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Elementary classes of finite VC-dimension

Domenico Zambella

Abstract

Let U be a saturated model of inaccessible cardinality, and let D ⊆U be arbitrary. Let

〈U,D〉 denote the expansion of U with a new predicate for D. Write e(D) for the col-

lection of subsets C⊆U such that 〈U,C〉 ≡ 〈U,D〉. We prove that if the VC-dimension of

e(D) is finite then D is externally definable.

Let U be a saturated model of signature L, and let T denote its theory and κ its cardinality.

We require that κ is uncountable, inaccessible, and larger than |L|. There is no blanket

assumption on T . Throughout the following z is a tuple of variables of finite length and

the letters D and C denote arbitrary subsets of U|z|. As usua,l the letters A,B , . . . denote

subsets of U of small cardinality.

Recall that D is externally definable if D=Dp,ϕ for some global type p ∈ Sx (U) and some

ϕ(x, z) ∈ L, where

Dp,ϕ =
{

a ∈U
|z| : ϕ(x, a) ∈ p

}

.

Externally definable sets are ubiquitous in model theory, though they mainly appear in

the form of global ϕ-types (in fact, they are in one-to-one correspondence with these).

One important fact about externally definable sets has been proved by Shelah in [Sh], gen-

eralizing a theorem of Baisalov and Poizat in [BP]. Assume T is NIP and let USh be the

model obtained by expanding U with a new predicate for each externally definable set.

Then Th(USh) has quantifier elimination. A few proofs of this result are available, see [Pi]

and [CS]. The proof in [CS], by Chernikov and Simon, is relevant to us because it intro-

duces the notion of honest definition that will find an application here. The Shelah expan-

sion of groups with NIP has been studied in [CPS].

To any set D we associate an expansion of U with a new |z|-ary predicate for z ∈D. We

denote this expansion by 〈U,D〉. We denote by e(D/A) the set
{

C : 〈U,C〉 ≡A 〈U,D〉
}

.

We would like to know if there there are conditions on e(D/A) that characterize externally

definable sets. Note that there are straightforward conditions that characterize definable

sets. For example, D is definable if and only if |e(D/A)|= 1 for some A.

By adapting some ideas in [CS] (see also [Z]), in Corollary 12 we prove a sufficient condition

for D to be externally definable, namely that it suffices that for some set of parameters A

the VC-dimension of e(D/A) is finite. Though in general this is not a necessary condition,
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it characterizes external definability when T is NIP (see Corollary 13). Finally, in the last

two sections we use e(D) in an attempt to generalize the notion of non-dividing to sets.

1 Notation

Let L be a first-order language. We consider formulas build inductively from the symbols

in L and the atomic formulas t ∈X, where X is some second-order variable and t is a tuple

of terms. For the the time being, the logical connectives are first-order only (in the last sec-

tion we will add second-order quantification). The set of all formulas is itself denoted by L

or, if parameters from A are allowed, by L(A). When a second-order parameter is included

(we never need more than one) we write L(A;D). When ϕ(X)∈ L(A) andD⊆U|z|, we write

ϕ(D) for the formula obtained by replacing X by D in ϕ(X). The truth of ϕ(D) is defined

in the obvious way. Warning: the meaning of ϕ(D) depends on whether the formula is

presented as ϕ(X) or as ϕ(x) (see the first paragraph of Section 2).

We write C≡A D if the equivalence ϕ(C) ↔ϕ(D) holds for all ϕ(X) ∈ L(A). Then the class

e(D/A) defined in the introduction coincides with the set
{

C⊆U|z| : C≡A D
}

.

We say that M is L(A;C)-saturated if every finitely consistent type p(x) ⊆ L(A;C) is realized

in M . IfC is such that U is L(A;C)-saturated for every A, we say that C is saturated. In other

words, C is saturated if the expansion 〈U,C〉 is a saturated model.

1 Proposition For every D and every A there is a saturated C such that C≡A D. Moreover,

if D and C are both saturated, then there is f ∈ Aut(U/A) that takes D to C.

Proof We prove that there is C≡A D such that expansion 〈U,C〉 is saturated. As κ is a large

inaccessible cardinal, there is a model 〈U′,D′〉 ≡A 〈U,D〉 that is saturated and of cardinal-

ity κ. Then there is an isomorphism f : U′ →U that fixes A. Then f [D′] =C is the required

saturated subset of U. The second claim is clear by back-and-forth. �

Let∆ be a set of formulas and let 〈I ,<I 〉 be a linearly ordered set. We say that the sequence

〈ai : i ∈ I〉 is indiscernible in∆ if for every integer k and two increasing tuples i1 <I · · · <I ik

and j1 <I · · · <I jk and formula ϕ(x1, . . . , xk ) ∈ ∆, we have ϕ(ai1 , . . . , aik
) ↔ ϕ(a j1 , . . . , a jk

).

When ∆= L(A) we say that 〈ai : i ∈ I〉 is A-indiscernible.

We denote by o(D/A) the set
{

f [D] : f ∈ Aut(U/A)
}

, that is, the orbit of D under Aut(U/A).

If o(D/A) =
{

D
}

we say that D is invariant over A. A global type p ∈ Sx (U) is invariant

over A if for every ϕ(x, z) the set Dp,ϕ is invariant over A. The main fact to keep in mind

about global A-invariant types is that any sequence 〈ai : i <λ〉 such that ai Í p↾A,a↾i
is an

A-indiscernible sequence.

We assume that the reader is familiar with basic facts concerning NIP theories as pre-

sented, e.g., in [Sim, Chapter 2].
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2 Approximations

The set D∩ A|z| is called the trace of D over A. For every formula ψ(z) ∈ L(U) we define

ψ(A) = ψ(U)∩ A|z|, that is, the trace over A of the definable set ψ(U) =
{

a ∈U|z| :ψ(a)
}

.

A set D is called externally definable if there are a global type p ∈ Sx (U) and a formula

ϕ(x, z) such that D={a : ϕ(x, a) ∈ p}. Equivalently, a set D is externally definable if it is the

trace over U of a set which is definable in some elementary extension of U. This explains

the terminology.

We prefer to deal with external definability in a different, though equivalent, way.

2 Definition We say that D is approximable by the formula ϕ(x, z) if for every finite B

there is a b ∈ U|x| such that ϕ(b,B) =D∩B |z|. We may call the formula ϕ(x, z) the sort of

D. If in addition we have that ϕ(b,U) ⊆D, we say that D is approximable from below. If

D⊆ϕ(b,U) we say that D is approximable from above. �

Approximability from below is an adaptation to our context of the notion of having an

honest definition in [CS]. The following proposition is clear by compactness.

3 Proposition For every D the following are equivalent:

1. D is approximable;

2. D is externally definable. �

4 Example Let T be the theory a dense linear orders without endpoints and let D ⊆ U be

an interval. Then D is approximable both from below and from above by the formula

x1 < z < x2. Now let T be the theory of the random graph. Then every D ⊆ U is approx-

imable and, when D has small cardinality, it is approximable from above but not from

below. �

In Definition 2, the sort ϕ(x, z) is fixed (otherwise any set would be approximable) but this

requirement of uniformity may be dropped if the sets B are allowed to be infinite.

5 Proposition For every D the following are equivalent:

1. D is approximable;

2. for every B of cardinality ≤ |T | there is ψ(z)∈ L(U) such that ψ(B) =D∩B |z|.

Similarly, the following are equivalent:

3. D is approximable from below;

4. for every B ⊆D of cardinality ≤ |T | there is ψ(z) ∈ L(U) such that B |z| ⊆ψ(U) ⊆D.

Proof To prove 2⇒1, for a contradiction assume 2 and ¬1. For each formula ψ(x, z) ∈ L

choose a finite set B such that ψ(b,B)=/ D∩B |z| for every b ∈U|x|. Let C be the union of all

these finite sets. Clearly |C | ≤ |T |. By 2 there are a formula ϕ(x, z) and a tuple c such that
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ϕ(c,C ) =D∩C |z|, contradicting the definition of C .

The implication 1⇒2 is obtained by compactness and the equivalence 3⇔4 is proved sim-

ilarly. �

6 Proposition If D is approximable of sort ϕ(x, z) then so is any C such that C ≡D. The

same holds for approximability from below and from above.

Proof If the set D is approximable by ϕ(x, z) then for every n

∀z1, . . . , zn ∃x
n
∧

i=1

[

ϕ(x, zi ) ↔ zi ∈D
]

.

So the same holds for any C ≡ D. As for approximability from below, add the conjunct

∀z
[

ϕ(x, z) → z ∈D
]

to the formula above, and similarly for approximability from above. �

3 The Vapnik-Chervonenkis dimension

We say that u ⊆ P(U|z|) shatters B ⊆ U|z| if every H ⊆ B is the trace over B of some set

D ∈ u. The VC-dimension of u is finite if there is some n < ω such that no set of size n is

shattered by u.

7 Proposition The following are equivalent:

1. e(D/A) has finite VC-dimension;

2. o(C/A) has finite VC-dimension for some (any) saturated C≡A D.

Proof 1⇒2. Clear because o(C/A) ⊆ e(D/A).

2⇒1. Let C be any saturated set such that C≡A D. Let B be a finite set that is shattered by

e(D/A), namely such that every H ⊆ B is the trace of some CH ≡A D. By Proposition 1, we

can require that all these sets CH are saturated. Then they all belong to o(C/A). It follows

that if e(D/A) has infinite VC-dimension so does o(C/A). �

We say that a sequence of sentences 〈ϕi : i <ω〉 converges if the truth value of ϕi is even-

tually constant.

8 Lemma Assume that o(D/A) has finite VC-dimension and let 〈ai : i <ω〉 be any A-indi-

scernible sequence. Then 〈ai ∈D : i <ω〉 converges.

Proof Negate the conclusion and let 〈ai : i ∈ω〉witness this. We show that o(D/A) shatters

{ai : i < n} for arbitrary n, hence that o(D/A) has infinite VC-dimension. Fix some H ⊆ n,

and for every h < n pick some aih
such that aih

∈D if and only if h ∈ H . We also require that

i0 < ·· · < in−1. Let f ∈ Aut(U/A) be such that f : ai0 , . . . ain−1 7→ a0, . . . an−1. Then ah ∈ f [D]

if and only if h ∈ H . �
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We abbreviate UàC as ¬C. We write ¬i for ¬ . . . (i times) . . .¬ and abbreviate ¬i (· ∈ ·) as ∉i .

The following lemmas adapt some ideas from [CS, Section 1] to our context.

9 Lemma Assume that C is saturated and that o(C/A) has finite VC-dimension. Let M ¹U

be an L(A;C)-saturated. Then every global A-invariant type p(z) contains a formula ψ(z)∈

L(M) such that either ψ(U) ⊆C or ψ(U) ⊆¬C.

Proof By lemma 8 there is no infinite sequence 〈bi : i <ω〉 such that

1. bi Í p(z)|A,b↾i
∧ z ∉

i
C.

Let n be the maximal length of a sequence 〈bi : i < n〉 that satisfies 1. Then

p(z)|A,b↾n
→ z ∉

n
C.

As M is L(A;C)-saturated, we can assume further that bi ∈ M . Also, by saturation we can

replace p(z)|A,b↾n
with some formula ψ(z). Then, if n is even, ψ(U) ⊆ C, and if n is odd

ψ(U) ⊆¬C. �

Notice that p(z)∈ S(M) is finitely satisfied in A ⊆ M if and only if it contains the type

# q(z) =
{

¬ϕ(z)∈ L(M) : ϕ(A) =∅
}

.

With this notation in mind, we can state the following lemma.

10 Lemma Assume C is saturated and o(C/A) has finite VC-dimension. Then there are two

formulas ψi (z), where i < 2, such that ψi (z) → z ∉i C and, if q(z) is the type defined above,

q(z)→ψ0(z)∨ψ1(z).

Proof Let M be an L(A;C)-saturated model. By definition, for every a Í q(z) the type

tp(a/M) is finitely satisfiable in A so it extends to a global invariant type. By Lemma 9,

q(U) is covered by formulas ψ(z) ∈ L(M) such that either [ψ(z) → z ∈ C] or [ψ(z) → z ∉ C].

The conclusion follows by compactness. �

11 Theorem Assume C is saturated and o(C/A) has finite VC-dimension for some A. Then C

is approximable from below and from above.

Proof Let B ⊆ C be given. Enlarging A if necessary, we can assume that B ⊆ A. Let M

and q(z) ⊆ L(M) be as in # above. Trivially A ⊆ q(U), hence B ⊆ψ0(U) ⊆ C. The set B has

arbitrary (small) cardinality. Then by Lemma 5, C is approximable from below.

As for approximation from above, observe that this is equivalent to ¬C being approximable

from below. As ¬C is also saturated and o(¬C/A) has finite VC-dimension, approximability

from above follows. �

12 Corollary Assume e(D/A) has finite VC-dimension for some A. Then D is approximable

from below and from above. �

Proof Let C≡A D be saturated. As o(C/A) also has finite VC-dimension, from Theorem 11

it follows that C is approximable from below and from above. Then by Proposition 6 the

same conclusion holds for D. �
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Recall that a formula ϕ(x, z) ∈ L is NIP if
{

ϕ(a,U) : a ∈U|x|
}

has finite VC-dimension. If this

is the case,
{

Dp,ϕ : p ∈ Sx (U)
}

, that is, the set of externally definable sets of sort ϕ(x, z),

also has finite VC-dimension. Now, observe that if D is any externally definable set and

C ≡D then C is also externally definable and has the same sort as D. Hence, if ϕ(x, z) is

NIP, e(D) ⊆
{

Dp,ϕ : p ∈ Sx (U)
}

has finite VC-dimension.

The theory T is NIP if in U every formula is NIP. Hence we obtain the following characteri-

zation of externally definable sets in a NIP theory:

13 Corollary Il T is NIP then the following are equivalent:

1. D is approximable from below (in particular, externally definable);

2. e(D) has finite VC-dimension. �

We conclude by mentioning the following corollary, which is a version of Proposition 1.7

of [CS] stated with different terminology. Note that it is not necessary to require that T is

NIP.

14 Corollary If D is approximable by a NIP formula, then D is approximable from below.

Proof IfD is approximable of sortϕ(x, z), by Proposition 6, so are all sets in e(D). Ifϕ(x, z)

is NIP, then e(D) has finite VC-dimension and Corollary 12 applies. �

Observe that, given a formula ϕ(x, z) that approximates D, the proof of Corollary 14 does

not give explicitely the formula ψ(x, z) that approximates D from below.

4 Lascar invariance

The content of the second part of the paper is only loosely connected to the previous

sections. We introduce the notion of a pseudo-invariant set which is connected to non-

dividing but it is sensible for arbitrary subsets of U. We assume that the reader is familiar

with basic facts concerning Lascar strong types and dividing (see e.g., [Sim], [Cas], [TZ])

though in this section we will recall everything we need.

If o(D/A) =
{

D
}

we say that D is invariant over A. We say that D is invariant tout court if

it is invariant over some A. We say that D is Lascar invariant over A if it is invariant over

every model M ⊇ A.

15 Proposition There are at most 22|L(A)|
sets D that are Lascar invariant over A.

Proof Let N be a model containing A of cardinality ≤ |L(A)|. Every Lascar invariant set

over A is invariant over N . The proposition follows as |N | ≤ |L(A)|, and there are at most

22|N |

sets invariant over N . �

16 Proposition For every D and every A ⊆ M the following are equivalent:

6



1. D is Lascar invariant over A;

2. every set in o(D/A) is M-invariant;

3. o(D/A) has cardinality <κ;

4. every endless A-indiscernible sequence is indiscernible in L(A;D);

5. c0 ∈D↔ c1 ∈D for every A-indiscernible sequence c = 〈ci : i <ω〉.

Proof The implication 1⇒2 is clear because all sets in o(D/A) are Lascar invariant over A.

To prove 2⇒3 it suffices to note that there are fewer than κ sets that are invariant over M .

We now prove 3⇒4. Assume ¬4. Then we can find an A-indiscernible sequence 〈ci : i <κ〉

and a formula ϕ(x) ∈ L(A;D) such that ϕ(c0) ↔/ ϕ(c1). Define

E (x, y) ⇔ ψ(x) ↔ψ(y) for everyC ∈ o(D/A) and everyψ(x) ∈ L(A;C).

Then E (x, y) is an A-invariant equivalence relation. As ¬E (c0,c1), indiscernibility over A

implies that ¬E (ci ,c j ) for every i < j < κ. Then E (x, y) has κ equivalence classes. As κ is

inaccessible, this implies ¬3.

The implication 4⇒5 is trivial. We prove 5⇒1. Suppose a ≡M b for some M ⊇ A. Let p(z)

be a global coheir of tp(a/M) = tp(b/M). Let c = 〈ci : i < ω〉 be a Morley sequence of p(z)

over M , a,b. Then both a,c and b,c are A-indiscernible sequences. So from 5 we obtain

a ∈D↔ c0 ∈D↔ b ∈D and, as M is arbitrary, 1 follows. �

As the number of M-invariant sets is at most 22|M |

, we obtain the following corollary.

17 Corollary For every D the following are equivalent:

1. o(D/A) has cardinality <κ;

2. o(D/A) has cardinality ≤ 22|L(A)|
. �

5 Dividing

Though Definition 18 below does not make any assumptions onB and u ⊆P
(

U|z|
)

, it yields

a workable notion only when B is invariant and u is closed in a sense that we will explain.

Moreover, for the proof of Lemma 22 we need κ to be a Ramsey cardinal, so this will a

blanket assumption throughout this section.

18 Definition Let u ⊆ P
(

U|z|
)

and let B ⊆ U|z|. We say that u locally covers B if for every

K⊆B of cardinality κ and every integer k there is a D ∈ u such that k ≤ |K∩D|. �

The subsets of P(U|z|) that are definable by formulas ϕ(X) ∈ L(A) form a base of clopen

sets for a topology. The proposition below implies that this topology is compact.

19 Proposition Let p(X) ⊆ L(A) be finitely consistent, that is, for every ϕ(X) conjunction of

formulas in p(X) there is a D⊆U|z| such that ϕ(D). Then there is a set C such that p(C).
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Proof The proposition follows from the fact that every saturated model is resplendent,

see [Poi, Théorème 9.17]. But the reader may prefer to prove it directly by adapting the

argument used in the proof of Proposition 1. �

Notice that the topology introduced above is not T0 because there are C=/D such that

C≡D. However, it is immediate that taking the Kolmogorov quotient (i.e. quotienting

by the equivalence relation ≡) gives a Hausdorff topology. Then there is no real need to

distinguish between compactness and quasi-compactness.

We will say that the set u ⊆P
(

U|z|
)

is closed if it is closed in the topology introduced above.

In other words, u is closed if u =
{

D : p(D)
}

for some p(X)⊆ L.

20 Remark We may read Definition 18 as a generalization of non-dividing. Let us recall

the definition of dividing. We say that the formula ϕ(x,b) divides over A if there there

is an infinite set K ⊆ o(b/A) such that {ϕ(x,c) : c ∈ K} is k-inconsistent for some k. By

compactness, there is no loss of generality if we require |K|=κ. Let u ⊆ P(U|z|) contain

the externally definable sets of sort ϕ(x, z). Then the requirement that {ϕ(x,c) : c ∈K} is

k-inconsistent can be rephrased as |K∩D| < k for every D ∈ u. So we may conclude that

the following are equivalent:

1. the formula ϕ(x,b) does not divide over A;

2. u locally covers o(b/A).

Incidentally, note that o(b/A) is A-invariant and that u is a closed set. �

We now need to use second-order quantifiers. The set of formulas containing second-

order quantifiers is denoted by L
2, or L

2(A;D) when parameters occur. Second-order

quantifiers are interpreted to range over P(U|z|). The following fact is immediate but note-

worthy.

21 Fact Every formula ϕ(x) ∈ L2(A) is A-invariant and consequently any A-indiscernible se-

quence is indiscernible in L2(A). �

22 Lemma Let u ⊆ P
(

U|z|
)

be a closed set and let B ⊆ U|z| be an A-invariant set. Then the

following are equivalent:

1. u locally covers B;

2. every A-indiscernible sequence 〈ai : i <ω〉 ⊆B is contained in some D ∈ u.

Proof 1⇒2. Let p(X) ∈ L be such that u=
{

D : p(D)
}

. Assume¬2 and fix an A-indiscernible

sequence 〈ai : i <ω〉 ⊆B such that p(X) ∪ {ai ∈X : i <ω} is inconsistent. By compactness

there are some i1, . . . , ik and some ϕ(X) ∈ p such that

∀X

[

ϕ(X)→¬

k
∧

n=1

ain ∈X

]

.

Extend 〈ai : i < ω〉 to an A-indiscernible sequence 〈ai : i < κ〉. By indiscernibility, every

D ∈ u contains fewer than k elements of {ai : i <κ} ⊆B. Hence ¬1.

8



2⇒1. Assume ¬1 and fix K⊆B of cardinality κ and an integer k such that |K∩D| < k for

every D ∈ u. As κ is a Ramsey cardinal, there is an A-indiscernible 〈ai : i < κ〉 ⊆K. Then

〈ai : i < κ〉 may not be contained in any D ∈u, hence ¬2. �

We say that D is pseudo-invariant over A if e(D) locally covers o(b/A) for every b ∈D.

23 Proposition If D is Lascar invariant over A, then for every ϕ(w) ∈ L(A;D) the set ϕ(U) is

pseudo-invariant over A.

Proof Fix ϕ(w) ∈ L(A;D) and let b ∈ ϕ(U). Let 〈ai : i < ω〉 ⊆ o(b/A) be an indiscernible

sequence and fix some f ∈ Aut(U/A) such that f a0 = b. Then 〈 f ai : i <ω〉 is indiscernible

in L(A;D) by Proposition 16. Then 〈 f ai : i < ω〉 ⊆ ϕ(U). Hence 〈ai : i < ω〉 ⊆ f −1[ϕ(U)].

Clearly, f −1[ϕ(U)] ∈ e(ϕ(U)), so the proposition follows from Lemma 22. �

24 Proposition Let e(D) have finite VC-dimension. Then the following are equivalent:

1. D is Lascar invariant over A;

2. ϕ(U) is pseudo-invariant over A for every ϕ(w) ∈ L(A;D);

3. D×¬D is pseudo-invariant over A.

Proof 1⇒2 holds for any D by Proposition 23 and 2⇒3 is obvious.

3⇒1. Assume ¬1. By Proposition 16, there is an A-indiscernible sequence 〈ai : i <ω〉 such

that a0 ∈ D ↔/ a1 ∈ D, say a0 ∈ D and a1 ∉ D. Assume 2 for a contradiction. Then by

Lemma 22 there is C≡D such that 〈a2i a2i+1 : i <ω〉 ⊆ C×¬C. By Lemma 8, e(C)=e(D) has

infinite VC-dimension contradicting the assumptions. �

The hypothesis of finite VC-dimension is necessary. Assume T is the theory of dense lin-

ear orders without endpoints. Let D be a discretely ordered subset of U of cardinality κ.

Then D is not invariant and e(D) has infinite VC-dimension. One can verify that D×¬D is

pseudo-invariant over ∅ directly from the definition.

It is well known that under the hypothesis that T is NIP, Lascar invariance of global types is

equivalent to non-dividing (equivalently, non-forking), see [Sim, Proposition 5.21]. Then,

when T is NIP, a global type p(x) does not divide over A if and only if Dp,ϕ ×¬Dp,ϕ is

pseudo-invariant over A for every ϕ(x, z).

However, pseudo-invariance is too strong a requirement to coincide with non-dividing in

general. A counter-example may be found even when T is simple. Let T be the theory of

the random graph and let D be a complete subgraph of U. Let p(x) be the unique global

type that contains
{

r (x, a) : a ∈D
}

∪
{

¬r (x, a) : a ∉D
}

∪
{

x =/ a : a ∈U
}

.

Then p(x) does not fork over the empty set. On the other hand, D is not pseudo-invariant:

let 〈ai : i < ω〉 be an indiscernible sequence such that a0 ∈D∧¬r (a0, a1). As every C ≡D

is a complete graph, no such C may contain 〈ai : i <ω〉.

9
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