]ω ∩X such that f(z) ⊆ z for every z ∈ [ω]ω. Fix an almost disjoint
family A of size c (see Lemma III.1.16 in [9]). It is easy to check that f ↾ A is
injective. Therefore X ⊇ f [A] has size c. �

Corollary 9.10. Assume ¬CH. Let X be a CB space, and assume that X is Σ1
2.

Then X has the CBP.

Proof. Assume, without loss of generality, that X is uncountable. Let C be a non-
scattered closed subset of X . Using the classical Cantor-Bendixson derivative, we
can assume that C is crowded. Since X is CB, it follows that C is uncountable.
Therefore |C| = c ≥ ω2 by Theorem 9.9. The well-known fact that every Σ1

2 space
of size at least ω2 contains a copy of 2ω (see Proposition 13.7 in [6]) concludes the
proof. �
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