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DIFFERENT SIMILARITIES
Milo 3 S. Kurili ]

Abstract

We establish the hierarchy among twelve equivalence oglat{similari-
ties) on the class of relational structures: the equalktg, isomorphism,
the equimorphism, the full relation, four similarities dfictures induced
by similarities of their self-embedding monoids and inéet®ns of these
equivalence relations. In particular, fixing a langudgend a cardinak,
we consider the interplay between the restrictions of tiseadarities to the
classMod, () of all L-structures of size:. It turns out that, concerning
the number of different similarities and the shape of theesponding Hasse
diagram, the class of all structures naturally splits irtceé parts: finite
structures, infinite structures of unary languages, anditafstructures of
non-unary languages (where all these similarities aremfft).
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1 Introduction

If X is a relational structureEmb(X) the monoid of its self-embeddings and
P(X) = {f[X] : f € Emb(X)} the set of copies oK insideX, then the poset
(P(X), C) (isomorphic to the inverse of the right Green’s orderfanb (X)) con-
tains a certain information abot{ and the equalityP(X) = P(Y) defines an
equivalence relation on the class of all relational stmestu WritingP(X) instead
of (P(X), C), some coarser classifications of structures are obtainie iqual-
ity is replaced by the following weaker condition®(X) = P(Y) (implied by
Emb(X) = Emb(Y)), sq P(X) = sqP(Y) (wheresq P denotes the separative quo-
tient of a poseP), andP(X) = P(Y) (the forcing equivalence of posets of copies).
Concerning the last (and the coarsest non-trivial) sintyaelation we note that
the forcing related properties of posets of copies was tigated for countable
structures in general in|[6], for equivalence relations sindailar structures in [7],
for ordinals in [8], for scattered and non-scattered lirarders in[[9] and[[11], and
for several ultrahomogeneous structures in [10],[L1],[48d [13].

In this paper we investigate the interplay between the fouiarity relations
mentioned above and the similarities defined by the conditih = Y, X 2 Y,
andX 2 Y (equimorphism, bi-embeddability).
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In Section(2 we establish the hierarchy displayed in Figyrevtich, more
precisely, contains the implications between the sintiégion the class gbairs
(X, L), whereL is a language an¥ an L-structure. (The language must be in-
cluded in the game because, otherwise, since the strukture (w, (())) can be
regarded as ah-structure for each languadeof size 1, it is not clear whaf = Y
means). So, the conditions displayed in the diagram defirenle pairgX, L)
and(Y, Ly) are similar (clearly, the equalitf; = L, follows from X = Y and
X 2 Y and we omit it). Thus, for example, line denotes the statement that
equimorphic structures have forcing-equivalent posetopies.

In Sectior B we fix a languagk and a setX and restrict our analysis to the
classMod,(X) of L-structures with the domaiX. It turns out that for a non-
unary languagd. and infinite setX in the diagram from Figuriel 1 restricted to the
classMody (k) all the implicationsa - o are proper and there are no new impli-
cations (except the ones following from transitivity). O tother hand, for finite
structures or unary languages the diagram collapses sigmily.

A few words on notation. Let = (R; : i € I) be arelational language, where
arp,(R;) = n; € N, € I and letX be a non empty set. K = (X, (p; : i € I))
is an L-structure and) # A C X, then(A, (p; | A :i € I)) is asubstructureof
X, wherep; | A= p;n A", forie I. f Y = (Y, (0; : i € I)) is anL-structure
too, a mappingf : X — Y is anembeddingwe write f : X — Y) iff f is an
injection and for alli € I andzy,...z,, € X we have(zi,...,z,,) € p; &
(f(x1),..., f(zn,)) € 0;. LetEmb(X,Y) denote the set of such embeddings and
PX,Y)={BCY :(B,(o; | B:iel))=2X}={f[X]:[feEmbXY)}.

In particular, Emb(X) := Emb(X,X) andP(X) := {f[X] : f € Emb(X)} =
{ACX: (A (pil A:iel)) =X} If f e Emb(X,Y) is a surjection, it is an
isomorphismwe write f € Iso(X,Y), and the structureX andY areisomorphic
in notationX = Y. If, in particular,Y = X, thenf is called anautomorphisnof
the structuréX andAut(X) denotes the set of all such mappings. Structiresd
Y are calledequimorphicin notationX = Y, iff X — Y andY — X.

Theright Green’s pre-order<? on the monoid Emb X o, id x ) is defined by:

f =P giff foh = g, for someh € EmbX. Theright Green’s equivalence
relation ~* on Emb X, given by: f ~% ¢ iff f <% gandg < f, determines
the antisymmetric quotierEmb X/~ <%}, theright Green’s order It is easy
to check thatEmb X/~%, <) ~ (P(X), D) so the results of this paper can be
regarded as statements about transformation semigroups.

A partial orderP = (P, <) is calledseparativeff for eachp, ¢ € P satisfying
p £ qthere isr € P such that < p andr 1 ¢. Theseparative modificationf
P is the pre-ordesm P = (P, <*), wherep <* ¢ iff Vr < p 3s <r s < q. The
separative quotientf PP is the separative partial ordeq P = (P/="*, <), where
p="qep<*qAnq<*p and [p] <[q] & p <* ¢. If Pis a separative partial
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the full relation

rosqP(X) 2 rosqP(Y

sqP(X) = sqP(Y)

X=YALi = Lo
Figure 1: The hierarchy of similarities between relatiostalictures

order, byro P we will denote theBoolean completiof P. For a pre-ordei® let
ge(P) = {Vp|G] : G is aP-generic filter ovelV }. Two pre-order® andQ are said
to beforcing equivalentin notationP = Q, iff ge(P) = ge(Q).

Fact 1.1 LetP,Q andP;, i € I, be partial orderings. Then
@P=ZQ=smP2smQ =sqP =sqQ = rosqP ZrosqQ = P=Q;
O)P=smP=sqP = (rosqP)";

(©) sa([Lics Pi) = [LicrsaPi

2 Implications

In this section we establish the implicatioms o from Figurel1l. In Sectioh]3 we
will show that, regarding the class of all relational stures, there are no new im-
plications in Figur&ll (except the ones which follow from ttansitivity). First, the
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implicationsa, b, ¢, d, €, g, h, k, [, ando are evident, whilg€, j andm follow from
Fact{1.1(a). In the sequel we prove the equivalence; P(X) = rosqP(Y) <
P(X) = P(Y) and the implicationg andn (see Theoremnis 2.7 ahd 2.10).

2.1 Intermezzo: the homogeneity of Boolean completions

Here we prove that the Boolean completion of the poset ofexopf a relational
structure is a homogeneous Boolean algebra. We recall thattial orderP =

(P, <) is calledhomogeneousf it has a largest element arfl = p |, for each

p € P and that a Boolean algebkais called ahomogeneous Boolean algebfe

B = b, for eachb € BT. It is known that the Boolean completion of a separative
homogeneous partial ord&ris a homogeneous Boolean algebra (5ée [4], p. 181)
and, by Theorem 2.2 of [6], the posets of the fdP(X) are homogeneous but it is
easy to see that they are not separative in most of the cases &der to prove
that the Boolean completions sq P(X) are homogeneous algebras, we show that
in the theorem mentioned above the separativitfP cin be omitted and that the
assumption of homogeneity can be relaxed. Namely, definiparizal orderP to

be quasi homogeneouf for eachp € P there is a dense subset®isomorphic

to a dense subset pf|,, we have the following generalization.

Theorem 2.1 The Boolean completion of a quasi homogeneous partial drder
a homogeneous Boolean algebra.

Proof. The statement is a consequence of the following two clainasnély, iflP is
a quasi homogeneous partial ordering, then, by Claiinsg3 R s a separative quasi
homogeneous partial order and, by Claim 2.3, the algeksq P is homogeneous.

Claim 2.2 The separative quotient of a quasi homogeneous partialrasdguasi
homogeneous.

Proof. LetP = (P <) be a quasi homogeneous partial ordel® = (P/=*, <)
andp € P. Let D be adense subsetBfandf : (D, <) — (pJ, <) an embedding
such thatf[D] is a dense subset pf|. First we prove that

Vg,reD (¢ <" re f(q) <7 f(r). (1)

Letg,r € D. If ¢ <* r, then eacls < ¢ is compatible withr and we prove that
eachu < f(q) is compatible withf(r). If u < f(q), thenu < p and, sincef[D]
is dense irp |, there iss € D such thatf(s) < w. Sincef is an embedding and
f(s) < f(q) we haves < g and, since; <* r, there ist < s, r, and, moreover
there ist’ € D such that’ < ¢ which impliesf(t') < f(s) <wandf(t') < f(r).
Thusu L f(r).
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Assuming thatf(q) <* f(r) ands < ¢ we show thats [ r. If s < ¢ and
s’ € D, wheres’ < s, then f(s') < f(q) and, sincef(q) <* f(r), there is
v < f(s'), f(r) < p. Sincef[D] is dense i, there ist € D such thatf(¢) < v.
Sincef is an embedding we have< s’,r and, hences / r. So [1) is true.

It is evident that the se® := {[¢] : ¢ € D} is a dense suborder of the partial
order(P/=*, <) and we prove that the mapping

F:(D,<) — ([p]}, <),

given by F'([q]) = [f(¢)], is an embedding. First, far,» € D by (1) we have
[q) = [r] iff ¢ = riff ¢ <*rAr <*qiff flq) <* f(r) A f(r) < f(g) iff
flq) =" f(r)iff [f(q)] = [f(r)]iff F([g]) = F([r]) and, thusF is a well defined
injection. Second, fog € D we havef(q) < p, which impliesf(q) <* p and,
hence,[f(q)] < [p], that isF([q]) € [p] J. ThusF[D] C [p] |. Finally, by (1),
for g,r € D we havelg] < [r] iff ¢ <* 7 iff f(q) <* f(r)iff [f(q)] < [f(r)] iff
F([q]) € F([r]) and, thusF is a strong homomorphism.

Now we prove thaf'[D] is a dense set in the posép] |, <). If [¢] < [p], then
there iss < p, ¢ and, sincef[D] is dense irp|, there isu € D such thatf (u) < s.
Now, f(u) < g implies f(u) <* q thusF([u]) = [f(«)] < [¢] andF([u]) € F[D).

Thus the partial ordeiq P is quasi homogeneous indeed. O

Claim 2.3 The Boolean completion of a separative quasi homogeneotiglpa
ordering is a homogeneous complete Boolean algebra.

Proof. Let P = (P <) be a separative quasi homogeneous partial order. First we
show that

Vpe P roP =Zro(pl). (2)

If p € P, then there is a dense subdetof P and an embedding : D — p |
such thatf[D] is a dense subset pfl.. ThusD and f[D] are isomorphic separative
posets, which implies thab D = ro f[D]. In addition, D is a dense suborder
of the separative ordéP, which, by the uniqueness of the Boolean completion,
impliesro P = ro D and, similarly,ro f[D] = ro(p]) and [2) is true.

LetB = roP, b € B+ and w.l.0.g. suppose thitis a dense suborder &f".
Then there i € P such thatp <p b. Clearly the setp ) " P = (pl)pisa
dense suborder of the relative algelypal )z, which implies(p ) = ro((p {)p)
so, by [2),(p!)s = roP = B. It is well known that, ifB is ac-complete Boolean
algebraa,b € B,a < bandB = a |, thenB = b (seel[4], p. 180). So we have
bl= B. |
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Example 2.4 Clearly homogeneous partial orders are quasi homogenbkouthe
converse is not true. L& be the real line and

]P>=<{(a,b] :a,be]R{/\a<b}U{R},C>.

Then forp = (a,b] we havep |2 P, since the largest element Bfis not the
supremum of two smaller elements. THRBI$s not a homogeneous partial order.
On the other hand, if : R — (a, b) is an isomorphism, then it is easy to show that
the mappingF' : P — p| defined byF'(R) = p andF((c,d]) = (f(c), f(d)] is an
embedding and thaf[P] is a dense subset pf,. Thus the partial orddP is quasi
homogeneous. We note thHais, in addition, separative.

Theorem 2.5 For each relational structuréX the Boolean completiorp sq P(X)
of the poseP(X) is a homogeneous complete Boolean algebra, forcing eqgnval
to P(X). All generic extensions (X) are elementarily equivalent.

Proof. By Theorem 2.2 of([6] the posé(X) is homogeneous and, by Theorem
[2.1,rosqP(X) is a homogeneousthe algebra. By 1.1(b) the p@3&ts and
rosqP(X) are forcing equivalent. By Theorem 4.3 of [6] either P(X)| = 1,
and then all generic extensions are trivial,sqP(X) is an atomless poset, and
thenB := rosqP(X) is an infinite homogeneous complete Boolean algebra. This
implies that for each, b € B\ {0,1} there isf € Aut(B) such thatf(a) = b (see
[4], Proposition 9.13) and, hend&" is a weakly homogeneous partial order (we
recall that a partial orddP = (P, <) is calledweakly homogeneouf for each
p,q € P thereisf € Aut(P) such thatf(p) £ ¢). By a known fact concerning
weakly homogeneous partial orders (dele [5], p. 245), foh santencey of the
language of set theory we havel ¢ or 1 I- —¢p. Thus all generic extensions by
P(X) satisfy the same set of sentences. O

2.2 Forcing-equivalence and isomorphism of Boolean comglens

Here we show that the posets of copies of two structures acefpequivalent iff
their Boolean completions are isomorphic.

Fact 2.6 If B and C are complete Boolean algebras such that sdiageneric
extension is equal to sonfegeneric extension, then

(a) There areh € B andc € C such thath = ¢ (see [3], p. 267);

(b) If B andC are homogeneous algebras, ther= C. So,B=C < B = C.

Proof. (b) If b € B andc € C are the elements from (a), by the homogeneity we
haveB = b | andC = ¢ and, henceB = C. a
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Theorem 2.7 LetX andY be arbitrary relational structures. Then
@) P(X) =P(Y) iff rosqP(X) ZrosqP(Y);
(b) The collectionge P(X) andge P(Y) are either disjoint or equal.

Proof. (a) By Fact1.ll(b), FaEt2d.6(b) and Theolem &) = P(Y) iff rosq P(X)
=rosqP(Y) iff rosqP(X) = rosqP(Y).

(b) If geP(X) N geP(Y) # 0, then by FacE1]1(b) and FdciR.6(b) we have
rosqP(X) = rosqP(Y), which impliesge(rosqP(X)) = ge(rosqP(Y)), that is
ge P(X) = ge P(Y). O

2.3 Isomorphic structures, equimorphic structures

In this section we prove that the posets of copies of isoniorpésp. equimorphic)
structures are isomorphic (resp. have isomorphic Booleamptetions). We will
use the following elementary fact.

Fact 2.8 Let (P, <) be a pre-order angh € P. Then

(a) If G is alP-generic filter over andp € G, thenG N p| is ap|-generic
filter overV and V3 [G] = V,,| [G Npl];

(b) If H is apl-generic filter ovell/, thenH 1 is alP-generic filter ovell” and
Vol [H] = Vp[H1].

Lemma 2.9 If X andY are structures of the same languade,: X — Y, and
C = h[X], then the mapping” : P(X) — (C |)px,v) defined byF'(A) = h[A],
for A € P(X), is an isomorphism of the posef8(X), C) and ((C'|)px,v), C)-

Proof. For A € P(X) there isp : X — X such thatp[X] = A and, clearly,
hoy: X =Y, thushlp[X]] = h[A] € P(X,Y) andh[A] C h[X] = C, which
implies thath[A] € (C'|)px,v)- SOF[P(X)] C (C)px,v)-

Sinceh is an injection, for eacld, B € P(X) we haveF(A) C F(B) iff
h[A] C h[B]iff h=1[n[A]] € h=1[n[B]]iff A C B,thusF is an embedding.

If D € P(X,Y)andD cC C,thenh[h~1[D]] = D and the surjective restriction
h | h='[D] : h~'[D] — D is an isomorphism, which impliels~![D] € P(X). In
addition F(h=1[D]) = h[h~![D]] = D thusF is onto. O

Theorem 2.10 If X andY are structures of the same relational language, then
@Xz2Y = PX)2P(Y),
)X =Y = rosqP(X) ZrosqP(Y).
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Proof. (a) If h : X — Y is an isomorphism, then, by LemrhaR(®,(X), C) =
(P(X,Y), C) and, clearly(P(X,Y), C) = (P(Y), C).

(b)Letf:X—=Y,¢9:Y— XandP(Y)t={SCY :3BeP(Y) BC S}.

First we show thaP(X,Y) := {h[X] | h : X — Y} is a dense suborder of
(P(Y)1,C). If C € P(X,Y) andh : X — Y, whereC' = h[X], then, clearly,
hog:Y — Y and, hencehlg[Y]] € P(Y) andh[g[Y]] C h[X] = C, which
impliesC € P(Y) 1. ThusP(X,Y) C P(Y) 1. LetS € P(Y) 1, B € P(Y), where
B c Sandy : Y — Y, whereB = ¢[Y]. Now¢ o f : X — Y and, hence,
Y[fIX]] € P(X,Y) andy[f[X]] C ¢[Y] = B C S. ThusP(X,Y) is dense in
(P(Y) 1, C). SinceP(Y) is dense inNP(Y) 1, C) as well, we have

(P(X,Y), C) = (P(Y), ). ®3)

Now let 1V be a generic extension B(Y). By (3) W = Vp(x v)[G], whereG is
alP(X,Y)-generic filter ovel/. LetC' € G. By Facl2.8(a) we havepx v)[G] =
Vo [G N C ] and, if F @ (P(X),C) — ((C |)px,y), C) is the isomorphism
defined in Lemma2]9, theH := F~1[G n C ] is aP(X)-generic filter ovei/
and VCJ,[G NnCl = V]P(X) [H]. ThusW = V]P(X) [H] and, by Theorer_217(b),
P(X) = P(Y). Now, by Theorenmh 2]7(a)p sq P(X) = rosq P(Y). O

3 The hierarchy of similarities on the class Mod (X)

Now we restrict our consideration to some smaller classedtrottures. IfL =
(R; :i € I)isalanguageX afixed setang = (p; : i € I) € Intz(X), we will
abuse notation writin@(p) instead ofP(( X, p)) and(P((X, p)), C) whenever the
context admits it. So, restricting our similarity relatioto the seMod (X) or,
equivalently, to the corresponding set of interpretatidns;, (X), we obtain the
following equivalence relations: for = (p; : i € I),0 = (0; : i € I) € Intp(X)
(writing p & o instead of( X, p) = (X, o) and similarly forp = o) we define

proo S p=0 p~e 0 < P(p) =P(o)
p~ioePp)=Plo)Ap=o  pr~roesqP(p) =ZsqPo)Ap 2o
prooePlp)=Plo)A\p=o  pr~goesqP(p) ZsqP(o)

p~3 oS pEo prgo S p2o0

p~a0 < P(p) =Po) p~10 0 < P(p) =P(o)
prsoePp)=ZPo)Ap=o p~pos0=0.

Then some implications between the similarities on th&/ket, (X ) are displayed
in Figure2.

It is natural to ask are there more implications in it (exci@ ones which
follow from the transitivity), that is, are some of the ingdtionsa - o, in fact,
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p~11L O
the full relation

o
p ~10 O

rosqP(p) ZrosqP(o) 4 < P(p) =P(0)

pr~g o pr~9 O
p=o

sqP(p) 2 sqP(0)

Figure 2: Some implications between the similarities\bod , (X)

equivalences. Concerning this question we will show thaicthss of all relational
structures splits into the following three parts: finiteustures, infinite structures
of unary languages, and infinite structures of non-unargdages. (A language
L = (R; : i € I) is calledunary iff ar(R;) = 1, for alli € I. Structures of

unary languages will be callathary structures Let us call a clas€§ of structures

a Cantor-Schoder-Bernstein (CSB) clas

VX,2YelC X2Y = X=VY).
For finite structures the diagram from Figlte 2 collapsesifiaantly.
Example 3.1 If L is an arbitrary relational language aida finite set, then for

eachp € Int(X) we haveP(p) = {X}, becauseX € P(X,p) c [X]XI =
{X} Thus, ~4 is the full relation, which implies that,=~g=~g=~19=~11.
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In addition, Modz(X) is a CSB class. Namely, if,oc € Int;(X) andp =
o, then there is an embedding : (X,p) — (X, o), and, sinceX is a finite
set, f is an isomorphism, thup = o. So we have~gC~7, which implies
~=rg=rg=rp=r=nrvg. Since(X, (0,0,...)) 2 (X, (X™ : i € I)), we
have~s#£~1;. If | X| > 1, leta andb be different elements ok, iy € I, and let
p,o € Intr(X), wherep;, = {(a,aq,...,a)},0;, = {(b,b,...,b)} C X™0o and
pi = o; = 0, fori # ig. Thenp #¢ o, butp = o and, hence;-g#~1. Thus Figure
[3 describes the hierarchy of the similaritieg on the seMod (X), if | X| > 1.

We prove thatvgy=~; < |X| = 1. LetX = {z} andp, o € Int;(X), where
p ~1 0. Then there is an isomorphisfh: ({z}, p) — ({z}, o) and, consequently,
for eachi € I we have(z,z,...,z) € p; & (x,z,...,x) € o; and, hence,
pi = 05. S0p = o, thatisp ~¢ o and the inclusion-; C~ is proved.

~y = g = ~g = ~1g = ~11 = the full relation
~] = ~g = ~g = ~vg =~y = ~g = the isomorphism

~qo = the equality

Figure 3: The similarities on the cladod (X)), if 1 < |X| < w

3.1 Infinite unary structures

In this subsection we assume that= (R, : ¢ € I) is a unary relational language.
If X' = (X, (p; : i € I))isanL-structure, it is easy to check that the binary relation
~ on the setX defined byx ~ y < Vi€ I (z € p; & y € p;) is an equivalence
relation. Thenz] := {y € X : y =~ z} is the equivalence class of ¢ X, and

if X/~ = {X;:j e J}isthe corresponding partition we defirg := | X;|, for
jeJ,andJy :={j € J:|X;| <w}.

Theorem 3.2 LetX = (X, (p; : i € I)) be a unary structure. Then
(@) If f: X — X is aninjection, therf € Emb(X) & Vo € X fl[[z]] C [z];
(b) If Jy = J, thenP(X) = {X};
(c) If Jy # J, then the poseP(X) is atomless and we have

P(X) 2 [Tjen s (K], ) and sqP(X) = [ p g, (P(55)/[15]<%) T
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Proof. (a) If f € Emb(X) andz € X, thenz € p; & f(x) € p;, for eachi € I,
thusz =~ f(z). So fory € [x] we havef(y) ~ y ~ = and, hencef(y) € [z].

Let f[[z]] C [z], forallz € X. Then, forx € X, z € [z] implies f(z) € [z],
thatisf(z) ~ z. HenceVi € I Vz € X (x € p; & f(z) € p;), SOf € Emb(X).

(b) Let.Jy = J. By (a), for f € Emb(X) andxz € X we havef[[z]] C [z] and,
since|[z]| < w, f[[z]] = [z], which impliesf[X] = X.

(c) If f € Emb(X), then, by (a),f[X;] = X;, forall j € Jy, andC; :=
f1X;] € [X;]%, forall j € J\ Jy. Thus the inclusion” in the equality

P(X) = {Uje]o XjUUjens, Ci - (Ci:j €\ Do) € HJGJ\JO[Xj]Hj} @)

is proved. On the other hand, {€; : j € J\ Jo) € [[;c,[X;]"™ and if
we choose bijectiong; : X; — Cj, forall j € J\ Jy, then by (a) we have
f= UjEJO idx;, UU].GJ\JO ¢; € Emb(X) and, hencel,_JjEJ0 X; U UjEJ\JO Cj e
P(X), so [4) is true. Thus the mapping : J[;c s, ([X;]%, C) = (P(X),C)
given by

F(Cj:je T\ o)) = UjeJo X;U UjEJ\Jo Cj

is a well-defined surjection and, sin¢é&; : j € J} is a partition ofX, it is an
injection. It is easy to see that is an order isomorphism. By Fdctll.1(c) we have
sa(P(X), C) = [Len g, sallk;]%, C) = [Tje i (P(85)/[15]55) T =

Lemma 3.3 Letx > w be a cardinal,U C x and\ := min{|U|, |x \ U|}. Then
p=(U,0,0,...) € Inty(x) and we have

@P(p) = {CLUCy:Cy e [UVIACy € [\ UMY,

(b) P(p) = {[x]*, C) x (A}, ©);

() sqP(p) = (P(k)/[K]<F)T x (P(N)/[\<*)T, where, by convention, for
A € w, by (P(X\)/[\]<*)* we denote the one-element poset.

Proof. Forz,y € k we have:x ~ yiff x € p; & y € p;, foralli € I, iff
re U<« yeU. Thusk/ ~= {U,x \ U} and we apply Theorem 3.2. 0

Fact 3.4 (a) If x > w is aregular cardinal an®* = k™, thenro(P(k)/[x]<") =
Col(w, 2%) (Balcar, Vognka [1]; see also[[2], p. 380).

(b) Under CH, all separative atomless-closed posets of size, are forcing
equivalent (for example t6ol(w1, wy)) (folklore).

(c) If A > w is a cardinal andP a poset of sizé such thatlp IF |\| = @, then
roP = Col(w, \) (see [3], p. 277).

(d) If B is a Boolean algebra of size 2, thenB™ 2 BT x B*.
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Proof. (d) The sentenc€z # 1 31y (x L y & =V y = 1) is true in the poseB ™,
but it is not true inB* x B*. Namely, sincgB| > 2, there isa € B \ {1} and
we haver := (1,a) € (Bt x B*)\ {(1,1)} anda’ € B*, but for eacth € B+ we
have(l,a) L (b,a’) and(1,a) Vv (b,a’) = (1,1). O

Theorem 3.5 For any unary languagé. and infinite cardinalk we have

(a) Mod (k) is a CSB class;

(b) Figure[4 describes the hierarchy of the similaritieg, for & # 8,10, on
the setMody (k). In addition we have-g # ~1;.

(c) If x is aregular cardinal an®® = k™, then~g # ~1q.

~11 = the full relation

~e = the isomorphism oP(X)

~4

= the equality ofP(X)

A3 = Ay = 7 = ~Yg

= the isomorphism= the equimorphism

~o = the equality

Figure 4: The similarities oivod, (x), for unary L and infinitex

Proof. Let L = {R; : i € I}.
(@) Assuming thap = (p; :i € I),0 = (0, : i € I) € Intr (k) andp = o we
show thatp = . By the assumption, there are embeddings

fi(r,p) = (ko) and g: (k,0) = (k,p). (5)

Let ~, and~, be the equivalence relations determined by the interpoetp
and o respectively (see Theoreim B.2) and, fore «, let [x], and [z], be the
corresponding equivalence classes. First we prove that

Ve ek fllz]] C [f(z)ls and V€ r glz]s] C [g(z)],- (6)
For a proof of the first statement we take= ~ andy € [z],. Theny ~, z, that is

Viel (x€pieycp), (7
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and, sincef is an embedding, we have
Viel Vxer (z€p < flz)€ o). (8)

We prove thatf(y) € [f(z)],, which means thaf (y) € o; & f(z) € o, for all
i €1.50,f(y) € o iff (by B)) y € p; iff (y @) = € p; iff (by B)) f(2) € 0.
Thus the first statement dfl(6) is proved and the second hawmsiric proof.

Let v = U;cs Xj andr = Uy Yi be the partitions determined by the
relations~, and=,, respectively. By[(B), ifi € J andX; = [z],, thenf[X;] C
[f(x)]s = Y%, for (a unique)k € K. Similarly, for eachk € K there is a unique
J € J satisfyingg[Y;] C X; so we define the functions

F:J— K by: F(j):k‘ iff f[X]]CYk, (9)
G:K—J by G(k)=j iff g[vi] C Xj, (10)

and prove that
GoF =idy and FoG=1idg. (11)

By (8) we havey o f : (k, p) < (k, p) and, by Theorem 3l2(a),
Ve e X g[f[lal,)) C [x],- (12)

Forj € J we prove thatG(F(j)) = j. Let F(j) = kandz € X;. Then
X;j = [z],, by (€) f[X;] = fl[zl,] C [f()]s = Y, for somek’ € K, and, by[(9)
f1X;] C Y, which impliesk’ = k. Thus f[[z],] C Y} and, hence,

glf ll=lpl] < g[¥i]. (13)

Let G(k) = j'. Then by[(10) and_(13) we havgf[[z],]] C ¢g[Yx] C X, and, by
@2), g f([x],]] € X;, which implies;j’ = j. ThusG(F(j)) = G(k) = j and the
first equality in[(11) is proved. The second equality has alairproof.

Now we prove that

Vi€ J |X;| = [Yrpgl (14)

By @) we have|X;| = [f[X;]| < [Yp(;| and, by [ID) and[(A1)|Yy ;)| =
19Yr)]| < [Xargyl = 1X;|. So[1d) is true.

By (14) there are bijectiong; : X; — Yp(;); let = U;c; ¢; : £ — £. Since
{X; : j € J}is apartition ofx the mappingp is well defined. Byl[(IL}F : J — K
is a bijection and, since the mappings are surjectionsy is a surjection as well.
Since{Y}, : k € K} is a partition ofx and the mapping$; are injectionsy is a
injection too. Thusp is a bijection fromk onto k.
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In order to show thap : (k, p) — (k, o) is an isomorphism, that is
Viel Vxer (z€p < ex)€ o), (15)

we takeig € [ andzg € «. Letj € J, wherezg € X;. ThenX; = [z¢], and
p(z0) = ¢j(z0) € Yp(j and, by [6) and{9)f (z0) € [f(z0)]ls = V(). Thus
o(z0) ~5 f(20), thatis

Viel (p(xo) € 0y < f(xo) € 0y). (16)

Now zg € p;, iff (by B)) f(z0) € o, iff (by (L6)) ¢(z0) € 0, and [15) is proved.
Thusy : (k, p) — (k, o) is an isomorphism and, henges o.

(b) By (a) we havev-g C ~3 which, according to Figurel 2, implies that; =
~5 = ~v7 = ~vg and~g = ~o.

Let us prove thatwg & ~1. If Kk = AU B, whereAN B = @ andA, B € [s]",
thenp := (A,0,0,...) # o := (B,0,0,...). By Lemmd3.B(a) we havi(p) =
{C1UCy: Cy € [A]" ANCy € [B]*} =P(0). If f: k — ks abijection satisfying
flA] = B, thenf : (k,p) — (k,0) is an isomorphism and, hence,~; o, but
p o 0.

Now we prove that-s ¢ ~4 and, hencey; ¢ ~3and~y & ~g. Letz,y € ,
x # yand letp := ({x},0,0,...) ando := ({y},0,0,...). If f:x = risa
bijection satisfyingf(z) = vy, thenf : (k,p) — (k,o0) is an isomorphism and,
hencep ~3 0. By Lemmd_3.B(a) we have

P(p) ={CiUCy:Cre[{z}]' NCy e [k \{z}]"} ={C € [x]": z € C}

and, similarly,P(c) = {C € [k]" : y € C}, which implies thatx \ {y} €
P(p) \ P(o). Thusp 74 o.

Further we prove that, ¢ ~3 and, hencey;; & ~4 and~3 G ~g. Letz € &
andp := ({z},0,0,...) ando := (x \ {z},0,0,...). Then, clearlyp % o, that is
p #3 o. As above we hav®(p) = {C € [k]" : x € C} and, by Lemm&_3]3(a),
P(o) = {C1UCy : C1 € [k\{z}]"ACy € [{z}]'} = {C € [K]* : x € C} = P(p).
Thusp ~4 0.

Finally we prove thatvg # ~11, which implies~¢ # ~11. LetU C &, where
Ul = |k \U| = x and letp := (0,0,0,...) ando := (U,0,0,...). Then, by
Lemma 33 (b) and (cB(p) = ([+]", C), P(0) = ([s]",C) x ([]", C), and

sqP(p) = (P(k)/[£]=")7, (17)

sqP(o) = (P(k)/[6]=)" x (P(k)/[x]=")". (18)

By Fact(3.4(d), the posétP(x)/[x]<*)* is not isomorphic to its square. So, by
(17) and[(18) we have +g o.
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(c) For p and o defined in the previous paragraph we havels o and we
prove thatp ~1g o. First we consider the case when> w. By (17) and Fadt 314,
P(p) = (Col(w,2%))*. By (@8), forcing by the poseiqP(c) collapse2” to w
and, since the poset is of si2€&, by Facf3.4(c) we have>sqP(0) = Col(w, 27).
Thus the poset®(p) andP(o) are forcing equivalent, that js ~19 0. If kK = w
we use Fadt 314(b). O

The following theorem shows that the equivalence of thelanities ~g (the
isomorphism ofq P(X)) and~1 (the isomorphism ofo sq P(X)) is independent
of ZFC even for the simplest unary language.

Theorem 3.6 If L is the language containing only one unary relational symbol
then onMody, (w) we have~g = ~¢ and

[ ~11 ifthe posef P(w)/ Fin)* is forcing equivalent to its square,
0= ~¢ otherwise.

So, the equalityg = ~1¢ is independent of ZFC.

Proof. By Lemmd3.8, fol/ C w, writing P(U) instead of(P(w, U), C), we have

o [ {w¥,©) iflUl<wor|lw\U| < w,
PU) = { (w]*,c)?  otherwise (19)
~ [ (P(w)/Fin)™ if Ul <worjw\U| <w,
saP(U) = { ((P(w)/Fin)t)? otherwise (20)

If U1,U; C wandU; g Us, that isP(U;) 2 P(Us), then, by [(19) and (20),
for example,sqP(U;) = (P(w)/Fin)* andsqP(Us) = ((P(w)/Fin)*)? and,
by Fact3.4(d)sqP(Uy) 2 sqP(Us), that isU; g Us. Thus~g C ~g, which
implies ~g = ~s.

If (P(w)/Fin)* = ((P(w)/Fin)*")2, then by [20) for eacl/ C w we have
P(U) = (P(w)/Fin)* and, hencevig=~1;. Otherwise, if(P(w)/Fin)* #
((P(w)/Fin)*)2, then forU;, U, C w satisfyingU; ~19 Us by FactI1(b) we
havesqP(U;) = sqP(Uz) so, by the assumption ard {269, P(U;) = sqP(Us).
Thus~1¢ C ~g and, hencevig = ~g = ~4.

By Fact{3.4(b), CH implies thatP(w)/Fin)* = ((P(w)/Fin)*)2. But, by
a result of Shelah and Spinas [14], in the Mathias model theeeposets have
different distributivity numbers and, hence, they are omotihg equivalent. O
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~10=~11= the full relation

Figure 5: The similarities obod,g) (w) if (P(w)/Fin)™ = ((P(w)/Fin)™)?

3.2 Infinite non-unary structures

For infinite structures of non-unary languages the diagram fFigure 2 does not
collapse at all. Namely the main result of this subsectigdhagollowing theorem.

Theorem 3.7 If L is a non-unary relational language anel an infinite cardi-
nal, then in the diagram from Figufd 2 describing the simitias ~; on the set
Mody (k) all the implicationsa - o are proper and there are no new implications
(except the ones following from transitivity). Conseqlyeme same holds for the
diagram from Figuré 1l related to the class of all relation#iustures.

Theoreni 3.l7 will be proved in two steps. First we will prove gtatement for the
classMody, (w) of countable binary structures (whetg = (R) andar(R) = 2)
and then, roughly speaking, make a correspondence bettveetassedlod;, (w)
andMody (k) preserving all the similarities.;, and their negations.

3.2.1 Proof of Theoreni 3.V for the class of countable binarytsictures

First, giving examples (i.e. constructing pairs of strues), we show that fof. =
L, and| X| = w, in the diagram from Figurlg 2 all the implications o are proper.
We will use the following auxiliary claim.

Lemma 3.8 If P = (P, <p) andQ = (Q, <) are partial orders andf : P — @
a surjection such that for eagh , p» € P we have
) p1 <p p2= f(p1) <5, f(p2),

(i) p1 Lp p2 = f(p1) Lg f(p2),
thensqP = sq Q.
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Proof. First we prove that for eachy, po € P we have

p1 <pp2 e f(p1) < f(p2) (21)
(=) Assumingp; <} p2> we have to prove that
Vg <q f(p1) aLq f(p2) (22)

Letqg <¢o f(p1). Sincef is onto, there ip3 € P such thatf(p3) = ¢. Thus
f(p3) <q f(p1) and, by (i), there iy <p p3,p1. SO, sincep; <% ps we
haveps fp ps namely there i9s <p p4,p2. By (i) we havef(ps) <p, f(p2),
which implies f(ps) Lo f(p2) and, hence, there i <¢g f(ps), f(p2). Since
ps <p pa <p p3, by (i) we havef (ps) <f, f(ps) = ¢ and, hencegy <7, ¢, which
impliesqy Lo ¢, so there is/ <g qo,q. Nowq' <¢ ¢, f(p2) and [22) is proved.

(<) Assuming [(2R) we prove that; <}, p2. So, takingp <p p; we show
thatp Lp po. By (i) we havef(p) <¢, f(p1) which implies that there ig <q
f(p), f(p1). By (22) we havey Lg f(p2) and, hence, there ig < ¢, f(p2).
Now ¢’ <q f(p), f(p2) and, by (ii),p Lp ps. Thus[21) is proved.

Now we show thatP/=%, Ip) Zp (Q/=r, <o), whereF([p]) = [f(p)]-
By (1), forpy, p2 € P we havelp;] = [1_02] iff p1r =p P2 iff p1 <pp2Ap2 <p 1
iff f(p1) <O f(p2) A fp2) <G fp1) I f(p1) =5 fp2) iff [f(p1)] = [f(p2)]
iff F'([p1]) = F([p2]) andF is a well defined injection. Sincgis onto, forg € Q
there isp € P such thayy = f(p). ThusF([p]) = [f(p)] = [¢] and F is onto.

By (21) again,[p1] <p [po] iff p1 <P p2 iff f(p1) <3 f(p2) iff [f(p1)] <
[f(p2)] iff F([p1]) <g F([p2]). ThusF is an isomorphism. O

Example 3.9 The implicationa can not be reversed. L& = (w,<) andY =
(w,<y), wheref : w — w is a bijection different from the identity and ;=
{{(f(m), f(n)) :m <n}. ThenX = Y andP(X) = P(Y) = [w]*, butX #£ Y.

Example 3.10 The implicationsh and f can not be reversed. Let
X=(w,{(n,n+1):newtU{(2n,2n) :n € w}) and
Y= (w,{(n,n+1):newlU{2n+1,2n+1):n € w}).
ThenP(X) =P(Y) = {[2n,00) : n € w} andX = Y butX 2 Y.

Example 3.11 The implicationse, e and g can not be reversed. Let us define
X = (w,w?\ {{(0,0)}) andY = (w,w?\ {(1,1)}). ThenX = Y andP(X) =
{Acw“:0c A} =P(Y) ={A € [w]¥:1¢e€ A}, butP(X) # P(Y).

Example 3.12 The implicationsi, h, k andn can not be reversed. L&t = (w, <)
andY = (w,w x w). ThenP(X) = P(Y) = [w]¥ and, henceP(X) = P(Y),
sqP(X) =2 sqP(Y) andP(X) = P(Y), butX # Y.
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Example 3.13 The implications; and;j can not be reversed. L& = ((0,1)qg, <)
andY = ((0, 1]g, <) be suborders of the rational lin®, Then, clearlyX = Y.

Since the elements @ (X) are dense linear orders without end points, each
chain t in the posetP(X), C) has a supremumJt. On the other hand, t=
{(0,3 — ]g : n > 3} is a chain in the poséP(Y), ), Ut = (0,3) ¢ P(Y) and
the set0, 3)o U {q}, ¢ € [3.1]g, are upper bounds for £, but £ does not have
a least upper bound. Thus the po&B(Y), C) is not chain complete and, hence,
P(X) 2 P(Y).

Using Lemma 3.8 we show thaq P(X) = sq P(Y). We remind the reader that
a linear ordelL is called scattered iff +» L. LetScatt denote the set of scattered
suborders of). Itis easy to see that fot, B € P(X) we haveAd <* B < A\B €
Scatt andA | B < AN B € Scatt (where<* is the corresponding separative
modification) and that the same holds forB € P(Y). Clearly, if A € P(Y), then
A\ {max A} C (0,1)gp and it is a copy ok, so, the functionf : P(Y) — P(X),
given by f(A) = A\ {max A}, is well defined and we show that it satisfies the
assumptions of Lemnia_3.8. First,df € P(X), thenC C (0,1)q and, clearly,
CU{1} e P(Y)andf(CU{1}) = C. Thusf is a surjection. LefA, B € P(Y). If
A C B,thenf(A)\ f(B) = (A\{max A})\ (B\{max B}) C {max B} € Scatt
and, hencef(A) <* f(B) so (i) is true. IfA L B, thatisA N B € Scatt, then,
clearly, f(A) N f(B) € Scatt, thus f(A) L f(B) and (i) is true as well. By
Lemmd&3.8 we haveg P(X) = sqP(Y).

Example 3.14 The implicationm can not be reversed. By Example 4.4 [of [6],
if X is the directed grapi<“2, p), wherep = {{p,¢"i) : ¢ € Y2 Ai € 2},
then(P(X), C) = sq(P(X), C) = (<“2, D). LetY be the directed grap{r~3, ),
whereo = {(p,¢"i) : ¢ € <“3 Ai € 3}, then in a similar way we show that
(P(Y), C) = sq(P(Y), C) = (<¢3, D). Clearlysq(P(X), C) % sq(P(Y), C), but
rosq(P(X), C) 2 rosq(P(Y), C) = Borel /M.

Example 3.15 The implication/ can not be reversed. L&t be the directed graph
from Example_3.14 and I€f be the directed grapty, o), whereY C <¥2 and
o CY x Y are defined by

YV ={0,0,1}U{jj"p:j€2Np €2},
o= {(0,0),(0,1),(0,00), (1, 11)} U{(ji ¢, ji ¢ k) 1 j,k € 2N p € =2}
Itis easy to see th&l = Y and

P(Y) = {Y}U{A%  :jkle2npe 2},
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where A% = {jj"p,j7¢"0,5i"¢ 1} U {ji" 07k ¢ = ¢ € <2} U
{j77p" 1717y o € <¥2}. By Example 3.14, the poset(P(X), C) is isomor-
phic to the reversed binary tree. Thus, in order to proved@&(Y) % sqP(X)

we will show that[A3)] and [AJ}] are incomparable but compatible elements of
sqP(Y) = (P(Y)/="*, ). So we have

ADS = {00,000,001} U {00007 : ¢ € <*2} U {00107 ¢ : i € <2},

A% = {00,000,001} U {00007 : b € <“2} U {00117 ¢ : ¢ € <2},

Clearly {0000~ : ¢ € <“2} is a copy ofX and, hence, contains a copy bf
sayB. SinceB C A%, Aj} we haveB <* A3, A3l and[B] < [AJ9], [A9}] thus
[A99] and[AJ}] are compatible elements ef P(Y).

In order to prove thatd))] # [A%] we need”' € P(Y) such that' c A3 and
D ¢ CnAJ, forall D € P(Y). Now {00107 : ¢ € <w2} C A} is a copy ofX
and, hence, contains a copy¥f sayC. Since{00107¢ : ¢ € <w2} N A} = 0,
we haveC N A} = 0 and we are done. Thusi)] # [AB}] and, similarly,
[AB3] 2 [AG]-

Thus in Figuré R foMod,, (w) all the implicationsz - o are proper and we show
that there are no new implications except the ones folloviiog transitivity. So
it remains to be shown that the eight pairs which are incoaiparin the Hasse
diagram in Figur€l2 are really incomparable. We will use tilo#ving elementary
fact: if P = (P, <) is a partial order angd, ¢, r € P, then

r=pAgandr<pandr<gqg = plgq. (23)

In fact our poset of similarities is a suborder of the latt{é&) (Int,, (w)), C) of
equivalence relations on the dett;, (w), where for~,~'e¢ EQ(Intz, (w)) we
have~ A ~'=~ N ~"and~ V ~'= trcl(~ U ~') and~C~/ iff the ~-partition
is a refinement of the-’-partition of Intz, (w). Now, sinceby our definitionwe
have~;=~y N ~3, by (23) we obtainv, || ~3 and similarly for the other seven
pairs.

3.2.2 Proof of Theoren{ 3.7

The following concepts and facts will be used in our prooft Lg = (R), where
ar(R) = 2. If X = (X, p) is an Ly-structure, then the transitive closupg;
of the relationp,;, = Ax U p U p~! (given byz p,, y iff there aren € N and
20 = x,21,...,2p, = y such thatz; p.s 2;41, for eachi < n) is the minimal
equivalence relation oA containingp. The corresponding equivalence classes are
called thecomponentsf X and the structur& is calledconnectedff | X/p,s| = 1.
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The complemenbf the structureX, (X, (X x X) \ p) will be denoted byX¢; its
reflexification (X, p U Ax), by X,..; and itsirreflexification (X, p \ Ax), by X;,.
If X; = (Xi,pi), i € I, are connected,,-structures and{; N X; = 0, for
differenti, j € I, then the structure),.; X; = (U;c; Xi, U, pi) is thedisjoint
unionof the structure&;, i € I, and the structureX,, i € I, are its components.

Fact 3.16 ([6]) If X is an L;-structure, then at least one of the structutésand
X¢is connected.

Fact 3.17 ([6]) Let X; = (X;,p:),7 € I, andY; = (Yj,05),j € J, be fami-
lies of disjoint connected binary structures. Then: UZGIX = Uje, Yj iff
there aref : I — Jandg; : X; < Yy, 4 € I, such thatt' = (J;c; g and
(gi(x), gir(2")) & ors, Whenevei # ¢/, x € X; anda’ € X,

Fact 3.18 LetX be a binary structure. Then
(@) Emb(X) = Emb(X°) andP(X) = P(X°);
(b) If X is irreflexive, therEmb(X) = Emb(X,..) andP(X) = P(X,.);
(c) If X is reflexive, themb(X) = Emb(X; ) andP(X) = P(X;,).

Theorem 3.19 (Vopenka, Pultr, Hedfin [15]) On any setX there is an irreflexive
binary relationp such thatid x is the only endomorphism of the structytg, p).

Foracardinah letInt}, (A) = {p C A% : (X, p) is connectech pNA, # 0}. Then
Int}, (A) C Intg, (A) andMod7, (A) := {(\, p) : p € Int}, (A\)} C Modr, (}).

Theorem 3.20 Letx > A > w be cardinals and.. = (R; : i € I) a non-unary
relational language. Then there is a mapping Int7, (\) — Inty,(x) such that

(@) P(k,7,) = P(X, p), for eachp € IntL (A);

(b) For eachp € Inty, (\) there arep’ € IntL (M) andr € Intr(x) such that
P\, p) =P\, p) 2 P(k,7T);

(c) T preserves all the relations ;. from Figure[2, that is for eack < 11

Vp,o € Inty, (A) (p~p 0 & Tp)~k 7). (24)

Proof. First suppose that < . Then|x \ A\| = x and, by Theorermh 3.19 we can
fix an irreflexive binary relatiof C ( \ X)? such thafmb(x \ X,0) = {id,\»}.
By Theoreni{ 3.6 and Fadts 3118(a) and B.18(c) we can assanéhéhrelatiory

is connected and irreflexive. The langudgis not unary and we fix afy € I such
thatn;, > 2. Now, for p € Int}, () let the interpretatiorr, = (7 : i € I) €
Int (k) be defined by

(pUB) x kMo—2 if i = ig andn;, > 2;
TP = (pub) if i =ip andn;, = 2; (25)
0 if 7 # g

7
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For convenience, fop,o € Int}, ()), instead ofEmb((x,7,), (x,7,)) (respec-
tively, Emb((X, p), (A, 0))) we will write Emb(7,, 7,) (resp.Emb(p, 0)).

Claim 3.21 For eachp, o € Int} (\) we have
(i) Emb(7,, 7,) = {f Uid\» : f € Emb(p,0)};
(i) Iso(7y, 7o) = {f Uide\» = f € Iso(p,0)};
(iii) P(75,75) ={CU(k\ \) : C € P(p,0)};
(iv) Emb(7,) = {f Uid\» : f € Emb(p)};
(V) Aut(r,) = {F Uidyn : £ € Aut(p)};
(Vi) P(7,) = {CU(k\A): C €P(p)}.

Proof. For convenience let, := p U ¢, for p € Inty, (A). First we prove that
Emb((k, 7). (5, 76)) = {f Uidg\ : f € Emb(p,0)}. (26)

By the construction(x, 7,) = (A, p) U (s \ A,0) and(k, ;) = (A, o) U(k\ A, 6)
are partitions of the binary structurgs, 7,) and (x, 7,) into their connectivity
components. Sincen A, # () andd is an irreflexive relation, we hav@\, p) +
(k \ A, 0) and the inequalitys > X implies that(x \ A,0) < (\,0). So, by
Theoren{3I7F € Emb((k,m,), (k,7,)) ifft F | XA € Emb((},p), (), o)) and
F 1 (k\A) € Emb((rk\ \,0)) = {id,\»} and [26) is proved.
Now we prove
Emb((ﬁ,75)>, (8, 77)) = {f Uid\» : f € Emb(p,0)}. (27)

77,0

If ' : x — ris an injection, thenF" € Emb((s, /), (x,77)) iff for each
L1, X2 Ty, ER

(T1,22, ..., T, ) € Tp X K02 o (F(x1), F(za), . .. F () € To X Ko 2

iff for each z1,22 € k we have: (z1,22) € 7, & (F(x1),F(22)) € g, iff

F € Emb((k,7,), (k, 7s)). Now (21) follows from[26).

(i) Clearly, F' € Emb(7,, 7,) iff F € Emb((k, ), (x,77)), foralli € I. By
(25) this holds iffF" € Emb((x, 7)), (x,7{)) and we apply[(27).

(i) If f € Emb(p,0) then f U id,\, is a surjection ifff is a surjection iff
f € Iso(p, o). Now we apply (i).

(i) A € P(7,, 7o) iff there isF € Emb(7,, 7,) such thatd = F'[«] so, by (i),
iff A= fI\]U(k\A),forsomef € Emb(p,0), iff A=CU(x\\), for some
C eP(p,o).

Statements (iv), (v) and (vi) follow from (i), (ii) and (iifespectively. O

Now we prove the theorem.
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(a) By Claim3.21(vi) we hav&(7,) = {CU(k\ ) : C € P(p)} and itis easy
to check that the mapping : P(p) — P(7,), defined byF'(C) = C U (k \ A), is
an isomorphism of the poset®(p), C) and(P(7,), C).

(b) Letp € Intr, (A) \ Int7, (A). If pis connected, then it is irreflexive, thus
pre € Inty, (A) and, by Fadt3.I8(bR(A, pre) = P(, p). Otherwise, by Theorem
[3.16 the relation® is connected and, by Fdct 3|18@) )\, p°) = P(A, p). Now, if
p° N Ay # 0, we havep® € Int], ()); otherwise(p®),. € Int}, (\) and, by Fact
BIB(b).P(A, (0)re) = P(X, p°) = P(A, p).

If p € Intr,(\) andp’ € Int7, (\), whereP(), p) = P(), o), then by (a) we
haveP(), p') = P(k, 7y ), wherer, € Intz (k). ThusP(k,7,) = P(X, p).

(c) Itis sufficient to prove that the mapping: Int}, (A\) — Intz () preserves
the relations~, for k € {0,3,4,6,8,9,10}. Letp, o € Int], (M),

~p: p =0 & 7, = T,. By (28) we haver, = 7, iff 7/ =77 iff puf = o UH
iff p=o0.

~lpEo e T, 21, If p=oandf € Iso(p, o), then, by Claini3.21(ii),
fUidan € Iso(7,,7,) and, hencey, = 7,. Conversely, ifr, = 7, and F' €
Iso(7,, 75), then, by Claind 3.21(ii)F' [ A € Iso(p, o) and, hencep = o.

~glp 20 e T, 2 T Ifp = oandf € Emb(p,o), then, by Claim
B.21(i), f Uid,\\ € Emb(7,,7,) and, hencer, — 7,. Thusp = o implies
7, = 7,. Conversely, ifr, — 7, andF' € Emb(7,,7,), then, by Claimi_3.21(i),
F | X € Emb(p,0) and, hencep — o. Sot, = 7, impliesp = o.

~4: P(p) =P(0) © P(7,) = P(7,). This follows from Claini 3.21L(vi).

~e6: P(p) = P(0) & P(7,) = P(1,). This is true since by (a) we have

P(p) =P(r,) and P(o) = P(75). (28)

~g: sqP(p) = sqP(0) & sqP(7,) = sqP(7,). This is true since by (28) and
Fact1.1(a) we haveqP(p) = sqP(7,) andsqP(o) = sqP(7,).

~10: rosqP(p) = rosqP(o) < rosqP(7,) = rosqP(7,). By (28) and Fact
[L.1(a) we haveosqP(p) = rosqP(7,) androsqP(o) = rosqP(75).

So, the theorem is proved far< k. If A = &, then we definerf0 = px KMo~
and continue in the same way. O

Finally we prove Theorern 3.7. In Subsection 3.2.1 it is shokat all the
implicationsa - o in Figure[2 for the clasdlody, (w) are proper. For example,
concerning the implication, in Examplé 3.D we have constructedr € Int}, (w)
such thap ~1 o butp g o. By Theoreni 3.20(c) we havg ~; 7, andr, g 7,,
which implies that in Figurkl2 for the clad$od () the implicationa is proper as
well. The reader will notice that the structures constrdidteExample$ 319[- 3.13
belong tolnt}, (w) and that the structures constructed in Examples 3.14 aiil 3.1
are irreflexive. But their refexifications are int;, (w). Thus all the implications

2



Different similarities 23

a - o in Figure[2 for the clas3lody,(x) are proper and using the same argument
as in Subsection 3.2.1 we conclude that there are no adalitiorplications in
the diagram describing the hierarchy of the consideredlaiities on the class
Mody, (k).
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