Skip to main content
Log in

Strong measure zero in separable metric spaces and Polish groups

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The notion of strong measure zero is studied in the context of Polish groups and general separable metric spaces. An extension of a theorem of Galvin, Mycielski and Solovay is given, whereas the theorem is shown to fail for the Baer–Specker group \({{\mathbb{Z}^{\omega}}}\). The uniformity number of the ideal of strong measure zero subsets of a separable metric space is examined, providing solutions to several problems of Miller and Steprāns (Ann Pure Appl Logic 140(1–3):52–59, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balka, R.: Duality between measure and category in uncountable locally compact abelian Polish groups. Real Anal. Exchange 36(2), 245–256 (2010/11)

  2. Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd., Wellesley (1995)

    MATH  Google Scholar 

  3. Behrends E., Kadets V.M.: Metric spaces with the small ball property. Stud. Math. 148(3), 275–287 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergman, G.M.: Generating infinite symmetric groups (2008). http://arxiv.org/pdf/math/0401304.pdf

  5. Besicovitch A.S.: Concentrated and rarified sets of points. Acta Math. 62(1), 289–300 (1933)

    Article  MathSciNet  Google Scholar 

  6. Besicovitch A.S.: Correction. Acta Math. 62(1), 317–318 (1933)

    Article  MathSciNet  Google Scholar 

  7. Borel E.: Sur la classification des ensembles de mesure nulle. Bull. Soc. Math. Fr. 47, 97–125 (1919)

    MathSciNet  MATH  Google Scholar 

  8. Carlson T.J.: Strong measure zero and strongly meager sets. Proc. Am. Math. Soc. 118(2), 577–586 (1993)

    Article  MATH  Google Scholar 

  9. Dobrowolski T., Marciszewski W.: Covering a Polish group by translates of a nowhere dense set. Topol. Appl. 155(11), 1221–1226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foreman M., Magidor M., Shelah S.: Martin’s maximum, saturated ideals, and nonregular ultrafilters. I. Ann. Math. (2) 127(1), 1–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foreman M., Magidor M., Shelah S.: Martin’s maximum, saturated ideals and nonregular ultrafilters. II. Ann. Math. (2) 127(3), 521–545 (1988)

    Article  MathSciNet  Google Scholar 

  12. Fremlin, D.H.: Measure Theory. Vol. 5, Set-Theoretic Measure Theory (2008). http://www.essex.ac.uk/maths/people/fremlin/mt5.2008/mt5.2008.tar.gz

  13. Galvin F., Mycielski J., Solovay R.M.: Strong measure zero sets. Not. Am. Math. Soc. 26(3), A-280 (1979)

    Google Scholar 

  14. Galvin F., Scheepers M.: Borel’s conjecture in topological groups. J. Symb. Logic 78(1), 168–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldstern M., Judah H., Shelah S.: Strong measure zero sets without Cohen reals. J. Symb. Logic 58(4), 1323–1341 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gruenhage G.: Generalized Metric Spaces, Handbook of Set-Theoretic Topology, pp. 423–501. North-Holland, Amsterdam (1984)

    Book  Google Scholar 

  17. Hrušák M.: David Meza-Alcántara, and Hiroaki Minami, pair-splitting, pair-reaping and cardinal invariants of \({F_{\sigma}}\)-ideals. J. Symb. Logic 75(2), 661–677 (2010)

    Article  MATH  Google Scholar 

  18. Jech T.: Set Theory, Springer Monographs in Mathematics, The third millennium edition, revised and expanded. Springer, Berlin (2003)

    Google Scholar 

  19. Kechris A.S.: Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

    Book  Google Scholar 

  20. Kunen, K.: Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 102. An introduction to independence proofs, Reprint of the 1980 original. North-Holland, Amsterdam (1983)

  21. Kysiak, M.: On Erdős–Sierpiński duality between Lebesgue measure and Baire category (in Polish). Master’s thesis (2000)

  22. Laver R.: On the consistency of Borel’s conjecture. Acta Math. 137(3–4), 151–169 (1976)

    Article  MathSciNet  Google Scholar 

  23. Miller A.W.: Some properties of measure and category. Trans. Am. Math. Soc. 266(1), 93–114 (1981)

    Article  MATH  Google Scholar 

  24. Miller A.W., Fremlin D.H.: On some properties of Hurewicz, Menger, and Rothberger. Fund. Math. 129(1), 17–33 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Miller A.W., Steprāns J.: The number of translates of a closed nowhere dense set required to cover a Polish group. Ann. Pure Appl. Logic 140(1–3), 52–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moore, J.T.: The proper forcing axiom. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 3–29. Hindustan Book Agency, New Delhi (2010)

  27. Pawlikowski J.: Undetermined sets of point-open games. Fund. Math. 144(3), 279–285 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Prikry, K.: Unpublished result

  29. Rogers, C.A.: Hausdorff Measures, Reprint of the 1970 original, With a foreword by K.J. Falconer. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998)

  30. Rosendal C.: A topological version of the Bergman property. Forum Math. 21(2), 299–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rothberger F.: Sur les familles indénombrables de suites de nombres naturels et les problémes concernant la propriété C. Proc. Camb. Philos. Soc. 37, 109–126 (1941)

    Article  MathSciNet  Google Scholar 

  32. Sierpiński W.: Sur un ensemble non denombrable, dont toute image continue est de mesure nulle. Fund. Math. 11, 302–304 (1928)

    MATH  Google Scholar 

  33. Szpilrajn E.: Remarques sur les fonctions complétement additives d’ensemble et sur les ensembles jouissant de la propriété de Baire. Fund. Math. 22(1), 303–311 (1934)

    MATH  Google Scholar 

  34. Thomas S., Zapletal J.: On the Steinhaus and Bergman properties for infinite products of finite groups. Conflu. Math. 4(2), 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  35. Todorčević S.: Partition Problems in Topology. Contemporary Mathematics, vol. 84. American Mathematical Society, Providence (1989)

    Google Scholar 

  36. van Mill J.: Analytic groups and pushing small sets apart. Trans. Am. Math. Soc. 361(10), 5417–5434 (2009)

    Article  MATH  Google Scholar 

  37. Wohofsky, W.: Special sets of real numbers and variants of the Borel Conjecture. Ph.D. thesis, Technische Universität Wien (2013)

  38. Yorioka T.: The cofinality of the strong measure zero ideal. J. Symb. Logic 67(4), 1373–1384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hrušák.

Additional information

Work on this project was partially conducted during the third author’s stay at the Centro de Ciencias Matemáticas, Universidad Nacional Autonóma de México supported by CONACyT Grant No. 125108. The first author gratefully acknowledges support from PAPIIT Grant IN 108014 and CONACyT Grant 177758. The work of the second author was partially supported by the Czech Ministry of Education Grant 7AMB13AT011: Combinatorics and Forcing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrušák, M., Wohofsky, W. & Zindulka, O. Strong measure zero in separable metric spaces and Polish groups. Arch. Math. Logic 55, 105–131 (2016). https://doi.org/10.1007/s00153-015-0459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0459-2

Keywords

Mathematics Subject Classification

Navigation