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Prefix and plain Kolmogorov complexity

characterizations of 2-randomness:

simple proofs

Bruno Bauwens
∗

Abstract

Joseph Miller [16] and independently Andre Nies, Frank Stephan and
Sebastiaan Terwijn [18] gave a complexity characterization of 2-random
sequences in terms of plain Kolmogorov complexity C(·): they are se-
quences that have infinitely many initial segments with O(1)-maximal
plain complexity (among the strings of the same length).

Later Miller [17] showed that prefix complexityK(·) can also be used in
a similar way: a sequence is 2-random if and only if it has infinitely many
initial segments with O(1)-maximal prefix complexity (which is n+K (n)
for strings of length n).

The known proofs of these results are quite involved; in this paper we
provide simple direct proofs for both of them.

In [16] Miller also gave a quantitative version of the first result: the 0′-
randomness deficiency of a sequence ω equals lim infn[n−C (ω1 . . . ωn)]+
O(1). (Our simplified proof can also be used to prove this.) We show (and
this seems to be a new result) that a similar quantitative result is also true
for prefix complexity: 0′-randomness deficiency equals lim infn[n+K (n)−
K (ω1 . . . ωn)] +O(1).

Introduction

The connection between complexity and randomness is one of the basic ideas
that motivated the development of algorithmic information theory and algo-
rithmic randomness theory. However, at first the definition of complexity (plain
complexity of a bit string, introduced by Ray Solomonoff [21] and Andrei Kol-
mogorov [11] as the minimal length of a program that produces this string)
and the definition of randomness (given by Per Martin-Löf [15]) were given
separately, and only later some connections between them became clear.
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Sasha Shen for useful discussion and the full rewrite of the text presented here!
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Leonid Levin [13, 9] and later Gregory Chaitin [6] introduced a modified
version of complexity, called prefix complexity and denoted usually byK (·), that
corresponds to self-delimiting programs. It turned out (see the papers of Claus-
Peter Schnorr [19], Levin [12], Chaitin [6]) that a bit sequence ω = ω1ω2 . . . is
Martin-Löf random if and only if supn[n − K (ω1 . . . ωn)] is finite. Moreover,
this supremum coincides with randomness deficiency (a quantitative version
of Martin-Löf definition of randomness suggested by Levin and Peter Gacs,
see [10]).

Let us recall the definition of randomness deficiency since it is less known
compared to other notions of algorithmic information theory. By Ω we denote
the Cantor space of infinite bit sequences.

• A basic function is a function f : Ω → Q+ whose value f(ω) is a non-
negative rational number that depends on a finite initial prefix of ω of
some length. Basic functions are constructive objects, so we can speak
about computable sequences of basic functions.

• A lower semicomputable function is a function f : Ω → R
+
(values are non-

negative reals and +∞) that is a pointwise upper bound of a computable
sequence of basic functions. Equivalent definition: a sum

∑

hi(·) where
hi(·) is a computable sequence of basic functions.

• A randomness test is a lower semicomputable function t such that the
integral

∫

t(ω)dP (ω) does not exceed 1. (Here P is the uniform Bernoulli
measure on Cantor space that corresponds to independent fair coin toss-
ings.)

• There exists a universal randomness test u(ω) that exceeds every other
one (up to O(1)-factor). We fix some universal randomness test u. Its
logarithm logu(ω) is called the randomness deficiency of ω and denoted
by d(ω). The randomness deficiency is defined up to O(1)-additive term
since different universal tests differ at most by a bounded factor.

The quantitative version of Schnorr–Levin theorem says that

d(ω) = sup
n

[n−K (ω1 . . . ωn)] +O(1).

So we can give an equivalent definition of randomness deficiency just as the
supremum in the right-hand side of this equation.

This statement looks a bit counterintuitive. One can expect that a sequence
is random if its initial segments (prefixes) have maximal possible complexity
(among all strings of the same length). But the maximal prefix complexity for
n-bit strings is n+K (n), not n, up to O(1) additive term. So why we compare
K (ω1 . . . ωn) to n, not to n+K (n)? Or why we consider prefix complexity and
not the plain one, for which the maximal complexity of n-bit string is indeed n?

The obstacle here is an old Martin-Löf observation: for every sequence ω the
difference n−C (ω1 . . . ωn), as well as the difference n+K (n)−K (ω1 . . . ωn), is
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unbounded. There are some workarounds, still: for example, instead of requiring
that n−C (ω1 . . . ωn) is bounded for all n, we can require it to be bounded for
infinitely many n, i.e., consider sequences such that lim infn[n−C (ω1 . . . ωn)] is
finite.1 It is easy to see that indeed this lim inf is finite for almost all sequences
(except for a set of zero measure). What are these sequences?

The answer was found by Joseph Miller [16] and independently by Andre
Nies, Frank Stephan and Sebastian Terwijn [18]. They proved that this class
of sequences coincides with the class of 2-random sequences, i.e., the sequences
that are Martin-Löf random even with an oracle for 0′ (the halting problem).
The proof in [16] is quite involved, and the proof in [18] uses special tools from
recursion theory (the low basis theorem). Some other approach was suggested
in [3], and later Chris Conidis [7] showed that one can avoid low basis theorem
in this way. Still Conidis’ argument is a bit complicated. In Section 1 we
provide a simple proof of Conidis’ result thus giving a simple proof of Miller–
Nies–Stephan-Terwijn characterization of 2-random sequences. Extending this
argument and using an effective version of Fatou lemma, we get also a new
simple proof for a quantitative version of this characterization from [16]:

lim inf[n− C (ω1 . . . ωn)] = d0
′

(ω) +O(1).

In the right-hand side d0
′

stands for the randomness deficiency relativized to
0′; this deficiency is finite when ω is 2-random.

Later Miller [17] got a similar result for prefix complexity: a sequence ω is 2-
random if and only if ω has infinitely many initial segments with O(1)-maximal
prefix complexity (which is n+K (n) for strings of length n), i.e., if

lim inf[n+K (n)−K (ω1 . . . ωn)]

is finite. The original proof was even more complicated than the proof for
plain complexity; it used van Lambalgen theorem about random pairs, Kučera
– Slaman result about random lower semicomputable reals and some other tools.
Some simplifications were found by Laurent Bienvenu and others (see Downey
and Hirschfeldt [8]), but even with these simplifications the proof remains quite
difficult. In Section 2 we present a much simpler proof.

Finally, in Section 3 we show that this result also has a quantitative version,
thus completing the picture:

d0
′

(ω) = supn−K 0
′

(ω1 . . . ωn) +O(1)

= lim inf[n− C (ω1 . . . ωn)] +O(1)

= lim inf[n+K (n)−K (ω1 . . . ωn)] +O(1) .

It is not clear whether this quantitative version can be extracted from Miller’s
argument. One can raise the question whether the same initial segments have

1The other (may be, more natural) approach is to consider the so-called monotone com-
plexity, or a priori complexity, that do not have this problem. We do not consider these
complexities in our paper.
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maximal plain or prefix complexity. In an upcomming paper we show this is
not the case: for every 3-random sequence, there exist a c and infinitely many
prefixes x such that n− C (x) ≤ c and n+K (n)−K (x) ≥ log logn− c.

Section 1 and 2–3 are (mostly) independent, so the readers interested only
in plain or prefix complexity can proceed directly to the corresponding part of
the paper.

1 Plain complexity and 2-randomness

This section is devoted to the Miller–Nies–Stephan–Terwijn characterization of
2-random sequences in terms of plain complexity, and it’s quantified form:

Theorem 1 (Miller).

d0
′

(ω) = lim inf[n− C (ω1 . . . ωn)] +O(1) .

First let us reproduce the proof of the easy direction (≤). We assume that
d0

′

(ω) equals d, and show that n−C (ω1 . . . ωn) ≥ d−O(1) for sufficiently large
n. Since

d0
′

(ω) = lim supn−K 0
′

(ω1, . . . , ωn)

(we omit O(1) terms here and later) we may assume that

K 0
′

(ω1 . . . ωm) ≤ m− d

for some m. Then we can use the additivity property2 for plain complexity [1],

C (a, b) = K (a|C (a, b)) + C (b|a,C (a, b)),

for a = ω1 . . . ωm and b = ωm+1 . . . ωn. Then we have

C (ω1 . . . ωn) ≤ C (a, b) ≤ K (a|C (a, b)) + C (b|C (a, b)).

The second term does not exceed |b|, i.e., n−m; it is enough to show, therefore,

that the first term is bounded by m− d, i.e., by K 0
′

(ω1, . . . , ωm). Indeed, the

condition C(a, b) tends to infinity as n → ∞, and limN K (x|N) ≤ K 0
′

(x).
(Indeed, we can approximate 0′ making N steps of enumeration, and for large
N this is enough.)

Now we switch to the other direction (≥). The qualitative version says that
a sequence ω such that n− C (ω1 . . . ωn) → ∞, is not 0′-random, and we start
by proving this version. So let us assume that C (ω1 . . . ωn) < n − c for all
sufficiently large n. To show that ω is not Martin-Löf 0′-random, we need to
cover ω by a 0′-effectively open set of small measure (uniformly).

Consider the set Un of sequences α such that C (α1 . . . αn) < n − c. This
is an effectively open set (uniformly in n) that has measure at most 2−c (since

2The direction (≤) that we need is quite simple: C (a, b) = C (a, b|C (a, b)), and
C (u, v|w) ≤ K (u|w) + C (v|w) by concatenation of the programs.
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there are less than 2n−c strings of complexity less than n − c). We know that
our sequence ω belongs to all Un for sufficiently large n (but we do not know
the threshold for “sufficiently large”). It remains to apply the following result of
Conidis [7] (for its applications and discussion see also [3] where this statement
was mentioned as a conjecture, and the revised version [4]).

Theorem 2 (Conidis). Let ε > 0 be a rational number and let U0, U1, . . . be a

sequence of uniformly effectively open sets of measure at most ε each. Then for

every rational ε′ > ε there exists a 0′-effectively open set V of measure at most ε′

that contains lim infn→∞ Un =
⋃

N

⋂

n≥N Un, and the 0′-enumeration algorithm

for V can be effectively found given ε, ε′, and the enumeration algorithm for Ui.

Proof. Let us denote by Uk..l the intersection Uk ∩ Uk+1 ∩ . . . ∩ Ul. The set V
will be constructed as U1..k1

∪ Uk1+1..k2
∪ . . . for some 0′-computable sequence

k1 < k2 < . . .; this guarantees that V is 0′-effectively open and that lim inf Ui ⊂
V . It remains to explain how we choose ki such that V has measure at most ε′.

Let us fix an increasing computable sequence ε < ε1 < ε2 < . . . < ε′. There
exists some k1 such that for every i > k1 the set

U1..k1
∪ Ui

has measure at most ε1. Indeed, if for some i the measure is greater than ε1,
then, adding Ui as a new term in the intersection (by increasing k1 up to i),
we decrease the measure of the intersection at least by ε1 − ε. (If A ∪ B has
measure greater than ε1 > ε while B itself thas measure at most ε, then A \B
has measure at least ε1−ε, so the measure of A decreases at least by ε1−ε after
intersecting it with B.) If the newly found ki does not satisfy the condition,
we repeat the process. Each time this happens, the measure of the intersection
decreases by at least ε1 − ε, hence this can happen only finitely many times.

For similar reasons we can then find k2 such that for every i the set

U1..k1
∪ Uk1+1..k2

∪ Ui

has measure at most ε2 for every i > k2. Indeed, the size of U1..k1
∪ Ui is

bounded by ε1, hence if the measure of the set above exceeds ε2, then there is
at least a (ε2 − ε1)-part of Uk1+1..k2

outside U1..k1
∪ Ui (in particular, outside

Ui). Thus adding Ui as a new term in the intersection Uk1+1..k2
decreases its

measure by at least ε2 − ε1; such a decrease may happen only finitely many
times.

We continue this construction for k3, k4 etc. Note that this construction is
0′-computable and the union

V = U1..k1
∪ Uk1+1..k2

∪ Uk2+1..k3
∪ . . .

is an 0′-effectively open cover of lim inf Un of measure at most ε′.

A more careful analysis of this argument allows us to get the statement of
Theorem 1 in weak form, with logarithmic precision. So we need to modify
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the argument. First, we formulate a version of Conidis’ theorem with functions
instead of sets (that also can be considered as a constructive version of Fatou’s
lemma).

Theorem 3. Let f1, f2, . . . be a series of uniformly lower semicomputable

functions on Cantor space such that
∫

fi(ω) dµ(x) does not exceed some ra-

tional ε > 0 for all i. Then for every ε′ > ε one can uniformly construct a

lower 0′-semicomputable function ϕ such that

lim inf fn(ω) ≤ ϕ(ω) for every ω, and

∫

ϕ(ω)dµ(ω) ≤ ε′.

We get the original Conidis’ result when fi are indicator functions of open
sets. In fact, the proof remains almost the same. For each function fi we
consider the set Ui below its graph, i.e., the set of pairs (ω, u) in Ω × R such
that 0 ≤ u ≤ fi(ω). The measure of this set equals

∫

fi(ω) dω. The intersec-
tion/union operations with these sets correspond to min/max operations with
the functions. So the same construction as before gives the function

ϕ(ω) = sup(f1..k1
(ω), fk1+1..k2

(ω), . . .)

where
fk..l(ω) = min(fk(ω), fk+1(ω), . . . , fl(ω)).

It is easy to see that lim infn fn(ω) ≤ ϕ(ω) (note that lim inf operation on func-
tions corresponds to the same operation on sets). Also functions fi..j are lower
semicomputable (minimum of a finite family of lowersemicomputable functions
is lower semicomputable), and the function ϕ is semicomputable with an oracle
that computes the sequence ki.

Theorem 3 is proved.
Now we use this theorem to show that if C(ω1 . . . ωn) < n−c for large n, then

d0
′

(ω) ≥ c − O(1). For that we need to construct a 0′-lower semicomputable
randomness test that exceeds 2c on all those ω.

One may try to let fn(ω) be equal to 2n−C (ω1...ωn). Then for all ω in
question we have fn(ω) > 2c for large n, and lim inf fn(ω) ≥ 2c. If the integrals
∫

fn(ω) dω were bounded, we could finish the proof by applying Theorem 3.
However, it is not the case: we know that fn(ω) exceeds 2

k on a set of measure
at most 2−k (for every k), but this is not enough for the integral bound.

To fix the problem, we change the definition of fn. For a binary string u,
let us define the function χxΩ that equals 1 on the extensions of x and equals
0 otherwise. Its integral is 2−|x|. Multiplying this function by 2|x|−m for some
m, we get a function with integral 2−m. Then consider the sum

fm(ω) =
∑

{x|C (x)<m}

2|x|−mχxΩ.

This sum contains less than 2m terms; each has integral 2−m, so the integral
of the sum is bounded by 1. On the other hand, if C (ω1 . . . ωn) < n − c for
all large enough c, the sum for fm(ω) includes a term of size at least 2c for all
sufficiently large m.

This observation finished the proof of Theorem 1.
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2 Prefix complexity and 2-randomness

In this section we provide a simple proof of the following result of Miller:

Theorem 4 (Miller). A sequence ω is 2-random (Martin-Löf random with or-

acle 0′) if and only if lim infn[n+K (n)−K (ω1 . . . ωn)] is finite.

In the next section we will prove a quantitative version of this result: this
lim inf equals d0

′

(ω), and this will require a more complicated proof. However,
in one of the directions the quantitative result is equally simple, so we start with
this direction.

Let us prove that d0
′

(ω) ≤ lim inf[n+K (n)−K (ω1 . . . ωn)]. We use almost
the same argument as for Theorem 1. Since d0

′

(ω) is equal to lim infm[m −

K 0
′

(ω1 . . . ωm) up to O(1) additive term, we assume that K 0
′

(ω1 . . . ωm) =
m− d and show that K (ω1 . . . ωn) ≤ n+K (n)− d+O(1) for large n.

Let a = ω1 . . . ωm and b = ωm+1 . . . ωn. Using the bound for the prefix
complexity of a pair K (u, v) ≤ K (u) +K (v|u) +O(1) (also in the conditional
version), we note that (up to O(1)-terms)

K (ω1 . . . ωn) ≤ K (n) +K (ω1 . . . ωn|n) ≤

≤ K (n) +K (a, b|n) ≤

≤ K (n) +K (a|n) +K (b|a, n).

It remains to note that

• the last term does not exceedm−n (the condition is enough to reconstruct
m − n, and the prefix complexity of a string when its length is given, is
bounded by this length);

• for sufficiently large n the value of K (a|n) does not exceed K 0
′

(a) (the
required part of 0′ can be reconstructed during n enumeration steps).

So, for large n the right-hand side is bounded by

K (n) +K 0
′

(a) + n−m ≤ K (n) + (m− d) + n−m = n+K (n)− d,

as required.
It remains to prove the (qualitative) statement in the other direction:

Let ω be a binary sequence such that K (ω1 . . . ωn)− (n+K (n)) →
−∞. Then ω is not 2-random.

It will be done in the rest of the section, in several steps.

2.1 Slow convergence

Let us start with the following simple definition. Let ai and bi be two series
with non-negative terms. We say that ai-tails are bounded by bi-tails if

(aN + aN+1 + . . .) ≤ c(bN + bN+1 + . . .)
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for some c and all N . We assume here that
∑

ai converges (but
∑

bi may
diverge). Reformulation: ai-tails are not bounded by bi-tails if the ratio

aN + aN+1 + . . .

bN + bN+1 + . . .

is unbounded.
Examples:
1. Let m(i) be the (discrete) a priori probability of i, the maximal (up to

a constant) lower semicomputable converging series; we may let m(i) = 2−K (i)

(see e.g., [14] or [20]). Then the tails of every convergent computable series
∑

ai
are bounded by the tails of the series

∑

m(i). Indeed, ai ≤ O(m(i)) implies
the same relation for tails.

2. On the other hand, for every lower semicomputable series there exist a
computable series with rational terms that has the same limit and has bigger
tails (that bound the tails of the first one). Indeed, each lower semicomputable
term can be split into a sum of a computable series, and we can add all the sum-
mands (for all terms) one by one; this delay can only increase the tails. There-
fore, being bounded by tails of some convergent computable series is equivalent
to being bounded by the tails of

∑

m(i).

2.2 Lower semicomputable tests and 2-randomness

Remind from the introduction that Martin-Löf randomness can be defined using
randomness tests (lower semicomputable non-negative functions on the Cantor
space that have integral at most 1, see the Introduction). It turns out that lower
semicomputable tests can be used in a more ingenious way to show that some
sequence is not 2-random (not ML-random relative to the halting problem).

Let fi(·) be a sequence of (uniformly) lower semicomputable non-negative
functions on Ω. Assume that the sum

∑

i

∫

fi is finite. Thus
∑

i fi(·) is a lower
semicomputable test, and every sequence ω such that

∑

i fi(ω) diverges, is not
ML-random. Moreover, the following statement (where both the condition and
the claim are weaker) is true:

Lemma 5. If the tails of the series
∑

i fi(ω) are not bounded by any computable

series, then ω is not 0′-random.

As we have seen, we may use for comparison the series
∑

im(i) instead of
computable series.

Proof. Without loss of generality we may assume that f1(·), f2(·), . . . is a com-
putable sequence of basic functions (splitting each semicomputable term into a
sum of computable terms, we only increase the tails).

To show that every ω with this property (very slow convergence) is not 0′-
random, we need to construct for every rational ε > 0 a 0′-effectively open set
of measure at most ε that covers (all such) ω. This construction goes as follows.
Consider computable increasing sequences of basic functions Si : Ω → Q and
rational numbers ti (“thresholds”) constructed in the following way. We start
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with zero function S0 and zero threshold t0. Then for each i = 1, 2, 3, . . . we do
the following steps:

Ω

new Si

old Si

ti−1

ti

> ε

• First, let Si(ω) = Si−1(ω) + fi(ω), and ti = ti−1.

• If after that the measure of the set {ω|Si(ω) > ti} exceeds ε, increase ti
to get rid of this excess (minimally).

• Change Si as follows: Si(ω) := max(Si(ω), ti)

If the two last “correction steps” were omitted, the sequence Si would con-
verge to

∑

i fi. The correction steps make functions Si bigger (small values of
Si are replaced by the threshold). Note that the second step is well defined,
since Si is a basic function, and ti will be one of its finitely many values. The
following two invariant relations are easy to check:

• The measure of the set {ω|Si(ω) > ti} is bounded by ε. [Indeed, the
second step restores this relation if it was destroyed by the first step, and
the third step does not change the set in question, since the inequality is
strict.]

• εti+
∫

Ω[Si(ω)−ti] dω ≤
∑i

k=0

∫

Ω fk(ω)dω. [Indeed, the first step increases
the integral in the left-hand side by

∫

Ω
fi, and two other steps (combined)

only decrease the lefthand side (the horizontal sections exceeding ε are
replaced by ε, see the illustration).]

Since the right-hand side of the last inequality is bounded by assumption, the
sequence ti is a bounded (computable increasing) sequence, and its limit T =
lim ti is lower semicomputable (and therefore 0′-computable). The limit of Si

is some lower semicomputable function S(·).
Recall that we have to construct a 0′-effectively open set of small measure

that covers all ω where tails of fi exceed tails of all converging computable
series. This set is defined as the set Wε of all ω such that S(ω) > T . We need
to check that this set works:

9



• Wε is 0′-effectively open (uniformly in ε), since T is 0′-computable and S
is lower semicomputable (even without 0′-oracle).

• The measure of Wε does not exceed ε. Indeed, if it does, then the mea-
sure of the set {ω|Si(ω) > T } would exceed ε for some i, which would
immediately make the threshold greater than its limit value T .

• Finally, we need to show that ω ∈ Wε if the tails of the series
∑

i fi(ω) are
not bounded by tails of any computable converging series. In our case we
compare it with the convergence ti → T , i.e., with the series

∑

(ti− ti−1).
Indeed, our assumption guarantees that some tail fi(ω) + fi+1(ω) + . . .
exceeds the distance T − ti−1, and this implies that S(ω) > T (since we
add fn(ω) at each step, starting from the same point ti−1; additional
increases are possible, too).

2.3 Proof of Theorem 4

Now we are ready to finish the proof of Theorem 4 by applying Lemma 5 to
the sum used in Gács’ formula for the universal lower semicomputable test. We
already mentioned the formula for randomness deficiency:

d(ω) = sup
n

[n−K (ω1 . . . ωn)] +O(1).

It is convenient to rewrite it in exponential form. Namely, let m(x) be the
universal discrete semimeasure m(x) = 2−K(x), and let P (x) be the uniform
measure of the interval xΩ, i.e., P (x) = 2−|x|. Then for the universal test
u(ω) = 2d(ω) we get (up to O(1)-factors in both directions)

u(ω) = max
x≺ω

m(x)

P (x)

where the maximum is taken over prefixes x of ω. Gacs [10] showed not only
this formula, but also a similar formula where maximum is replaced by sum:

u(ω) =
∑

x≺ω

m(x)

P (x)

(See [2] for the details.) In fact, we only need to know that the right hand side
of this formula has finite integral. For a fixed x the integral of the corresponding
term is m(x), so the entire integral is

∑

xm(x) ≤ 1.
To prove Theorem 4, we apply Lemma 5 to the sequence

fi(ω) = m(x)/P (x) = 2i−K (ω1...ωi)

and our assumption says that the ratio fi(ω)/m(i) tends to infinity. (Recall
that m(i) = 2−K (i).) So the tails of the series fi(ω) are not bounded by the
tails of the series m(i) and therefore not bounded by tails of any computable
converging series (being maximal,

∑

m(i) has O(1)-bigger tails). The theorem
is proven.
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3 Prefix-free complexity: the quantitative re-

sult

This section is devoted to the quantitative version of the result of the previous
section.

Theorem 6.

d0
′

(ω) = lim inf
i

[i+K (i)−K (ω1 . . . ωi)] +O(1) .

In the previous section we already proved the ≤-inequality; now we need to
prove the reverse one. This follows from Lemma 7 and in its proof we use a
quantitative version of Lemma 5.

Lemma 7. Let fi(·) be a series of lower semicomputable functions on the Can-

tor space such that
∑

i

∫

fi < ∞. Then there exist a 0′-lower-semicomputable

function Q(·) on Cantor space with finite integral such that

lim inf
i

[

fi(ω)

m(i)

]

≤ O(Q(ω)) .

The ≥-inequality of Theorem 6 then follows from this lemma if we let (as
before)

fi(ω) = m(ω1 . . . ωi)/P (ω1 . . . ωi) = 2i−K (ω1...ωi) .

The lemma gives us a function Q(·) that is a 0′-lower semicomputable test (up
to a constant: the integral of Q may exceed 1, but is finite) and

logQ(ω) ≥ lim inf [ (i−K (ω1 . . . ωi)) +K (i) ] +O(1)

for every ω. Since d0
′

(ω) is universal, we get the desired ≥-inequality.
It remains to prove Lemma 7. As we have done in Section 2, we convert

functions fi : Ω → R to sets in Ω × R. Then we apply a version of Lemma 5
(Lemma 8 below) to functions defined on this space.

Let us first explain what are the changes in Lemma 5. We considered a
sequence of functions gi(x) and then the set of points x where the ratios

gi(x) + gi+1(x) + . . .

m(i) +m(i+ 1) + . . .

are not bounded (we have changed the notation and write gi instead of fi to
avoid confusion, since now the lemma is applied not to fi but to other functions).
The change is that now we consider a larger set of points where these ratios are
not bounded by some specific constant (1, though any other constant would
work), and cover it by a 0′-effectively open set of finite measure. (The entire
space Ω × R now has infinite measure, so this makes sense.) Here is the exact
statement:
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Lemma 8. Consider a sequence of uniformly lower semicomputable non-nega-

tive functions gi : Ω × R≥0 → R≥0 such that
∑

i

∫

Ω×R≥0

gi is finite, where the

integrals are taken with respect to the product of standard measures on Cantor

space and R≥0. Then there exists a 0′-effectively open set W ⊆ Ω × R≥0 of

finite measure that covers all points z such that

gi(z) + gi+1(z) + . . . > m(i) +m(i+ 1) + . . .

for some i.

In this lemma we speak about effectively open sets and lower semicomputable
functions for the space Ω× R≥0, so we need to define them formally. An effec-

tively open set is a union of an enumerable family of basic open sets of the form
xΩ × (a, b) where xΩ is an interval in the Cantor space and (a, b) is an open
interval with rational endpoints; the interval [0, b) can also be used instead of
(a, b). A lower semicomputable function g : Ω × R≥0 → R≥0 can be defined as
a function such that for every rational r the preimage {(ω, u)|g(ω, u) < r} is
effectively open uniformly in r. However, for the proof it is convenient to use
an equivalent definition of lower semicomputable functions as pointwise limit of
increasing computable sequences of basic functions. Here a basic function is a
non-negative function b(ω, r) that depends only on some finite prefix of ω (of
some length m) and for each of 2m values of ω is a piecewise constant function
of r that has finite support, and rational breakpoints and values. Such a func-
tion is a constructive object, so we can speak about computable sequences of
basic functions in which the breakpoints and the number of breakpoints of each
basic function are computable. Taking differences, we can also say that a lower
semicomputable function is a sum of a series whose terms are basic functions.

Proof. We use the same construction as in the proof of Lemma 5 (see figure 3),
but now the threshold ε is large; we will see later how large ε should be. With-
out loss, we can assume the functions gi to be computable (rather than lower
semicomputable) basic functions defined on Ω×R≥0; indeed, by delaying terms,
the tails only increase, making the statement only stronger. The functions Si

are now basic functions too, and ti are still rational numbers. Recall the con-
struction: we first add gi (was fi) to Si−1, then take minimal ti such that the
set Si(·) > ti has measure at most ε, and then let Si := max(Si, ti). The choice
of ti now is a more difficult task, but since ε is rational, functions Si are basic,
and the set Si(·) > ti is non-increasing in ti, the number ti is rational and can
be computed from i.

The construction of Si and ti depend on ε, so we use the notation Sε
i and

tεi for them. The set W ε where the function limSε
i exceeds T ε = lim tεi is 0′-

effectively open uniformly in ε. Note that the limit T ε is finite and the set
W ε has measure at most ε (for every ε) for the same reasons as before; more
precisely, T ε = O(1/ε). (T εε ≤

∑

i

∫

gi(z)dz ≤ O(1).) We need only to prove
that for some ε the set W ε contains all the points z such that

gi(z) + gi+1(z) + . . . > m(i) +m(i+ 1) + . . .

12



Ω

R

R

≤ ε

Si−1

ti−1

ai

fi/ai
ω

r

gi(ω, r)

Figure 1: Constructing ti and Si, and choice of gi(ω, r).

for some i.
This is guaranteed if

m(i) +m(i+ 1) + . . . ≥ ∆tεi +∆tεi+1 + . . .

where ∆tεi is defined as the difference ti − ti−1 (in the construction for the
corresponding value of ε). We show that ∆tεi ≤ m(i) for large ε. Since ∆tεi is
computable (given i and ε) and

∑

i

∆tεi = O(1/ε),

we can estimate ∆tεi :
∆tεi = O(m(i)2K (ε)/ε). (∗)

Indeed, the sum

∑

ε,i

2−K (ε)ε∆tεi ≤
∑

ε

2−K (ε)εO(1/ε) = O
(

∑

ε

2−K (ε)
)

is finite, so
2−K (ε)ε∆tεi ≤ O(m(i, ε)) ≤ O(m(i)).

Whatever the O-constant in (∗) is, we can ensure that ∆tεi < m(i) if we take
ε large and simple enough, i.e., ε = 2k for large k. As we have seen, such ε
finishes the proof of Lemma 8.
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Using this result, we can now prove Lemma 7 (and therefore finish the proof
of Theorem 6).

Proof. Let a(i) be a computable sequence of rational numbers that converges
slower than m(i) in the sense that a(i) + a(i+ 1)+ . . . > m(i) +m(i+ 1)+ . . .
for all i. By universality of m, it suffices to prove the statement of the lemma
where m(n) is replaced by a(n), i.e., to construct Q such that

Q(ω) ≥ lim inf
i

[

fi(ω)

a(i)

]

.

First we construct the functions gi(ω, u) to which Lemma 8 is applied. (Remem-
ber that ω is a point in Cantor space, and u is a non-negative real number.)
Consider the function fi/a(i) and the points below its graph, i.e., pairs (ω, u)
such that 0 ≤ u < fi(ω)/a(i). The area of this “lower-graph” is

∫

fi/a(i). Then
we consider the indicator function of this set multiplied by a(i): let gi(ω, u) be
equal to a(i) if 0 ≤ u < fi(ω)/a(i) and zero otherwise (see also figure 3). The
integral of gi (over Ω × R) equals

∫

fi, so the sum of integrals is finite. The
functions are uniformly lower semicomputable.

Applying Lemma 8, we get a 0′-effectively open set W ⊂ Ω × R≥0 of finite
measure that contains all pairs (ω, u) such that

gi(ω, u) + gi+1(ω, u) + . . . > m(i) +m(i+ 1) + . . .

Note that that includes all points (ω, u) such that

0 ≤ u < lim inf
i

[

fi(ω)

a(i)

]

.

Indeed, for such ω and u the point (ω, u) is under the graph of fi/a(i) for large
enough i, so gi(ω, u) = ai for large enough i and

gi(ω, u) + gi+1(ω, u) + . . . = a(i) + a(i+ 1) + . . . > m(i) +m(i+ 1) + . . .

for large enough i.
Now, having the 0′-effectively open set W , we define the function Q as a

maximal function such that the area under this function is in W :

Q(ω) = sup{v|(ω, u) ∈ W for all u in [0, v)}.

Note that this function is lower semicomputable for every effectively open W
with the same oracle; the area under its graph is included in W and therefore
the integral of Q does not exceed the area of W and is finite. As we already
noted, Q is an upper bound for lim inf in question. Lemma 7 is proved.
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