
ar
X

iv
:1

31
2.

11
33

v3
 [

m
at

h.
L

O
]

 1
5

M
ay

 2
01

4 Intuitionistic fixed point theories over set theories

Toshiyasu Arai
Graduate School of Science, Chiba University

1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, JAPAN
tosarai@faculty.chiba-u.jp

October 15, 2018

Abstract

In this paper we show that the intuitionistic fixed point theory FiXi(T)
over set theories T is a conservative extension of T if T can manipulate
finite sequences and has the full foundation schema.

1 Intuitionistic fixed point theory over set the-

ories T

For a theory T in a laguage L, let Q(X, x) be an X-positive formula in the
language L ∪ {X} with an extra unary predicate symbol X . Introduce a fresh
unary predicate symbol Q together with the axiom stating that Q is a fixed
point of Q(X, x):

∀x[Q(x) ↔ Q(Q, x)] (1)

By the completeness theorem, it is obvious that the resulting extension of T is
conservative over T , though it has a non-elementary speed-up over T when T

is a recursive theory containing the elementary recursive arithmetic EA, cf. [3].
When T has an axiom schema, e.g., T = PA, the Peano arithmetic with the

complete induction schema, let us define the fixed point extension FiX(PA) to
have the induction schema for any formula with the fixed point predicate Q.
Then FiX(PA) is stronger than PA, e.g., FiX(PA) proves the consistency of PA.
For the proof-theretic strength of the fixed point theory FiX(PA), see [2,10,16].

On the other side, W. Buchholz [15] shows that an intuitionistic fixed point
theory over the intuitionistic (Heyting) arithmetic HA for strongly positive for-
mulaeQ(X, x) is proof-theoretically reducible to HA. In a language of arithmetic
strongly positive formulae with respect to X are generated from arithmetic for-
mulae and atomic ones X(t) by means of positive connectives ∨,∧, ∃, ∀. Then
Rüede and Strahm [18] extends the result to the intuitionistic fixed point theory
FiXi(HA) for strictly positive formulae Q(X, x), in which the predicate symbol
X does not occur in the antecedent ϕ of implications ϕ → ψ nor in the scope

1

http://arxiv.org/abs/1312.1133v3

of negations ¬. Indeed as shown in [5] FiXi(HA) is a conservative extension of
HA.

However this might mislead us. Namely one might think that the conserva-
tion holds for the fixed point extensions because the theory T = HA is intuition-
istic. Actually this is not the case. For example, the intuitionistic fixed point
theory FiXi(PA) over the classical arithmetic PA is a conservative extension of
PA. For, if FiXi(PA) proves an arithmetical sentence A, then FiXi(HA) proves
B → A for a PA-provable sentence B. Since FiXi(HA) is conservative over HA,
we see that HA proves B → A, and PA ⊢ A.

Our proof in [5] is a proof-theoretic one by showing that the fixed point
axiom (1) is eliminable quickly. The crux is that the underlying logic is intu-
itionistic.

Digression. Let ÎD
i
(acc) be an intuitionistic theory obtained from ÎD

i
(strict) =

FiXi(HA) by restricting Q(X, x) to accessible formulas , i.e., Q(X, x) ≡ (A(x) ∧
∀y(B(y, x) → X(y))) for arithmetical formulas A,B. The following Lemma 1.1
is shown in [18].

Lemma 1.1 ([18])

1. ÎD
i
(strict) is conservative over ÎD

i
(acc) with respect to almost negative

formulas.

2. The classical theory ÎD(acc) is interpretable in the classical arithmetic

PA.

Lemma 1.1.1 is shown by a recursive realizability interpretation following Buch-
holz [13], and the interpretation in the proof of Lemma 1.1.2 is done by a
diagonalization argument. Specifically it is observed that there is an arithmeti-
cal fixed point for accessible operators, classically. Then they conclude that

ÎD
i
(strict) is conservative over the intuitionistic arithmetic HA with respect to

negative formulas.
Let us try to prove the full conservation result in [5] along the line in [18]. The

intuitionistic version of Lemma 1.1.2 is easy to see, which says that ÎD
i
(acc) is

a conservative extension of HA. Let A(x) and B(y, x) be arithmetical formulae.
Let y <B x :⇔ B(y, x) and y ≤∗

B x denote its reflexive and transitive closure.
Namely y ≤∗

B x iff there exists a non-empty sequence (xn, . . . , x0) such that
xn = y, x0 = x and ∀i < n(xi+1 <B xi). Then A∗(x) :⇔ ∀y ≤∗

B xA(y) is an
arithmetical fixed point for accessible operatorsQ(X, x) ≡ (A(x)∧∀y(B(y, x) →
X(y))) provably in HA, i.e., HA ⊢ ∀x[A∗(x) ↔ (A(x) ∧ ∀y <B xA∗(y))]. The
problem is to extend Lemma 1.1.1 to all arithmetical formulae, which means

that ÎD
i
(strict) is conservative over ÎD

i
(acc) with respect to any arithmetical

formulae. If a combination of realizability interpretation and forcing works
as in [12], then it would yield the full conservativity. However it is hard

to show the soundness of the forcing stating that if ÎD
i
(acc)a ⊢ A, then

2

ÎD
i
(acc) ⊢ ∀p∃q ⊃ p(q
 A) since p
 ∀y(B(y, x) → Q(y)) is not an acces-

sible formula, but strictly positive.

In this paper we extend the observation in [5] for set theories T .
Let T be a set theory in the language {∈,=}.
Fix an X-strictly positive formula Q(X, x) in the language {∈,=, X} with

an extra unary predicate symbol X . In Q(X, x) the predicate symbol X occurs
only strictly positive. The language of FiXi(T) is {∈,=, Q} with a fresh unary
predicate symbol Q. The axioms in FiXi(T) consist of the following:

1. All provable sentences in T (in the language {∈,=}).

2. Foundation schema for any formula ϕ in the language {∈,=, Q}:

∀x(∀y ∈ xϕ(y) → ϕ(x)) → ∀xϕ(x) (2)

3. Fixed point axiom (1).

The underlying logic in FiXi(T) is defined to be the intuitionistic (first-order
predicate) logic (with equality). ∀x, y(x = y → Q(x) → Q(y)) is an axiom.

In this paper we show the following Theorem 1.2 for a weak base set theory
BS defined in the next section 2.

Theorem 1.2 FiXi(T) is a conservative extension of any set theory T ⊃ BS.

We need Theorem 1.2 in [6–9] for proof-theoretic analyses of set theories for
weakly compact cardinals, first-order reflecting ordinals, ZF and second-order
indescribable cardinals. In these analyses, a provability relation H ⊢α

c Γ derived
from operator controlled derivations is defined to be a fixed point of a strictly
positive formula.

Let us mention the contents of the paper. In section 2 a weak base theory
BS is introduced, and it is shown that BS can manipulate finite sequences and
partially define truth. In section 3 a class of codes Code and a binary relation ≺
on it are defined, and it is shown that the transfinite induction schema with re-
spect to ≺ is provable in BS up to each code. The order type of the well founded
relation ≺ is the next epsilon number to the order type of the class of ordinals
in the universe. In section 4 a sequent calculus for FiXi(T) is introduced, and
in section 5 Theorem 1.2 is proved by a finitary analysis of the proofs in the
sequent calculus for FiXi(T).

2 Basic set theory BS

In this section we introduce a basic set theory BS, and show that BS can ma-
nipulate finite sequences of sets, thereby can encode syntax, and define truth
partially.

Consider the following functions Fi (i < 9), F0(x, y) = {x, y}, F1(x, y) = ∪x,
F2(x, y) = x \ y, F3(x, y) = {u ∪ {v} : u ∈ x, v ∈ y}, F4(x, y) = dom(x) =

3

{u ∈ ∪ ∪ x : ∃v ∈ ∪ ∪ x(〈u, v〉 ∈ x)}, F5(x, y) = rng(x) = {v ∈ ∪ ∪ x :
∃u ∈ ∪ ∪ x(〈u, v〉 ∈ x)}, F6(x, y) = {〈v, u〉 ∈ y × x : v ∈ u}, F7(x, y) =
{〈u, v, w〉 : 〈u, v〉 ∈ x,w ∈ y}, and F8(x, y) = {〈u,w, v〉 : 〈u, v〉 ∈ x,w ∈ y},
where 〈v, u〉 = {v, {v, u}} and 〈u, v, w〉 = 〈u, 〈v, w〉〉.

Note that each Fi is simple in the sense that for any ∆0-formula ϕ(z),
ϕ(Fi(x, y)) is ∆0. For each i, Fi(x, y, z) denotes a ∆0-formula stating Fi(x, y) =
z.

Definition 2.1 BS is the set theory in the language {∈,=}. Its axioms are
Extensionality, Foundation schema, and {∀x, y∃zFi(x, y, z) : i < 9}.

A set-theoretic function f : V n → V is ΣBS
1 -definable if there exists a Σ1-

formula ϕ(x1, . . . , xn, y) for which BS ⊢ ∀x1, . . . , xn∃!y ϕ(x1, . . . , xn, y), and
f(x1, . . . , xn) = y iff V |= ϕ(x1, . . . , xn, y).

A relation R ⊂ V n is ∆BS
1 if there exist Σ1-formulae ϕ, ψ such that

BS ⊢ ∀x1, . . . , xn[ϕ(x1, . . . , xn) ↔ ¬ψ(x1, . . . , xn)], and (x1, . . . , xn) ∈ R iff
V |= ϕ(x1, . . . , xn).

A formula is said to be ∆0(ω) iff every quantifier occurring in it is a bounded
quantifier ∃m < n, ∀m < n with bounds n ∈ ω.

Proposition 2.2 1. The Cartesian product a × b is a ΣBS
1 -function with a

∆0-graph.

2. BS proves ∆0-Separation: BS ⊢ ∀a, b∃c[c = {x ∈ a : ϕ(x, b)}] for each

∆0-formula ϕ.

3. ω × V ∋ (n, a) 7→ <na, na are ΣBS
1 -functions. z = <na is ∆0, and z = na

is ∆BS
1 .

4. The class of ∆BS
1 -relations is closed under propositional connectives ¬,∨

and bounded quantifications ∃m < n, ∀m < n with bounds n ∈ ω.

For ΣBS
1 -functions f and ∆0(ω)-formula θ(y), θ(f(~x)) is ∆BS

1 .

5. The class of ΣBS
1 -functions is closed under compositions and primitive re-

cursion on ω. The latter means that if g : V n → V and h : ω×V n+1 → V

are ΣBS
1 -functions, then so is the function f : ω × V n → V defined by

f(0, ~x) = g(~x) and f(n+ 1, ~x) = h(n, ~x, f(n, ~x)) for ~x = x1, . . . , xn.

6. For the transitive closure trcl(a), x ∈ trcl(a) is ∆BS
1 .

Proof. 2.2.1. Let G(a) = F3({∅}, a) = {{x} : x ∈ a}. Then by F3(G(a), b) =
{{x, y} : x ∈ a, y ∈ b}, we have a × b = {{{x}, {x, y}} : x ∈ a, y ∈ b} =
F3(G(G(a)),F3(G(a), b)). a× b = c is a ∆0-formula.

2.2.2. Standard, cf. [11], pp. 63-67 using Proposition 2.2.1.

2.2.3. Noting n+1a = {x ∪ {y} : x ∈ na, y ∈ {n} × a} = F3(
na, {n} × a), BS

proves the existence of na by induction on n ∈ ω. Next observe that <na = z

4

is ∆0 since x ∈ <na as well as x ∈ ma is ∆0 and for n > 0, <na = z iff z ⊂ <na

and {∅} = 0a ⊂ z and ∀m < n−1∀x ∈ z∩ma∀b ∈ a[x∪{〈m, b〉} ∈ z]. Therefore
z = na iff z = ((<n+1a) \ (<na)).

2.2.4. For Σ1-formula ∃x θ(m,x) with ∆0-matrix θ, BS proves that ∀m <

n∃x θ(m,x) ↔ ∃y∀m < n∃x ∈ y θ(m,x) by induction on n ∈ ω.

2.2.5. Let the function f be defined from ΣBS
1 -functions g, h by f(0, ~x) = g(~x)

and f(n + 1, ~x) = h(n, ~x, f(n, ~x)). Then f(n, ~x) = y iff there exists a function
F with dom(F) = n+ 1 such that F (0) = g(~x), ∀i < n[F (i+ 1) = h(i, ~x, F (i))]
and y = F (n). By induction on n ∈ ω BS proves ∀n ∈ ω∀~x∃!y[f(n, ~x) = y].
Moreover f(n, ~x) = y is Σ1 by Proposition 2.2.4.

2.2.6. From Proposition 2.2.5 we see that (n, a) 7→ ∪(n)a is a ΣBS
1 -function,

where ∪(0)a = a and ∪(n+1)a = ∪(∪(n)a). Hence x ∈ trcl(a) ⇔ ∃n ∈ ω(x ∈
∪(n)a) ⇔ ∀b(∪b ⊂ b ∧ a ⊂ b→ x ∈ b). ✷

From Proposition 2.2 we see that BS can encode syntax, e.g., formulae in the
language {∈,=}. Let ⌈Fml⌉ ⊂ ω denote the set of codes ⌈ϕ⌉ of formulae ϕ in
{∈,=}.

We can assume that ⌈Fml⌉ is ∆BS
1 , and manipulations on it, e.g., (⌈ϕ⌉, ⌈ψ⌉) 7→

⌈ϕ∨ψ⌉, ⌈ϕ∨ψ⌉ 7→ 〈⌈ϕ⌉, ⌈ψ⌉〉, are all ΣBS
1 . Moreover for x ∈ ⌈Fml⌉, let var(x)

denote the set {n ∈ ω : vn occurs freely in x}, and ass(x, y) the set of function
f : var(x) → y. Both x 7→ var(x) and (x, y) 7→ ass(x, y) are ΣBS

1 -functions. Let
|= ⌈ϕ⌉[a] denote the satisfaction relation for formulae ϕ and a ∈ ass(⌈ϕ⌉, y) for
a y.

For formula ϕ in {∈,=}, ⌈Sbfml⌉(ϕ) denotes the finite set of codes of sub-
formulae of ϕ.

Lemma 2.3 For each formula ϕ in the language {∈,=}, the satisfaction rela-

tion {(x, a) : x ∈ ⌈Sbfml⌉(ϕ), a ∈ ass(x), |= x[a]} for subformulae of ϕ is BS-

definable in such a way that BS proves that ϕ(v0, . . . , vm−1) ↔|= ⌈ϕ(v0, . . . , vm−1)⌉[a]
for a(i) = vi, |= ⌈ϕ0 ∨ ϕ1⌉[a] ↔|= ⌈ϕ0⌉[a0]∨ |= ⌈ϕ1⌉[a1] for ai = a ↾ var(⌈ϕi⌉)
and subformulae ϕi, |= ⌈∃vm ϕ⌉[a] ↔ ∃b[|= ⌈ϕ⌉[a ∪ {〈m, b〉}] for subformula

∃vm ϕ, and similarly for ∧, ∀.

Proof. It suffices to ∆BS
1 -define the satisfaction relation for subformulae of a

given ∆0-formula ϕ. This is seen as in [19], p.613 using Propositions 2.2.3 and
2.2.4. Note that we don’t need the existence of transitive closures to bound
range y of the assignments a : var(x) → y since there are only finitely many
subformulae of the given ϕ. ✷

3 Codes

Let us define a class Code of codes and a binary relation ≺ on it recursively. It
is shown that the transfinite induction schema with respect to ≺ is provable in

5

BS up to each code.
The class Code of codes together with the relation ≺ is essentially a notation

system of ‘ordinals’ whose order type is the next epsilon number to the order
type of the class of ordinals in the universe V . To define such a notation system,
we need at least ordinal addition α + β and exponentiation with base, say ω,
ωα at hand. However BS is too weak to ∆1-define α+ β and ωα, since it lacks
∆0-Collection. In other words, the order type Λ of the class of ordinals in the
well founded universe V |= BS need not to be an epsilon number nor even an
additive principal number, which is closed under α + β. Indeed, Lα |= BS for
any limit ordinal α.

Instead of ∆0-Collection, we collect formal expressions called products ā1 ×
· · · × ān of codes āi for ai ∈ V ∪ {V } first, and then collect formal expressions
called sums α1# · · ·#αn of products αi. Intuitively # denotes the natural
(commutative) sum, and × the natural product, if the code ā is replaced by
the ordinal 2rank(a). Each sum is defined to be smaller than a code Ω, which
is interpreted as the least additive principal number (Λ + 1)ω above Λ. Then
introduce formal expressions Ωαβ, which is intended to be an exponential func-
tion. These three operations ×,# and (α, β) 7→ Ωαβ on codes are needed in the
ordinal assignment to proofs defined in Definition 4.5. The relation ≺ on codes
is well founded, but not a linear ordering. For our proof-theoretic analysis, the
linearity of ≺ is dispensable, the base Ω can be replaced by 2, and ā by rank(a).
Definitions 3.2 and 3.5 simplify the matters.

First let us define a class Sum and a relation ≺p on it. ℓ(α) is the length of
α ∈ Sum.

Definition 3.1 Let ā := 〈0, a〉 for a ∈ V , and V̄ := 〈1, 0〉. ℓ(ā) := 0.

1. A product is either 1̄ or ā1 × · · · × ān := 〈2, ā1, . . . , ān〉 for a1, . . . , an ∈
V ∪{V } with ai 6= 0, 1 and n > 0. Prod denotes the class of all products.

ℓ(ā1 × · · · × ān) = max{ℓ(ā1), . . . , ℓ(ān)}+ 1. When n = 0, let α1 × · · · ×
αn := 1̄.

2. A sum of products is a set α1# · · ·#αn := 〈3, α1, . . . , αn〉 with αi ∈ Prod

and n ≥ 0. Sum denotes the class of all sums of products.

ℓ(α1# · · ·#αn) = max{ℓ(α1), . . . , ℓ(αn)}+ 1.

When n = 0, let α1# · · ·#αn := 0̄.

Prod is a subclass of Sum.

Let us introduce some operations and ‘computation rules’ on sums.

1. × and # are defined to be commutative, i.e., α1# · · ·#αn = απ(1)# · · ·#απ(n)

and α1 × · · · × αn = απ(1) × · · · × απ(n) for any permutation π ∈ n!.

These means that α1# · · ·#αn and α1× · · ·×αn are actually multisets of
products and codes ā.

6

2. 0̄ is the zero element. α1# · · ·#αn#0̄ = α1# · · ·#αn, and α1×· · ·×αn×
0̄ := 0̄.

3. 1̄ is the unit for ×, α1 × · · · × αn × 1̄ := α1 × · · · × αn.

4. Associative laws (α1# · · ·#αn)#(β1# · · ·#βm) := α1# · · ·#αn#β1# · · ·#βm
for {α1, . . . , αn} ∪ {β1, . . . , βm} ⊂ Prod, and (α1 × · · · × αn) × β :=
α1 × · · · × αn × β for {α1, . . . , αn} ∪ {β} ⊂ {ā : a ∈ V } ∪ {V̄ }.

5. Distributive laws (α1# · · ·#αn) × β := (α1 × β)# · · ·#(αn × β) where
either {α1, . . . , αn} ⊂ Prod, β ∈ {ā : a ∈ V } ∪ {V̄ }.

Therefore any combination of products by # and × is equal to (reduced to) a
sum of products.

Definition 3.2 α ≺p β for α, β ∈ Sum is defined recursively as follows. Let
α �p β :⇔ (α ≺p β) ∨ (α = β).

1. 0̄ ≺p α for any sum α 6= 0̄.

2. For γ ∈ Prod, {γi : 0 ≤ i ≤ n} ⊂ Prod ∪ {0̄} and n > 0,

a ∈(n) b ∈ V ∪ {V }& ∀i ≤ n(γi �p γ) ⇒ (γ0 × ā)#γ1# · · ·#γn ≺p γ × b̄

where a ∈(n+1) b :⇔ a ∈ ∪(n)b with ∪(0)b = b and ∪(n+1)b = ∪(∪(n)b)).

3. α0 ≺p α1 & β0 �p β1 ⇒ α0#β0 ≺p α1#β1.

Definition 3.2.2 says that if a = an ∈ an−1 ∈ · · · ∈ a1 ∈ b, then (γ×a)#(γ ·n) ≺p

γ × b for γ · n = γ# · · ·#γ (n times γ).

Proposition 3.3 The relation ≺p on Sum is transitive.

Next let us define the class of codes Code. ℓ(α) is the length of α ∈ Code.

Definition 3.4 1. 0̄ ∈ Code. ℓ(0̄) = 0.

2. PCode ⊂ Code.

3. α ∈ Code& 0̄ 6= β ∈ Sum⇒ Ωαβ := 〈4, α, β〉 ∈ PCode.

ℓ(Ωαβ) = max{ℓ(α), ℓ(β)} + 1.

4. α1, . . . , αn ∈ PCode&n > 0 ⇒ α1# · · ·#αn := 〈3, α1, . . . , αn〉 ∈ Code.

ℓ(α1# · · ·#αn) = max{ℓ(α1), . . . , ℓ(αn)}+ 1.

Let us introduce some operations and ‘computation rules’ on codes.

1. Again # is defined to be commutative, and 0̄ is the zero element.

2. 1̄ is the unit, Ωβ := Ωβ 1̄, Ω0̄ = 1̄ and α1 × · · · × αn := α1 × · · · × αn × 1̄
for αi ∈ {ā : a ∈ V } ∪ {V̄ }. Also α = Ω0̄α. Thus Sum ⊂ Code.

7

3. When n = 1, α1# · · ·#αn is identified with α1 ∈ PCode.

4. Exponential law Ωγ(Ωβα) := Ωγ#βα for α ∈ Sum.

5. Associative laws for # and Distributive laws Ωβ(α1# · · ·#αn) := Ωβα1# · · ·#Ωβαn

where {α1, . . . , αn} ⊂ PCode.

Next we define a binary relation ≺ on Code recursively as follows.

Definition 3.5 1. 0̄ ≺ α for any code α 6= 0̄.

2. Let 0̄ 6∈ {βi : i < n} ∪ {β} ⊂ Sum and {αi : i < n} ∪ {α} ⊂ Code with
αi 6= αj (i 6= j).

∀i < n[(αi, βi) ≺lex (α, β)] ⇒ Ωα0β0# · · ·#Ωαn−1βn−1 ≺ Ωαβ

where for codes α, γ ∈ Code and sums β, δ ∈ Sum

(α, β) ≺lex (γ, δ) :⇔ α ≺ γ or (α = γ& β ≺p δ).

3. α0 ≺ α1 & β0 � β1 ⇒ α0#β0 ≺ α1#β1.

The following Proposition 3.6 is easily seen.

Proposition 3.6 1. Both Code and ≺ are ∆BS
1 .

2. The relation ≺ on Code is transitive.

3. For α, β ∈ Sum, α ≺p β ⇔ α ≺ β, where α = Ω0̄α.

4. 0̄ is the least element.

5. For a ∈ b ∈ V ∪ {V }, sums of products γ, γ′, δ γ′ � γ ⇒ (γ × ā)#γ′ ≺
(γ × b̄)#δ.

6. β ≺ α#β if α 6= 0̄.

7. γ ≺ α#β ⇒ γ ≺ α ∨ ∃β0 ≺ β(γ = α#β0).

8. δ ≺ ā1 × · · · × ān ⇒ ∃i ≤ n∃b ∈ ai[δ � (b̄
∏

j 6=i āj)#
∏

j 6=i āj] for δ ∈ Sum

and ai ∈ V ∪ {V }.

9. Both (α, β) 7→ α#β and (α, β) 7→ Ωαβ are monotonic in each argument.

10. α, β ≺ Ωαβ if α, β 6= 0̄.

11. α1, α2 ≺ β ⇒ Ωα1#Ωα2 ≺ Ωβ.

12. β0 ≺ β ⇒ Ωβ0(α#α) ≺ Ωβα.

8

For a binary relation < and formulae ϕ, let

Prg[ϕ,<] :⇔ ∀x(∀y < xϕ(y) → ϕ(x))

TI[ϕ,<, a] :⇔ Prg[ϕ,<] → ∀x < aϕ(x)

TI[<, a] := {TI[ϕ,<, a] : ϕ is a formula}

T ⊢ TI[<, a] means that T ⊢ TI[ϕ,<, a] for any formula ϕ, and T ⊢ TI[<
, a] → TI[<, b] means that for any ϕ there exists a formula ψ such that T ⊢
TI[ψ,<, a] → TI[ϕ,<, b].

Lemma 3.7 For each code α ∈ Code, BS ⊢ TI[≺, α].

Lemma 3.7 is shown by metainduction on the length ℓ(α) of codes α using
the following Proposition 3.8.

Proposition 3.8 1. BS ⊢ TI[≺p, α] ∧ TI[≺p, β] → TI[≺p, α#β]. Similarly

for ≺.

2. BS ⊢ TI[≺p, V̄], i.e., BS ⊢ Prg[ϕ,≺p] → ∀a ∈ V ∪ {V }ϕ(ā) for any

formula ϕ.

3. For any formula ϕ, BS ⊢ ∀n < ω∀{ai}i<n ⊂ V ∪ {V }[∀i < n(∀x ≺∏
j 6=i āj ϕ(x) ∧ ∀y ≺p āi∀x ≺ y

∏
j 6=i āj ϕ(x)) → ∀x ≺

∏
i<n āi ϕ(x)].

4. BS ⊢ ∀α ∈ SumTI[≺p, α], i.e, BS ⊢ Prg[ϕ,≺p] → ∀α ∈ Sumϕ(α) for

any formula ϕ.

5. BS ⊢ Prg[ϕ,≺] ∧ ∀α0 ≺ α∀γ∀x ≺ Ωα0γ ϕ(x) ∧ ∀γ ≺p β∀x ≺ Ωαγ ϕ(x) →
∀x ≺ Ωαβ ϕ(x).

6. BS ⊢ TI[≺, α] → TI[≺,Ωαβ].

Proof. 3.8.1. This follows from the fact BS ⊢ Prg[ϕ,≺p] → Prg[ϕα#,≺p] for
ϕα#(x) :⇔ ϕ(α#x) using Proposition 3.6.7.

3.8.2. This is seen from Foundation schema.

3.8.3. This is seen from Propositions 3.6.8 and 3.8.1.

3.8.4. By Proposition 3.8.1 it suffices to show BS ⊢ Prg[ϕ,≺p] → ∀α ∈
Prodϕ(α) for any formula ϕ. We show this by induction on the number n
of components in products ā1 × · · · × ān. The case n = 1, Prg[ϕ,≺p] → ∀a ∈
V ∪ {V }ϕ(ā) follows from Proposition 3.8.2. Let Prodn denote the class of all
products such that the number of components is at most n. Suppose Prg[ϕ,≺p]
and ∀α ∈ Prodn ϕ(α) for a formula ϕ. Let ai ∈ V ∪ {V }. Then by Proposition
3.8.3 we have ∀i < n+1∀y ≺p āi∀x ≺p y

∏
j 6=i āj ϕ(x) → ∀x ≺p

∏
i<n+1 āi ϕ(x).

In other words, ∀i < n∀y ≺p āi∀x ≺p y
∏

j 6=i āj ϕ(x) → Prg[ϕn,≺p], where
ϕn−k(y) :⇔ ∀x ≺p y

∏
j 6=n−k āj ϕ(x). Thus by 3.8.2 we have ∀i < n∀y ≺p

9

āi∀x ≺p y
∏

j 6=i āj ϕ(x) → ∀x ≺p

∏
i<n+1 āi ϕ(x). In this way we see ∀i <

n + 1 − k∀y ≺p āi∀x ≺p y
∏

j 6=i āj ϕ(x) → ∀x ≺p

∏
i<n+1 āi ϕ(x) by induction

on k ≤ n+ 1. Hence ∀x ≺p

∏
i<n+1 āi ϕ(x), i.e., ∀α ∈ Prodn+1 ϕ(α).

3.8.5. This is seen from Proposition 3.6.8 and Definition 3.5.

3.8.6. Suppose Prg[ϕ,≺] and ∀α0 ≺ α∀β∀x ≺ Ωα0β ϕ(x). Then by Proposition
3.8.5 we have Prg[ϕΩα ,≺p], where ϕΩα(β) :⇔ ∀x ≺ Ωαβ ϕ(x). Hence by Propo-
sition 3.8.4 ∀β∀x ≺ Ωαβ ϕ(x). Thus we have shown Prg[ϕ,≺] → Prg[j[ϕ],≺],
where j[ϕ](α0) :⇔ ∀β∀x ≺ Ωα0β ϕ(x). Hence by TI[≺, α] we have ∀β∀x ≺
Ωαβ ϕ(x). ✷

Lemma 3.7 is now seen by metainduction on the length ℓ(α) of codes α using
Propositions 3.8.1, 3.8.4 and 3.8.6.

4 Finitary analysis of FiXi(T)

When the set theory T is sufficiently strong, e.g., when T comprises Kripke-
Platek set theory, we could prove Theorem 1.2 as in [5], i.e., first the finitary
derivations of set-theoretic sentences ϕ in FiXi(T) are embedded to infinitary
derivations of a sequent θ ⇒ ϕ for a provable sentence θ in T , then partial
cut-elimination is possible. This results in a ∆1-definable infinitary derivation
of the same sequent θ ⇒ ϕ in which there occur no fixed point formulae. The
depth of the derivation is bounded by an exponential ordinal tower. Then
transfinite induction shows that θ ⇒ ϕ is true. By formalizing the infinitary
arguments straightforwardly in T we would see that the end formula ϕ is true in
T . To formalize the infinitary analysis in a weaker theory T , we need a finitary
treatment of it as in [14].

Let us take another route in terms of Gentzen-Takeuti’s finitary analyses of
finite derivations as in [20] since its formalization in a weak (set) theory is a
trivial matter.

In what follows we work in a set theory T ⊃ BS.
α, β, γ, . . . range over codes in Code, while a, b, c, . . . over sets in the universe

V . A,B,C, . . . denote formulae in the language LV := {∈,=, Q} ∪ {ā : a ∈ V },
where ā := 〈0, a〉 is the name (individual constant) for the set a. A term is
either a name or a variable. ι, ν, . . . denote terms.

Let us introduce a sequent calculus for transfinite induction schema (2) and
the fixed point axiom (1). Logical connectives are ∨,∧,→, ∃, ∀. ¬A :≡ (A→ ⊥).

A sequent is a pair of a finite set Γ of formulae, and a formula A, denoted
Γ ⇒ A. Its intended meaning is the implication

∧
Γ → A. Γ is the antecedent ,

and A the succedent of the sequent Γ ⇒ A. For finite sets Γ, ∆ and a formula
A, Γ,∆ := Γ ∪∆ and Γ, A := Γ ∪ {A}.

⊥ stands ambiguously for false atomic sentences ā ∈ b̄ for a 6∈ b, and ā = b̄

for a 6= b.

10

The initial sequents are

Γ, ι = ν,A(ι) ⇒ A(ν) ; Γ,⊥ ⇒ A

The inference rules are (LQ), (RQ), (L∨), (R∨), (L∧), (R∧), (L→), (R →),
(L∃), (R∃), (L∀), (R∀), (cut), (chain), (ind), (Rep) and (E).

Γ, Q(ι),Q(Q, ι) ⇒ C

Γ, Q(ι) ⇒ C
(LQ)

;

Γ ⇒ Q(Q, ι)

Γ ⇒ Q(ι)
(RQ)

Γ, A0 ∨ A1, A0 ⇒ C Γ, A0 ∨ A1, A1 ⇒ C

Γ, A0 ∨ A1 ⇒ C
(L∨)

;

Γ ⇒ Ai

Γ ⇒ A0 ∨A1
(R∨)

(i = 0, 1)

Γ, A0 ∧A1, Ai ⇒ C

Γ, A0 ∧ A1 ⇒ C
(L∧)

(i = 0, 1) ;

Γ ⇒ A0 Γ ⇒ A1

Γ ⇒ A0 ∧ A1
(R∧)

Γ, A→ B ⇒ A Γ, A→ B,B ⇒ C

Γ, A→ B ⇒ C
(L→)

;

Γ, A⇒ B

Γ ⇒ A→ B
(R →)

Γ, ∃xB(x), B(y) ⇒ C

Γ, ∃xB(x) ⇒ C
(L∃)

;

Γ ⇒ B(ι)

Γ ⇒ ∃xB(x)
(R∃)

The eigenvariable y in (L∃) does not occur in the lower sequent Γ, ∃xB(x) ⇒ C.

Γ, ∀xB(x), B(ι) ⇒ C

Γ, ∀xB(x) ⇒ C
(L∀)

;

Γ ⇒ B(y)

Γ ⇒ ∀xB(x)
(R∀)

The eigenvariable y in (R∀) does not occur in the lower sequent Γ ⇒ ∀xB(x).

Γ ⇒ A ∆, A⇒ C

Γ,∆ ⇒ C
(cut)

where A is the cut formula of the (cut).

Γk ⇒ Ak · · · Γ1 ⇒ A1 ∆, Ak, . . . , A1 ⇒ C

Γ,∆ ⇒ C
(chain)

where Γ = Γk ∪ · · · ∪ Γ1, and Ak, . . . , A1 (k > 0) is a non-empty list of strictly
positive formulae.

The inference rule (chain) is a series of several (cut)’s with the strictly
positive cut formulae Ak, . . . , A1. Writing Γ for the list Γk, . . . ,Γ1 and A for
the list Ak, . . . , A1, the inference rule is denoted

Γ ⇒ A ∆,A ⇒ C

Γ,∆ ⇒ C
(chain)

11

Γ, ∀y ∈ xA(y) ⇒ A(x) A(ι),Γ ⇒ C Γ ⇒ ι ∈ ν

Γ ⇒ C
(ind)

The eigenvariable x does not occur in the lower sequent Γ ⇒ C.

Γ ⇒ A
Γ,∆ ⇒ A

(Rep)
;
Γ ⇒ A
Γ ⇒ A

(E)

This inference rule (E) is called the height rule in [1], and its meaning is ex-
plained in Definition 4.4 as in [14].

A proof in this sequent calculus is a finite labelled tree according to the
above initial sequents and inference rules. s, t, u, . . . denote the nodes in proof
trees. s : Γ ⇒ A indicates that the sequent Γ ⇒ A is the label of the node s.
The label Γ ⇒ A of s is denoted Seq(s).

Suppose that a {∈,=}-sentence ϕ is provable in FiXi(T). Then there exists
a T -provable sentence θ such that the sequent θ ⇒ ϕ is provable in the sequent
calculus. In what follows fix ϕ, θ and a proof P0 of θ ⇒ ϕ.

Definition 4.1 A proof in the sequent calculus is said to enjoy the pure variable
condition if

1. any eigenvariables (of (L∃), (R∀), (ind)) are distinct from each other,

2. any eigenvariable does not occur in its end sequent, and

3. if a free variable occurs in an upper sequent of an inference rule but not
in the lower sequent, then the variable is one of the eigenvariables of the
inference rule.

Without loss of generality we can assume that any proof enjoys the pure
variable condition. Otherwise rename the eigenvariables to satisfy (1) and (2)
in Definition 4.1, then replace the redundant free variables by an individual
constant, e.g., the empty set ∅̄ to satisfy (3).

Definition 4.2 The end-piece of a proof tree P is a collection of nodes in P

such that any inference rule below it is one of (cut), (chain), (Rep) and (E).

If a proof enjoys the pure variable condition and its end sequent consists
solely of sentences, no free variable occurs in its end-piece.

Definition 4.3 The depth dp(A) < ω of a formula A is defined as follows.

1. dp(A) = 0 if A is Q-free, i.e., the fixed point predicate Q does not occur
in A.

In what follows consider the case when Q occurs in A.

2. dp(A) = 2 if A is strictly positive (with respect to Q).

In what follows consider the case when Q occurs in A, and A is not strictly
positive.

12

3. dp(A) = max{dp(A0), dp(A1)}+1 if A ≡ (A0∨A1), (A0∧A1), (A0 → A1).

4. dp(A) = dp(A0) + 1 if A ≡ (∃xA0), (∀xA0).

Note that dp(A) 6= 1.
Let P be a proof in the sequent calculus, and s a node in the proof tree P .

We assign the height h(s;P) < ω recursively as follows.

Definition 4.4 1. h(s;P) = 0 if Seq(s) is the end sequent of P .

In what follows let Seq(s) be an upper sequent of an inference rule J with
the lower sequent Seq(s0).

2. h(s;P) = h(s0;P) + 1 if J is an (E).

3. h(s;P) = max{h(s0;P), 2} if J is a (chain) with its rightmost upper
sequent Seq(s).

s : Γ ⇒ A s : ∆,A ⇒ C

s0 : Γ,∆ ⇒ C
(chain)

4. h(s;P) = h(s0;P) in all other cases.

Note that for upper sequents s = sk, . . . , s1 of a (chain) other than the
rightmost one s, we have h(si;P) = h(s0;P), i.e., the height is the same.

A proof P is said to be height-normal if the following four conditions hold.

1. For any (chain) occurring in P

Γ ⇒ A ∆,A ⇒ C

s : Γ,∆ ⇒ C
(chain)

h(s;P) = 0, in other words there is neither (E) nor no rightmost upper
sequent of (chain) below any (chain).

2. For any (cut) occurring in P

Γ ⇒ A ∆, A⇒ C

s : Γ,∆ ⇒ C
(cut)

h(s;P) ≥ dp(A).

3. For any (ind) occurring in P

Γ, ∀y ∈ xA(y) ⇒ A(x) A(ι),Γ ⇒ C Γ ⇒ ι ∈ ν

s : Γ ⇒ C
(ind)

h(s;P) ≥ dp(∀y ∈ ν A(y)).

4. Any (chain) and (E) in P is in the end-piece.

13

Without loss of generality we can assume that the given sequent calculus
proof P0 of θ ⇒ ϕ does not contain any (chain), and is height-normal. Other-
wise add some inference rules (E) at the end of the proof.

Let P be a height-normal proof in the sequent calculus, and s be a node in
the proof tree P . We assign a code o(s;P) ∈ Code recursively as follows. For
n > 0, 1̄ · n := 1̄# · · ·#1̄ with n times 1̄’s.

Definition 4.5 1. o(s;P) = 1̄ · 2 if S is an initial sequent.

In what follows let Seq(s) be the lower sequent of an inference rule J with
its upper sequents {si : Seq(si)}i<m.

2. o(s;P) = o(s0;P)#1̄ if J is one of the inference rules (LQ), (RQ), (R∨),
(L∧), (R →), (L∃), (R∃), (L∀), and (R∀).

3. o(s;P) = o(s0;P)#o(s1;P) if J is one of the inference rules (L∨), (R∧),
and (L→).

4. o(s;P) = o(s0;P)#o(s1;P) if J is a (cut).

5. o(s;P) = Ω2(o(sm−1;P))(o(s0;P)# · · ·#o(sm−2;P)) if J is a (chain)
where Ω2(α) := ΩΩα

:

s0 : Γ0 ⇒ A0 · · · sm−2 : Γm−2 ⇒ Am−2 sm−1 : ∆, A0, . . . , Am−2 ⇒ C

s : Γ,∆ ⇒ C
(chain)J

with Γ =
⋃

i<m−1 Γi.

6. o(s;P) = ((o(s0;P)#1̄ · 6)×mj(ν))#o(s1;P)#o(s2;P) if J is an (ind):

s0 : Γ, ∀y ∈ xA(y) ⇒ A(x) s1 : A(ι),Γ ⇒ C s2 : Γ ⇒ ι ∈ ν

s : Γ ⇒ C
(ind)J

where for terms ν,

mj(ν) :=

{
ā if ν = ā with a ∈ V

V̄ if ν is a variable

7. o(s;P) = o(s0;P) if J is a (Rep).

8. o(s;P) = Ωo(s0;P) if J is an (E).
Finally let o(P) = o(send;P) for the end sequent send of P .

The role of operations #,× and Ωαβ in ‘ordinal’ assignment o(s;P) are as
follows. The sum α#β collects two subproofs together, and × is needed to
multiply ν in transfinite induction (ind) up to ν, cf. Case 2 in section 5.
Exponentiation is used first in the rule (E), i.e., to measure an increase of ordinal
depths in lowering cut rank, and second in the rule (chain). The assignment
ΩΩα

(αk# · · ·#α1) in (chain) comes from Lemma 9 in [5], which in turn is

14

inspired by the quick cut-elimination strategy in [4, 17] along Kleene-Brouwer
ordering of infinitary derivations. Lexicographic comparing, i.e., multiplication
of ΩΩα

and αk# · · ·#α1 is used in Case 9, and a doubly exponential ΩΩα

is needed in Case 6 and Case 7, once multiplications are introduced. Note
that when exponent α decreases, one can duplicate multiplier β in Ωαβ, cf.
Proposition 3.6.12.

Since any (chain) and (E) in P is in the end-piece, o(s;P) is in Sum if s is
above the end-piece.

A formula in LV is said to be an instance of a formula A if it is obtained
from A by substituting terms for free variables.

Definition 4.6 ISbfml(P0) denotes the class of all instances of subformulae
of formulae occurring in P0.

Call a proof restricted (with respect to P0) if it is height-normal, enjoys the
pure variable condition, any formula occurring in it is in ISbfml(P0), and its
end sequent consists solely of Q-free sentences.

For α ∈ Code let τ(α) denote the formula stating that for any restricted
proof P if o(P) � α, then its end sequent is true. Note here that the satisfac-
tion relation for the Q-free formulae in Sbfml(P0) (the set of subformulae of
formulae occurring in P0) or equivalently the partial truth definition for the Q-
free sentences in ISbfml(P0) is BS-definable, a fortiori T -definable by Lemma
2.3.

We show the following Lemma 4.7.

Lemma 4.7 T proves that τ(α) is progressive, i.e.,

T ⊢ ∀α ∈ Code[∀β ≺ ατ(β) → τ(α)].

Then Theorem 1.2 is seen as follows. Lemmata 3.7 and 4.7 yields τ(o(P0)),
and hence the end sequent θ ⇒ ϕ of P0 is true in T . Therefore T ⊢ ϕ.

5 Proof of Lemma 4.7

In this section we show the Lemma 4.7. We work in T .
Let P be a restricted proof of a sequent Γ0 ⇒ A0. Suppose as the IH(=Induction

Hypothesis) that the end sequents of restricted proofs with smaller codes are
true. We need to show that Γ0 ⇒ A0 is true. It suffices to show that there are
restricted proofs Pi (i ∈ I) of sequents Si such that o(Pi) ≺ o(P) for any i ∈ I

and if all of Si are true, then so is Γ0 ⇒ A0.

Case 1. The case when there exists an initial sequent in the end-piece of P .
Since there are no free variables in the end-piece, any initial sequent in it is

either Λ,⊥ ⇒ A or Λ, A⇒ A.
If the end sequent Γ0 ⇒ A0 itself is an initial sequent, i.e., {⊥, A0}∩Γ0 6= ∅,

then there is nothing to prove. In what follows assume that this is not the case.

15

Consider first the case that an initial sequent Λ,⊥ ⇒ A is in the end-piece.
Then the formula ⊥ in the antecedent has to vanish somewhere as a cut formula.
Let P be the following:

Γ ⇒ A

.... Q

s0 : Γ ⇒ ⊥

Λ,⊥ ⇒ A
....

∆,A,⊥ ⇒ C

s : Γ,Γ,∆ ⇒ C
(chain)

....
Γ0 ⇒ A0

Let QC denote the proof obtained from the subproof Q of s0 : Γ ⇒ ⊥ by
replacing ⊥ by C in the succedents of sequents Γ′ ⇒ ⊥ in Q. Let P ′ be the
following:

.... QC

s0 : Γ ⇒ C

s : Γ,Γ,∆ ⇒ C
(Rep)

....
Γ0 ⇒ A0

Then it is clear that P ′ is restricted. Moreover o(s;P ′) = o(s0;P
′) = o(s0;P) ≺

o(s;P) by Propositions 3.6.6 and 3.6.10. Hence o(P ′) ≺ o(P) by Proposition
3.6.9. From IH we see that Γ0 ⇒ A0 is true.

The case when ⊥ vanishes at a (cut) is similar.
Next consider the case that an initial sequent Λ, A⇒ A is in the end-piece.

Then one of the formulae A has to vanish somewhere as a cut formula of J ,
which is either a (chain) or a (cut). Suppose J is a (chain), and let P be one
of the followings:

Γ ⇒ A

.... Q

s0 : Γ ⇒ A

Λ, A⇒ A
....

s1 : ∆,A, A⇒ A

s : Γ,Γ,∆ ⇒ A
J

....
Γ0 ⇒ A0 ;

Γ ⇒ A

Λ, A⇒ A
....

s1 : Γ, A⇒ A

.... Q

s0 : ∆,A, A⇒ C

s : Γ,Γ, A,∆ ⇒ C
J

....
Γ0 ⇒ A0

Let P ′ be the followings:

.... Q

s0 : Γ ⇒ A

s : Γ,Γ,∆ ⇒ A
(Rep)

....
Γ0 ⇒ A0 ;

Γ ⇒ A

.... Q

s0 : ∆,A, A⇒ C

s : Γ,Γ, A,∆ ⇒ C
J

....
Γ0 ⇒ A0

In the right hand side J denotes two consecutive (E)’s if A is the empty list,
and an (chain) otherwise. In each case P ′ is restricted. Moreover o(s0;P

′) =

16

o(s0;P) and o(s1;P) 6= 0̄, 1̄. Hence o(s;P ′) ≺ o(s;P) by Proposition 3.6.10
when A is the empty list in the right hand side, and o(P ′) ≺ o(P). From IH we
see that Γ0 ⇒ A0 is true.

The case when A vanishes at a (cut) is similar.

Case 2. The case when there exists a lower sequent of an (ind) in the end-piece
of P . Let P be the following:

.... Q0(x)

s0 : Γ, ∀y ∈ xA(y) ⇒ A(x)

.... Q1

s1 : A(ā),Γ ⇒ C s2 : Γ ⇒ ā ∈ b̄

s : Γ ⇒ C
(ind)

....
Γ0 ⇒ A0

If the formula ā ∈ b̄ is false, i,e., a 6∈ b, then replace ā ∈ b̄ by C in the succedents
of the proof of s2 : Γ ⇒ ā ∈ b̄:

s2 : Γ ⇒ C

s : Γ ⇒ C
(Rep)

....
Γ0 ⇒ A0

We have o(s;P) = (γ0#1̄ · 6) × b̄#γ1#γ2 for γi = o(si;P). Since o(s;P ′) =
o(s2;P

′) = o(s2;P) = γ2 ≺ o(s;P), we obtain o(P ′) ≺ o(P).
Assume ā ∈ b̄ is true, and let P ′ be the following:

.... Q0(x)

s0 : Γ,∀y ∈ xA(y) ⇒ A(x) A(z),Γ ⇒ A(z) Γ, z ∈ a ⇒ z ∈ a

s′ : Γ, z ∈ ā ⇒ A(z)
(ind)

Γ ⇒ ∀y ∈ ā A(y)
(R →, R∀)

.... Q0(a)

sa : Γ,∀y ∈ ā A(y) ⇒ A(ā)

Γ ⇒ A(ā)

.... Q1

s1 : A(ā),Γ ⇒ C

s : Γ ⇒ C....
Γ0 ⇒ A0

where the proof Q0(a) is obtained from the subproof Q0(x) of P by substituting
the constant ā for the eigenvariable x, and renaming free variables for the pure
variable condition for P ′. The last two inference rules leading to s : Γ ⇒ C are
(cut)’s.

It is easy to see that γ′0 = o(sa;P
′) � o(s0;P) = γ0 from ā ≺ mj(x) = V̄

for a ∈ V and Proposition 3.6.9. We have o(s′;P ′) = (γ0#1̄ · 6) × ā#1̄ · 4. By
Proposition 3.6.5 we have (γ0#1̄ · 6) × ā#1̄ · 6#γ′0 ≺ (γ0#1̄ · 6) × b̄. Hence we
obtain o(s;P ′) = (γ0#1̄ ·6)× ā#1̄ ·6#γ′0#γ1 ≺ (γ0#1̄ ·6)× b̄#γ1#γ2 = o(s;P).
This yields o(P ′) ≺ o(P).

In the following two cases inference rules introducing Q-free formulae and (cut)
with Q-free cut formulae are pushed down to the end of proofs.

17

Case 3. The case when there exists a lower sequent of an explicit inference rule
in the end-piece of P , where an inference rule J is explicit in P iff its major
(principal) formula is in the antecedents (succedents) of any sequent below it
when the formula is in the antecedent (succedent) of the lower sequent of J ,
resp.

Let J be such an inference rule. J is one of the inference rules (L∨), (R∨),
(L∧), (R∧), (L →), (R →), (L∃), (R∃), (L∀), and (R∀), but neither of (LQ)
and (RQ), since the fixed point predicate Q does not occur in the end sequent
of P .

Consider the cases when J is either an (R∀) or an (L→). For the first case
let P be the following:

.... Q(y)

s0 : Γ ⇒ A(y)

s : Γ ⇒ ∀xA(x)
(R∀)

....
Γ0 ⇒ ∀xA(x)

For each a ∈ V , let Pa be the following:

.... Q(a)

sa : Γ ⇒ A(ā)

s : Γ ⇒ A(ā)
(Rep)

....
Γ0 ⇒ A(ā)

Since o(s;Pa) = o(sa;Pa) � o(s0;P) ≺ o(s;P), we have o(Pa) ≺ o(P). By IH
Γ0 ⇒ A(ā) is true for any a ∈ V . Hence so is Γ0 ⇒ ∀xA(x).

For the second case let P be the following:

Γ, B → C ⇒ B Γ, B → C,C ⇒ A1

s : Γ, B → C ⇒ A1
(L→)

.... Q

Γ0 ⇒ A0

where (B → C) ∈ Γ0.
Let PC be the following:

Γ, B → C,C ⇒ A1

s : Γ, B → C,C ⇒ A1
(Rep)

....
Γ0, C ⇒ A0

Since o(s;P ′) ≺ o(s;P), we obtain o(PC) ≺ o(P), and Γ0, C ⇒ A0 is true by
IH.

18

Next let PB be the following:

Γ, B → C ⇒ B

s : Γ, B → C ⇒ B
(Rep)

.... QB

Γ0 ⇒ B

where the trunk QB is obtained from the trunk Q of P as follows. If in Q, A1

vanishes as a cut formula,

Γ1 ⇒ A

s : Γ, B → C ⇒ A1....
Γ1, B → C ⇒ A1 ∆,A, A1 ⇒ D

Γ1,Γ1, B → C,∆ ⇒ D
(chain)

then this part turns to

s : Γ, B → C ⇒ B....
Γ1, B → C ⇒ B

Γ1,Γ1, B → C,∆ ⇒ B
(Rep)

This pruning step is iterated when D vanishes below. Clearly we have o(PB) ≺
o(P), and Γ0 ⇒ B is true by IH.

Since both Γ0, C ⇒ A0 and Γ0 ⇒ B are true, and (B → C) ∈ Γ0, so is
Γ0 ⇒ A0.

Case 4. The case when there exists a cut formula A1 in the end-piece of P
such that A1 is a Q-free formula.

Let P be the following:

Γ ⇒ A Γ1 ⇒ A1 ∆,A, A1 ⇒ C

Γ,Γ1,∆ ⇒ C
(chain)

....
Γ0 ⇒ A0

Let Pr be the following which is obtained from P as for PB in the Case 3.

Γ1 ⇒ A1

Γ,Γ1,∆ ⇒ A1
(Rep)

....
Γ0 ⇒ A1

And let Pℓ be the following:

Γ ⇒ A ∆,A, A1 ⇒ C

Γ,Γ1,∆, A1 ⇒ C
J

....
Γ0, A1 ⇒ A0

19

where J denotes two consecutive (E)’s if A is the empty list, and a (chain)
otherwise.

Obviously both Pr and Pℓ are restricted, and o(Pr), o(Pℓ) ≺ o(P). IH says
that both Γ0 ⇒ A1 and Γ0, A1 ⇒ A0 are true. Hence so is Γ0 ⇒ A0.

The case when A1 is a cut formula of a (cut) is similar.

Case 5. The case when there exists a (cut)J0 in the end-piece of P such that
for its lower sequent s : Γ,∆ ⇒ C and cut formula A, h(s;P) > d := dp(A) > 0.
Let J be the uppermost (E) below J0. Note that here is no (chain) between J0
and J since P is height-normal. Let P be the following.

s1 : Γ ⇒ A s2 : ∆, A⇒ C

s : Γ,∆ ⇒ C
(cut)J0

....
t : Γ1 ⇒ C1

u : Γ1 ⇒ C1
(E)J

....
Γ0 ⇒ A0

Let P ′ be obtained from P by lowering the (cut)J0 below the (E)J :

s1 : Γ ⇒ A

s : Γ,∆ ⇒ A
(Rep)

....
t1 : Γ1 ⇒ A

u1 : Γ1 ⇒ A
(E)

s2 : ∆, A⇒ C

s : Γ,∆, A⇒ C
(Rep)

....
t2 : Γ1, A⇒ C1

u2 : Γ1, A⇒ C1
(E)

u : Γ1 ⇒ C1
(cut)

....
Γ0 ⇒ A0

Let αi = o(si;P) = o(si;P
′) for i = 1, 2. Then for some β, o(t;P) =

β#α1#α2, and o(u;P) = Ωβ#α1#α2 . On the other side for some β′ � β,
o(t1;P

′) = β′#α1. The case β′ ≺ β happens when a pruning is performed.
Also o(t2;P

′) = β#α2. Hence o(u1;P
′) � Ωβ#α1 and o(u2;P

′) = Ωβ#α2. Now
we claim that o(u;P ′) � Ωβ#α1#Ωβ#α2 ≺ Ωβ#α1#α2 = o(u;P), which follows
from Proposition 3.6.11.

Hence o(P ′) ≺ o(P), and we see that Γ0 ⇒ A0 is true from IH.

In the following cases, adjacent (cut)’s are first collected into (chain), Case

6. This as well as the analysis of strictly positive cut formula in Case 9 pro-
longs (chain). In Case 7, (cut) with strictly positive cut formula is replaced by
(chain), thereby (chain) is introduced in proofs.

Case 6. The case when there exists a (cut)J0 in the end-piece of P such that
its lower sequent s : Γ1,∆1 ⇒ C is the rightmost upper sequent of a (chain)J .

20

Let P be the following with ∆ = ∆0 ∪∆1:

s : Γ ⇒ A

s0 : ∆0,A ⇒ A0 t : ∆1,A, A0 ⇒ C

∆,A ⇒ C
(cut)J0

s : Γ,∆ ⇒ C
(chain)J

....
Γ0 ⇒ A0

Since P is height-normal, we have 2 = h(t;P) ≥ dp(A0). On the other side
h(t;P) ≤ dp(A0) by virtue of Case 5. Hence dp(A0) = 2, i.e., the predicate Q
occurs in A0 and A0 is strictly positive.

Let P ′ be the following:

s : Γ ⇒ A

s : Γ ⇒ A s0 : ∆0,A ⇒ A0

Γ,∆0 ⇒ A0
(chain)

t : ∆1,A, A0 ⇒ C

∆1,A, A0 ⇒ C
(Rep)

s : Γ,∆ ⇒ C
(chain)

....
Γ0 ⇒ A0

Observe that 2 = h(s0;P
′) = h(s0;P) = h(t;P) = h(t;P ′). Let α = o(s;P) =

o(s;P ′), α0 = o(s0;P) = o(s0;P
′) and β = o(t;P) = o(t;P ′). Then o(s;P) =

Ω2(α0#β)
∑

α and o(s;P ′) = Ω2(β)(
∑

α#(Ω2(α0)
∑

α)). o(s;P ′) ≺ o(s;P)
is seen from Proposition 3.6.11. Hence o(P ′) ≺ o(P), and we see that Γ0 ⇒ A0

is true from IH.

Case 7. The case when there exists a (cut) with a strictly positive cut formula
A in the end-piece of P . Let J be a lowest such (cut). By virtue of Case 5 we
have h(t;P) = dp(A) = 2, and by Case 6 there is no rightmost upper sequent
of any (chain) below J . Hence there are two consecutive (E)’s below J by Case

4 and Case 5. Furthermore the two consecutive (E)’s is immediately below the
lowest J , i.e., there is no left upper sequent of any (chain) between J and (E)’s
since P is height-normal. Let P be the following:

....
u0 : Γ ⇒ A

....
u1 : ∆, A⇒ C

t : Γ,∆ ⇒ C
(cut)J

s : Γ,∆ ⇒ C
(E)2

....
Γ0 ⇒ A0

21

Let P ′ be the following:

....
u′0 : Γ ⇒ A

t0 : Γ,∆ ⇒ A
(Rep)

s0 : Γ,∆ ⇒ A
(E)2

....
u′1 : ∆, A⇒ C

t1 : Γ,∆, A⇒ C
(Rep)

s′ : Γ,∆ ⇒ C
(chain)

....
Γ0 ⇒ A0

We have h(s;P) = h(s′;P ′) = h(s0;P
′) = 0 and h(t0;P

′) = h(t1;P
′) =

h(t;P) = 2. Let αi = o(ui;P) for i = 0, 1. Then o(u′0;P
′) = α0, o(t1;P

′) =
o(u′1;P

′) = α1, and o(s0;P
′) = Ω2(α0). Hence o(s′;P ′) = Ω2(α1)Ω2(α0) =

ΩΩα1#Ωα0

≺ Ω2(α0#α1) = o(s;P) by Proposition 3.6.11. Therefore o(P ′) ≺
o(P), and by IH Γ0 ⇒ A0 is true.

By virtue of Case 1-Case 3 we can assume that any topmost sequent in the
end-piece of P is a lower sequent of an implicit inference rule other than (ind),
(cut), (chain), (Rep) and (E) such that the fixed point predicate Q occurs in
its major formula. Call temporarily such an inference rule boundary of P if its
lower sequent is in the end-piece, but not its upper sequents. We then claim
that there is an inference J such that J is either a (cut) or a (chain), and one
of its cut formula A comes from major formulae of boundaries.

Γ ⇒ A

Γ1 ⇒ A
Jℓ

....
Γ ⇒ A

∆1, A⇒ C1
Jr

....
∆,A, A⇒ C

Γ,Γ,∆ ⇒ C
J

....
Γ0 ⇒ A0

where both Jℓ and Jr are boundaries, A in their lower sequents are their major
formulae, and the formula A is in the succednets [antecedents] of any sequents
between Jℓ and J [between Jr and J], resp.

The claim is seen as in [20] (the existence of a suitable cut).
In what follows pick such rules J , Jℓ and Jr with the formula A, which is a

cut formula of J . By virtue of Case 7, J is a (cut) iff dp(A) > 2.

Case 8. The case when dp(A) > 2 and J is a (cut). For example consider the

22

case when A is a formula ∀xD(x). Let P be the following:

Γ1 ⇒ D(y)

Γ1 ⇒ ∀xD(x)
(R∀)Jℓ

....
u0 : Γ ⇒ ∀xD(x)

∆1, ∀xD(x), D(a) ⇒ C1

∆1, ∀xD(x) ⇒ C1
(L∀)Jr

....
u1 : ∆, ∀xD(x) ⇒ C

s : Γ,∆ ⇒ C
(cut)J

....
v : Γ2 ⇒ B

t : Γ2 ⇒ B
(E)J0

....
Γ0 ⇒ A0

By virtue of Case 5 we can assume that h(s;P) = dp(∀xD(x)) = d + 1 with
d = dp(D(a)) > 2. J0 denotes the uppermost (E) below J with h(t;P) = d.

Let P ′ be the following:

Γ1 ⇒ D(a)

Γ1 ⇒ D(a)
(Rep)

....
u′0 : Γ ⇒ D(a)

sℓ : Γ,∆ ⇒ D(a)
(Rep)

....
vℓ : Γ2 ⇒ D(a)

tℓ : Γ2 ⇒ D(a)
(E)

....
u0 : Γ ⇒ ∀xD(x)

∆1, ∀xD(x), D(a) ⇒ C1

∆1, ∀xD(x), D(a) ⇒ C1
(Rep)

....
u′1 : ∆, ∀xD(x), D(a) ⇒ C

sr : Γ,∆, D(a) ⇒ C
(cut)

....
vr : Γ2, D(a) ⇒ B

tr : Γ2, D(a) ⇒ B
(E)

t′ : Γ2 ⇒ B
(cut)

....
Γ0 ⇒ A0

We have o(s;P) = α0#α1 where αi = o(ui;P) for i = 0, 1. On the other
hand we have o(sℓ;P

′) = α′
0 = o(u′0;P

′) ≺ α0 = o(u0;P
′) ≺ o(sr;P

′) and
α′
1 = o(u′1;P

′) ≺ α1. Hence o(sℓ;P
′) ≺ o(sr;P

′) ≺ o(s;P), and o(uℓ;P
′) ≺

o(ur;P
′) ≺ o(u;P). Thus for o(tℓ;P

′) = Ωo(uℓ;P
′), o(tr;P

′) = Ωo(ur ;P
′), and

Ωo(u;P) = o(t;P), we obtain o(t′;P ′) = o(tℓ;P
′)#o(tr ;P

′) ≺ o(t;P). Therefore
o(P ′) ≺ o(P), and by IH Γ0 ⇒ A0 is true.

The other cases are seen similarly.

Case 9. The case when dp(A) = 2 and J is a (chain).
First consider the case when A is an implicational formula D → E, where

23

E is strictly positive and D is Q-free. Let P be the following:

s : Γ ⇒ A

s4 : Γ1, D ⇒ E

s3 : Γ1 ⇒ D → E
(R →) Jℓ

....
s1 : Γ ⇒ D → E

s6 : ∆1, D → E ⇒ D s7 : ∆1, D → E,E ⇒ C1

s5 : ∆1, D → E ⇒ C1

(L →)Jr

....
s2 : ∆,A, D → E ⇒ C

s0 : Γ,Γ,∆ ⇒ C
(chain) J

....
Γ0 ⇒ A0

Let Pℓ be the following:

Γ ⇒ A

....
Γ ⇒ D → E

s6 : ∆1, D → E ⇒ D

∆1, D → E ⇒ D
(Rep)

....
s2ℓ : ∆,A, D → E ⇒ D

sℓ : Γ,Γ,∆ ⇒ D
(chain)

....
Γ0 ⇒ D

Let Pr be the following:

Γ ⇒ A

....
Γ ⇒ D → E

s4 : Γ1, D ⇒ E

Γ1, D ⇒ E
(Rep)

....
s1r : Γ, D ⇒ E

s7 : ∆1, D → E,E ⇒ C1

∆1, D → E,E ⇒ C1
(Rep)

....
s2r : ∆,A, D → E,E ⇒ C

sr : Γ,Γ,∆, D ⇒ C
(chain)

....
Γ0, D ⇒ A0

Let αi = o(si;P) for i = 4, 6, 7. In P , o(s3;P) = α4#1̄, o(s5;P) = α6#α7,
and o(s0;P) = Ω2(o(s2;P))(

∑
α#o(s1;P)) for α = o(s;P). On the other side

in Pℓ and Pr, α6 = o(s6;Pℓ), α4 = o(s4;Pr) and α7 = o(s7;Pr), and hence
o(s2ℓ;Pℓ) ≺ o(s2;P), o(s1r;Pr) ≺ o(s1;P) and o(s2r;Pr) ≺ o(s2;P). Moreover
o(sℓ;P

′) = Ω2(o(s2ℓ;Pℓ))(
∑

α#o(s1;P)) and
o(sr;Pr) = Ω2(o(s2r ;Pr))(

∑
α#o(s1;P)#o(s1r ;Pr)).

We see o(sℓ;Pℓ), o(sr ;Pr) ≺ o(s0;P) from Proposition 3.6.12. From these
we see that o(Pℓ), o(Pr) ≺ o(P), and by IH both Γ0 ⇒ D and Γ0, D ⇒ A0 are
true. Therefore Γ0 ⇒ A0 is true.

Next consider the case when A ≡ Q(a) for the fixed point predicate Q. Let

24

P be the following:

s : Γ ⇒ A

Γ1 ⇒ Q(Q, a)

Γ1 ⇒ Q(a)
(RQ)Jℓ

....
s1 : Γ ⇒ Q(a)

∆1, Q(a),Q(Q, a) ⇒ C1

∆1, Q(a) ⇒ C1
(LQ)Jr

....
s2 : ∆,A, Q(a) ⇒ C

s0 : Γ,Γ,∆ ⇒ C
(chain)J

....
Γ0 ⇒ A0

Let P ′ be the following:

s : Γ ⇒ A

....
s1 : Γ ⇒ Q(a)

Γ1 ⇒ Q(Q, a)

Γ1 ⇒ Q(Q, a)
(Rep)

....
s′1 : Γ ⇒ Q(Q, a)

∆1, Q(a),Q(Q, a) ⇒ C1

∆1, Q(a),Q(Q, a) ⇒ C1
(Rep)

....
s2 : ∆,A, Q(a),Q(Q, a) ⇒ C

s0 : Γ,Γ,∆ ⇒ C
(chain)

....
Γ0 ⇒ A0

We have o(s0;P) = Ω2(o(s2;P))(
∑

α#o(s1;P)) for α = o(s;P). Also
o(s;P ′) = o(s;P), o(s′1;P

′) ≺ o(s1;P) = o(s1;P
′), o(s2;P

′) ≺ o(s2;P), and
o(s0;P

′) = Ω2(o(s2;P
′))(

∑
α#o(s1;P)#o(s

′
1;P

′)). Hence o(s0;P
′) ≺ o(s0;P)

from Proposition 3.6.12. Therefore o(P ′) ≺ o(P), and by IH Γ0 ⇒ A0 is true.
The other cases are seen similarly. This completes a proof of Lemma 4.7,

and of Theorem 1.2.

References

[1] T. Arai, Consistency proof via pointwise induction, Arch. Math. Logic 37,
149-165 (1998)

[2] T. Arai, Some results on cut-elimination, provable well-orderings, induction
and reflection, Ann. Pure Appl. Logic 95, 93-184 (1998)

[3] T. Arai, Non-elementary speed-ups in logic calculi, Math. Logic Quart. 6,
629-640 (2008)

[4] T. Arai, Intuitionistic fixed point theories over Heyting arithmetic, In: S.
Feferman and W. Sieg, eds., Proofs, Categories and Computations. Essays
in honor of Grigori Mints, pp. 1-14. College Publications, King’s College
London (2010)

[5] T. Arai, Quick cut-elimination for strictly positive cuts, Ann. Pure Appl.
Logic 162, 807-815 (2011)

25

[6] T. Arai, Proof theory of weak compactness, J. Math. Logic 13, 1350003
(2013)

[7] T. Arai, Conservations of first-order reflections, to appear

[8] T. Arai, Lifting up the proof theory to the countables: Zermelo-Fraenkel’s
set theory, to appear

[9] T. Arai, Proof theory of second order indescribability, in preparation

[10] J. Avigad, On the relationship between ATR0 and ÎD<ω, J. Symb. Logic
61, 768-779 (1996)

[11] J. Barwise, Admissible sets and structures, Springer, Berlin (1975)

[12] M. Beeson, Goodman’s theorem and beyond, Pacific J. Math. 84, 1-
16(1979)

[13] W. Buchholz, Ωµ+1-rule, In: W. Buchholz, S. Feferman, W. Pohlers and
W. Sieg. Iterated Inductive Definitions and Subsystems of Analysis:Recent
Proof-Theoretical Studies. Lect. Notes Math. 897, pp. 188-233. Springer,
Berlin Heidelberg New York (1981)

[14] W. Buchholz, Notation system for infinitary derivations, Arch. Math. Logic
30, 277-296 (1991)

[15] W. Buchholz, An intuitionistic fixed point theory, Arch. Math. Logic 37,
21-27 (1997)

[16] S. Feferman, Iterated inductive fixed-point theories:Applications to Han-
cock’s conjecture, In: G. Metakides, (ed.) Patras Logic Symposion, pp.
171-196. North-Holland, Amsterdam (1982)

[17] G. E. Mints, Quick cut-elimination for monotone cuts, In Games, logic,
and constructive sets(Stanford, CA, 2000), CSLI Lecture Notes, 161, pp.
75-83. CSLI Publ., Stanford, CA (2003)

[18] C. Rüede and T. Strahm, Intuitionistic fixed point theories for strictly
positive operators, Math. Log. Quart. 48. 195-202 (2002)

[19] R. Schindler and M. Zeman, Fine structure, In: Foreman, M. and
Kanamori, A.(eds.) Handbook of Set Theory, vol. 1, pp. 605-656. Springer,
Berlin (2010)

[20] G. Takeuti, Proof Theory, second edition, North-Holland, Amsterdam
(1987) reprinted from Dover Publications (2013)

26

	1 Intuitionistic fixed point theory over set theories T
	2 Basic set theory BS
	3 Codes
	4 Finitary analysis of FiXi(T)
	5 Proof of Lemma 4.7

