$\mathbf{Z F}+\mathbf{D C}+\mathbf{A X}_{4}$ SH1005

SAHARON SHELAH
Dedicated to the memory of Richard Laver

Abstract

We consider mainly the following version of set theory: "ZF + DC and for every $\lambda, \lambda^{\aleph_{0}}$ is well ordered", our thesis is that this is a reasonable set theory, e.g. on the one hand it is much weaker than full choice, and on the other hand much can be said or at least this is what the present work tries to indicate. In particular, we prove that for a sequence $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle, \operatorname{cf}\left(\delta_{s}\right)$ large enough compared to Y, we can prove the pcf theorem with minor changes (in particular, using true cofinalities not the pseudo ones). We then deduce the existence of covering numbers and define and prove existence of a class of true successor cardinals. Using this we give some diagonalization arguments (more specifically some black boxes and consequences) on Abelian groups, chosen as a characteristic case. We end by showing that some such consequences hold even in ZF above.

[^0]
Anotated Content

$\S 0 \quad$ Introduction, (labels z -), pg. 4
$\S(0 \mathrm{~A}) \quad$ Background and results, pg. 4
[We investigate $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ asserting it is quite strong, not like the chaos usually related to universes without choices. We consider using weaker versions and relatives of Ax_{4} but not in the Anotated Content.]
$\S(0 \mathrm{~B}) \quad$ Preliminaries, pg. 6
[We define $\mathrm{Ax}_{4}, \mathrm{Ax}_{4, \delta}$, prove that a suitable closure operation $c l$ exists, and define " ∂-uniformly definable". We also define " \mathfrak{y}-eub", tcf and $A \leq_{\mathrm{qu}} B$.]
§1 The pcf theorem again, (labels c-), pg. 13
[The version of the pcf theorem proved here is quite strong. Assume $\bar{\delta}=$ $\left\langle\delta_{s}: s \in Y\right\rangle, \operatorname{cf}\left(\delta_{s}\right)$ large enough compared to Y; we do not demand " δ_{s} regular cardinals". We prove first the existence of scales for \aleph_{1}-complete filters; note that we have said "for any Y " in spite of our having Ax_{4} (or less) only. Then we prove that we have $\left\langle\left(D_{\varepsilon}, A_{\varepsilon} / D_{\varepsilon}, \bar{f}_{\varepsilon}\right): \varepsilon \leq \varepsilon_{*}\right\rangle$ as usual (so D_{ε} not necessarily \aleph_{1}-complete) but
(a) $\ell g\left(\bar{f}_{\varepsilon}\right)$ is not necessarily a regular cardinal,
(b) the cofinality of $\ell g\left(\bar{f}_{\varepsilon}\right)$ is not necessarily increasing
(c) as generators, for the time being we have only $A_{\varepsilon} / D_{\varepsilon}$ not A_{ε}.

However, here there is a gain compared to the ZFC version because of a new phenomena: the results apply also when many (even all) δ_{s} have small cofinality but $\bar{\delta}$ does not; expressed by $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$. Of course, an additional gain is that the objects above are definable (from a well ordering of some $\left.\left.[\lambda]^{\aleph_{0}}\right).\right]$
§2 More on the pcf theorem, pg. 23
$\S(2 \mathrm{~A}) \quad$ When Cofinalities are smaller, pg. 23
[A drawback of $\S 1$ is that we need $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$ where $\theta>\operatorname{hrtg}(\mathscr{P}(\mathscr{P}(Y)))$. We weaken the assumption to $\mathrm{Ax}_{4, \infty, \partial, \kappa}$ with possibly $\kappa>\aleph_{1}$. If Y is countable we can weaken the large cofinality demand to $>\aleph_{1}$. Moreover, there is a pcf analysis of $\left(\Pi \bar{\delta},<_{\mathrm{cf}-\mathrm{id}<\theta(\bar{\delta})}\right)$ iff there is a well orderable $\mathscr{F} \subseteq$ $\Pi \bar{\delta}$ which is $<_{\mathrm{id}-\mathrm{cf}}^{<\theta(\Pi \bar{\delta})}$-cofinal, and we can choose generators A_{ε} under reasonable conditions.]
$\S(2 \mathrm{~B}) \quad$ Elaborations, pg. 31
[We revisit some points. We give a sharper version of the result of [Shee] that ${ }^{\kappa} \lambda$ can be divided to few (really $X_{\kappa}={ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ well ordered subsets (in Theorem 2.19). We also reconsider the eub-existence (in 2.18), existence of $\left\langle e_{\alpha}: \alpha\right\rangle$ and existence of u with a minimal $c \ell(u)$ such that u includes a club of δ_{s} for $s \in Y$ (in 2.17). We finish getting essential equality in $\operatorname{hrtg}\left({ }^{\kappa} \mu\right)$, wilog $\left({ }^{\kappa} \mu\right)$ and so called o-Depth ${ }_{\kappa}^{0}\left({ }^{\kappa} \mu\right)$ in 2.21. See 2.18, 2.19, 2.22.]
$\S(2 \mathrm{C}) \quad$ True successor cardinal, pg. 37
[See 2.26. We say that λ is true successor cardinal when $\lambda=\mu^{+}$and there is $\bar{f}=\left\langle f_{\alpha}: \alpha \in[\mu, \lambda\rangle, f_{\alpha}\right.$ a one-to-one function from μ onto α. We investigate this notion in particular proving many successor cardinals are true successor cardinals.]
$\S(2 \mathrm{D}) \quad$ Covering numbers, pg. 39
[We prove that covering number exists. Note that we can present the results: if $\mathbf{L}[X]$ contain $\left[\lambda_{*}\right]^{\aleph_{0}}$ then "enough below λ_{*} ", $\mathbf{L}[X]$ is closed enough to \mathbf{V} by covering lemmas, singulars being true successor, etc.]
§3 Black boxes, pg. 42
[Normally theorems using diagonalization used choice quite heavily. We show that at least for one way (one kind of black boxes), Ax_{4} suffice.]
$\S(3 \mathrm{~A}) \quad$ Existence proof, pg. 42
[We show that using $\mathrm{ZF}+\mathrm{Ax}_{4}$, we can prove a Black Box which has been used not a few times, e.g. in the book of Eklof-Mekler [EM02] and in the book of Göbel-Trlifaj [GT12]. We then as an example prove one such theorem: the existence of an \aleph_{1}-free Abelian group with trivial dual.]
$\S(3 \mathrm{~B}) \quad$ Black boxes with no choice, pg. 49
[Here we go in another direction: we try to build examples on sets which are are not well ordered, working in ZF only.]

§ 0. Introduction

$\S 0(\mathrm{~A})$. Background and Results.

Everyone knows that the issue of weakening AC, the axiom of choice issue, is dead, settled, as naturally the axiom of choice is true, and its weakenings lead to bizarre universes on which there is not much to be proved, or assuming AC is irrelevant (as in inner models).

The works on determinacy are not a real exception: it e.g. replace Borel sets and projective sets by sets in $\mathbb{L}[\mathbb{R}]$, so have much to say on this inner model, for which the only choice missing is a well ordering of $\mathscr{P}(\mathbb{N})$. In [Shee] we suggest to consider several related axioms, the strongest of them being Ax ${ }_{4}$, assuming ZF + DC of course. It is in a sense an anti-thesis to considering $\mathbb{L}[\mathbb{R}]$: it says we can well order (not all the subsets just) the countable subsets of any ordinal. This was continued in [She11], [She14] and in Larson-Shelah [LS09]. We may wonder how to get natural models of $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$. Such a natural model is gotten starting with $\mathbf{V} \models$ G.C.H. and forcing by the choiceless version of Easton forcing except for \aleph_{0}.

While [She97a] claims to prove that "the theory of pcf with weak choice is non-empty", [Shee] seems to us the true beginning of such set theory, proving (in $\mathrm{ZFC}+\mathrm{DC}+\mathrm{Ax}_{4}$ or so): there is a class of successor regular cardinals, and for any set $Y,{ }^{Y} \lambda$ can, in a suitable sense, be decomposed to "few" well order sets (see [Shee, 0.3] and more here in 2.19).

Much attention there was given to trying to get the results from weaker relatives of Ax_{4}. A major aim of this work is to try to justify:

Thesis 0.1. $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ is a reasonable set theory, for which much of combinatorial set theory can be generalized, but many times in a challenging way and even discover new phenomena.

In particular we consider diagonalization arguments, including in ZF alone. Returning to the original issue, i.e. the position that "set theory with weak choice is dead", which we had wholeheartedly supported, the paper's position here is that:
(a) AC is obviously true
(b) general set theory in $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ is a worthwhile endeavor
(c) an important reason for not adopting $\mathrm{ZF}+\mathrm{DC}$ was the lack of something like (b), hence intellectual honesty urges you to investigate this direction
(d) this is just a way to look at strengthening existence results to existence by nicely definable sets.

Let us try to explain the results.
We assume $\mathrm{ZF}+\mathrm{DC}$. Consider a sequence $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ of limit ordinals, when can we get a cofinal $<_{I}$-increasing sequence in $\left(\Pi \bar{\delta},<_{I}\right)$ for I on ideal on Y ? When can we get a parallel to the pcf-theorem?

In [She12, §5],[She14] we use $\mathrm{AC}_{\mathscr{P}(Y)}$ (and DC) to deal with true pseudo cofinality, but here instead we continue [Shee] assuming Ax ${ }_{4}$. In [Shee, $\left.1.8=\mathrm{L} 6.1\right]$ we generalize the pcf-theorem (i.e. existence of $\left.\left\langle\mathfrak{b}_{\mathfrak{a}, \theta}, \overline{\mathfrak{f}}_{\mathfrak{a}, \theta}: \theta \in \operatorname{pcf}(\mathfrak{a})\right\rangle\right)$ for countable index set Y. What about large Y, with each δ_{s} having cofinality large compared to Y ? Here first we deal with D an \aleph_{1}-complete filter in 1.5 ; this continues the
ideas of [Shee, $1.2=\mathrm{Lr} .2$]. We then can 1 choose $\left\langle A_{\varepsilon}, J_{\varepsilon}, \bar{f}: \varepsilon<\varepsilon(*)\right\rangle, J_{\varepsilon}$ the \aleph_{1} complete ideal on Y generated by $\left\{A_{\zeta}: \zeta<\varepsilon\right\}, \bar{f}$ cofinal in $\left(\Pi\left(\bar{\delta} \upharpoonright A_{\varepsilon}\right),<_{I_{\varepsilon}}\right)$ and $<_{I_{\varepsilon}}$-increasing. Can we waive " \aleph_{1}-complete"? For this in 1.7 we combine the above with a generalization of [Shee, $1.6=1$ p.4], i.e. above I_{ε} is the ideal on Y generated by $\left\{A_{\zeta}: \zeta<\varepsilon\right\}$. If I_{ε} is not \aleph_{1}-complete we deal essentially with all quotients of I_{ε} which are ideals on countable sets.

But in Theorem 1.7, what about $\Pi \bar{\delta}$ when $s \in Y \Rightarrow \operatorname{cf}\left(\delta_{s}\right)$ small? With choice, recalling [KS00] we cannot generalize the pcf theorem ${ }^{2}$, but here, even if each δ_{s} has countable cofinality this is not necessarily the case. This motivates the definition of the ideal $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$ noting that in general it may well be that $s \in Y \Rightarrow \operatorname{cf}\left(\delta_{s}\right)=\aleph_{0}$ but $\operatorname{cf}(\Pi \bar{\delta})$ is large.

In our context, the set ${ }^{\kappa} \lambda$ does not in general have a cardinality, i.e. its power is not a cardinal, i.e. an $\aleph, ~ e q u i v a l e n t l y ~ t h e ~ s e t ~ i s ~ n o t ~ w e l l ~ o r d e r a b l e . ~ B u t ~ s u r p r i s i n g l y, ~$ by Theorem 2.34 in $\S(2 \mathrm{D})$, relevant covering numbers exist, i.e. $\operatorname{cov}\left(\lambda, \theta_{3}(\kappa), \kappa, \sigma\right)$ is a well defined \aleph when the cardinality of the sets by which we cover $\left(<\theta_{3}(\kappa)\right)$ is large enough compared to the ones we cover $(<\kappa)$. This is an additional witness for the covering number's naturality. This follows by moreover proving when $\kappa=\sigma=\aleph_{1}$, there is a cofinal subset which is well orderable. In particular here it gives us a way to circumvent the non-existence of well orders of ${ }^{\kappa} \lambda$.

In $\S(2 \mathrm{~A}), \S(2 \mathrm{~B})$ we deal with relatives of $\S 1$: pcf system, eub and more. Also in 2.19 we give an improvement of the result of [Shee, §1].

Another issue is the "successor of a singular cardinal is regular" in $\S(2 \mathrm{C})$. Recall that the consistency strength of two successive singular cardinal is large, but not for "a successor cardinal is singular". So a posteriori (i.e. after [Shee, §1]) it is natural to hope that if μ is singular large enough then μ^{+}is regular. In [Shee, $2.13=\mathrm{Ls} .2$] we show that for many μ the answer is yes; here we get a stronger conclusion: μ^{+} is a true successor cardinal; in fact $\alpha<\mu \Rightarrow|\alpha|^{\aleph_{0}}<\mu$ suffice; see 2.28(2).

Many proofs rely on diagonalizing so seemingly inherently use strong choice. Still we succeed to save some, see $\S 3$. As a test problem, we deal with constructing Abelian groups and with Black Boxes. We also note that [She00] applies even in $\mathrm{ZF}+\mathrm{AC}_{\aleph_{0}}$ in 0.19.

A natural question is:
$(*)$ assume $\operatorname{cf}(\mu)=\aleph_{0},(\forall \alpha<\mu)\left(|\alpha|^{\aleph_{0}}<\mu\right)$
(a) if $\mu \leq \lambda<\mu^{\aleph_{0}}$ and λ is singular, is λ^{+}a true successor? or at least
(b) if $\mu \leq \lambda<\operatorname{pp}(\mu)$ and λ is singular is λ^{+}is regular?

We may try to use a closure operation $c \ell$ which is only \aleph_{1}-well founded, hence have to use $\mathrm{DC}_{\aleph_{1}}$.

How can we try to prove? We may try to prove that if $\mu>2^{\aleph_{0}}$ is singular then $\lambda=\mu^{+}$is regular improving [Shee, $2.13=$ Ls.2], where there are further restrictions on μ. A natural approach is letting $\chi \leq \mu$ be minimal such that $\chi^{\aleph_{0}} \geq \mu$, so $\chi>2^{\aleph_{0}}$, so as there we can find $\bar{C}_{1}=\left\langle C_{\alpha}: \alpha \in S_{<\chi}^{\lambda}\right\rangle, C_{\alpha} \subseteq \alpha=\sup \left(C_{\alpha}\right)$ and $\left|C_{\alpha}\right|<\chi$. But what about $S_{\geq \chi}^{\lambda}$? Assume $\lambda=\operatorname{pp}(\chi)$ so we can find $\left\langle\lambda_{n}: n<\omega\right\rangle$, each λ_{n} is $<\chi, J$ ideal on $\omega, \operatorname{tcf}\left(\Pi \lambda_{n},<_{J}\right)=\lambda$ and $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $<_{J}$-increasing cofinal in $\left(\Pi \lambda_{n},<_{J}\right)$. Without loss of generality $\operatorname{cf}(\alpha)>2^{\aleph_{0}} \Rightarrow f_{\alpha}$ a $<{ }_{J}$-eub of $\bar{f}\lceil\alpha$.

[^1]Another approach is to build an AD family $\mathscr{A} \subseteq[\lambda]{ }^{\aleph_{0}}$ which induces a "good" function $c_{\mathscr{A}}: \mathscr{P}(\lambda) \rightarrow \mathscr{P}(\lambda):$ where $c_{\mathscr{A}}(u)=\cup\{A \in \mathscr{A}: A \cap u$ infinite $\}$, maybe let \mathscr{A}_{0} be induced by \bar{f}.
Naturally we may ask (and deal with some, as mentioned).
Question 0.2. 1) Can we bound $\operatorname{hrtg}(\mathscr{P}(\mu))$ for μ singular? (recall Gitik-Koepke [GK, pg.2]).
2) Can we deduce wlor $\left({ }^{Y} \mu\right)=\operatorname{hrtg}\left({ }^{Y} \mu\right)$ when μ is singular large enough? Maybe see $\left[S^{+} \mathrm{a}, \mathrm{Ld} 21\right]$.
3) In $\S 1$ we may replace θ by several θ_{ℓ}, defined by the proof (i.e. θ_{ℓ} is minimal satisfying some demands involving $\theta_{0}, \ldots, \theta_{\ell-1}$ and the pcf problem); but seemingly this does not make a serious gain, maybe see on this in $\left[\mathrm{S}^{+} \mathrm{a}, 5.2=\mathrm{Le} 4\right]$.
4) Can we generalize RGCH (see [She00], [She06, §1]), see 0.19, 2.35. Maybe see more in $\left[\mathrm{S}^{+} \mathrm{b}\right]$.

We thank the referee for checking the paper very carefully discovering many things which should be mended much above the call of duty.

$\S 0(\mathrm{~B})$. Preliminaries.

Hypothesis 0.3. 1) We work in ZF + DC.
2) Usually we assume $\mathrm{Ax}_{4, \partial}$, see Definition $0.4(5)$ relying on $0.5(3), 0.4(4)$, so a reader may assume it throughout; or even assume Ax_{4}, see $0.5(2),(1)$. Many times we use weaker relatives so we try to mention the case of $\mathrm{Ax}_{4, \lambda, \theta, \partial}$ actually used. So the case $\theta=\partial=\aleph_{1}$ means $A x_{4, \lambda}$ holds and note Ax_{4} is stronger than $\mathrm{Ax}_{4, \aleph_{1}}$.
3) So no such assumption means $\mathrm{ZF}+\mathrm{DC}$ but still ∂ is a fixed cardinal $\geq \aleph_{1}$.

Definition 0.4. 1) $\operatorname{hrtg}(A)=\operatorname{Min}\{\alpha$: there is no function from A onto $\alpha\}$.
2) $\operatorname{wlor}(A)=\operatorname{Min}\{\alpha$: there is no one-to-one function from α into A or $\alpha=0 \wedge A=\emptyset\}$ so $\operatorname{wlor}(A) \leq \operatorname{hrtg}(A)$.

Definition 0.5. 1) $A x_{\lambda}^{4}$ means $[\lambda]^{\aleph_{0}}$ can be well ordered so $\lambda^{\aleph_{0}}$ is a well defined cardinal.
2) $A x_{4}$ means $A x_{\lambda}^{4}$ for every cardinality λ.
3) $\mathrm{Ax}_{4, \lambda, \partial, \theta}$ means that $\left(\lambda \geq \partial \geq \theta \geq \aleph_{1}\right.$ and $)$: there is a witness \mathscr{S} which means:
(a) $\mathscr{S} \subseteq\left([\lambda]^{<\partial}, \subseteq\right)$
(b) for every $u_{1} \in[\lambda]^{<\theta}$ there is $u_{2} \in \mathscr{S}$ such that $u_{1} \subseteq u_{2}$
(c) \mathscr{S} is well-orderable
(d) for notational simplicity: \mathscr{S} of minimal cardinality.

3A) But we may use an ordinal β instead of λ above. So trivially $\mathrm{Ax}_{\lambda}^{4} \Rightarrow \mathrm{Ax}_{4, \lambda, \aleph_{1}, \aleph_{1}}$ because we can choose $\mathscr{S}=[\lambda] \leq \aleph_{0}$.
3B) If $\mathrm{Ax}_{4, \lambda, \partial, \theta}$ then we let $\operatorname{cov}(\lambda, \partial, \theta, 2)$ be the minimal $|\mathscr{S}|$ for \mathscr{S} as in $0.5(3)$; necessarily it is $<\operatorname{wlor}\left([\lambda]^{<\partial}\right)$ which is $\leq \operatorname{hrtg}\left([\lambda]^{<\partial}\right)$; so if $\neg \mathrm{Ax}_{4, \lambda, \partial, \theta}$ then it is not well defined.
3C) We say $\left(\mathscr{S}_{*},<_{*}\right)$ witness $\mathrm{Ax}_{4, \lambda, \partial, \theta}$ when \mathscr{S}_{*} is as in part (3) and $<_{*}$ is a well ordering of \mathscr{S}_{*}.
3D) We say $\left(\mathscr{S}_{*},<_{*}\right)$ witness $A x_{\lambda}^{4}$ when $\mathscr{S}_{*}=[\lambda] \leq \aleph_{0}$ and $<_{*}$ is a well ordering of $[\lambda] \leq \aleph_{0}$.
4) Let $\mathrm{Ax}_{4, \lambda, \partial}$ mean $\mathrm{Ax}_{4, \lambda, \partial, \aleph_{1}}$; note that even if $\partial=\aleph_{1}, \mathrm{Ax}_{4, \lambda, \partial}$ is not $\mathrm{Ax}_{\lambda}^{4}$.
5) Let $A x_{4, \partial}$ mean $\mathrm{Ax}_{4, \lambda, \partial}$ for every λ, so $A x_{4, \partial}$ is not the same as $A x_{\partial}^{4}$.
6) We may write $\leq \theta$ instead of θ^{+}, and writing an ordinal α instead of ∂ means $\operatorname{otp}\left(u_{1}\right)<\alpha$ in clause (b) of part (3); similarly for the other parameters.

We try to make the paper reasonably self-contained. Still we assume knowledge of [Shee, $\S(0 \mathrm{~B})]$, the preliminaries, in particular, recall:
Claim 0.6. 1) For every λ, ∂ satisfying $\mathrm{Ax}_{4, \lambda, \partial}$ there is a function $c \ell$, moreover one which is (we may use α instead of λ) definable from $\left(\mathscr{S}_{*},<_{*}\right)$ where $\left(\mathscr{S}_{*},<_{*}\right)$ witness $\mathrm{Ax}_{4, \lambda, \partial}$, see 0.5(3),(3B), even uniformly such that:
(a) cl: $\mathscr{P}(\lambda) \rightarrow \mathscr{P}(\lambda)$
(b) $u \subseteq c \ell(u) \subseteq \lambda$, (but we do not require $c \ell(c \ell(u))=c \ell(u)$)
(c) $|c \ell(u)|<\operatorname{hrtg}\left([u]^{\aleph_{0}} \times \partial\right)$
(c)' if Ax_{4} and $\left(\mathscr{S}_{*},<_{*}\right)$ witness it then $|c \ell(u)| \leq|u|^{\aleph_{0}}$ for $u \subseteq \lambda$
(d) there is no sequence $\left\langle u_{n}: n<\omega\right\rangle$ such that $u_{n+1} \subseteq u_{n} \nsubseteq c \ell\left(u_{n+1}\right)$.
2) We can above replace $\mathrm{Ax}_{4, \lambda, \partial}$ by: there is a well orderable $\mathscr{S}_{*} \subseteq[\lambda]^{<\partial}$ such that there is no $u \in[\lambda]^{\aleph_{0}}$ satisfying $v \in \mathscr{S}_{*} \Rightarrow \aleph_{0}>|v \cap u|$.
Proof. 1) Recall $\mathscr{S}_{*} \subseteq[\lambda]^{<\partial}$ and $u_{1} \in[\lambda]^{\leq \aleph_{0}} \Rightarrow\left(\exists u_{2} \in \mathscr{S}_{*}\right)\left(u_{1} \subseteq u_{2}\right)$ and $<_{*}$ is a well ordering of \mathscr{S}_{*} and let $\left\langle w_{i}^{*}: i<\operatorname{otp}\left(\mathscr{S}_{*},<_{*}\right)\right\rangle$ list \mathscr{S}_{*} in $<_{*}$-increasing order; if Ax_{4} we can use $\mathscr{S}_{*}=[\lambda]^{\aleph_{0}}$. For $v \in[\lambda] \leq \aleph_{0}$ let $\mathbf{i}(v)=\mathbf{i}\left(v, \mathscr{S}_{*},<_{*}\right)=\min \left\{i: v \backslash w_{i}^{*}\right.$ is finite $\}$.

For $u \subseteq \lambda$ let $c \ell(u)=\cup\left\{w_{i}^{*}\right.$: for some $v \in[u]^{\aleph_{0}}$ we have $\left.i=\mathbf{i}(v)\right\} \cup u \cup\{0\}$.
So clearly clauses (a),(b) of the conclusion hold.
For clause (c) define $F:[u]^{\aleph_{0}} \times \partial \rightarrow \lambda$ by $F(v, \alpha)=$ the α-th member of $w_{\mathbf{i}(v)}^{*}$ when $\operatorname{otp}\left(w_{\mathbf{i}(v)}^{*}\right)>\alpha$, and 0 otherwise; clearly F is a function from $[u]^{\aleph_{0}} \times \partial$ to λ and its range is included in $c \ell(u)$ and includes $c \ell(u) \backslash u$; we like F to be onto $c \ell(u)$, but clearly $u \backslash \operatorname{Rang}(F)$ is finite, hence this last part can be corrected easily hence $c \ell(u)$ has cardinality $<\operatorname{hrtg}\left([u]^{\aleph_{0}} \times \partial\right)$ so we are done with clause (c).

Lastly, to prove clause (d), toward contradiction assume $\bar{u}=\left\langle u_{n}: n<\omega\right\rangle$ and $u_{n+1} \subseteq u_{n} \nsubseteq c \ell\left(u_{n+1}\right)$ for every n; by DC or just $\mathrm{AC}_{\aleph_{0}}$ choose $\bar{\alpha}=\left\langle\alpha_{n}: n<\omega\right\rangle$ such that $\alpha_{n} \in u_{n} \backslash c \ell\left(u_{n+1}\right)$. Now let $v=\left\{\alpha_{n}: n<\omega\right\}$ and $i=\mathbf{i}(v)$, so for every $n, v \backslash\left(v \cap u_{n}\right)$ is finite hence $\mathbf{i}(v)=\mathbf{i}\left(v \cap u_{n}\right)$ and let n be such that $v \backslash w_{i}^{*} \subseteq$ $\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$, so $\alpha_{n} \in w_{i}^{*} \subseteq c \ell\left(u_{n+1}\right)$, contradicting the choice of α_{n}.
2) Similarly but first for any infinite $v \subseteq \lambda \operatorname{let} \mathbf{i}(v)=\mathbf{i}\left(v, \mathscr{S}_{*},<_{*}\right):=\min \left\{i: v \cap w_{i}^{*}\right.$ is infinite $\}$. Second, $F(v, \alpha)$ is:

- the α-th member of $w_{\mathbf{i}(v)}^{*}$ if $\alpha<\operatorname{otp}\left(w_{\mathbf{i}(v)}^{*}\right)$
- 0 otherwise.

Third, note:

- if $u \subseteq \lambda$ then $u \backslash\left\{F(v, \alpha): v \in[u]^{\aleph_{0}}\right.$ and $\left.\alpha<\partial\right\}$ is finite.
[Why? If not, let the difference be v^{*} and let $v=\left\{\alpha \in v^{*}: v^{*} \cap \alpha\right.$ is finite $\}$ so v is a subset of the difference of cardinality \aleph_{0}, (infinite by our assumption), hence $\{F(v, \alpha): \alpha<\lambda\}$ is not disjoint to v, contradiction.]

Fourth, in the end, instead of "let n be such that $v \backslash w_{i}^{*} \subseteq\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ " we choose n such that $\alpha_{n} \in w_{\mathbf{i}(v)}^{*} \cap v$; possible as $w_{\mathbf{i}(v)}^{*} \cap v=w_{\mathbf{i}(v)}^{*} \cap\left\{\alpha_{n}: n<\omega\right\}$ is infinite and $n<\omega \Rightarrow \mathbf{i}(v)=\mathbf{i}\left(\left\{\alpha_{k}: k>n\right\}\right)$.

Observation 0.7. 1) For any set Y, if μ a cardinal and $\theta:=\operatorname{hrtg}(Y) \underline{\text { then }}$ $\operatorname{hrtg}(Y \times \mu) \leq(\theta+\mu)^{+}$.
2) In 0.6 we can replace clause (c) by:
$(c)^{\prime}|c \ell(u)|<\max \left\{\partial^{+}, \operatorname{hrtg}\left([u]^{\aleph_{0}}\right)\right\}$.
Proof. 1) Assume F is a function from $Y \times \mu$ onto an ordinal γ.
For $\beta<\mu$ let $v_{\beta}=\{F(y, \beta): y \in Y\}$, so $\left\langle v_{\beta}: \beta<\mu\right\rangle$ is a well defined sequence of subsets of the ordinal γ with union γ, and clearly $\beta<\mu \Rightarrow\left|v_{\beta}\right|<\operatorname{hrtg}(Y)=\theta$. Really we can use $v_{\beta}^{\prime}=v_{\beta} \backslash \cup\left\{v_{\alpha}: \alpha<\beta\right\}$, in this case clearly $\left\langle v_{\beta}^{\prime}: \beta<\mu\right\rangle$ is a partition of γ. Hence easily $|\gamma|=\left|\bigcup_{\beta<\mu} v_{\beta}\right|=\left|\bigcup_{\beta<\mu} v_{\beta}^{\prime}\right| \leq \theta+\mu$, so the desired result follows.
2) Let $\theta=\operatorname{hrtg}\left([u]^{\aleph_{0}}\right)$, if $\theta \leq \partial$ then applying part (1), $\operatorname{hrtg}\left([u]^{\aleph_{0}} \times \partial\right) \leq(\theta+\partial)^{+}=$ ∂^{+}so we are done. If $\theta>\partial$, then $\operatorname{hrtg}\left([u]^{\aleph_{0}} \times \partial\right) \leq \operatorname{hrtg}\left([u]^{\aleph_{0}} \times[u]^{\aleph_{0}}\right)$ and if $|u| \geq \aleph_{0}$ we have $\left|[u]^{\aleph_{0}} \times[u]^{\aleph_{0}}\right|=|u|^{\aleph_{0}}$ hence we are done.

Lastly, if $\neg\left(|u| \geq \aleph_{0}\right)$ then (as $\left.u \subseteq \lambda\right)$ necessarily u is finite and so $c \ell(u)=u \cup\{0\}$ hence $|c \ell(u)|<\partial$, so having covered all cases we are done.
$\square_{0.7}$
Convention 0.8. 1) Let "there is y satisfying $\psi(y, a), \partial$-uniformly definable (or uniformly ∂-definable) for $a \in A "$ means that there is a formula $\varphi(x, y, z)$ such that:

- for every μ large enough if $a \in A$ and $\mathrm{Ax}_{4, \mu, \partial}$ holds and $<_{*}$ well orders some $\mathscr{S}_{*} \subseteq[\mu]^{<\partial}$ as in $0.5(3)$ then $(\exists!y)\left[\varphi\left(y, a,<_{*}\right) \wedge \psi(y, a)\right]$.
1A) Note that it follows that there is a definable function $A \mapsto \mu_{A} \in$ card such that above, $\mu \geq \mu_{A}$ suffice.

2) Similarly with (∂, θ)-uniformly definable when we use $\mathrm{Ax}_{4, \mu, \partial, \theta}$; and (μ, ∂, θ) uniformly definable when we fix μ.
$3)$ If the parameter (∂) or (∂, θ) or (μ, ∂, θ) is clear from the context we may omit it. We may not always remember to state this.
3) δ denotes an ordinal, limit one if not said otherwise.

Definition 0.9. Let D be a filter on a set Y.

1) For $\bar{\delta} \in{ }^{Y}$ Ord let $\lambda=\operatorname{tcf}\left(\Pi \bar{\delta},<_{D}\right)$ means that $\left(\Pi \bar{\delta},<_{D}\right)$ has true cofinality λ, i.e. λ is a regular cardinal and there is a witness that is a $<_{D}$-increasing sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ of members of $\Pi \bar{\delta}$ which is cofinal in $\left(\Pi \bar{\delta},<_{D}\right)$; but sometimes we allow λ to be an ordinal so not unique. (Why helpful? See part (2)).
2) We say that $\bigwedge_{i \in I} \lambda_{i}=\operatorname{tcf}\left(\Pi \bar{\delta}_{i},{{ }_{D}}\right)$ when $\bar{\delta}_{i} \in{ }^{Y}$ Ord for $i \in I$ and there is a sequence $\left\langle\left\langle f_{\alpha}^{i}: \alpha<\lambda_{i}\right\rangle: i \in I\right\rangle$ such that $\left\langle f_{\alpha}^{i}: \alpha<\lambda_{i}\right\rangle$ is as above for $\lambda_{i}=\operatorname{tcf}\left(\Pi \bar{\delta}_{i},<_{D}\right)$, but λ_{i} may be any ordinal hence is not unique; so $\bigwedge_{i \in I} \lambda_{i}=$ $\operatorname{tcf}\left(\Pi \bar{\delta}_{2},<_{D}\right)$ and $i \in I \Rightarrow \lambda_{i}=\operatorname{tcf}\left(\Pi \bar{\delta}_{i},<_{D}\right)$ has a different meaning.
3) Assume $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ and $\alpha<\delta \Rightarrow f_{\alpha} \in{ }^{Y}$ Ord and D is a filter on Y. We say $f \in{ }^{Y}$ Ord is a $<_{D}$-eub of \bar{f} when:
(a) $\alpha<\delta \Rightarrow f_{\alpha} \leq f \bmod D$
(b) if $g \in{ }^{Y}$ Ord and $(\forall s \in Y)(g(s)<f(s) \vee g(s)=0)$ then $(\exists \alpha<\delta)\left(g \leq f_{\alpha}\right.$ $\bmod D)$.

Definition 0.10.1) Let Y be the set and let κ be an infinite cardinal.
(a) $\operatorname{Fil}_{\kappa}^{1}(Y)$ is the set of κ-complete filters on Y, (so Y is defined from D as $\cup\{X: X \in D\})$
(b) $\operatorname{Fil}_{\kappa}^{2}(Y)=\left\{\left(D_{1}, D_{2}\right): D_{1} \subseteq D_{2}\right.$ are κ-complete filters on Y, $\left(\emptyset \notin D_{2}\right.$, of course) $\}$; in this context $Z \in \bar{D}$ means $Z \in D_{2}$
(c) $\operatorname{Fil}_{\kappa}^{3}(Y, \mu)=\left\{\left(D_{1}, D_{2}, h\right):\left(D_{1}, D_{2}\right) \in \operatorname{Fil}_{\kappa}^{2}(Y)\right.$ and $h: Y \rightarrow \alpha$ for some $\alpha<\mu\}$, if we omit μ we mean $\mu=\operatorname{hrtg}\left([Y]^{\leq \aleph_{0}} \times \partial\right) \cup \omega$, recalling 0.3
(d) $\operatorname{Fil}_{\kappa}^{4}(Y, \mu)=\left\{\left(D_{1}, D_{2}, h, Z\right):\left(D_{1}, D_{2}, h\right) \in \operatorname{Fil}_{\kappa}^{3}(Y, \mu)\right.$ and $\left.Z \in D_{2}\right\}$; omitting μ means as above.
2) For $\mathfrak{y} \in \operatorname{Fil}_{\kappa}^{4}(Y, \mu)$ let $Y=Y^{\mathfrak{y}}=Y_{\mathfrak{y}}, \mathfrak{y}=\left(D_{1}^{\mathfrak{y}}, D_{2}^{\mathfrak{y}}, h^{\mathfrak{y}}, Z^{\mathfrak{y}}\right)=\left(D_{\mathfrak{y}, 1}, D_{\mathfrak{y}, 2}, h_{\mathfrak{y}}, Z_{\mathfrak{y}}\right)=$ $\left(D_{1}[\mathfrak{y}], D_{2}[\mathfrak{y}], h[\mathfrak{y}], Z[\mathfrak{y}]\right)$; similarly for the others and let $D^{\mathfrak{y}}=D[\mathfrak{y}]$ be $D_{1}^{\mathfrak{y}}+Z^{\mathfrak{y}}$ recalling $D+Z$ is the filter generated by $D \cup\{Z\}$.
3)If $\kappa=\aleph_{1}$ we may omit it.
4) For D a filter on Y and $f \in{ }^{Y}$ Ord we define $\operatorname{rk}_{D}(f) \in \operatorname{Ord} \cup\{\infty\}$ by $\operatorname{rk}_{D}(f)=$ $\sup \left\{\operatorname{rk}_{D}(g)+1: g \in{ }^{Y}\right.$ Ord and $\left.g<f \bmod D\right\}$, (the Galvin-Hajnal rank).

We now repeat to a large extent [Shee], [She12]
Definition/Claim 0.11. Assume δ is a limit ordinal (or zero for some parts), $D=D_{1} \in \operatorname{Fil}_{\aleph_{1}}^{1}(Y), \bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ is a sequence of members ${ }^{3}$ of ${ }^{Y}$ Ord, usually $<_{D_{1}}$-increasing in ${ }^{Y}$ Ord, f is a \leq_{D}-upper bound of \bar{f} but there is no such $g<_{D} f$; necessarily there is such f (using DC).

1) [Definition] Let $J=J[f, \bar{f}, D]:=\left\{A \subseteq Y\right.$: either $A=\emptyset \bmod D$ or $A \in D^{+}$but there is a \leq_{D+A}-upper bound $g<_{D+A} f$ of $\left.\bar{f}\right\}$.
2) $J[f, \bar{f}, D]$ is an \aleph_{1}-complete ideal on Y disjoint to D.
3) [Definition] Recalling $D_{1}=D$, let $D_{2}=D_{2}\left(f, \bar{f}, D_{1}\right)=\operatorname{dual}\left(J\left[f, \bar{f}, D_{1}\right]\right):=$ $\left\{A \subseteq Y: Y \backslash A \in J\left[f, \bar{f}, D_{1}\right]\right\}$; note that, e.g. as D_{1} is \aleph_{1}-complete then D_{2} is an \aleph_{1}-complete filter on Y extending D_{1}.
4) In (3), f is a unique modulo D_{2}, i.e. if also $g \in{ }^{Y}$ Ord, is a $<_{D_{1}}$-upper bound of \bar{f} and $J\left[g, \bar{f}, D_{1}\right]=J\left[f, \bar{f}, D_{1}\right]$ then $g=f \bmod D_{2}$, equivalently $\bmod J\left[f, \bar{f}, D_{1}\right]$.
5) If $\left(\bar{f}\right.$ is $\leq_{D_{1}}$-increasing, and) $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ then f from above is a $<_{D_{2}}$-eub of \bar{f}, see Definition 0.9(3).
Definition 0.12. Assume $f \in{ }^{Y}$ Ord, $D_{2} \supseteq D_{1}$ are \aleph_{1}-complete filters on $Y, c \ell$ is as in 0.6 for $\alpha(*)$ and $\operatorname{Rang}(f) \subseteq \alpha(*)$.
0) For some $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y), D_{1}^{\mathfrak{y}}=D_{1}, D_{2}^{\mathfrak{y}}=D_{2}$ and the function f satisfies \mathfrak{y}, see below.
6) We say $f: Y \rightarrow$ Ord satisfies $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{0}}^{4}(Y)$ when:
(a) if $Z \in D_{2}^{\mathfrak{y}}$ and $Z \subseteq Z_{\mathfrak{y}}$ then $c \ell(\{f(t): t \in Z\})=c \ell\left(\left\{f(t): t \in Z_{\mathfrak{y}}\right\}\right.$
(b) $y \in Z_{\mathfrak{y}} \Rightarrow h_{\mathfrak{y}}(y)=\operatorname{otp}\left(f(y) \cap c \ell\left(\operatorname{Rang}\left(f \upharpoonright Z_{\mathfrak{y}}\right)\right)\right)$
(c) if $t \in Y$ and $f(t) \in c \ell\left\{f(s): s \in Z_{\mathfrak{y}}\right\}$ then $t \in Z_{\mathfrak{y}}$
(d) $y \in Y \backslash Z_{\mathfrak{y}} \Rightarrow f(y)=0$.

[^2]2) "Semi satisfies" mean we omit clause (d).
3) Let "weakly satisfies" means we omit clauses (c),(d).

Definition 0.13. Let Y, f, \bar{f}, D be as in 0.11 and $Y, \alpha(*), c l$ as in 0.12 .

1) We say f is the $(\mathfrak{y}, c \ell)$-eub of \bar{f} or canonical \bar{f}-eub for \mathfrak{y} and $c \ell$ or for $(\mathfrak{y}, c \ell)$ when:
(a) $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$
(b) $\bar{f}=\left\langle f_{\alpha}: \alpha<\alpha_{*}\right\rangle$
(c) f_{α}, f are from ${ }^{Y} \alpha(*)$
(d) $f_{\alpha} \leq_{D_{\mathfrak{y}, 1}} f$
(e) $D_{\mathfrak{y}, 1}=D$ and $D_{\mathfrak{y}, 2} \supseteq \operatorname{dual}\left(J\left[f, \bar{f}, D_{\mathfrak{y}, q}\right]\right)$
$(f) f$ satisfies \mathfrak{y} (for $c \ell$).
Claim 0.14. Let Y, f, \bar{f}, D as in 0.11, $f, \alpha(*)$, cl as in 0.12.
2) The "the" is 0.13 is justified, that is, f is unique given cl (so $\alpha(*), \bar{f}, \mathfrak{y})$.
3) There is one and only one \mathfrak{y} such that
(a) $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$
(b) $D_{\mathfrak{y}, 1}=D$
(c) $D_{\mathfrak{y}, 2}=\operatorname{dual}(J[f, \bar{f}, D])$
(d) f semi satisfies \mathfrak{y}.
4) For the \mathfrak{y} from part (2), letting $g=\left(f \upharpoonright Z_{\mathfrak{y}}\right) \cup\left(0_{Y \backslash Z_{\mathfrak{y}}}\right)$ we have g is the canonical $\bar{f}-$ eub for \mathfrak{y} (and $c \ell$), in particular it satisfies y.

Proof. Should be clear.
Recall the related (not really used)
Definition/Claim 0.15. Assume $D \in F_{\aleph_{1}}^{1}(Y)$ and $f: Y \rightarrow$ Ord.

1) [Definition] $J[f, D]=\left\{A \subseteq Y: A=\emptyset \bmod D\right.$ or $A \in D^{+}$and $\operatorname{rk}_{D+A}(f)>$ $\left.\operatorname{rk}_{D}(f)\right\}$.
2) J is an \aleph_{1}-complete filter disjoint to D.
3) If $f_{1}, f_{1}: Y \rightarrow$ Ord and $J\left[f_{1}, D\right]=J\left[f_{2}, D\right]$.
4) There is one and only $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ such that f semi satisfies $\mathfrak{y}, D_{\mathfrak{y}, 1}=D$ and $D_{\mathfrak{y}, 2}=\operatorname{dual}(J[f, D])$.
5) In (4) there is a unique f^{\prime} which satisfies \mathfrak{y} and $f^{\prime} \upharpoonright Z_{\mathfrak{y}}=f \upharpoonright Z_{\mathfrak{y}}$.

Notation 0.16. Let $A \leq_{\mathrm{qu}} B$ means that $A=\emptyset$ or there is a function from B onto A.

Observation 0.17. Assume $\partial \leq|Y|$ and even $\partial \subseteq Y$ for transparency.

1) $\operatorname{Fil}_{\aleph_{1}}^{4}(Y) \leq_{\mathrm{qu}}|\mathscr{P}(\mathscr{P}(3 \times Y))|$.
2) $A l s o{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right) \leq_{\text {qu }} \mathscr{P}(\mathscr{P}(Y))$.
3) If $\theta=\operatorname{hrtg}(\mathscr{P}(\mathscr{P}(Y))$ then θ satisfies:

- if $\alpha<\theta$ then $\operatorname{hrtg}\left(\mathscr{P}\left([\alpha]^{\aleph_{0}} \times \partial\right)\right) \leq \theta$
- so if Ax_{4} then $|\alpha|^{\aleph_{0}} \times \partial<\theta$.

4) Assume Ax_{4}. If $\alpha<\operatorname{hrtg}(\mathscr{P}(Y))$ then $|\alpha|^{\aleph_{0}}<\operatorname{hrtg}(\mathscr{P}(Y))$; hence if $\partial \leq|Y|$ and $\alpha<\operatorname{hrtg}(\mathscr{P}(Y))$ then $|\alpha|^{\aleph_{0}} \times \partial<\operatorname{hrtg}(\mathscr{P}(Y))$.

Remark 0.18. If Y is a set of ordinals, infinite to avoid trivialities then $|Y \times 3|=|Y|$, justifying this see 2.13.
Proof. 1) Let $Y_{0}=Y, Y_{\ell+1}=\mathscr{P}\left(Y_{\ell}\right)$ for $\ell=0,1$ and let $Y_{1}^{*}=\left[Y_{1}\right]^{\leq \aleph_{0}}, Y_{2}^{*}=$ $\mathscr{P}\left(Y_{1}^{*}\right), Y_{0}^{\prime}=3 \times Y$ and $Y_{\ell+1}^{\prime}=\mathscr{P}\left(Y_{\ell}^{\prime}\right)$ for $\ell=0,1$
$(*)_{1}\left|Y_{0}\right|+1=\left|Y_{0}\right|$ and even $\left|Y_{0}\right|+\partial=\left|Y_{0}\right|$.
[Why? As $\partial \leq|Y|$ is an infinite cardinal.]
$(*)_{2}\left|Y_{1}\right|=\partial \times\left|Y_{1}\right|$ and $\partial \times\left|Y_{1}^{*}\right|=\left|Y_{1}^{*}\right|$ and $\left|Y_{1}^{\prime}\right|=\left|Y_{1}^{\prime} \times \partial\right|=\partial \times\left|Y_{1}^{\prime}\right|$.
[Why? Both follow by $(*)_{1}$.]
$(*)_{3}\left|Y_{2}\right| \times\left|Y_{2}\right|=\left|Y_{2}\right|$ and $\left|Y_{0}\right| \leq\left|Y_{1}\right| \leq\left|Y_{2}\right|$ and $\left|Y_{2}^{\prime}\right| \times\left|Y_{2}^{\prime}\right|=\left|Y_{2}^{\prime}\right| ;$ moreover (for part (2)) $\left|{ }^{\omega}\left(Y_{2}\right)\right|=\left|Y_{2}\right|$ and $\left.\right|^{\omega}\left(Y_{2}^{\prime}\right)\left|=\left|Y_{2}^{\prime}\right|\right.$
[Why? Follows by $(*)_{2}$.]
$(*)_{4}\left\{D_{\mathfrak{y}, \ell}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\}$ has power $\leq\left|Y_{2}\right|$ for $\ell=1,2$.
[Why? By the definition each $D_{\mathfrak{y}, \ell}$ is a subset of $\mathscr{P}(Y)=\mathscr{P}\left(Y_{0}\right)=Y_{1}$.]
$(*)_{5}\left\{Z_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\}$ has power $\leq\left|Y_{1}\right|$.
[Why? As $Z_{\mathfrak{y}} \subseteq Y=Y_{0}$ so $Z_{\mathfrak{y}} \in Y_{1}$.]
$(*)_{6}[Y]^{\aleph_{0}} \times \partial$ has the same power as $[Y]^{\leq \aleph_{0}}$.
[Why? Let Z be a set of ordinals disjoint to Y of order type ∂; by ($*)_{1}$ we have $|Y|=|Y \cup Z|$ hence $\left|[Y]^{\leq \aleph_{0}}=\left|[Y \cup Z]^{\leq \aleph_{0}}\right| \geq\left|[Y]^{\leq \aleph_{0}} \times[\partial]^{\leq \aleph_{0}}\right| \geq\left|[Y]^{\leq \aleph_{0}} \times \partial\right| \geq\right.$ $\left.[Y] \leq \aleph_{0}.\right]$
$(*)_{7}\left|Y \times[Y]^{\aleph_{0}} \times[Y]^{\aleph_{0}}\right| \leq|\mathscr{P}(3 \times Y)| \leq\left|Y_{2}\right|$.
[Why? The mapping $\left(y, u_{1}, u_{2}\right) \mapsto\left\{(0, y),\left(1, z_{1}\right),\left(2, z_{2}\right): z_{1} \in u_{1}, z_{2} \in u_{2}\right\}$ from $Y \times[Y]^{\aleph_{0}} \times[Y]^{\aleph_{0}}$ into $\mathscr{P}(3 \times Y)$ prove the first inequality, the second inequality follows from $\left.|3 \times Y|=\left|3 \times Y_{0}\right| \leq\left|Y_{1}^{\prime}\right|=\left|Y_{1}\right| \cdot\right]$

$$
(*)_{8} \mathcal{H}:=\left\{h_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\} \leq_{\text {qu }}\left|Y_{2}^{\prime}\right| .
$$

[Why? Recalling $(*)_{6}$ clearly $|\mathcal{H}| \leq \mid\{h: h$ a function, $\operatorname{Dom}(h)=Y$ and $\operatorname{Rang}(h)$ a bounded subset of $\left.\operatorname{hrtg}\left([Y]^{\leq \aleph_{0}} \times \partial\right)\right\}|\leq|\{h: h$ a function from Y into some $\left.\alpha<\operatorname{hrtg}\left([Y]^{\leq \aleph_{0}}\right)\right\}\left|\leq_{q u}\right| X_{1} \mid$ where

$$
\begin{aligned}
X_{1}:=\{(h, g): & \text { for some ordinal } \alpha, g \text { is a partial function from }[Y] \leq \aleph_{0} \text { onto } \alpha, \\
& \text { so necessarily } \left.\alpha<\operatorname{hrtg}\left([Y]^{\leq \aleph_{0}}\right) \text { and } h \text { is a function from } Y \text { into } \alpha\right\} .
\end{aligned}
$$

Clearly $|\mathcal{H}| \leq\left|X_{1}\right|$. Let $t \notin Y$ and for $(h, g) \in X_{1}$ let $\operatorname{set}(h, g):=\left\{\left(y, u_{1}, u_{2}\right)\right.$: $y=t \wedge\left\{u_{1}, u_{2}\right\} \subseteq[Y]^{\leq \aleph_{0}} \wedge g\left(u_{1}\right) \leq g\left(u_{2}\right)$ or $y \in Y$ and $u_{1}, u_{2} \in[Y]^{\leq \aleph_{0}}$ satisfies $h(y)=g\left(u_{1}\right)$ and $\left.g\left(u_{2}\right)=g\left(u_{1}\right)\right\}$. Easily $(h, g) \mapsto \operatorname{set}(h, g)$ is a one-to-one function from X_{1} into $X_{3}:=\mathscr{P}\left(X_{2}\right)$ where $X_{2}:=(Y \cup\{t\}) \times[Y]^{\leq \aleph_{0}} \times[Y]^{\leq \aleph_{0}}$ and by $(*)_{7}$ we have $\left|X_{2}\right|=|\mathscr{P}(3 \times Y)|$. Hence $\left|X_{1}\right| \leq\left|X_{3}\right|=\left|\mathscr{P}\left(X_{2}\right)\right| \leq|\mathscr{P}(\mathscr{P}(3 \times Y))|$. Recalling $|\mathcal{H}| \leq\left|X_{1}\right|$ we are done proving $(*)_{8}$.]

Now $\left|\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right| \leq\left|\operatorname{Fil}_{\aleph_{1}}^{1}(Y) \times \operatorname{Fil}_{\aleph_{1}}^{1}(Y) \times \mathcal{H} \times \mathscr{P}(Y)\right|$ by the definition of Fil $_{\aleph_{\aleph_{1}}}^{4}$ and this is, by the inequalities above $\leq_{\mathrm{qu}}\left|Y_{2}^{\prime}\right| \times\left|Y_{2}^{\prime}\right| \times\left|Y_{2}^{\prime}\right| \times\left|Y_{1}^{\prime}\right| \leq_{\mathrm{qu}}\left|Y_{2}^{\prime}\right|^{4}=\left|Y_{2}^{\prime}\right|$.
2),3),4) Should be clear.

Note also we may wonder about the RGCH, see [She00], we note (not using any version of Ax_{4}), that we can get such a result using only $\mathrm{AC}_{\aleph_{0}}$. From the results of $\S 1$ we can deduce more. see 2.35 .

Theorem 0.19. [ZF $+\mathrm{AC}_{\aleph_{0}}$] Assume that $\mu>\aleph_{0}$ and $\chi<\mu \Rightarrow \operatorname{hrtg}(\mathscr{P}(\chi))<\mu$. Then for every $\lambda>\mu$ for some $\kappa<\mu$ we have:
$(*)_{\lambda, \mu, \kappa}$ if $\theta \in(\kappa, \mu)$ and D is a κ-complete filter on θ then there is no $<_{D}$-increasing sequence $\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$of members of ${ }^{\theta} \lambda$.

Remark 0.20. In 0.19 we can replace " $\chi<\mu \Rightarrow \operatorname{hrtg}(\mathscr{P}(\chi))<\mu$ " by $\chi<\mu \Rightarrow$ wlor $(\mathscr{P}(\chi))<\mu$; this holds by the proof.

Proof. Assume that this fails for a given λ. We choose $\kappa_{n}<\theta_{n}<\mu$ by induction on n. Let $\kappa_{0}=\aleph_{0}$, so $\kappa_{0}=\aleph_{0}<\mu$ as required. Assume $\kappa_{n}<\mu$ has been chosen, note that it cannot be as required so there is $\theta \in\left[\kappa_{n}, \mu\right)$ such that it exemplifies $\neg(*)_{\lambda, \mu, \kappa_{n}}$ and let θ_{n} be the first such θ.

Given θ_{n} let $\kappa_{n+1}:=\operatorname{wlor}\left(\mathscr{P}\left(\theta_{n}\right)\right)$ so $\kappa_{n+1} \in\left(\theta_{n}, \mu\right) \subseteq\left(\kappa_{n}, \mu\right)$. So $\left\langle\kappa_{n}: n<\omega\right\rangle$ is well defined increasing and $\mu_{*}=\sum_{n} \kappa_{n} \leq \mu$. Let $X_{n}=\left\{(\theta, D, \bar{f}): \theta \in\left[\kappa_{n}, \kappa_{n+1}\right), D\right.$ is a κ_{n}-complete filter on $\theta, \bar{f}=\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$is a $<_{D}$-increasing sequence of members of $\left.{ }^{\theta} \lambda\right\}$, so by the construction we have $X_{n} \neq \emptyset$ and $\left\langle X_{n}: n<\omega\right\rangle$ exist being well defined. As we are assuming $\mathrm{AC}_{\aleph_{0}}$ there is a sequence $\left\langle\left(\theta_{n}, D_{n}, \bar{f}_{n}\right)\right.$: $n<\omega\rangle$ from $\prod_{n} X_{n}$.

We can consider $\bar{f}=\left\langle\bar{f}_{n}: n<\omega\right\rangle$ (and also $\bar{\kappa}=\left\langle\kappa_{n}: n<\omega\right\rangle$) as a set of ordinals (using a pairing function on the ordinals) hence $\mathbf{V}_{*}=\mathbf{L}[\bar{f}, \bar{\kappa}]$ is a model of ZFC and a transitive class. In \mathbf{V}_{*} we can define D_{n}^{\prime} as the minimal κ_{n}-complete filter on θ_{n} such that \bar{f}_{n} is $<_{D_{n}^{\prime}}$-increasing. Clearly $\left(2^{\theta_{n}}\right)^{\mathbf{V}_{*}}<\operatorname{wlor}\left(\mathscr{P} \mathbf{V}\left(\theta_{n}\right)\right)<\mu$ hence $\mathbf{V}_{*} \models$ " μ_{*} is strong limit". By [She00] or see [She06, $\S 1,1.13=$ Lg. 8$]$ where $\lambda^{[\partial, \theta]}$ is defined we get a contradiction.

§ 1. The pcf theorem again

We prove a version of the pcf theorem; weaker than [She94, Ch.I,II] as we do not assume just $\min \left\{\operatorname{cf}\left(\alpha_{y}\right): y \in Y\right\}>\operatorname{hrtg}(Y)$ but a stronger inequality. Still we gain in a point which disappears under AC: dealing with a sequence of possibly singular ordinals (and the ideal $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$, see below). In addition we gain in having the scales being uniformly definable. Also the result is stronger than in [She14], as we use functions rather than sets of functions; (i.e. true cofinality rather than pseudo true cofinality; of course, the axioms of set theory used are different accordingly; full choice in [She94], $\mathrm{ZF}+\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}$ in [She14] and $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ here).

It seems natural in our context instead of looking at $\left\{\operatorname{cf}\left(\delta_{s}\right): s \in Y\right\}$ we should look at:

Definition 1.1. 1) For a sequence $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ of limit ordinals and a cardinal θ let $\operatorname{cf-id}_{<\theta}(\bar{\delta})=\left\{X \subseteq Y\right.$: there is a sequence $\bar{u}=\left\langle u_{s}: s \in Y\right\rangle$ such that $s \in X \Rightarrow u_{s} \subseteq \delta_{s}=\sup \left(u_{s}\right)$ and $\left.s \in X \Rightarrow \operatorname{otp}\left(u_{s}\right)<\theta\right\}$.
2) Let $\mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$ be the filter dual to the ideal $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$.
3) We may replace $\bar{\delta}$ by a set of ordinals, i.e. instead of $\langle\alpha: \alpha \in u\rangle$ we may write u.
4) For $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ and $\bar{\theta}=\left\langle\theta_{s}: s \in Y\right\rangle$ we define $\mathrm{cf}-\mathrm{id}_{<\bar{\theta}}(\bar{\delta})$ similarly to part (1); similarly in the other cases.
5) For $\bar{\theta}$ a sequence of infinite cardinals, let $\mathrm{cf}-\mathrm{fil}_{<\bar{\theta}}(\bar{\delta})$ be the dual filter; similarly in the other cases.

Observation 1.2. 1) In 1.1, $\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta}), \mathrm{cf}-\mathrm{id}_{<\bar{\theta}}(\bar{\delta})$ are ideals on Y or equal to $\mathscr{P}(Y)$.
1A) Moreover \aleph_{1}-complete ideals.
2) Similarly for the filters.

Proof. Should be clear, e.g. use the definitions recalling we are assuming $\mathrm{AC}_{\aleph_{0}}$.

Observation 1.3. Assume
(a) $D=\mathrm{cf}-\mathrm{fil}_{<\bar{\theta}}(\bar{\delta})$ is a well defined filter (that is $\emptyset \notin D$), so $\bar{\delta} \in{ }^{Y}$ Ord is a sequence of limit ordinals, $\bar{\theta}=\left\langle\theta_{s}: s \in Y\right\rangle \in{ }^{Y}$ Car, e.g. $\bigwedge_{s} \theta_{s}=\theta$
(b) $\overline{\mathscr{U}}=\left\langle\mathscr{U}_{s}: s \in Y\right\rangle$ satisfies $\mathscr{U}_{s} \subseteq \delta_{s}, \operatorname{otp}\left(\mathscr{U}_{s}\right)<\theta_{s}$ for $s \in Y$,
(c) $g \in \Pi \bar{\delta}$ is defined by

- $g(s)$ is $\sup \left\{\alpha+1: \alpha \in \mathscr{U}_{s}\right\}$ if this value is $<\delta_{s}$
- $g(s)$ is zero otherwise.

Then
$(\alpha) g$ belongs to $\Pi \bar{\delta}$ indeed
(β) if $f \in \prod_{s \in Y} \mathscr{U}_{s} \subseteq \Pi \bar{\delta}$ then $f<g \bmod D$.
Remark 1.4. Clause (b) of 1.3 holds, e.g. if $\mathscr{U} \subseteq \operatorname{Ord}, \operatorname{otp}(\mathscr{U})<\min \left\{\theta_{s}: s \in\right.$ $Y\}, \mathscr{U}_{s}=\mathscr{U} \cap \delta_{s}$.

Proof. Clause (α) is obvious by the choice of the function g; for clause (β) let $f \in \prod_{s \in Y} \mathscr{U}_{s}$ and let $X=\{s \in Y: f(s) \geq g(s)\}$. Necessarily $s \in X$ implies (by the assumption on f and the definition of $X)$ that $(\exists \alpha)\left(\alpha \in \mathscr{U}_{s} \wedge g(s) \leq \alpha\right)$ which implies (by clause (c), the definition of g) that $g(s)=0 \wedge \sup \left(u_{s}\right)=\delta_{s}$. So by the definition of $\mathrm{cf}-\mathrm{fil}_{<\bar{\theta}}(\bar{\delta})$ we have $X \in \operatorname{cf}-\operatorname{fil}_{<\bar{\theta}}(\bar{\delta})$ hence we are done. $\quad \square_{1.3}$
Claim 1.5. Assume $\mathrm{Ax}_{4, \partial}$, see Definition 0.5(3); if (A) then (B) where:
(A) we are given Y, an arbitrary set, $\bar{\delta}$, a sequence of limit ordinals and μ, an infinite cardinal (or just a limit ordinal) such that:
(a) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ and $\mu=\sup \left\{\delta_{s}: s \in Y\right\}$
(b) D_{*} is an \aleph_{1}-complete filter on Y, it may be $\{Y\}$
(c) θ is any cardinal satisfying:
$(\alpha) \quad \operatorname{cf}-\operatorname{id}_{<\theta}(\bar{\delta}) \subseteq \operatorname{dual}\left(D_{*}\right)$,
(β) $\quad \alpha<\theta \Rightarrow \operatorname{hrtg}\left([\alpha]^{\kappa_{0}} \times \partial\right) \leq \theta$ so $\partial<\theta$
$(\gamma) \quad \operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$
($\delta) \quad \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right) \leq \theta$
(B) there are $\alpha_{*}, f, \bar{f}, A_{*} / D_{*} \partial$-uniformly defined from the triple $\left(Y, \bar{\delta}, D_{*}\right)$, see 0.8 such that (see more in the proof):
(a) α_{*} is a limit ordinal of cofinality $\geq \theta$
(b) $\bar{f}=\left\langle f_{\alpha}: \alpha<\alpha_{*}\right\rangle$
(c) $f_{\alpha} \in \Pi \bar{\delta}$ and $f \in \Pi \bar{\delta}$
(d) \bar{f} is $<_{D_{*}}$-increasing
(e) $A_{*} \in D_{*}^{+}$
(f) \bar{f} is cofinal in $\left(\Pi \bar{\delta},<_{D_{*}+A_{*}}\right)$
(g) if $Y \backslash A_{*} \in D_{*}^{+}$then f is $a<_{D_{*}+\left(Y \backslash A_{*}\right)^{-u b}}$ of the sequence \bar{f}.

Remark 1.6.1) Note that we do not use $\mathrm{AC}_{\mathscr{P}(Y)}$ and even not AC_{Y} which would simplify.
2) Note that θ is not necessarily regular.
3) In $(A)(c)(\delta)$, we can restrict ourselves to \aleph_{1}-complete filters on Y extending D_{*}.
4) Originally we use several θ 's to get best results but not clear if worth it.
5) Why for a given Y there is θ as in $1.5(\mathrm{~A})(\mathrm{c})(\beta),(\gamma),(\delta)$? see $0.17(3)$.
6) In 1.5 we can replace the assumption $\mathrm{Ax}_{4, \partial}$ by $\mathrm{Ax}_{4, \operatorname{hrtg}\left({ }_{Y} \mu\right), \partial}$, see $0.5(4),(5)$.
7) Concernig $(A)(c)(\alpha)$ note that this holds when each δ_{s} is an ordinal $\leq \mu$ of cofinality $\geq \theta$.
7A) In $(A)(c)(\beta)$, if Ax_{4} then the demand is equivalent to " $\partial<\theta$ and $\alpha<\theta \Rightarrow$ $|\alpha|^{\aleph_{0}}<\theta^{\prime \prime}$, see $0.17(4)$.

Proof. We can define μ by clause (A)(a) and without loss of generality θ is minimal such that (A)(c) holds and recall ∂ is given so fixed.

Let
$(*)_{1}(a) \quad \lambda_{*}=\operatorname{hrtg}\left({ }^{Y} \mu\right)$
(b) $\mathscr{S}_{\lambda_{*}} \subseteq\left[\lambda_{*}\right]^{<\partial}$ is as in $0.5(3)$
(c) $<\lambda_{*}$ be a well ordering of $\mathscr{S}_{\lambda_{*}}$
(d) $\bar{w}^{*}=\left\langle w_{i}^{*}: i<\operatorname{otp}\left(\mathscr{S}_{\lambda_{*}},<_{\lambda_{*}}\right)\right\rangle$ list $\mathscr{S}_{\lambda_{*}}$ in $<_{\lambda_{*}}$-increasing order
$(*)_{2} \mathrm{cl}$ be as in 0.6 for λ_{*}
$(*)_{3} \Omega=\left\{\alpha<\lambda_{*}: \aleph_{0} \leq \operatorname{cf}(\alpha)<\theta\right\}$.
$(*)_{4}$ There is a sequence \bar{e} (in fact, ∂-uniformly definable one) such that:
(a) $\bar{e}=\left\langle e_{\alpha}: \alpha \in \Omega\right\rangle$
(b) $e_{\alpha} \subseteq \alpha=\sup \left(e_{\alpha}\right)$
(c) e_{α} has order type $<\theta$;
and we can add
(c) $1_{1} \quad e_{\alpha}$ has order type $<\partial$ if $\operatorname{cf}(\alpha)=\aleph_{0}$
$(c)_{2} \quad e_{\alpha}$ has cardinality $<\operatorname{hrtg}\left([\operatorname{cf}(\alpha)]^{\aleph_{0}} \times \partial\right)$.
[How?

- If $\operatorname{cf}(\alpha)=\aleph_{0}$ let $\mathbf{i}(\alpha)=\min \left\{i: w_{i}^{*} \cap \alpha\right.$ is unbounded in $\left.\alpha\right\}$ and $e_{\alpha}=$ $w_{\mathbf{i}(\alpha)}^{*} \cap \alpha$.
- If $\operatorname{cf}(\alpha)>\aleph_{0}$ let $e_{\alpha}=c \ell(e)$ where e is any club of α of order type $\operatorname{cf}(\alpha)$ such that $\left(\forall e^{\prime}\right)\left[e^{\prime} \subseteq e\right.$ a club of $\left.\alpha \Rightarrow c \ell\left(e^{\prime}\right)=c \ell(e)\right]$.
[Why? Such e exists by the choice of $c \ell$ in 0.6 and if $e_{*}^{\prime}, e_{*}^{\prime \prime}$ are two such clubs then $e_{*}^{\prime} \cap e_{*}^{\prime \prime}$ is a club of α of orer type $\operatorname{cf}(\alpha)$ and $c \ell\left(e^{\prime}\right)=c \ell\left(e^{\prime} \cap e^{\prime \prime}\right)=c \ell\left(e^{\prime \prime}\right)$ by the assumption on e^{\prime} and on $e^{\prime \prime}$ respectively, so e_{α} is well defined.]

Lastly, the cardinality is as required by the clause $(A)(e)(\beta)$ and $0.6(c)$; similarly to [Shee, 2.11=Lr.9].

So ($*)_{4}$ holds indeed.]
Now we try to choose $f_{\alpha} \in \Pi \bar{\delta}$ by induction on α such that $\beta<\alpha \Rightarrow f_{\beta}<f_{\alpha}$ $\bmod D_{*}$.

Case 1: $\alpha=0$

Let f_{α} be constantly zero, i.e. $s \in Y \Rightarrow f_{\alpha}(s)=0$, clearly $f_{\alpha} \in \Pi \bar{\delta}$ as each δ_{s} is a limit ordinal.

Case 2: $\alpha=\beta+1$
Let $f_{\alpha}(s)=f_{\beta}(s)+1$ for $s \in Y$, so $f_{\alpha} \in \Pi \bar{\delta}$ as $f_{\beta} \in \Pi \bar{\delta}$ and each δ_{s} is a limit ordinal and $\gamma<\alpha \Rightarrow f_{\gamma}<f_{\alpha} \bmod D_{*}$ as $f_{\gamma} \leq f_{\beta}<f_{\alpha} \bmod D_{*}$.

Case 3: α is a limit ordinal of cofinality $<\theta$.
So e_{α} is well defined and we define $f_{\alpha}: Y \rightarrow$ Ord as follows: $f_{\alpha}(s)$ is equal to $\sup \left\{f_{\beta}(s)+1: \beta \in e_{\alpha}\right\}$ if this is $<\delta_{s}$ and is zero otherwise.
$(*)_{5} f_{\alpha} \in \Pi \bar{\delta}$.
[Why? Obvious.]
Let $\mathscr{U}_{\alpha, s}=\left\{f_{\beta}(s)+1: \beta \in e_{\alpha}\right\}$, so clearly $\left\langle\mathscr{U}_{\alpha, s}: s \in Y\right\rangle$ is well defined and $\sup \left(\mathscr{U}_{\alpha, s}\right)$ is an ordinal, it is $\leq \delta_{s}$ as $\beta \in e_{\alpha} \Rightarrow f_{\beta} \in \Pi \bar{\delta}$. Let $X=\left\{s \in Y: f_{\alpha}(s)>0\right.$ equivalently $\left.\delta_{s}>\sup \left(\mathscr{U}_{\alpha, s}\right)\right\}$

$$
(*)_{6} X \in D_{*} \text {, i.e. } X=Y \bmod D_{*} .
$$

[Why? For $s \in Y \backslash X$ note that $\left|\mathscr{U}_{\alpha, s}\right| \leq_{\mathrm{qu}}\left|e_{\alpha}\right|$ and $\left|e_{\alpha}\right|<\theta$ by $(*)_{4}(c)$, hence $\left|\mathscr{U}_{\alpha, s}\right|<\theta$. By the choice of X and Definition 1.1 we have $Y \backslash X \in \operatorname{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$ hence the clause $(\mathrm{A})(\mathrm{c})(\alpha)$ of the assumption of the claim, $X=Y \bmod D_{*}$ as promised.]
$(*)_{7}$ if $\beta<\alpha$ then $f_{\beta}<f_{\alpha} \bmod D_{*}$.
[Why? Clearly e_{α} has no last element so we can choose $\gamma \in e_{\alpha} \backslash(\beta+1)$ and let $X^{\prime}=\left\{s \in Y: f_{\beta}(s)<f_{\gamma}(s)\right\}$. Necessarily $X^{\prime} \in D_{*}$ hence $X^{\prime} \cap X \in D_{*}$ but clearly $s \in X^{\prime} \cap X \Rightarrow f_{\beta}(s)<f_{\gamma}(s)<f_{\alpha}(s)$ so $(*)_{7}$ holds.]

We arrive to the main case.
Case 4: α a limit ordinal of cofinality $\geq \theta$
Let

- $\bar{f}^{\alpha}=\left\langle f_{\beta}: \beta<\alpha\right\rangle$
- $\mathbf{D}=\left\{D: D\right.$ is an \aleph_{1}-complete filter on Y extending $\left.D_{*}\right\}$
- $\mathbf{D}_{\alpha}^{1}=\left\{D \in \mathbf{D}: \bar{f}^{\alpha}\right.$ is not cofinal in $\left.\left(\Pi \bar{\delta},<_{D}\right)\right\}$
- $\mathbf{D}_{\alpha}^{2}=\left\{D \in \mathbf{D}_{\alpha}^{1}: \bar{f}^{\alpha}\right.$ has a $<_{D}$-upper bound $\left.f \in \Pi \bar{\delta}\right\}$
- $\mathbf{D}_{\alpha}^{3}=\left\{D \in \mathbf{D}_{\alpha}^{2}: \bar{f}^{\alpha}\right.$ has a $<_{D}$-eub $\left.f \in \Pi \bar{\delta}\right\}$.

For every $D \in \mathbf{D}_{\alpha}^{3}$ let

- $\mathscr{F}_{\alpha, D}^{3}=\left\{f \in \Pi \bar{\delta}: f\right.$ is a $<_{D}$-eub of $\left.\left\langle f_{\beta}: \beta<\alpha\right\rangle\right\}$.

Note
\odot_{1} if $D_{1} \in \mathbf{D}_{\alpha}^{1}$ and f exemplifies this then for some $D_{2}, D_{1} \subseteq D_{2} \in \mathbf{D}$ and f is a $<D_{2}$-upper bound of \bar{f}, i.e. f exemplifies $D_{2} \in \mathbf{D}_{\alpha}^{2}$; in fact D_{2} is uniformly definable from f (and \bar{f}^{α}, D_{1}).
[Why? Let $\bar{A}=\left\langle A_{\gamma}: \gamma<\alpha\right\rangle$ be defined by $A_{\gamma}:=\left\{s \in Y: f(s) \leq f_{\gamma}(s)\right\}$. So $\left\langle A_{\gamma} / D_{1}: \gamma<\alpha\right\rangle$ is increasing (in the Boolean algebra $\mathscr{P}(Y) / D_{1}$, of course), but clearly $\left|\left\{A / D_{1}: A \subseteq Y\right\}\right| \leq_{\text {qu }}|\mathscr{P}(Y)|$ and $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$ by clause $(A)(c)(\gamma)$ of the assumption. Let $\mathscr{U}=\left\{\gamma<\alpha\right.$: for no $\beta<\gamma$ do we have $\left.A_{\gamma}=A_{\beta} \bmod D\right\}$, so clearly $|\mathscr{U}|<\operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$ by $(A)(c)(\gamma)$ but by the present case assumption, $\operatorname{cf}(\alpha) \geq \theta$ so $\left\langle A_{\gamma} / D_{1}: \gamma<\alpha\right\rangle$ is necessarily eventually constant. Let $\alpha(*)=\min \{\gamma$: if $\beta \in(\gamma, \alpha)$ then $\left.A_{\beta}=A_{\gamma} \bmod D_{1}\right\}$; it is well defined (and $<\alpha$). Now $A_{\alpha(*)} \notin D_{1}$ as otherwise $f \leq f_{\alpha(*)}<f_{\alpha(*)+1} \bmod D_{1}$ contradicting the assumption on f. Let $D_{2}:=D_{1}+\left(Y \backslash A_{\alpha(*)}\right)$. Clearly D_{2} is as required.]
\odot_{2} if $D \in \mathbf{D}_{\alpha}^{2}$ and f exemplifies it then for some g we have:
(a) $g \in \Pi \bar{\delta}$
(b) $g \leq_{D} f$
(c) g is a $<_{D}$-upper bound of $\left\langle f_{\gamma}: \gamma<\alpha\right\rangle$
(d) there is no $h \in \Pi \bar{\delta}$ which is an $<_{D}$-upper bound of $\left\langle f_{\gamma}: \gamma<\alpha\right\rangle$ such that $h<_{D} g$.
[Why? Use DC and D being \aleph_{1}-complete.]
\odot_{3} if $D_{1} \in \mathbf{D}_{\alpha}^{2}$ and g is as in \odot_{2} then for a unique pair (\mathfrak{y}, f) we have
(a) $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$
(b) $D_{\mathfrak{y}, 1}=D_{1}$
(c) $D_{\mathfrak{y}, 2}=\operatorname{dual}\left(J\left[g, \bar{f}^{\alpha}, D_{1}\right]\right)$ from $0.11(1)$
(d) $Z_{\mathfrak{y}}$ satisfies:
(α) $\quad Z_{\mathfrak{y}} \in D_{\mathfrak{y}, 2}$
(β) $\quad Z \in D_{\mathfrak{y}, 2} \wedge Z \subseteq Z_{\mathfrak{y}} \Rightarrow c \ell\left(\left(\operatorname{Rang}\left(g \upharpoonright Z_{\mathfrak{y}}\right)=c \ell(\operatorname{Rang}(g \upharpoonright Z)\right.\right.$,
$(\gamma) \quad$ if $t \in Y$ and $g(t) \in c \ell\left(\operatorname{Rang}\left(g \upharpoonright Z_{\mathfrak{y}}\right)\right.$ then $t \in Z_{\mathfrak{y}}$
(e) $h_{\mathfrak{y}}: Z_{\mathfrak{y}} \rightarrow \operatorname{Ord}$ (really into some $\alpha<\operatorname{hrtg}(\mathscr{P}(Y))$ is defined by $g(s)=$ the $h_{\mathfrak{y}}(s)$-th member of $c \ell\left(\operatorname{Rang}\left(g \upharpoonright Z_{\mathfrak{y}}\right)\right)$ if $s \in Z_{\mathfrak{y}}$ and
$(f) f: Y \rightarrow$ Ord is defined by $f \upharpoonright Z_{\mathfrak{y}}=g \upharpoonright Z_{\mathfrak{y}}$ and $f(s)=0$ for $s \in Y \backslash Z_{\mathfrak{y}}$.
[Why? We apply $0.14(2)$ with $g,\left\langle f_{\gamma}: \gamma<\alpha\right\rangle$ here standing for f, \bar{f} there to define \mathfrak{y} and then let $f=\left(g \upharpoonright Z_{\mathfrak{y}}, 0_{Y \backslash Z_{\mathfrak{y}}}\right)$ as in 0.14(3).]

In particular, the "the" in $\odot_{3}(c)$ is justified by:
\odot_{3}^{\prime} if $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and $f^{\prime}, f^{\prime \prime}$ are $(\mathfrak{y}, c \ell)-$ eub of $\bar{f}^{\alpha} \underline{\text { then }} f^{\prime}=f^{\prime \prime}$, i.e. 0.14(3).
Also, (recalling $\operatorname{dom}\left(f^{\prime}\right)=\operatorname{dom}\left(f^{\prime \prime}\right)=Z_{\mathfrak{y}}$ by $\left.\odot_{3}, \delta\right)$, see $\left.0.11(4)\right)$
$\odot_{3}^{\prime \prime}$ if $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and $f^{\prime}, f^{\prime \prime}$ satisfy $\odot_{3}(e)$ then $f^{\prime}=f^{\prime \prime} \bmod D_{\mathfrak{y}, 2}$.
Recalling $0.11(5)$, let
$\odot_{4} \mathfrak{Y}_{\alpha}^{2}=\left\{\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y): D_{*} \subseteq D_{\mathfrak{y}, 1}\right.$ and some $f \in{ }^{Z[\mathfrak{y}]}$ Ord is a \mathfrak{y}-eub of $\left.\bar{f}^{\alpha}\right\}$
\odot_{5} for each $\mathfrak{y} \in \mathfrak{Y}_{\alpha}^{2}$, let $f_{\mathfrak{y}}=f_{\alpha, \mathfrak{y}}^{2}$ be the unique function $f \in \Pi\left(\bar{\delta} \upharpoonright Z_{\mathfrak{y}}\right)$ which is the canonical \mathfrak{y}-eub of $\left\langle f_{\gamma}: \gamma<\alpha\right\rangle$.
Now let
\odot_{6} for $s \in Y$ let $\mathscr{U}_{\alpha, s}^{*}=\left\{f_{\mathfrak{y}}(s): \mathfrak{y} \in \mathfrak{Y}_{\alpha}^{2}\right\}$.
Clearly
$\odot_{7}(a)\left\langle\mathscr{U}_{\alpha, s}^{*}: s \in Y\right\rangle$ is well defined
(b) $\mathscr{U}_{\alpha, s}^{*} \subseteq \delta_{s}$
(c) if $s \in Y$ then $\left|\mathscr{U}_{\alpha, s}^{*}\right|<\theta$.
[Why? Clause (a) holds by \odot_{6} and clause (b) by $\odot_{5}+\odot_{6}$. As for clause (c) by $\odot_{6}, \mathscr{U}_{\alpha, s}^{*}$ is the range of the function $\mathfrak{y} \mapsto f_{\mathfrak{y}}(s)$ for $\mathfrak{y} \in \mathfrak{Y}_{\alpha}^{2}, s \in Z_{\mathfrak{y}}$, so clearly $\left|\mathscr{U}_{\alpha, s}^{*}\right| \leq_{\text {qu }}\left|\mathfrak{Y}_{\alpha}^{2}\right| \leq_{\text {qu }}\left|\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right|$ hence $\left|\mathscr{U}_{\alpha, s}^{*}\right|<\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ which is $\leq \theta$ by $(\mathrm{A})(\mathrm{c})(\delta)$ of the claim.]

$$
\odot_{8} X:=\left\{s \in Y: \sup \left(\mathscr{U}_{\alpha, s}^{*}\right)<\delta_{s}\right\}=Y \bmod \mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta}) \text { hence } X \in D_{*}
$$

[Why? By $\odot_{7}(a),(b),(c)$ and Definition 1.3 we have $X=Y \bmod \mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$ but by $(\mathrm{A})(\mathrm{c})(\alpha)$, this implies $X \in D_{*}$.]

So define $f_{\alpha} \in \Pi \bar{\delta}$ by:

$$
\odot_{9} f_{\alpha}(s) \begin{cases}\text { is } \sup \left(\mathscr{U}_{\alpha, s}^{*}\right) & \text { if } s \in X \\ \text { is } 0 & \text { if } s \in Y \backslash X\end{cases}
$$

Also clearly

$$
\odot_{10} f_{\alpha} \in \Pi \bar{\delta}
$$

and also
\odot_{11} if $\mathfrak{y} \in \mathfrak{Y}_{\alpha}^{2}$ and $\beta<\alpha$ then $f_{\beta}<f_{\alpha} \bmod D_{\mathfrak{y}, 2}$.
For $\beta<\alpha$ let $A_{\beta}^{\alpha}=\left\{s \in Y: f_{\beta}(s)<f_{\alpha}(s)\right\}$ so $\bar{A}^{\alpha}=\left\langle A_{\beta}^{\alpha}: \beta<\alpha\right\rangle$ is well defined and $\left\langle A_{\beta}^{\alpha} / D_{*}: \beta<\alpha\right\rangle$ is decreasing (in the Boolean Algebra $\mathscr{P}(Y) / D_{*}$) and is eventually constant as $\operatorname{hrtg}\left(\mathscr{P}(Y) / D_{*}\right) \leq \operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$ by clause $(\mathrm{A})(\mathrm{c})(\gamma)$ of the assumption so let $\gamma(\alpha)=\min \left\{\gamma<\alpha\right.$: for every $\beta \in(\gamma, \alpha)$ we have $A_{\beta}^{\alpha} / D_{*}=$ $\left.A_{\gamma}^{\alpha} / D_{*}\right\}$.

If $A_{\gamma(\alpha)}^{\alpha} \in D_{*}$ then $\beta<\alpha \Rightarrow A_{\beta}^{\alpha} \supseteq A_{\max \{\beta, \gamma(\alpha)\}}^{\alpha}=A_{\gamma(\alpha)}^{\alpha} \bmod D_{*} \Rightarrow f_{\beta}<f_{\alpha}$ $\bmod D_{*}$, so f_{α} is as required. Otherwise, $A_{\gamma(\alpha)}^{\alpha} \notin D_{*}$, so $A_{*}:=Y \backslash A_{\gamma(\alpha)}^{\alpha} \in D_{*}^{+}$ so $D_{1}=D_{*}+A_{*} \in \mathbf{D}$. Now if $D_{1} \in \mathbf{D}_{\alpha}^{1}$ then by \odot_{1} there is D_{2} such that $D_{1} \subseteq D_{2} \in \mathbf{D}_{\alpha}^{2}$ hence there is $g \in \Pi \bar{\delta}$ as in \odot_{2} for D_{2} hence there is $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ as in \odot_{3} hence $f_{\mathfrak{y}} \in \Pi(\bar{\delta})$ as in \odot_{5}, so $Z_{\mathfrak{y}} \in D_{\mathfrak{y}, 2}$, and by the choice of $\mathscr{U}_{\alpha, s}^{*}(s \in Y)$ and f_{α} we have $f_{\mathfrak{y}} \leq f_{\alpha} \bmod D_{\mathfrak{y}, 2}$ hence $\beta<\alpha \Rightarrow f_{\beta}<f_{\alpha} \bmod D_{\mathfrak{y}, 2}$ so $f_{\gamma(\alpha)}<f_{\alpha}$ $\bmod D_{\mathfrak{y}, 2}$. But $A_{*} \in D_{1}=D_{\mathfrak{y}, 1} \subseteq D_{\mathfrak{y}, 2}$ and by the choice of $A_{\gamma(\alpha)}^{\alpha}$ and A_{*} we have $f_{\alpha}\left\lceil A_{*} \leq f_{\gamma(\alpha)} \upharpoonright A_{*}\right.$ contradicting the previous sentence.

So necessarily ($A_{*} \in D_{*}^{+}$and) $D_{1}=D_{*}+A_{*} \in \mathbf{D}$ does not belong to \mathbf{D}_{α}^{1} which means \bar{f}^{α} is cofinal in $\left(\Pi \bar{\delta},<_{D_{*}+A_{*}}\right.$) hence letting the desired ($\alpha_{*}, f, \bar{f}, A_{*} / D_{*}$) in (B) of 1.5 be ($\alpha, f_{\alpha}, \bar{f}^{\alpha}, A_{*} / D_{*}$) we are done.

Theorem 1.7. The pcf Theorem: $\left[\mathrm{Ax}_{4, \theta, \partial}^{4}, \theta=\operatorname{hrtg}\left({ }^{Y} \mu\right)+\mathrm{DC}\right]$
If (A) then $(\bar{B})^{+}$where:
(A) we ${ }^{4}$ are given Y, an arbitrary set, $\bar{\delta}$, a sequence of limit ordinals and μ, an infinite cardinal (or just a limit ordinal) and D_{*}, θ such that
(a) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ and $\mu=\sup \left\{\delta_{s}: s \in Y\right\}$
(b) D_{*} is an \aleph_{1}-complete filter ${ }^{5}$ on Y, it may be $\{Y\}$
(c) θ is any cardinal satisfying:
(α) $\quad \mathrm{cf}-\mathrm{id} \mathrm{c}_{<\theta}(\bar{\delta}) \subseteq \operatorname{dual}\left(D_{*}\right)$, note that this holds when each δ_{s} is an ordinal $\leq \mu$ of cofinality $\geq \theta$, see below
(β) $\quad \alpha<\theta \Rightarrow \operatorname{hrtg}\left([\alpha]^{\aleph_{0}} \times \partial\right) \leq \theta$ so $\partial<\theta$
(γ) $\quad \operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$
($\delta) \quad \operatorname{hrtg}\left(\operatorname{Fil}_{1_{1}}^{4}(Y)\right) \leq \theta$
$(B)^{+}$there are $\varepsilon(*), \bar{D}^{*}, \bar{A}^{*}, \bar{E}^{*}, \bar{\alpha}^{*}, \bar{g}$, in fact ∂-uniformly definable from $\left(Y, \bar{\delta}, D_{*}\right)$ such that:
(a) $\varepsilon(*)<\operatorname{hrtg}(\mathscr{P}(Y))$
(b) $\bar{D}^{*}=\left\langle D_{\varepsilon}^{*}: \varepsilon \leq \varepsilon(*)\right\rangle$ and $\bar{E}^{*}=\left\langle E_{\varepsilon}^{*}: \varepsilon<\varepsilon(*)\right\rangle$
(c) \bar{D}^{*} is a \subset-increasing continuous sequence (of filters on Y, but see (f))

[^3](d) if $\varepsilon=\zeta+1$ then D_{ε}^{*} is a filter on Y generated by $D_{\zeta} \cup\{A\}$ for some $A \subseteq Y$ such that $A \in D_{\zeta}^{+}$
(e) $D_{0}^{*}=D_{*}$
(f) D_{ε}^{*} is a filter on Y for $\varepsilon<\varepsilon(*)$ but $D_{\varepsilon(*)}^{*}=\mathscr{P}(Y)$,
(g) $(\alpha) \quad \bar{\alpha}^{*}=\left\langle\alpha_{\varepsilon}^{*}: \varepsilon \leq \varepsilon(*)\right\rangle$
(β) $\bar{\alpha}^{*}$ is an increasing continuous sequence of ordinals
$(\gamma) \quad \alpha_{0}^{*}=0, \operatorname{cf}\left(\alpha_{\varepsilon+1}^{*}\right) \geq \theta$
(δ) $\varepsilon(*)$ is a successor ordinal
(h) $\bar{g}=\left\langle g_{\alpha}: \alpha<\alpha_{\varepsilon(*)}^{*}\right\rangle$ is a sequence of members of $\Pi \bar{\delta}$, so of functions from Y into the ordinals
(i) if $\beta<\alpha<\alpha_{\varepsilon+1}$ then $g_{\beta}<g_{\alpha} \bmod D_{\varepsilon}^{*}$
(j) $\bar{A}^{*}=\left\langle A_{\varepsilon}^{*} / D_{\varepsilon}^{*}: \varepsilon<\varepsilon(*)\right\rangle$ where $A_{\varepsilon}^{*} \subseteq Y$, so only $A_{\varepsilon}^{*} / D_{\varepsilon}^{*}$ is computed ${ }^{6}$ not A_{ε}^{*}, still $\left(Y \backslash A_{\varepsilon}^{*}\right) / D_{\varepsilon}^{*}$ and $D_{\varepsilon}^{*}+\left(Y \backslash A_{\varepsilon}^{*}\right)$ are well defined
(k) $D_{\varepsilon+1}^{*}=D_{\varepsilon}^{*}+A_{\varepsilon}^{*}$ and $E_{\varepsilon}^{*}=D_{\varepsilon}^{*}+\left(Y \backslash A_{\varepsilon}^{*}\right)$ if ε is a successor ordinal and D_{ε} if otherwise
(l) $\left\langle g_{\alpha}: \alpha \in\left[\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{*}\right)\right\rangle$ is increasing and cofinal in $\left(\Pi \bar{\delta},<_{E_{\varepsilon}}\right)$ so also $\bar{g} \upharpoonright \alpha_{\varepsilon+1}^{*}$ is.

Remark 1.8. 1) Note that unlike the ZFC case, the $\alpha_{\varepsilon+1}^{*}$'s (and even $\alpha_{\varepsilon+1}^{*}-\alpha_{\varepsilon}^{*}$) are ordinals rather than regular cardinals and we do not exclude here $\varepsilon<\zeta \wedge \operatorname{cf}\left(\alpha_{\varepsilon+1}^{*}\right)=$ $\operatorname{cf}\left(\alpha_{\zeta+1}^{*}\right)$. Also we do not know that $\left\langle\operatorname{cf}\left(\alpha_{\varepsilon}^{*}\right): \varepsilon<\varepsilon(*)\right\rangle$ is increasing or even nondecreasing.
2) We may get $\left\langle\alpha_{\varepsilon+1}^{*}-\alpha_{\varepsilon}^{*}: \varepsilon<\varepsilon(*)\right\rangle$ non-decreasing but this is of unclear value. [For this we proceed as below but when we arrive to $\varepsilon+1$ and there is $\zeta<\varepsilon$ such that $\alpha_{\varepsilon+1}^{*}-\alpha_{\varepsilon}^{*}<\alpha_{\zeta}^{*}-\alpha_{\zeta+1}^{*}$, choose the first one, we go back, retaining only $\bar{g} \upharpoonright \alpha_{\zeta}^{*}$. Now we try again to choose g_{α}^{\prime} for $\alpha \geq \alpha_{\zeta}^{*}$ but demanding $g_{\alpha_{\zeta}^{*}+\beta}^{\prime} \geq g_{\alpha_{\varepsilon}^{*}+\beta}, g_{\alpha_{\zeta}^{*}+\beta}$. This process converges.]
3) However 2.11(5) below is a simpler way. Working harder we get $\left\langle\alpha_{\varepsilon+1}^{*}-\alpha_{\varepsilon}^{*}: \varepsilon<\right.$ $\varepsilon(*)\rangle$ is (strictly) increasing (using increasing rectangles of functions).
4) As in $(*)_{4}$ of the proof of 1.5 , without loss of generality $\alpha_{\varepsilon+1}^{*}-\alpha_{\varepsilon}^{*}<\operatorname{hrtg}\left(\left[\operatorname{cf}\left(\alpha_{\varepsilon+1}^{*}\right)\right]^{\aleph_{0}}\right)=$ $\left(\left[\operatorname{cf}\left(\alpha_{\varepsilon+1}^{*}\right)\right)^{\aleph_{0}}\right)^{+}$.
[Why? As have first chosen $\left\langle g_{\alpha}^{\prime}: \alpha \in\left(\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{\prime}\right]\right\rangle$ and just as $\left\langle g_{\alpha}: \alpha \in\left(\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{*}\right]\right\rangle$ was chosen before we choose $\left\langle g_{\alpha}: \alpha \in\left(\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{*}\right]\right\rangle$ by $\left(e_{\alpha}\right.$ as in $(*)_{4}$ of the proof even if $\left.\alpha \in \lambda_{*} \backslash \Omega\right)$

- $\alpha_{\varepsilon+1}^{*}=\alpha_{\varepsilon}^{*}+\operatorname{otp}\left(e_{\alpha_{\varepsilon+1}^{\prime}} \backslash\left(\alpha_{\varepsilon}^{*}+1\right)\right)$
- if $\beta \in e_{\alpha_{\varepsilon+1}^{\prime}} \backslash\left(\alpha_{\varepsilon}^{*}+1\right)$ and $\left.\gamma=\operatorname{otp}\left(e_{\alpha} \cap \beta\right) \backslash\left(\alpha_{\varepsilon}^{*}+1\right)\right)$ then $g_{\gamma}=g_{\beta}^{\prime}$
- if $\beta=\alpha_{\varepsilon+1}^{*}$ then $g_{\beta}=g_{\alpha_{\varepsilon+1}^{\prime}}^{\prime}$.

So we are done.
5) Concerning (β) of $1.7(B)^{+}(e)$, recall that D_{*} include $\mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$ by $(A)(c)(\alpha)$.
6) Concerning $1.7(B)^{+}(f)$, if $D_{\varepsilon(*)}^{*}=\mathscr{P}(Y)$ then it is not really a filter.
7) Concerning $1.7(B)^{+}(i)$, note that using this clause in Definition 2.1(2) we mean only \leq !, that is we may have

[^4]$(B)^{+}(i)^{\prime} \quad$ if $\beta<\alpha<\alpha_{\varepsilon+1}$ then $g_{\beta} \leq g_{\alpha} \bmod D_{\varepsilon}^{*}$.
Proof. Let $\mathscr{S}_{\lambda_{*}},<_{\lambda_{*}}\left\langle w_{i}^{*}: i<\operatorname{otp}\left(\mathscr{S}_{\lambda_{*}},<_{\lambda_{*}}\right)\right\rangle$ as well as \bar{e} be as in the proof of 1.5.
We try to choose $\left(\alpha_{\varepsilon}^{*}, \bar{g} \upharpoonright\left(\alpha_{\varepsilon}^{*}+1\right), \bar{D}^{\varepsilon}\right), \bar{D}^{\varepsilon}=\left\langle D_{\xi}^{*}: \xi<\varepsilon\right\rangle$ by induction on $\varepsilon<\operatorname{hrtg}(\mathscr{P}(Y))$ such that the relevant parts of $(B)^{+}$holds, but if $\emptyset \in D_{\varepsilon}^{*}$ then $g_{\alpha_{\varepsilon}^{*}}$ is not well defined, so $\bar{g}^{\varepsilon}=\bar{g} \upharpoonright \alpha_{\varepsilon}^{*}=\left\langle g_{\alpha}: \alpha<\alpha_{\varepsilon}^{*}\right\rangle$ and $\left\langle A_{\zeta}^{*} / D_{\zeta}^{*}: \zeta<\varepsilon\right\rangle$ are determined. Clearly the induction has to stop before $\operatorname{hrtg}(\mathscr{P}(Y))$, otherwise the sequence $\left\langle A_{\zeta} / D_{\zeta}^{*}: \zeta<\operatorname{hrtg}(\mathscr{P}(Y))\right\rangle$ gives a contradiction to the definition of $\operatorname{hrtg}(\mathscr{P}(Y))$.

Case A: $\varepsilon=0$
Let $\alpha_{\varepsilon}^{*}=0, D_{\varepsilon}^{*}=D_{*}$ and g_{0} is constantly zero.
Case B: ε a limit ordinal
Let $\alpha_{\varepsilon}^{*}=\cup\left\{\alpha_{\zeta}^{*}: \zeta<\varepsilon\right\}, D_{\varepsilon}^{*}=\cup\left\{D_{\zeta}^{*}: \zeta<\varepsilon\right\}$ and $\bar{g} \upharpoonright \alpha_{\varepsilon}^{*}$ is naturally defined and define $g_{\alpha_{\varepsilon}^{*}} \in \Pi \bar{\delta}$ by, for $s \in Y$ letting $g_{\alpha_{\varepsilon}^{*}}(s)=\cup\left\{g_{\alpha_{\zeta}^{*}}(s)+1: \zeta<\varepsilon\right\}$ if it is $<\delta_{s}$ and 0 otherwise. As in Case 3 of the proof of 1.5, clause $(B)^{+}(i)$ is satisfied, because $\operatorname{hrtg}(\mathscr{P}(Y))>\varepsilon$.

Case C: $\varepsilon=\zeta+1$ and $\emptyset \notin D_{\zeta}^{*}$.
Let (note that $A_{\mathbf{a}, n}$ in (b) below is almost equal to $Y \backslash A_{\xi_{n}}^{*}$ but we know only $\left.A_{\xi_{n}}^{*} / D_{\xi_{n}}^{*}\right):$
$(*)_{1}(a) \quad \mathbf{J}_{\zeta, 1}=\left\{A \subseteq Y: A \in\left(D_{\zeta}^{*}\right)^{+}\right.$and $D_{\zeta}^{*}+A$ is \aleph_{1}-complete $\}$
(b) $\mathbf{U}_{\zeta}=\left\{\mathbf{a}: \mathbf{a}=\left\langle\left(A_{n}, \xi_{n}\right): n<\omega\right\rangle=\left\langle\left(A_{\mathbf{a}, n}, \xi_{\mathbf{a}, n}\right): n<\omega\right\rangle\right.$, for every $n<\omega$ we have $\xi_{n}<\zeta$ and $D_{\xi_{n}+1}^{*}=D_{\xi_{n}}^{*}+\left(Y \backslash A_{n}\right)$ and $\left.A_{\mathbf{a}}:=\cup\left\{A_{n}: n<\omega\right\} \neq \emptyset \bmod D_{\zeta}^{*}\right\} ;$
so this concerns witnesses to D_{ζ}^{*} being not \aleph_{1}-complete and $A_{\mathrm{a}} \in D_{\zeta}^{+} \subseteq \mathscr{P}(Y)$
(c) $\mathbf{J}_{\zeta, 2}=\left\{A \subseteq Y: A \in\left(D_{\zeta}^{*}\right)^{+}\right.$and for some $\mathbf{a} \in \mathbf{U}_{\zeta}$ we have $\left.A \subseteq A_{\mathbf{a}}\right\}$.

Note
$(*)_{2}(a) \quad \mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2} \subseteq\left(D_{\zeta}^{*}\right)^{+}$is dense, i.e. if $A \in\left(D_{\zeta}^{*}\right)^{+}$then for some $B \subseteq A$, we have $B \in \mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2}$
(b) if $\ell \in\{1,2\}, A \in \mathbf{J}_{\zeta, 1}, B \subseteq A$ and $B \in D_{\zeta}^{+}$then $B \in \mathbf{J}_{\zeta, \ell}$.
[Why Clause (a)? Because we are assuming that D_{*} is \aleph_{1}-complete in (A)(b). For clause (b), just read the definition of $\mathbf{J}_{\zeta, \ell .}$]

Now we try to choose f_{α} (or pedantically f_{α}^{ε} if you like) by induction on α such that:
$(*)_{3}(a) \quad f_{\alpha} \in \Pi \bar{\delta}$
(b) $\beta<\alpha_{\zeta}^{*} \Rightarrow g_{\beta}<f_{\alpha} \bmod D_{\zeta}^{*}$; follows by $(\mathrm{c})+(\mathrm{d})$
(c) $\beta<\alpha \Rightarrow f_{\beta}<f_{\alpha} \bmod D_{\zeta}^{*}$
(d) $f_{0}=g_{\alpha_{\zeta}^{*}}$.

Arriving to $\alpha, \bar{f}=\left\langle f_{\beta}: \beta<\alpha\right\rangle$ has been defined. Let $\mathbf{J}_{\zeta, \alpha}^{*}=\left\{A \subseteq Y: A \in\left(D_{\zeta}^{*}\right)^{+}\right.$ and \bar{f} has an upper bound in $\left.\left(\Pi \bar{\delta},<_{D_{\zeta}^{*}+A}\right)\right\}$.
Sub-case C1: $\left(\mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2}\right) \cap \mathbf{J}_{\zeta, \alpha}^{*}$ is dense in $\left(\left(D_{\zeta}^{*}\right)^{+}, \supseteq\right)$.
First, as in the proof of 1.5, (that is, choosing f_{α} in the inductive step in the proof) we can define $\bar{f}_{\zeta, \alpha}^{1}$ such that:
$\left({ }^{*}\right)_{4}(a) \quad \bar{f}_{\zeta, \alpha}^{1}=\left\langle f_{\zeta, \alpha, A}^{1}: A \in \mathbf{J}_{\zeta, 1} \cap \mathbf{J}_{\zeta, \alpha}^{*}\right\rangle$
(b) $f_{\zeta, \alpha, A}^{1} \in \Pi \bar{\delta}$
(c) $f_{\zeta, \alpha, A}^{1}$ is a $<_{D_{\zeta}^{*}+A}$-upper bound of $\left\{g_{\alpha_{\zeta}^{*}}\right\} \cup\left\{f_{\beta}: \beta<\alpha\right\}$.

Second, we consider $\mathbf{a} \in \mathbf{U}_{\zeta}$ hence $A_{\mathbf{a}} \in \mathbf{J}_{\zeta, 2}$.
Let

- for $u \subseteq \alpha_{\zeta}^{*}$ let $g^{[u]} \in \Pi \bar{\delta}$ be defined by $g^{[u]}(s)=\sup \left\{g_{\beta}(s)+1: \beta \in u\right\}$ if this supremum is $<\delta_{s}$ and 0 otherwise.

Note that
$(*)_{5}(a) \quad$ if $A \subseteq Y, A=\emptyset \bmod D_{\zeta}^{*} \underline{\text { then }}$ for every $f \in \Pi \bar{\delta}$ for some finite $v \subseteq \alpha_{\zeta}^{*}$ we have $\left\{s \in A: \neg(\exists \beta \in v)\left(f(s)<g_{\beta}(s)\right)\right\}=\emptyset \bmod D_{*}$
(b) if $u_{1} \subseteq u_{2}$ are from $\left[\alpha_{\zeta}^{*}\right]<\partial$ then $g^{\left[u_{1}\right]} \leq g^{\left[u_{2}\right]} \bmod D_{*}$.
[Why? By induction on ζ using $(B)^{+}(k),(l)$ recalling $D_{0}^{*}=D_{*}$ or see the proof of 2.13. Clause (b) is proved by cf $-\mathrm{id}_{<\partial}(\bar{\delta}) \subseteq \mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta}) \subseteq \operatorname{dual}\left(D_{*}\right)$ recalling $\aleph_{0}<\theta$ by $(A)(c)(\beta)$ of the claim.]
$(*)_{6}$ if $f \in \Pi \bar{\delta}$ then f has a $<_{D_{\zeta}^{*}+A_{\mathrm{a}}}$-upper bound and even a $<_{D_{*}+A_{\mathrm{a}}}$-upper bound of the form $g^{[u]}$ for some countable $u \subseteq \alpha_{\zeta}^{*}$.
[Why? Let $f \in \Pi \bar{\delta}$, now for each n there is $\alpha_{n}<\alpha_{\xi_{\mathrm{a}, n}+1}^{*}$ such that $f<g_{\alpha_{n}}$ $\bmod \left(D_{\xi_{\mathbf{a}, n}}^{*}+A_{\mathbf{a}, n}\right)$, moreover, see $(*)_{5}(a)$, there is a finite set $v_{n} \subseteq \alpha_{\xi_{\mathbf{a}, n}+1}^{*}$ such that $\left(\forall s \in A_{\mathbf{a}, n}\right)(\exists \beta \in v)\left(f(s)<g_{\beta}(s)\right)$. As those are finite sets of ordinals (or use $\mathrm{AC}_{\aleph_{0}}$) there is such a sequence $\left\langle v_{n}: n<\omega\right\rangle$, so $u=\cup\left\{v_{n}: n<\omega\right\}$ is as required, recalling $\mathrm{cf}-\mathrm{id}_{<\aleph_{1}}(\bar{\delta}) \subseteq \operatorname{dual}\left(D_{*}\right)$ as in earlier cases so we have proved (a) of $(*)_{5}$.]

Lastly (well defined by $(*)_{5}(b)+(*)_{6}$ recalling our sub-case assumption):
$(*)_{7}$ let $\bar{f}_{\zeta, \alpha}^{2}=\left\langle f_{\zeta, \alpha, \mathbf{a}}^{2}: \mathbf{a} \in \mathbf{U}_{\zeta}\right\rangle$ be defined by: $f_{\zeta, \alpha, \mathbf{a}}^{2}$ is $g^{[u]}$ where $u=u_{\mathbf{a}} \in \mathscr{S}_{\lambda_{*}}$ is the $<_{\lambda_{*}}$-first $u \in \mathscr{S}_{\lambda_{*}}$ for which $g^{[u]} \in \Pi \bar{\delta}$ is a $<_{D_{\zeta}^{*}+A_{\mathrm{a}}}$-common upper bound of $\left\{g_{\alpha_{\xi}^{*}}\right\} \cup\left\{f_{\beta}: \beta<\alpha\right\}$.

Note that

$$
(*)_{8} \text { if } \mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbf{U}_{\zeta} \text { and if } A_{\mathbf{a}_{1}} / D_{\zeta}^{*}=A_{\mathbf{a}_{2}} / D_{\zeta}^{*} \text { then } f_{\zeta, \mathbf{a}_{1}, \alpha}^{2}=f_{\zeta, \mathbf{a}_{2}, \alpha}^{2} .
$$

Having defined $\left\langle f_{\zeta, \alpha, A}^{1}: A \in \mathbf{J}_{\zeta, 1} \cap \mathbf{J}_{\zeta, \alpha, \alpha}^{*}\right\rangle$ and $\left\langle f_{\zeta, \alpha, \mathbf{a}}^{2}: \mathbf{a} \in \mathbf{U}_{\zeta} \cap \mathbf{J}_{\zeta, \alpha}^{*}\right\rangle$, of course, they all depend on ζ; we define $f_{\alpha} \in{ }^{Y}$ Ord by
$(*)_{9} f_{\alpha}(s)$ is: the supremum below if it is $<\delta_{s}$ and zero otherwise. where the supremum is $\sup \left(\left\{f_{\alpha, \zeta, A}^{1}(s)+1: A \in \mathbf{J}_{\zeta, 1} \cap \mathbf{J}_{\zeta, \alpha}^{*}\right\} \cup\left\{f_{\zeta, \alpha, \mathbf{a}}^{2}(s)+1: \mathbf{a} \in \mathbf{U}_{\zeta}\right\}\right)$.

So indeed $f_{\alpha} \in \Pi \bar{\delta}$ as in the end of the proof of 1.5 and is as required for α as $\operatorname{hrtg}\left(\mathbf{J}_{\zeta, 1} \cap \mathbf{J}_{\zeta, \alpha}^{*}\right) \leq \operatorname{hrtg}\left(\mathscr{P}(Y) / D_{*}\right) \leq \theta$ and $\operatorname{hrtg}\left(\left\{f_{\zeta, \alpha, \mathbf{a}}: \mathbf{a} \in \mathbf{U}_{\zeta}\right\}\right) \leq \operatorname{hrtg}\left(\left\{A_{\mathbf{a}}:\right.\right.$ $\left.\left.\mathbf{a} \in \mathbf{U}_{\zeta}\right\}\right) \leq \operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$ because of $(*)_{8}\left(\right.$ so even $\operatorname{hrtg}\left(\mathscr{P}(Y) / D_{\zeta}^{*}\right)$ suffice $)$; note that we have used $(A)(c)(\beta)$.
Sub-case C2: $\left(\mathbf{J}_{\zeta, 1} \cap \mathbf{J}_{\zeta, 2}\right) \cap \mathbf{J}_{\zeta, \alpha}^{*}$ is not dense in $\left(\left(D_{\zeta}^{*}\right)^{+}, \supseteq\right)$.
Let $A_{*} \in\left(D_{\zeta}^{*}\right)^{+}$be such that $A \subseteq A_{*} \wedge A \in\left(D_{\zeta}^{*}\right)^{+} \Rightarrow A \notin\left(\mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2}\right) \cap \mathbf{J}_{\zeta, \alpha}^{*}$. By $(*)_{2}$ without loss of generality for some $\ell \in\{1,2\}$ we have $A_{*} \in \mathbf{J}_{\zeta, \ell}$.

As in the proof of 1.5 , necessarily α is a limit ordinal of cofinality $\geq \theta$. Now as in Sub-Case C1 we define $\bar{f}_{\zeta, \alpha}^{1}=\left\langle f_{\zeta, \alpha, A}^{1}: A \in\left(\mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2}\right) \cap \mathbf{J}_{\zeta, \alpha}^{*}\right\rangle$ satisfying: $f_{\zeta, \alpha, A}^{1}$

- $f_{*}(s)$ the supremum below if it is $<\delta_{s}$ and is zero otherwise, where $\sup \left\{f_{\zeta, \alpha, A}^{1}(s)+\right.$ $\left.1: A \in\left(\mathbf{J}_{\zeta, 1} \cup \mathbf{J}_{\zeta, 2}\right) \cap J_{\zeta, \alpha}^{*}\right\}$.
As in the proof of 1.5 there is $\beta<\alpha$ such that $\gamma \in[\beta, \alpha) \Rightarrow\left\{s \in Y: f_{\gamma}(s)<\right.$ $\left.f_{*}(s)\right\}=\left\{s \in y: f_{\beta}(s)<f_{*}(s)\right\} \bmod D_{\zeta}^{*}$.

Let β_{*} be the minimal such β. Lastly, let $A_{\zeta}=\left\{s \in y: f_{\beta_{*}}(s) \geq f_{*}(s)\right\}$ and

- $E_{\varepsilon}=E_{\zeta}+A_{\zeta}$
- $D_{\varepsilon}^{*}=D_{\zeta}^{*}+\left(Y \backslash A_{\zeta}\right)$
- $\alpha_{\varepsilon}^{*}=\alpha_{\varepsilon}^{*}+\alpha$
- $g_{\beta}=f_{\beta}$ for $\beta \in\left(\alpha_{\zeta}^{*}, \alpha_{\varepsilon}^{*}\right)$
- $g_{\alpha_{\varepsilon}^{*}}=f_{*}$.

Case D: None of the above.
So $Y \in D_{\varepsilon}^{*}$ and we are done.
Discussion 1.9. In the results above, is $\left\langle\operatorname{cf}\left(\alpha_{\varepsilon+1}^{*}\right): \varepsilon<\varepsilon(*)\right\rangle$ without repetitions? Certainly this is not obviously so and it seems we can manuever $\bar{\delta}$ and the closure operation to be otherwise. But can we replace $\bar{\alpha}^{*}$ and \bar{g} to take care of this? Clearly if $\mathscr{U} \subseteq \alpha_{\varepsilon(*)}^{*}$ satisfies $\varepsilon<\varepsilon(*) \Rightarrow \alpha_{\varepsilon+1}^{*}=\sup \left(\mathscr{U} \cap \alpha_{\varepsilon+1}^{*}\right)$ then we can replace \bar{g} by $\bar{g} \upharpoonright \mathscr{U}$ so by renaming get $\bar{\alpha}^{\prime}=\left\langle\operatorname{otp}\left(\mathscr{U} \cap \alpha_{\varepsilon}^{*}\right): \varepsilon \leq \varepsilon(*)\right\rangle$. So $\operatorname{cf}\left(\alpha_{\varepsilon}^{*}\right)=\operatorname{cf}\left(\alpha_{\zeta}^{*}\right) \Leftrightarrow$ $\operatorname{cf}\left(\alpha_{\varepsilon}^{\prime}\right)=\operatorname{cf}\left(\alpha_{\zeta}^{\prime}\right)$ and if we have $\operatorname{cf}\left(\alpha_{\varepsilon}^{\prime}\right)=\operatorname{cf}\left(\alpha_{\zeta}^{\prime}\right) \Rightarrow \alpha_{\varepsilon+1}^{\prime}-\alpha_{\varepsilon}^{\prime}=\alpha_{\zeta+1}^{\prime}-\alpha_{\zeta}^{\prime}$ we can change \bar{g} to get desired implication. So if $\mathrm{AC}_{\varepsilon(*)}$ holds we are done but we are not assuming it. In this case we also get $\left\langle\alpha_{\varepsilon+1}^{\prime} \backslash \alpha_{\varepsilon}^{\prime}: \varepsilon<\varepsilon(*)\right\rangle$ is a sequence of regular cardinals.

§ 2. More on the pcf theorem

$\S 2(\mathrm{~A})$. When the Cofinalities are Smaller.

Definition 2.1. 1) We say $\mathbf{x}=\left(Y, \bar{\delta}, \theta, \varepsilon(*), \bar{\alpha}^{*}, \bar{D}^{*}, \bar{E}^{*}, \bar{f}\right)=\left(Y_{\mathbf{x}}, \bar{\delta}_{\mathbf{x}}, \theta_{\mathbf{x}}, \varepsilon_{\mathbf{x}}, \bar{\alpha}_{\mathbf{x}}, \bar{D}_{\mathbf{x}}, \bar{E}_{\mathbf{x}}, \bar{f}_{\mathbf{x}}\right)$ is a pcf-system or a pcf-system for $\bar{\delta}$ or for $\left(\Pi \bar{\delta},<_{D}\right)$ when they are as in $(B)^{+}$of 1.7, with \bar{f} here standing for \bar{g} there; so $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle, \delta_{s}$ a limit ordinal; now 2.3 below apply, we will use $\bar{D}_{\mathbf{x}}=\left\langle D_{\varepsilon}^{\mathbf{x}}: \varepsilon<\varepsilon_{\mathbf{x}}\right\rangle=\left\langle D_{\mathbf{x}, \varepsilon}: \varepsilon<\varepsilon_{\mathbf{x}}\right\rangle$, similarly for $\bar{f}, D_{\mathbf{x}}=D_{0}^{\mathbf{x}}$; let $\varepsilon(\mathbf{x})=\varepsilon_{\mathbf{x}}$.
2) Above we say is "almost a pcf-system" if we demand $\bar{f} \upharpoonright\left[\alpha_{\mathbf{x}, \varepsilon}, \alpha_{\mathbf{x}, \varepsilon+1}\right)$ is only $\leq_{D_{\mathbf{x}, \varepsilon}}$-increasing (still cofinal) so using $(B)^{+}(i)^{\prime}$ instead of $(B)^{+}(i)$, see 1.7,1.8(7). 3) Above we say \mathbf{x} is "weakly a pcf-system" when in $1.7(\mathrm{~B})^{+}$- we weaken clause (i) as in part (2) and we omit \bar{E}^{*}, i.e. omit clauses (j), (k) but retain (l) which means: if $X_{0} \in D_{\varepsilon+1}^{*} \backslash D_{\varepsilon}^{*}, X_{1}=Y \backslash X_{0}$ then $\bar{f} \upharpoonright\left[\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon}^{*}\right)$ is $\leq_{D_{\varepsilon}^{*}}$-increasing and cofinal in $\left(\Pi \bar{\delta},<_{D_{\varepsilon}^{*}+X_{1}}\right)$ and \bar{f} is $\leq_{D_{\varepsilon}^{*}}$-increasing.

Observation 2.2. 1) If θ, Y, D and $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ satisfies clause (A) of 1.7, then there is a pcf-sytem \mathbf{x} for $\left(\Pi \bar{\delta},<_{D}\right)$ with $\theta_{\mathbf{x}}=\theta$.
2) We can above use $D=\mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$.

Proof. By 1.7.
Observation 2.3. Let $\mathbf{x}=\left(Y, \bar{\delta}, \theta, \varepsilon(*), \bar{\alpha}^{*}, \bar{D}^{*}, \bar{E}^{*}, \bar{f}\right)$ be as in 1.7 (with \bar{f} instead of \bar{g}) or Definition 2.1(2).

1) $\left(\Pi \bar{\delta},<_{D_{\mathrm{x}}}\right)$ has a cofinal well orderable subset, in fact, of cardinality $\left|\alpha_{\varepsilon(*)}^{*}\right|$.
2) Assume $f \in \Pi \bar{\delta}$ and for $\varepsilon<\varepsilon(*)$ we let $\beta_{\varepsilon}=\min \left\{\beta: \beta \in\left[\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{*}\right)\right.$ satisfy $\left.f<f_{\beta} \bmod \left(E_{\varepsilon+1}^{*}\right)\right\}$, then:
(a) $\beta_{\varepsilon} \in\left[\alpha_{\varepsilon}^{*}, \alpha_{\varepsilon+1}^{*}\right)$ is well defined hence $\left\langle\beta_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ is well defined
(b) for some finite $u \subseteq \varepsilon(*)$ we have $f<\sup \left\{f_{\beta_{\varepsilon}}: \varepsilon \in u\right\}$
$(b)^{+}$moreover $\left\langle f_{\beta_{\varepsilon}}: \varepsilon \in u\right\rangle$ is ∂-uniformly definable from f and $\bar{\delta}$ and D_{0}^{*} (equivalently, f and \mathbf{x}).

Proof. 1) By (2).
2) Easy; e.g..

Clause (b):
Let $\varepsilon \leq \varepsilon_{\mathbf{x}}$ be minimal such that
$(*) \varepsilon=\varepsilon_{*}$ for some finite $u \subseteq\left[\varepsilon, \varepsilon_{\mathbf{x}}\right)$ we have $f<\max \left\{f_{\beta_{\zeta}}: \zeta \in u\right\} \bmod D_{\mathbf{x}, \varepsilon}$.
Now ε is well defined because $\varepsilon_{\mathbf{x}}$ is a successor ordinal and $\left\langle f_{\beta}: \beta<\alpha_{\varepsilon(\mathbf{x})}^{*}\right\rangle$ is cofinal in $\left(\Pi \bar{\delta},<_{D_{\mathbf{x}, \varepsilon(\mathbf{x})-1}}\right)$ and so $u=\left\{\beta_{\varepsilon(\mathbf{x})-1}\right\}$ is as required.

If $\varepsilon=\zeta+1<\varepsilon_{\mathbf{x}}$ and u are as in $(*)$ the set $Z=\left\{s \in Y: f(s)<\max \left\{f_{\beta_{\zeta}}(s):\right.\right.$ $\zeta \in u\}$ is $=\emptyset \bmod E_{\zeta+1}$ and repeat the argument for $\varepsilon=\varepsilon_{\mathbf{x}}-1$.

If ε is a limit ordinal, this leads to contradiction as $D_{\mathbf{x}, \varepsilon}=\cup\left\{D_{\mathbf{x}, \zeta}: \zeta<\varepsilon\right\}$.
Lastly, if $\varepsilon=0$ then we are done.

Discussion 2.4. 1) In 2.3, we may restrict ourselves to \aleph_{1}-complete filters only, so replace ε_{*} by $\left\{\varepsilon<\varepsilon_{*}: E_{\varepsilon}^{*}\right.$ is \aleph_{1}-complete $\}$ but use countable u.
2) Similarly for θ-complete.
3) Recall that with choice or just AC_{Y}, the ideal cf $-\mathrm{id}_{<\theta}(\bar{\delta})$ is degenerate: if, for transparency, θ is regular, then $\operatorname{cf-id}_{<\theta}(\bar{\delta})=\left\{X \subseteq Y:(\forall s \in X)\left[\operatorname{cf}\left(\delta_{s}\right)<\theta\right]\right.$ and $|X|<\theta\}$.

We have dealt with $\left(\prod_{s} \delta_{s},<_{D}\right)$ when $D \supseteq \operatorname{cf}-\operatorname{fil}_{<\theta}(\bar{\delta})$ and $\theta \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$; we try to lower the restriction on the cardinal θ with some price.

Definition 2.5. Assume D is a filter on $Y, \alpha(*)$ an ordinal and $\bar{f}=\left\langle f_{\alpha}: \alpha<\alpha(*)\right\rangle$ is a \leq_{D}-increasing sequence of members of ${ }^{Y}$ Ord and $f \in{ }^{Y}$ Ord is not $<_{D}$-below any f_{α}. We define

$$
\begin{aligned}
\operatorname{id}(f, \bar{f}, D)=\{Z \subseteq Y: & \text { there is } \alpha<\alpha(*) \text { such that } \\
& \left.Z \subseteq\left\{s \in Y: f(s)<f_{\alpha}(s)\right\} \bmod D\right\} .
\end{aligned}
$$

Claim 2.6. For Y, D, \bar{f}, f as in Definition 2.5 above.

1) $\operatorname{id}(f, \bar{f}, D)$ is an ideal on Y extending dual (D).
2) f is a $\leq_{\operatorname{id}(f, \bar{f}, D)}$-upper bound of \bar{f}.
3) For $A \in D^{+}$we have: $\mathscr{P}(A) \cap \operatorname{id}(f, \bar{f}, D) \subseteq \operatorname{dual}(D)$ iff f is $a \leq_{D+A \text {-upper }}$ bound of \bar{f}.
4) If $A \in D^{+} \cap \operatorname{id}(f, \bar{f}, D)$ then for every $\alpha<\alpha(*)$ large enough, $f<f_{\alpha} \bmod (D+$ A).
5) $\operatorname{id}(f, \bar{f}, D)=\operatorname{id}\left(f^{\prime}, \bar{f}, D\right)$ when $f^{\prime} \in{ }^{Y}$ Ord and $f^{\prime}={ }_{D} f$.

Proof. Straightforward.

Notation 2.7. 1) Given $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ and set u of ordinals let $h_{[u, \bar{\delta}]}$ be the function h with domain Y such that: $h(s)$ is $\sup \left(u \cap \delta_{s}\right)$ when it is $<\delta_{s}$, is 0 when otherwise.
2) For $\bar{u}=\left\langle u_{s}: s \in Y\right\rangle$ we define $h_{[\bar{u}, \bar{\delta}]}$ similarly.

Claim 2.8. If we assume \oplus below and $(A)+(B)$ then (C) where:
$\oplus(a) \quad \mathrm{Ax}_{4, \theta} \wedge|Y| \leq \aleph_{0}$
$(b)_{\kappa, \theta} \quad$ the union of any sequence of length $\leq \kappa$ of sets of ordinals each of cardinality $<\theta$ is of cardinality $<\theta$
(c) $\kappa \leq \theta$
(A) (a) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ is a sequence of limit ordinals
(b) D is a filter on Y
(c) $D \supseteq \mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$
(d) $\mu=\cup\left\{\delta_{s}: s \in Y\right\}$
(B) δ_{*} is an ordinal and
(a) $f_{\alpha} \in \prod_{s \in Y} \delta_{s}$ for $\alpha<\delta_{*}$
(b) if $\alpha<\beta<\delta_{*}$ then $f_{\alpha}<f_{\beta} \bmod D$
(c) $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta_{*}\right\rangle$ is not cofinal in $\left(\prod_{s \in Y} \delta_{s},<_{D}\right)$
(d) $\operatorname{cf}\left(\delta_{*}\right)>\kappa$
(C) we can θ-uniformly define (or (θ, κ)-uniformly define) g such that:
(a) $g \in \prod_{s \in Y} \delta_{s}$ is not $<_{D}$-below any f_{α}
(b) if $g \leq_{D} g^{\prime} \in \prod_{s \in Y} \delta_{s}$ then $\operatorname{id}\left(g^{\prime}, \bar{f}, D\right)=\operatorname{id}(g, \bar{f}, D)$.

Remark 2.9. 1) See more in 2.13 .
2) Do we uniformly have the parallel of: some stationary $S \subseteq S_{\kappa^{+}}^{\lambda}$ belongs to $\check{I}_{\kappa^{+}}[\lambda]$? See later.
3) We can weaken $2.8 \oplus(a)$ to $\operatorname{Ax}_{4, \mu, \theta, \kappa} \wedge \operatorname{hrtg}(Y) \leq \kappa$, (see $0.5(3)$) the proof is written for this.

Proof. Stage A:

Let $\overline{\left(\mathscr{S}_{*},<_{*}\right)}$ witness $\mathrm{Ax}_{4, \mu, \theta, \kappa}$.
We try to choose $g_{\varepsilon}, u_{\varepsilon}, Y_{\varepsilon}$ by induction on $\varepsilon<\kappa$ such that:
$\boxplus(a) \quad g_{\varepsilon} \in \prod_{s \in Y} \delta_{s}$
(b) $u_{\varepsilon} \subseteq \mu$ has cardinality $<\theta$ and $\zeta<\varepsilon \Rightarrow u_{\zeta} \subseteq u_{\varepsilon}$
(c) $Y_{\varepsilon}=\left\{s \in Y: \delta_{s}=\sup \left(\delta_{\varepsilon} \cap u_{\varepsilon}\right)\right\}=\emptyset \bmod D$
(d) if $s \in Y \backslash Y_{\varepsilon}$ and $\zeta<\varepsilon$ then $g_{\zeta}(s)<g_{\varepsilon}(s)$
(e) $g_{\varepsilon}=h_{\left[u_{\varepsilon}, \bar{\delta}\right]}$, see Definition 2.7
(f) if ε is a limit ordinal then:

- $u_{\varepsilon}=\cup\left\{u_{\zeta}: \zeta<\varepsilon\right\}$
- $g_{\varepsilon}(s)$ is $\cup\left\{g_{\zeta}(s): \zeta<\varepsilon\right\}$ when it is $<\delta_{s}$ is 0 when otherwise
(g) if $\varepsilon=\zeta+1$ then
$(\alpha) \quad g_{\zeta}$ is not as required on g in clause (C)
(β) $\quad u_{\varepsilon}$ is the $<_{*}$-first $u \in \mathscr{S}_{*}$ extending u_{ζ} such that if we define g_{ε} as $h_{[u, \bar{\delta}]}$ then it is a counterexample like g^{\prime} there
(h) if $\varepsilon=0, g_{\varepsilon}$ is defined from u_{ε} similarly.

Now we shall finish by proving in stages B, C below that:
$(*)_{1}$ if we have defined g_{ε} but g_{ε} is as required on g in clause (C)(b), then we are done; this is obvious
$(*)_{2}$ we can choose g_{ε} if $\varepsilon=0$
$(*)_{3}$ if $\left\langle g_{\zeta}: \zeta<\varepsilon\right\rangle$ was defined we can define g_{ε} if ε is a limit ordinal $<\kappa$
$(*)_{4}$ if $\varepsilon=\zeta+1$ and $\left\langle g_{\xi}: \xi \leq \zeta\right\rangle$ has been defined and g_{ζ} fail (C), then we can define g_{ε}
$(*)_{5}$ we cannot succeed to choose $\left\langle g_{\varepsilon}: \varepsilon<\kappa\right\rangle$.
Stage B:
$\overline{\text { Proof of }}(*)_{5}$:
Toward contradiction assume $\left\langle g_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is well defined.
For $\varepsilon<\kappa$ and $\alpha<\delta_{*}$ let $Z_{\varepsilon, \alpha}=\left\{s \in Y: g_{\varepsilon}(s) \geq f_{\alpha}(s)\right\}$ and let $Y_{\varepsilon}=$ $\left\{s \in Y: \sup \left(u_{\varepsilon} \cap \delta_{s}\right)=\delta_{s}\right\}$, it belongs. By clauses (b), (c), (e) of \boxplus we have $Z_{\varepsilon_{1}, \alpha} \backslash Y_{\varepsilon_{1}} \subseteq Z_{\varepsilon_{2}, \alpha} \backslash Y_{\varepsilon_{2}}$ for $\varepsilon_{1}<\varepsilon_{2}<\kappa, \alpha<\delta_{*}$.

Now by clause $(g)(\beta)$ of \boxplus, if $\varepsilon=\zeta+1$ then for some $\alpha<\delta_{*}, Z_{\varepsilon, \alpha} \notin \operatorname{id}\left(g_{\zeta}, \bar{f}, D\right)$ and let α_{ζ} be the minimal such α. As $\operatorname{cf}\left(\delta_{*}\right)>\kappa$ by Clause (B)(d) of the assumption, $\gamma:=\cup\left\{\alpha_{\zeta}: \zeta<\kappa\right\}$ is $<\delta_{*}$.

Now the sequence $\left\langle Y_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is \subseteq-increasing sequence of subsets of Y because $\left\langle u_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is by $\boxplus(b)$ and the choice of Y_{ε}. By $\oplus(a)$ we have $\operatorname{hrtg}(Y) \leq \kappa$.

Also clearly
$\bullet_{2} Z_{\varepsilon+1} \nsubseteq Z_{\varepsilon+1} \bmod D$ and Y_{ε}.
Together $\left\langle Z_{\varepsilon+1, \gamma} \backslash Z_{\varepsilon, \gamma} \backslash Y_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is a sequence pairwise distinct non-empty of subsets of Y, so recalling $\operatorname{hrtg}(Y) \leq \kappa$, this is contradiction to the first paragraph.

Stage C:
Obviously $(*)_{1}$ holds.
$\underline{\text { Proof of }(*)_{2}}$: we can choose g_{ε} for $\varepsilon=0$
\bullet_{1} there is $g^{\prime \prime} \in \prod_{s \in Y} \delta_{s}$ such that $\alpha<\delta_{*} \Rightarrow g^{\prime \prime} \not \leq f_{\alpha} \bmod D$.
[Why? By clause $(\mathrm{B})(\mathrm{c})$ of the claim. For such a $g^{\prime \prime}$ there is $u \in \mathscr{S}_{*}$ such that $\operatorname{Rang}\left(g^{\prime \prime}\right) \subseteq u$ because $\operatorname{hrtg}(Y) \leq \kappa$ and \mathscr{S}_{*} witness $\mathrm{Ax}_{4, \mu, \theta, \kappa}$. We choose $u \in \mathscr{S}_{*}$ as the $<_{*}$-first such $u \in \mathscr{S}_{*}$ and choose $g \in \prod_{s \in Y} \delta_{s}$ as $h_{[u, \delta] .]}$.]

So
$\bullet_{2} g \in \prod_{s \in Y} \delta_{s}$
$\bullet_{3} g^{\prime \prime} \leq g \bmod D$.
[Why? Recall cf $-\mathrm{fil}_{<\theta}(\bar{\delta}) \subseteq D$ by the assumption (A)(c), hence $\{s \in Y: \sup (u \cap$ $\left.\left.\delta_{2}\right) \leq g(s)\right\}$ as $|u|<\theta$ being a membre of \mathscr{S}_{*}. So as $(\forall s \in Y)\left(g^{\prime \prime}(s) \in \delta_{s} \cap u\right)$ we have $g^{\prime \prime} \leq g \bmod D$ by the choice of u.]
$\bullet_{4} \alpha<\delta_{*} \Rightarrow g \not \leq f_{\alpha} \bmod D$.
[Why? By \bullet_{3} and by the choice of $g^{\prime \prime}$ in \bullet_{1}.]
Proof of $(*)_{3}$: limit ε
We define g_{ε} as in $\boxplus(f)$, as it is as required because $D \supseteq \mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$ by clause (A)(c) of the assumption recalling $\oplus(b)_{\kappa, \theta}$ of the assumption.

Proof of $(*)_{4}$:
So we are assuming g_{ζ} is well defined but fail (C)(b) as exemplified by g, let $u \in \mathscr{S}_{*}$ be $<_{*}$-minimal such that $\operatorname{Rang}(g) \subseteq u$ and let $h=h_{[u, \bar{\delta}]}^{*}+1$, that is $s \in Y \Rightarrow h(s)=h_{[u, \bar{\delta}]}(s)+1<\delta_{s}$ hence $g<_{J} h_{[u, \bar{\delta}]} \bmod D$ and we can finish easily as in the proof of $(*)_{2}$.
$\square_{2.8}$
Observation 2.10. $\operatorname{cf}(\alpha(*)) \geq \theta$ when
(a) D is a filter on Y
(b) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ is a sequence of limit ordinals
(c) $D \supseteq \mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$
(d) $\bar{f}=\left\langle f_{\alpha}: \alpha<\alpha(*)\right\rangle$ is $<_{D}$-increasing sequence of members of $\prod_{s \in Y} \delta_{s}$
(e) \bar{f} has no $<_{D}$-upper bound in $\prod_{s \in Y} \delta_{s}$.

Proof. The proof splits into cases proving the existence of a $<_{D}$-upper bound $g \in$ $\prod_{s \in Y} \delta_{s}$.

Case 1: $\alpha(*)=0$
The constantly zero function $g: Y \rightarrow\{0\}$ can serve.
Case 2: $\alpha(*)$ is a successor ordinal
Let $\alpha(*)=\beta+1$ and g be defined by $g(s)=f_{\beta}(s)+1$. As each δ_{s} is a limit ordinal, $g \in \prod_{s \in Y} \delta_{s}$.

Case 3: $\operatorname{cf}(\alpha(*)) \in\left[\aleph_{0}, \theta\right)$
Let $w \subseteq \alpha(*)$ be cofinal of order type $\operatorname{cf}(\alpha(*))$, let $u_{s}=\left\{f_{\alpha}(s): \alpha \in w\right\}$ for $s \in Y$ so $\bar{u}:=\left\langle u_{s}: s \in Y\right\rangle$ is well defined and $s \in Y \Rightarrow\left|u_{s}\right|<\theta$, hence $g=h_{[\bar{u}, \bar{\delta}]}$ is as required.

Claim 2.11. If \boxplus below holds then $\oplus_{1} \Rightarrow \oplus_{2} \Rightarrow \oplus_{3} \underline{\text { where }}$
$\oplus_{1} \mathrm{Ax}_{4, \mu, \theta, \kappa}$
\oplus_{2} there is a well orderable set cofinal in $\left(\Pi \bar{\delta},<_{D}\right)$, defined (μ, θ, κ)-uniformly
\oplus_{3} we can (θ, κ)-uniformly define $a<_{D}$-increasing sequence $\bar{f}=\left\langle f_{\alpha}: \alpha<\right.$ $\alpha(*)\rangle$ in $\left(\prod_{s \in Y} \delta_{s},<_{D}\right)$ with no upper bound
where
$\boxplus(a) \quad D$ a filter on Y
(b) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ is a sequence of limit ordinals
(c) $D \supseteq \mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$
(d) $\operatorname{hrtg}(Y) \leq \kappa \leq \theta$
(e) $\mu=\sup \left\{\delta_{s}: s \in Y\right\}$.

Proof. $\oplus_{1} \Rightarrow \oplus_{2}$
Let $\overline{\left(\mathscr{S}_{*},<_{*}\right)}$ witness $\mathrm{Ax}_{4, \mu, \theta, \kappa}$.
For every $g \in \Pi \bar{\delta}, \operatorname{Rang}(g)$ is a subset of $\sup \left\{\delta_{s}: s \in Y\right\}=\mu$ of cardinality $<\operatorname{hrtg}(Y) \leq \kappa$ hence there is $u \in \mathscr{S}_{*}$ such that $\operatorname{Rang}(g) \subseteq u$, so $|u|<\theta$ hence easily $g \leq h_{[u, \bar{\delta}]} \bmod D$, see Definition 2.7. Hence $\mathscr{F}=\left\{h_{[u, \bar{\delta}]}: u \in \mathscr{S}_{*}\right\}$ is a cofinal subset of $\left(\Pi \bar{\delta},<_{D}\right)$ and being $\leq_{\text {qu }} \mathscr{S}_{*}$ it is well orderable. Recall $h_{[u, \bar{\delta}]} \in \Pi \bar{\delta}$ is defined by: $h_{[u, \bar{\delta}]}(s)$ is $\sup \left(\delta_{s} \cap u\right)$ if $\sup \left(\delta_{2} \cap u\right)<\delta_{s}$ and is zero otherwise.

Now $\mathscr{F} \subseteq \Pi \bar{\delta}$ being cofinal in $\left(\Pi \bar{\delta},<_{D}\right)$ follows from $D \supseteq \mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$ that is $\boxplus(c)$.
$\oplus_{2} \Rightarrow \oplus_{3}$
Let $\mathscr{F} \subseteq \Pi \delta$ be cofinal in $\left(\Pi \bar{\delta},<_{D}\right)$ and $<_{*}$ well order \mathscr{F}. We try to choose f_{α} by induction on the ordinal α. If $\bar{f}^{\alpha}=\left\langle f_{\beta}: \beta<\alpha\right\rangle$ has no $<{ }_{D}$-upper bound we are done so assume $g \in \prod_{s \in Y} \delta_{s}$ is a $<_{D}$-upper bound of \bar{f}^{α} so there is $h \in \mathscr{F}$ such that $g<_{D} h$, so h is a $<_{D}$-lub of \bar{f} and let $f_{\alpha} \in \mathscr{F}$ be the $<_{*}$-minimal such h. Necessarily for some α we cannot continue so \bar{f}^{α} is as promised.

Conclusion 2.12. In clause (C) of 2.8 letting

- $Z_{\alpha}=\left\{s \in Y: g(s)<f_{\alpha}(s)\right\}$ for $\alpha<\delta_{*}$
- $\mathscr{W}=\left\{\alpha<\delta_{*}: Z_{\beta} \neq Z_{\alpha} \bmod D\right.$ for every $\left.\beta<\alpha\right\}$
- $D_{\alpha}=D+Z_{\alpha}$ for $\alpha<\delta_{*}$
- $\alpha_{*}=\min \left\{\alpha \leq \delta_{*}\right.$: if $\alpha<\delta_{*}$ then $\left.Z_{\alpha} \in D^{+}\right\}$
and assuming $(B)(e) \bar{f}$ has no $\leq_{D-u b}$ in $\Pi \bar{\delta}$ we can add:
(c) $\left\langle Z_{\alpha} / D: \alpha \in \mathscr{W}\right\rangle$ is \subseteq-increasing and $\alpha_{*}<\delta_{*}$
(d) for $\alpha \in \mathscr{W}, \alpha \geq \alpha_{*}, D_{\alpha}$ is a filter on Y and $\left\langle f_{\alpha+\gamma}: \gamma<\delta_{*}-\alpha\right.$ and

(e) $\left\langle D_{\alpha}: \alpha \in \mathscr{W} \backslash \alpha_{*}\right\rangle$ is a strictly \subseteq-increasing sequence of filters of Y and $0 \in \mathscr{W}$
(f) \bar{f} is $<_{D_{\alpha}}$-increasing and $<_{D_{\alpha}}$-cofinal in $\Pi \bar{\delta}$ if $\alpha \in \mathscr{W} \backslash \alpha_{*}$
(g) if $\operatorname{cf}\left(\delta_{*}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ then \mathscr{W} has a last member.

Proof. Easy or see [She94, Ch.II, $\S 2$]; but we elaborate.
Clause (c): First, the sequence is \subseteq-increasing as \bar{f} is $<_{D}$-increasing. Second, $\alpha_{*}<\delta_{*}$ as otherwise we have $\alpha<\delta \Rightarrow f_{\alpha} \leq g \bmod D$ but we are assuming \bar{f} has no \leq_{D}-ub in $\Pi \bar{\delta}$.
Clause (d): D_{α} is a filter as by clause (c), $\alpha \geq \alpha_{*} \Rightarrow Z_{\alpha} \in D^{+}$and obviously $\overline{Z_{\alpha} \in D^{+}} \Rightarrow\left(D_{\alpha}\right.$ is a filter $)$.
Clause (e): By the definition of \mathscr{W}.
Clause (f): By (C)(a),(b) and clause (d).
Clause (g): Obvious.
Theorem 2.13. Assume $\boxplus(a)-(e)$ of 2.11.

1) If $\operatorname{cf}(\theta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ and $\mathrm{Ax}_{4, \mu, \theta, \kappa}$, then the conclusion $(B)^{+}$of Theorem 1.7 holds, i.e. there is a pcf-system \mathbf{x} such that $Y_{\mathbf{x}}=Y, \bar{\delta}_{\mathbf{x}}=\bar{\delta}, \theta_{\mathbf{x}}=\theta$.
2) Without the extra assumption $\operatorname{cf}(\theta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$, we get only a weakly pcfsystem (see 2.1(3)) x with $\theta=\operatorname{hrtg}(\mathscr{P}(Y))$.
3) If there is a weak pcf-system \mathbf{x} for $\bar{\delta}$ then $\Pi \bar{\delta}$ has a subset which is a wellorderable and is cofinal in $\left(\Pi \bar{\delta},<_{D_{\star}}\right)$.
4) If $\left(\Pi \bar{\delta},<_{D}\right)$ has a well-orderable cofinal subset and $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta$ then there is a pcf-system \mathbf{x} for $\bar{\delta}$ with $D_{\mathbf{x}}=D$.
5) If $\left(\Pi \bar{\delta},<_{D}\right)$ has a well-ordered cofinal subset and $\theta \geq \operatorname{hrtg}(Y)$ then there is a pcf-system \mathbf{x} for $\bar{\delta}$ with $D_{\mathbf{x}}=D, \alpha_{\mathbf{x}, \varepsilon+1}-\alpha_{\mathbf{x}, \varepsilon}$ increasing.

Remark 2.14. Note that later parts of 2.13 supercede earlier ones. One reason for this is that it may be better to avoid using inner models, developing the set theory of $Z F+D C+A x_{4}$ per se.

Proof. 1) We repeat the proof of 1.7, but using 2.8, 2.10, 2.12, i.e. in case (c) after $(*)_{3}$ we use [Shec]. But a simpler argument is that by 2.11 we know that there is a $<_{D}$-cofinal subset \mathscr{F} of $\Pi \bar{\delta}$ which is well orderable, say by $<_{*}$.
2) Like part (1).
3) Let \mathbf{x} be a weak pcf-system for $\left(\Pi \bar{\delta},<_{D}\right)$, clearly $\left\{f_{\mathbf{x}, \alpha}: \alpha<\alpha_{\mathbf{x}, \varepsilon(\mathbf{x})}\right\}$ is a well orderable subset of $\Pi \bar{\delta}$ and so is $\mathscr{F}=\left\{\max \left\{f_{\mathbf{x}, \alpha_{\ell}}: \ell<n\right\}: \bar{\alpha}=\left\langle\alpha_{\ell}: \ell<n\right\rangle\right.$ is a finite sequence of ordinals $\left.\left\langle\alpha_{\mathbf{x}, \varepsilon(\mathbf{x}))}\right\rangle\right\}$. Hence it suffices to prove that the set \mathscr{F} is cofinal in $\left(\Pi \bar{\delta},<_{D_{\mathbf{x}}}\right)$.

This means to show that
(*) for every $g \in \Pi \bar{\delta}$ there are n and $\alpha_{\ell}<\alpha_{\mathbf{x}, \varepsilon(\mathbf{x})}$ for $\ell<n$ such that $g<$ $\max \left\{f_{\mathbf{x}, \alpha_{\ell}}(s): \ell<n\right\} \bmod D_{\mathbf{x}}$.

For this we prove by induction on $\varepsilon \leq \varepsilon_{\mathbf{x}}$ that
$(*)_{\varepsilon}$ if $X \in D_{\mathbf{x}, \varepsilon}$ and $g \in \Pi \bar{\delta}$ then we can find $Z \in D_{\mathbf{x}}$ and n and $\alpha_{\ell}<\alpha_{\mathbf{x}, \varepsilon}$ for $\ell<n$ such that $s \in Z \backslash X \Rightarrow g(s)<\max \left\{f_{\mathbf{x}, \alpha_{\ell}}(s): \ell<n\right\}$.

This suffices as for $\varepsilon=\varepsilon_{\mathbf{x}}$ we can use $X=\emptyset$.
For $\varepsilon=0$ necessarily $Z:=X$ is as required because $X \in D_{\mathbf{x}, \varepsilon}=D_{\mathbf{x}}$.
For ε a limit ordinal, if $X \in D_{\mathbf{x}, \varepsilon}$ then for some $\zeta<\varepsilon, X \in D_{\mathbf{x}, \zeta}$ and use the induction hypothesis for ζ.

For $\varepsilon=\zeta+1$, we are given $X \in D_{\mathbf{x}, \varepsilon}$ and $g \in \Pi \bar{\delta}$. By clause $(B)^{+}(\ell)$ of 1.7 if $X \in D_{\mathbf{x}, \zeta}$ use the induction hypothesis so without loss of generality $X \notin D_{\mathbf{x}, \zeta}$ hence $D_{\mathbf{x}, \zeta}+(Y \backslash X)$ is a filter on $Y_{\mathbf{x}}$ and it is $\supseteq E_{\mathbf{x}, \zeta}$. So by clause $(B)^{+}(l)$ of Theorem 1.7 there is $\alpha \in\left[\alpha_{\mathbf{x}, \zeta}, \alpha_{\mathbf{x}, \zeta+1}\right)$ such that $g<f_{\mathbf{x}, \alpha} \bmod \left(D_{\mathbf{x}, \zeta}+\left(Y_{\mathbf{x}} \backslash X\right)\right.$).

Let $X_{1}=\left\{s \in Y: s \notin X\right.$ and $\left.g(s)<f_{\mathbf{x}, \alpha}(s)\right\}$, so $X_{1} \in D_{\mathbf{x}, \zeta}+\left(Y_{\mathbf{x}} \backslash X\right)$ hence $X_{2}:=X \cup X_{1} \in D_{\mathbf{x}, \zeta}$ so by the induction hypothesis there are n_{1} and $\beta_{\ell}<\alpha_{\mathbf{x}, \zeta}$ for $\ell<n_{1}$ and $Z \in D_{\mathbf{x}}$ such that $s \in Z \backslash X_{2} \Rightarrow g(s)<\max \left\{f_{\mathbf{x}, \beta_{\ell}}(s): \ell<n_{1}\right\}$. Let $n=n_{1}+1$ and let α_{ℓ} be β_{ℓ} if $\ell<n_{1}, \alpha_{\ell}$ be α if $\ell=n_{1}$, so $Z,\left\langle\alpha_{\ell}: \ell<n\right\rangle$ witness the desired conclusion in $(*)_{\varepsilon}$. So we can carry the induction and as said above this suffices.
4) Let $\mathscr{F} \subseteq \Pi \bar{\delta}$ be well orderable $<_{D}$-cofinal subset so let $\bar{g}=\left\langle g_{\alpha}: \alpha<\alpha(*)\right\rangle$ list \mathscr{F}.

Case 1: $Y \subseteq$ Ord
Let $\mathbf{V}_{1}=\mathbf{L}[\bar{g}]$ and $\mathbf{V}_{2}=\mathbf{V}_{1}[D]$, using D as a predicate so $\mathbf{V}_{1}, \mathbf{V}_{2}$ are transitive models of ZFC and let $D_{2}=D \cap \mathbf{V}_{2} \in \mathbf{V}_{2}$, of course, also $\mathbf{V}_{2} \models$ " θ a cardinal $>|Y| "$.

In \mathbf{V}_{2} we let $\bar{\lambda}=\left\langle\lambda_{s}: s \in Y\right\rangle$ be defined by $\lambda_{s}=\operatorname{cf}\left(\delta_{s}\right)^{\mathbf{V}_{2}}$. Now if $u \in \mathbf{V}_{2}$ is a set of ordinals of cardinality $<\theta$ then the set $\left\{s: \delta_{s}>\sup \left(u \cap \delta_{s}\right)\right\}$ belongs to D hence to $D \cap \mathbf{V}_{2}$; this implies that $Y_{*}=\left\{s \in Y: \lambda_{s} \geq \theta\right\}$ belong to D. Now apply the pcf theorem in \mathbf{V}_{2} on $\left\langle\lambda_{s}: s \in Y_{*}\right\rangle$ getting $\left\langle J_{<\mu}, Y_{\mu}: \mu \in \mathfrak{b}\right\rangle$ and $\left\langle g_{\lambda, \alpha}: \lambda \in \mathfrak{b}, \alpha<\lambda\right\rangle$ where $\mathfrak{a}=\left\{\lambda_{s}: s \in Y_{*}\right\}, \mathfrak{b}=\operatorname{pcf}(\mathfrak{a})^{\mathbf{V}_{2}}$, in particular such that:

- $\mathfrak{b}=\operatorname{pcf}\left\{\lambda_{s}: s \in Y\right\}$
- $Y_{\mu} \subseteq Y$
- $J_{<\mu}$ is the ideal on Y generated by $\left\{Y_{\lambda}: \lambda \in b \cap \mu\right\}$
- $\left\langle g_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ is a sequence of members of $\prod_{s \in Y_{*}} \lambda_{s},<_{J_{<\mu}^{+}\left(Y_{*} \backslash Y_{\mu}\right)}$-increasing and cofinal.

We can translate this to get a pcf-system for $\left(\Pi \bar{\delta},<_{D}\right)$ in \mathbf{V}_{2} hence in \mathbf{V}.
Case 2: $Y \nsubseteq$ Ord

We shall show that it essentially suffices to deal with $\bar{\delta}$ without repetitions. Note that each $f \in \mathscr{F}$ or just f a function from Y into Ord induces an equivalence relation eq_{f} on $Y_{\mathbf{x}}: s_{1}\left(\mathrm{eq}_{f}\right) s_{2} \Leftrightarrow f\left(s_{1}\right)=f\left(s_{2}\right) \wedge \delta_{s_{1}}=\delta_{s_{2}}$. For any such equivalence relation e on $Y_{\mathbf{x}}$, the set $\mathscr{F}_{e}=\left\{f \in \mathscr{F}: \mathrm{eq}_{f}=e\right\}$ can be translated to one as in Case 1, and if for some such e, \mathscr{F}_{e} is cofinal in $\left(\Pi \bar{\delta},<_{D_{\star}}\right)$ then we are done, but in general this is not clear. Without loss of generality $\mathscr{E}=\left\{e_{f}: f \in \mathscr{F}\right\}$ is closed under intersection and assume there is no e as above. We can define a function F from \mathscr{E} into $\alpha(*)$ by $F(e)=\min \left\{\alpha\right.$: there is no $f \in \mathscr{F}$ such that $\left.e_{f}=e \wedge g_{\alpha} \leq f\right\}$, it is well defined by the present assumption and let $u=\operatorname{Rang}(F)$, so $|u|<\operatorname{hrtg}(\mathscr{E}) \leq \operatorname{hrtg}(\mathscr{P}(Y \times Y)) \leq \theta$, and we can finish easily.
5) Let $u_{\alpha}:=\operatorname{Rang}\left(g_{\alpha}\right), v:=\left\{\delta_{s}: s \in Y\right\}$ so all of them are subsets of μ of cardinality $<\operatorname{hrtg}(Y)$, so $\bar{u}=\left\langle u_{\alpha}: \alpha<\alpha(*)\right\rangle$ is well defined and let $\mathbf{V}_{1}^{\prime}=\mathbf{L}[\bar{u}, v]$; it is a well defined universe, a model of ZFC. In \mathbf{V}_{1}^{\prime} we define $\bar{\delta}^{\prime}$, listing v in increasing order and $\bar{g}^{\prime}=\left\langle g_{\alpha}^{\prime}: \alpha<\operatorname{alpha}(*)\right\rangle$ where $g_{\alpha}^{\prime}=h_{\left[u_{\alpha}, \bar{\delta}^{\prime}\right]}$. In V define $\bar{f}_{\alpha}^{\prime \prime}=\left\langle g_{\alpha}^{\prime \prime}: \alpha<\alpha(*)\right\rangle$ where $g_{\alpha}^{\prime \prime}=h_{\left[u_{\alpha}, \bar{\delta}\right]}$. As $\theta \geq \operatorname{hrtg}(Y)$ clearly $g_{\alpha} \leq g_{\alpha}^{\prime \prime} \bmod \mathrm{cf}-\mathrm{fil}{ }_{<\theta}(\bar{\delta})$ hence $g_{\alpha} \leq g_{\alpha}^{\prime \prime} \bmod D$ hence without loss of generality $\bar{g}^{\prime}=\bar{g}$. As there is no real difference between $\bar{\delta}$ and $\bar{\delta}^{\prime}$ and we can deal with $\bar{g}^{\prime}, \bar{\delta}^{\prime}$ via $\mathbf{L}\left[\bar{g}^{\prime}, \bar{\delta}^{\prime}\right]$ as in Case 1 of the proof of part (4) and finish easily.

Discussion 2.15. Alternate proof: suppose we can uniformly choose $\bar{f}=\left\langle f_{\alpha}\right.$: $\left.\alpha<\delta_{*}\right\rangle$ which is $<_{D}$-increasing and cofinal in $\left(\Pi \bar{\delta},<_{D}\right)$.

We define an equivalence relation E on $|\mathscr{F}|$ by: $\alpha E \beta$ iff $e_{g_{\alpha}}=e_{g_{\beta}}$; let $\bar{\beta}=$ $\left\langle\beta_{\zeta}=\beta(\zeta): \zeta<\zeta(*)\right\rangle$ list $\{\alpha<|\mathscr{F}|: \alpha=\min (\alpha / E)\}$ in increasing order and let $\zeta:|\mathscr{F}| \rightarrow \zeta(*)$ be $\zeta(\alpha)=\min \left\{\zeta: \alpha \in \beta_{\zeta} / E\right\}$.

Let $\bar{\xi}^{*}=\left\langle\xi_{\zeta}^{*}: \zeta<\zeta(*)\right\rangle$ where ${ }^{7} \xi_{\zeta}^{*}=\operatorname{pr}\left(\operatorname{otp}\left(\operatorname{Rang}\left(f_{\alpha_{\zeta}}\right)\right)\right.$, otp $(\operatorname{Rang}(\bar{\delta}))$ and for $\alpha<|\mathscr{F}|$ let \hat{g}_{α} be the function from $\xi_{\zeta(\alpha)}^{*}$ to Ord defined by $\hat{g}_{\alpha}(\xi)=\gamma$ iff for some $s \in Y_{\mathbf{x}}$ we have $f_{\alpha}(s)=\gamma \wedge \xi=\operatorname{pr}\left(\operatorname{otp}\left(\operatorname{Rang}\left(g_{\beta_{\zeta(\alpha)}}\right) \cap g_{\alpha}(s)\right), \operatorname{otp}\left(\operatorname{Rang}(\bar{\delta}) \cap \delta_{s}\right)\right)$.

Lastly, let $R=\left\{\left(\zeta_{1}, \zeta_{2}, \xi_{1}, \xi_{2}\right)\right.$: for some $s \in Y$ for $\ell=1,2$ we have $\zeta_{\ell}<$ $\zeta(*), \xi_{\ell}<\xi_{\zeta_{\ell}}^{*}, \xi_{\ell}=\operatorname{pr}\left(\operatorname{otp}\left(\operatorname{Rang}\left(g_{\alpha_{\zeta_{\ell}}}\right) \cap g_{\alpha_{\zeta_{\ell}}}(s), \operatorname{otp}\left(\operatorname{Rang}(\bar{\delta}) \cap \delta_{s}\right)\right)\right\}$. Now we use $\mathbf{V}_{1}=\mathbf{L}\left[\bar{\delta}, \bar{g}, E, R, \bar{\xi}^{*}\right]$ let $\bar{D}=\left\langle D_{\zeta}: \zeta<\zeta(*)\right\rangle, D_{\zeta}=D_{\mathbf{x}}\left(e_{g_{\alpha_{\zeta}}}\right), \mathbf{V}_{2}=\mathbf{V}_{1}\left[D_{\mathbf{x}}\right]$ and for $\zeta<\zeta(*)$ let $\bar{\lambda}_{\zeta}=\left\langle\lambda_{\zeta, \xi}: \xi<\xi_{\zeta}\right\rangle, \lambda_{\zeta, \xi}=\operatorname{cf}\left(\delta_{s}\right)$ when $\xi=\operatorname{pr}(\xi, s)$ for some appropriate ε.

Clearly $\zeta<\zeta(*) \Rightarrow \xi_{\zeta}<\theta$, as before without loss of generality $\lambda_{\zeta, f}=\operatorname{cf}\left(\lambda_{\zeta, \xi}\right) \geq$ θ and $\theta>\operatorname{hrtg}(Y)$ by an assumption hence the pcf analysis in \mathbf{V}_{2} of $\Pi \bar{\lambda}_{\zeta}$ is O.K.; moreover and $\left\{\lambda_{\eta, \xi}: \xi<\xi_{\zeta}\right\}$ does not depend on.

Now the analysis for $\bar{\lambda}_{0}$ recalling $\mathrm{eq}_{\bar{\delta}}=e_{g_{0}}=e_{g_{\alpha_{0}}}$ is enough.
Claim 2.16. If \mathbf{x} is a pcf-system then there is \bar{Y} defined uniformly from \mathbf{x} such that (so may write $\bar{Y}^{\mathbf{x}}=\left\langle Y_{\varepsilon}^{\mathbf{x}}: \varepsilon<\varepsilon_{\mathbf{x}}\right\rangle$):
(a) $\bar{Y}=\left\langle Y_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$
(b) $Y_{\varepsilon} \subseteq Y_{\mathbf{x}}$
(c) $D_{\varepsilon+1}^{\mathbf{x}}=D_{\varepsilon}^{\mathbf{x}}+Y_{\varepsilon}$.

Proof. Fix $\varepsilon<\varepsilon_{\mathbf{x}}$, if $\varepsilon_{\mathbf{x}}=\varepsilon+1$ let $Y_{\varepsilon}=Y$, hence assume $\varepsilon+1<\varepsilon_{\mathbf{x}}$. So for some $Y \subseteq Y_{\mathbf{x}}$ we have $D_{\mathbf{x}, \varepsilon+1}=D_{\mathbf{x}, \alpha}+Y$ hence $E_{\mathbf{x}, \varepsilon}=D_{\mathbf{x}, \varepsilon}+\left(Y_{\mathbf{x}} \backslash Y\right)$; and $f_{\mathbf{x}, \alpha_{\mathbf{x}, \varepsilon}}$ is a $<_{D_{\mathbf{x}, \varepsilon+1}}$-upper bound of $\bar{f}_{\mathbf{x}} \upharpoonright\left[\alpha_{\mathbf{x}, \varepsilon}, \alpha_{\mathbf{x}, \varepsilon+1}\right)$. But $\bar{f}_{\mathbf{x}} \upharpoonright\left[\alpha_{\mathbf{x}, \varepsilon}, \alpha_{\mathbf{x}, \varepsilon+1}\right)$ is cofinal

[^5]in $\left(\Pi \bar{\delta}_{\mathbf{x}},<_{E_{\mathbf{x}, \varepsilon}}\right)$ hence we can find $\beta \in\left[\alpha_{\mathbf{x}, \varepsilon}, \alpha_{\mathbf{x}, \varepsilon+1}\right)$ such that $f_{\mathbf{x}, \alpha_{\mathbf{x}, \varepsilon+1}}<f_{\mathbf{x}, \beta}$ $\bmod E_{\mathbf{x}, \varepsilon}$.

Let β_{*} be the minimal such β and easily $Y_{\varepsilon}:=\left\{s \in Y_{\mathbf{x}}: f_{\mathbf{x}, \beta_{*}}(s)<g_{\mathbf{x}}, \alpha_{\mathbf{x}, \varepsilon+1}(s)\right\}$ is as required.

$\S 2(\mathrm{~B})$. Elaborations.

Claim 2.17. Assume $\mathrm{Ax}_{4, \lambda, \partial}$.
For any λ we can ∂-uniformly define the following.

1) For $\delta<\lambda$ of cofinality \aleph_{0}, an unbounded subset e_{δ} of δ of order type $<\partial$.
2) For $\theta=\operatorname{hrtg}(Y), \bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ a sequence of limit ordinals $<\lambda$ of uncountable cofinality satisfying $Y \in \mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$, (see 1.1) a closed $u_{*} \subseteq \sup \left\{\delta_{s}: s \in Y\right\}$, unbounded in each δ_{s} of cardinality $<\operatorname{hrtg}\left(\left[\theta_{1}\right]^{<\partial}\right)$ where

- $\theta_{1}=\min \left\{|u|:(\forall s)\left[s \in Y \rightarrow \delta_{s}=\sup \left(u \cap \delta_{s}\right)\right\}\right.$ is necessarily $<\theta$.

3) For $\delta<\lambda$, an unbounded subset e_{δ} of cardinality $<\operatorname{hrtg}\left([\operatorname{cf}(\delta)]^{\aleph_{0}}\right)$.

Proof. 1) See [Shee] or as in the proof of $(*)_{4}$ inside the proof of 1.5.
2) Let $\mathbf{U}_{\bar{\delta}}=\left\{u: u \subseteq \sup \left\{\delta_{s}: s \in Y\right\}\right.$ of cardinality $<\theta$ and $u \cap \delta_{s}$ an unbounded subset of δ_{s} for every $\left.s \in Y\right\}$. By the assumption " $Y \in \mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})$ " clearly $\mathbf{U}_{\bar{\delta}} \neq \emptyset$, hence $\mathbf{U}_{\bar{\delta}}^{\prime}=\left\{u \in \mathbf{U}_{\bar{\delta}}: u\right.$ is closed $\}$ is non-empty. Using $c \ell$ from 0.6, the set $u_{*}=\cap\left\{c \ell(u): u \in \mathbf{U}_{\bar{\delta}}^{\prime}\right\}$ has cardinality $<\operatorname{hrtg}\left(\left[\min \left\{|u|: u \in \mathbf{U}_{\delta}\right\}\right]^{<\partial}\right)$.

Now
${ }^{\bullet} 1$ if $u_{n} \in \mathbf{U}_{\bar{\delta}}^{\prime}$ for $n<\omega$ then $u:=\cap\left\{u_{n}: n<\omega\right\}$ belongs to $\mathbf{U}_{\delta}^{\prime}$.
[Why? Clearly it is a subset of μ of cardinality $<\theta$, being $\subseteq u_{0}$ and it is closed because each u_{n} is. But for any $s \in Y$, why is u unbounded in δ_{s} ? Because δ_{s} has uncountable cofinality
\bullet_{2} for some $u \in \mathbf{U}_{\bar{\delta}}^{\prime},|u| \leq \theta_{1}$ and without loss of generality u is closed, so $\left|u_{*}\right| \leq|c \ell(u)| \leq \operatorname{hrtg}\left(\left[\theta_{1}\right]^{\leq \aleph_{0}}\right)$ as promised.

By $\bullet_{1}+\bullet_{2}$ we are done.
3) By the proof of $(*)_{4}$ inside the proof of 1.5.

We give a sufficient condition for $<_{D}$-eub existence, try to write such that we get the trichotomy.

Claim 2.18. The eub-existence claim:
 tion 0.11(5)), even one ∂-uniformly definable from (Y, D, \bar{f}) when:
$\boxplus(a) \quad(\theta, Y)$ satisfies clauses $(A)(c)(\beta),(\gamma),(\delta)$ of 1.5
(b) D is a filter on Y, so not necessarily \aleph_{1}-complete
(c) $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$
(d) $\quad f_{\alpha} \in{ }^{Y}$ Ord is \leq_{D}-increasing
(e) $\quad \operatorname{cf}(\delta) \geq \theta$ and $\operatorname{cf}(\delta) \geq \operatorname{hrtg}\left(\prod_{s \in Y} \zeta_{s}\right)$ when $\zeta_{s}<\operatorname{hrtg}(\mathscr{P}(Y))$ for $s \in Y$.

Proof. Toward contradiction assume that the desired conclusion fails. Let $\alpha_{s}^{*}=$ $\cup\left\{f_{\alpha}(s): \alpha<\delta\right\}$ for $s \in Y$ and $\alpha_{*}=\sup \left\{\alpha_{s}^{*}+1: s \in Y\right\}$.

We try to choose g_{ζ} and $\beta_{\zeta}<\delta$ by induction on $\zeta<\operatorname{hrtg}(\mathscr{P}(Y) / D) \leq \operatorname{hrtg}(\mathscr{P}(Y))$ such that:
$\oplus(a) \quad g_{\zeta} \in \prod_{s \in Y}\left(\alpha_{s}^{*}+1\right)$
(b) if $\alpha<\delta$ then $f_{\alpha}<g_{\zeta} \bmod D$
(c) if $\varepsilon<\zeta$ then $g_{\zeta} \leq g_{\varepsilon} \bmod D$ and $g_{\zeta} / D \neq g_{\varepsilon} / D$
(d) g_{ζ} and $\beta_{\zeta}<\delta$ are defined as below.

Clearly impossible as $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ by assumption $\boxplus(d)$, so we shall get stuck somewhere. If $\bar{g}^{\zeta}=\left\langle g_{\varepsilon}: \varepsilon\langle\zeta\rangle\right.$ is well defined, we let $\bar{u}_{\zeta}=\left\langle u_{\zeta, s}: s \in Y\right\rangle$ be defined by $u_{\zeta, s}=\left\{\gamma\right.$: for some $\varepsilon<\zeta$ and n we have $\gamma+n=g_{\varepsilon}(s)$ or $\left.\gamma+n=\alpha_{s}^{*}\right\}$, so $u_{\zeta, \alpha} \subseteq \alpha_{s}^{*}+1$ and $\left|u_{\zeta, \alpha}\right| \leq \aleph_{0}+|\zeta|$ even uniformly. Next for $\alpha<\delta$ we let $f_{\alpha}^{\zeta, 1} \in \prod_{s \in Y}\left(\alpha_{s}+1\right)$ be defined by $f_{\alpha}^{\zeta, 1}(s)=\min \left(u_{\zeta, s} \backslash f_{\alpha}(s)\right)$, clearly well defined and belongs to $\prod_{s \in Y}\left(\alpha_{s}^{*}+1\right)$ and is \leq_{D}-increasing. Now $\left\{f_{\alpha}^{\zeta, 1}: \alpha<\delta\right\} \subseteq \prod_{s \in Y} u_{\zeta, s}$ so as $\operatorname{cf}(\delta) \geq \operatorname{hrtg}\left({ }^{Y}(1+\zeta)\right) \geq \operatorname{hrtg}\left(\prod_{s} u_{\zeta, s}\right)$, necessarily $\left\langle f_{\alpha}^{\zeta, 1} / D: \alpha<\delta\right\rangle$ is eventually constant. Let $\beta_{\zeta, 1}=\min \left\{\beta<\delta\right.$: if $\alpha \in(\beta, \delta)$ then $\left.f_{\alpha}^{\zeta, 1}=f_{\beta}^{\zeta, 1} \bmod D\right\}$ so $\alpha<\delta \Rightarrow f_{\alpha} \leq_{D} f_{\beta_{\zeta, 1}}^{\zeta, 1} \bmod D$ and let $g_{\zeta, 1}=f_{\beta_{\zeta, 1}}^{\zeta, 1}$. If $g_{\zeta, 1}$ is a $<_{D}$-eub of \bar{f} we are done, otherwise the construction will split to cases.

Let $Y_{0}=\left\{s \in Y: f_{\beta_{\zeta, 1}}^{\zeta, 1}(s)=0\right\}, Y_{1}=\left\{s \in Y: f_{\beta_{\zeta, 1}}^{\zeta, 1}(s)\right.$ is a successor ordinal $\}$ and $Y_{2}=\left\{s \in Y: f_{\beta_{\zeta, 1}}^{\zeta, 1}(s)\right.$ is a limit ordinal of cofinality $\left.<\theta\right\}$ and $Y_{3}=\left\{s \in Y: f_{\beta_{\zeta, 1}}^{\zeta, 1}(s)\right.$ is a limit ordinal of cofinality $\geq \theta\}$, so $\left\langle Y_{0}, Y_{1}, Y_{2}, Y_{3}\right\rangle$ is a partition of Y
$(*)$ without loss of generality $Y_{\ell} \in D, g_{\zeta, 1}$ is not an lub and even $Y_{\ell}=Y$ from some $\ell<4$.
[Why? For each $\ell<4$ such that $Y_{\ell} \in D^{+}$, clearly we can replace D by $D+Y_{\ell}$ hence (by the present assumption) a $<_{D+Y_{\ell}}$-eub g_{ℓ}^{\prime} exists; if $Y_{\ell} \notin D^{+}$let g_{ℓ} be constantly zero. Lastly, $\cup\left\{g_{\ell}^{*} \upharpoonright Y_{\ell}: \ell<4\right\}$ is as required.]

Case 0: $Y_{0} \in D$ so $Y_{0}=Y$

Trivial.
Case 1: $Y_{1} \in D$ so $Y_{1}=Y$
Define $g_{\zeta} \in \prod_{s \in y}\left(\alpha_{s}+1\right)$ by: $g_{\zeta}(s)=g_{\zeta, 1}(s)-1$. Clearly it is still a \leq_{D}-upper bound of \bar{f} as \bar{f} is $<_{D}$-increasing, and $g_{\zeta}<g_{\varepsilon} \bmod D$ for every $\varepsilon<\zeta$. Lastly, let $\beta_{\zeta}=\beta_{\zeta, 1}$.
Case 2: $Y_{2} \in D$
Let $\left\langle e_{\alpha}: \alpha<\alpha_{*}\right\rangle$ be as in 2.17(1),(3) for $\alpha<\delta$, then we define $f_{\alpha}^{\zeta, 2} \in \prod_{s \in Y_{2}}\left(\alpha_{s}+\right.$

1) by $f_{\alpha}^{\zeta, 2}(s)=\min \left(e_{g_{\zeta, 1}(s)} \backslash f_{\alpha}(s)\right)$ and let $\zeta_{s}=\operatorname{otp}\left(e_{g_{\zeta, 1}(s)}\right)<\theta$, this holds by $1.5(\mathrm{~A})(\mathrm{c})(\beta)$ which in turn holds by $\boxplus(a)$ of the assumption of the claim.

Now as $\operatorname{cf}(\delta) \geq \operatorname{hrtg}\left(\prod_{s \in Y_{2}} \zeta_{s}\right)=\operatorname{hrtg}\left(\prod_{s \in Y_{2}} e_{g_{\zeta, 1}(s)}\right)$ clearly $\left\langle f_{\alpha}^{\zeta, 2} / D: \alpha<\delta\right\rangle$ is eventually constant, so $\beta_{\zeta, 2}=\min \left\{\beta<\delta\right.$: if $\alpha \in(\beta, \delta)$ then $\left.f_{\alpha}^{\zeta, 2} / D=f_{\beta}^{\zeta, 2} / D\right\}$ is well defined. Let $\beta_{\zeta}=\sup \left(\left\{\beta_{\zeta, 1}, \beta_{\zeta, 2}\right\} \cup\left\{\beta_{\varepsilon}+1: \varepsilon<\zeta\right\}\right)$ it is $<\delta, \operatorname{cf}(\delta)>|\zeta|$ and
let $g_{\zeta}=f_{\beta_{\zeta}}^{\zeta, 2}$. Clearly $\varepsilon<\zeta \Rightarrow g_{\zeta}=f_{\beta_{\zeta}}^{\zeta, 7}<f_{\beta_{\zeta, 1}}^{\zeta, 1} \leq g_{\varepsilon} \bmod D$, so $\left(g_{\zeta}, \beta_{\zeta}\right)$ are as required.
Case 3: $Y_{3}=Y$
Let $\bar{f}^{\prime}=\left\langle f_{\alpha}^{\prime}: \alpha<\delta\right\rangle, f_{\alpha}^{\prime} \in \prod_{s} g_{\zeta, 1}(s)$ defined as $f_{\alpha}(s)$ if $<g_{\zeta, 1}(s)$, zero otherwise.
Now $g_{\zeta, 1}$ is not a $<_{D}$-eub of \bar{f} hence there is $h \in{ }^{Y}$ Ord such that $h<g_{\zeta, 1}$ $\bmod D$ and for no $\alpha<\delta$ do we have $h<f_{\alpha} \bmod D$. But h was not canonically chosen. Clearly the assumption of 2.2 , i.e. 1.7 holds with $Y, \theta, g_{\zeta, 1}, \bar{f}^{\prime}$ here standing for $Y, \theta, \bar{\delta}, \bar{f}$ here. So there is a pcf-system \mathbf{x} with $Y_{\mathbf{x}}=Y, \theta_{\mathbf{x}}=\theta, D_{\mathbf{x}}=D, \bar{f}_{\mathbf{x}}=\bar{f}^{\prime}$ and $\bar{\delta}_{\mathbf{x}}=g_{\zeta, 1}$.

Hence by $2.3(1)$ we can define a pair $\left(\mathscr{F},<_{*}\right)$ such that $\mathscr{F} \subseteq \prod_{s \in Y_{2}} g_{\zeta, 1}(s)$ is cofinal and $<_{*}$ a well ordering of \mathscr{F}.

So as $g_{\zeta, 1}$ is not a $<_{D}$-eub of \bar{f} there is $h \in \mathscr{F}$ witnessing this and let $h_{*} \in \mathscr{F}$ be the $<_{*}$-first one.

Let

$$
\begin{gathered}
\beta_{\zeta, 3}=\min \left\{\beta < \alpha : \quad \text { if } \alpha \in (\beta , \delta) \text { then } \left\{s \in Y: f_{\alpha}(s) \leq g_{\zeta}\left(h_{*}((s))\right\}=\right.\right. \\
\left.\left\{s \in Y: f_{\beta}(s) \leq h_{*}(s)\right\} \bmod D+Y_{2}\right\}
\end{gathered}
$$

well defined as before. Lastly, let $g_{\zeta} \in{ }^{Y}$ Ord be defined as follows: $g_{\zeta}(s)$ is

- $h_{*}(s)$ if $f_{\beta_{\zeta, 3}}(s) \leq h_{*}(s)$
- $f_{\beta_{\zeta, 3}}(s)$ if $f_{\beta_{\zeta, 3}}(s)>h_{*}(s)$.

Now we give a version of the main theorem of [Shee, §1]. From this we may try to understand better ${ }^{\kappa} \lambda$ and use it in constructions, i.e. to diagonalize.

Theorem 2.19. $\left[\mathrm{Ax}_{4, \lambda, \lambda}\right]$
For $\kappa<\lambda$ letting $X_{\kappa}={ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(\kappa)\right)$, we can ∂-uniformly define $\left\langle\left(\mathscr{S}_{t},<_{t}\right): t \in\right.$ $\left.X_{\kappa}\right\rangle$ such that:
(a) $\cup\left\{\mathscr{S}_{t}: t \in X_{\kappa}\right\}={ }^{\kappa} \lambda$
(b) $<_{t}$ is a well ordering of \mathscr{S}_{t}
(c) there is an equivalence relation E on ${ }^{\kappa} \lambda$ such that:
$(\alpha)\left({ }^{\kappa} \lambda\right) / E$ is well ordered
(β) each equivalence class is of power $\leq X_{\kappa}$
(d) moreover for some $\bar{g}=\left\langle g_{\overline{\mathfrak{y}}, \alpha}: \overline{\mathfrak{y}} \in X_{\kappa}, \alpha \in S_{\overline{\mathfrak{y}}}\right\rangle$ and $\bar{S}=\left\langle S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\rangle$ and $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\beta}: \beta<\beta(*)\right\rangle$ we have
$(\alpha) \beta(*)<\operatorname{hrtg}(\alpha(*)]^{\aleph_{0}}$ where $\alpha(*)=\sup \left\{\operatorname{rk}_{D}(\lambda): D \in \operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right\}$
$(\beta) \beta(*)=\cup\left\{S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\}$
(γ) $\left\{g_{\overline{\mathfrak{y}}, \alpha}: \overline{\mathfrak{y}} \in X_{\kappa}, \alpha \in S_{\overline{\mathfrak{y}}}\right\}$ is equal to ${ }^{\kappa} \lambda$
($\delta) g_{\overline{\mathfrak{y}}_{1}, \alpha_{1}}=g_{\overline{\mathfrak{\eta}}_{2}, \alpha_{2}}$ implies $\alpha_{1}=\alpha_{2}$
(ع) $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\beta}: \beta<\beta(*)\right\rangle$ is a partition of ${ }^{\kappa} \lambda$
(广) $\left|\mathscr{F}_{\beta}\right| \leq_{\text {qu }}\left|X_{\kappa}\right|$.

Remark 2.20. 1) We may compare with [Shee, §1].
2) Recall $0.17(2)$.

Proof. Fix a witness $c \ell$ of $\operatorname{Ax}_{4, \lambda, \partial}$. For every $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and ordinal α there is at most one $f \in{ }^{Y}(\lambda+1)$ such that f satisfies $\alpha=\operatorname{rk}_{D}(f)$ and so $f \upharpoonright\left(Y \backslash Z_{\mathfrak{y}}\right)$ is constantly zero and $D_{2}^{\mathfrak{y}}=\operatorname{dual}\left(J\left[f, D_{1}^{\mathfrak{y}}\right]\right)$, see $0.12,0.15$; if in this case call it $f_{\mathfrak{y}, \alpha}$ and let $S_{\mathfrak{y}, \lambda}$ be a set of α such that $f_{\mathfrak{y}, \alpha}$ is well defined.

So $\left\langle f_{\mathfrak{y}, \alpha}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y), \alpha \in S_{\mathfrak{y}, \alpha}\right\rangle$ is well defined. For every $f \in \lambda$ and $\aleph_{1^{-}}$ complete filter D_{1} on Y for some $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ satisfying $D_{\mathfrak{y}, 1}=D_{1}$ and ordinal α we have $f=f_{\mathfrak{y}, \alpha} \bmod D_{\mathfrak{y}, 2}\left(\right.$ in fact $\alpha=\operatorname{rk}_{D_{1}}(f)<\operatorname{rk}_{D}(\lambda) \leq \alpha(*), \alpha(*)$ from (d) (α) of the Theorem).

Now
$(*)_{1}$ for every $f \in{ }^{Y}(\lambda+1)$ there is a countable set $\mathfrak{Y} \subseteq \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ such that
$(\alpha) f$ semi-satisfies each $\mathfrak{y} \in \mathfrak{Y}$
(β) $Y=\cup\left\{Z_{\mathfrak{y}}: \mathfrak{y} \in \mathfrak{Y}\right\}$
(γ) for each $\mathfrak{y} \in \mathfrak{Y}$, for some α we have $f \upharpoonright Z_{\mathfrak{y}}=f_{\mathfrak{y}, \alpha} \upharpoonright Z_{\mathfrak{y}}$.
[Why? Let $\mathscr{Z}=\left\{Z_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right.$ and for some $\alpha \in S_{\mathfrak{y}, \lambda}$ we have $f \upharpoonright Z_{\mathfrak{y}}=$ $f_{\mathfrak{y}, \alpha}\left\lceil Z_{\mathfrak{y}}\right\}$. If Y is the union of a countable subset of \mathscr{Z} then recalling $\mathrm{AC}_{\aleph_{0}}$ we have $Y=\cup\left\{Z_{\mathfrak{y}_{n}}: n\right\}$ for some $\left\{\mathfrak{y}_{n}: n<\omega\right\} \subseteq \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and we are easily done. If not, $D_{1}:=\left\{Z \subseteq Y: Z\right.$ includes $\left(Y \backslash \bigcup_{n} Z_{\mathfrak{y}}\right.$: for some $\left\langle\mathfrak{y}_{n}: n<\omega\right\rangle \in$ ${ }^{\omega}\left(\operatorname{Fil}_{\aleph_{0}}^{4}(Y)\right)$ satisfying $Z_{\mathfrak{y}_{n}} \in \mathscr{Z}$ for $\left.n<\omega\right\}$ is an \aleph_{1}-complete filter and we easily get a contradiction.]

Recall $S_{\mathfrak{y}, \lambda}=\left\{\alpha<\alpha(*): f_{\mathfrak{y}, \alpha}\right.$ well defined $\}$ and by Ax_{4} we can find a list $\left\langle\eta_{\beta}: \beta<\beta(*)\right\rangle$ of $\left\{\eta: \eta \in{ }^{\omega} \alpha(*)\right\}, \beta(*)<\operatorname{hrtg}\left({ }^{\omega} \beta(*)\right)$ and even $\left.\beta(*)=|\beta(*)|^{\aleph_{0}}\right\}$.

Now for every $\overline{\mathfrak{y}} \in X_{\kappa}:={ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$, let $W_{\overline{\mathfrak{y}}}=\left\{\beta<\beta(*): \eta_{\beta}(n) \in S_{\mathfrak{y}_{n}, \lambda}\right.$ for each n and $\cup\left\{f_{\mathfrak{y}_{n}, \eta_{n}(\alpha)} \mid Z_{\mathfrak{y}_{n}}: n<\omega\right\}$ is a function, in fact one from Y to $\left.\lambda+1\right\}$. For $\beta \in W_{\overline{\mathfrak{y}}}$ let $g_{\overline{\mathfrak{y}}, \beta}$ be $\cup\left\{f_{\mathfrak{y}_{n}, \eta_{\beta}(n)}: n<\omega\right\}$ and let $S_{\overline{\mathfrak{y}}}=\left\{\beta \in W_{\overline{\mathfrak{y}}}: g_{\overline{\mathfrak{y}}, \beta} \notin\left\{g_{\overline{\mathfrak{z}}, \gamma}: \overline{\mathfrak{z}} \in X_{\kappa}\right.\right.$ and $\gamma<\beta\}\}$.

Note that
$(*)_{2} \quad(a) \quad\left\langle S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\rangle$ exist
(b) $\bigcup_{\mathfrak{y}} S_{\overline{\mathfrak{y}}} \subseteq \beta(*)$
(c) $\left\langle S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\rangle$ exists and $\cup\left\{S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\}=\beta(*)$.

Note also that clause (d) of the theorem implies clauses (a), (b); (let $\mathscr{S}_{\overline{\mathfrak{n}}}=\left\{g_{\overline{\mathfrak{n}}, \alpha}\right.$: $\left.\alpha \in S_{\overline{\mathfrak{y}}}\right\}$ and $<_{\overline{\mathfrak{y}}}=\left\{\left(g_{\overline{\mathfrak{y}}}, \alpha, g_{\overline{\mathfrak{y}}, \alpha}, g_{\overline{\mathfrak{y}}, \beta}\right): \alpha<\beta\right.$ are from the set $S_{\overline{\mathfrak{y}}}$ of ordinals).

Also clause (d) implies clause (c) letting $E=\left\{\left(g_{\overline{\mathfrak{y}}_{1}, \alpha_{1}}, g_{\overline{\mathfrak{y}}_{2}, \alpha_{2}}\right): \overline{\mathfrak{y}}_{\ell} \in X_{\kappa}, \alpha_{\ell} \notin S_{\overline{\mathfrak{y}}_{\ell}}\right.$ for $\ell=1,2$ and $\left.\alpha_{1}=\alpha_{1}\right\}$ recalling $(d)(\delta)$.

So it is enough to prove clause (d).
Now

- clause $(d)(\alpha)$ holds by the choices of $\alpha(*), \beta(*)$
- clause $(d)(\beta)$: we have only $\beta(*) \supseteq \cup\left\{S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\}$, but we can replace $\beta(*)$ by $\operatorname{otp}\left(\cup\left\{S_{\overline{\mathfrak{y}}}: \overline{\mathfrak{y}} \in X_{\kappa}\right\}\right.$
- clause $(d)(\gamma): g_{\overline{\mathfrak{y}}, \beta} \in{ }^{\kappa} \lambda$ are defined above but why ${ }^{\kappa} \lambda=\left\{g_{\overline{\mathfrak{y}}, \alpha}: \overline{\mathfrak{y}} \in X_{\kappa}, \alpha \in\right.$ $\left.S_{\overline{\mathfrak{y}}}\right\}$? As said above, if $f \in{ }^{\kappa} \lambda$ by $(*)_{1}$ there is a countable $\mathfrak{Y} \subseteq \mathrm{FIL}_{\aleph_{1}}^{4}(Y)$ as there, hence for some sequence $\left\langle\left(\mathfrak{y}_{n}, \alpha_{n}\right): n<\omega\right\rangle$ we have $\mathfrak{Y}=\left\{\mathfrak{y}_{n}: n<\omega\right\}$ and $f \upharpoonright Z_{\mathfrak{y}_{n}}=f_{\mathfrak{y}_{n}, \alpha_{n}} \upharpoonright Z_{\mathfrak{y}}$. Hence $\overline{\mathfrak{y}}:=\left\langle\mathfrak{y}_{n}: n<\omega\right\rangle \in X_{\kappa}$ and for some $\gamma<$ $\beta(*)$ we have $\eta_{\gamma}=\left\langle\alpha_{n}: n<\omega\right\rangle$. So $f=\cup\left\{f_{\mathfrak{y}_{n}, \eta_{\gamma}(n)} \upharpoonright Z_{\mathfrak{y}_{n}}: n<\omega\right\}=g_{\overline{\mathfrak{y}}, \beta}$ so $f \in W_{\overline{\mathfrak{y}}}$, and $f=g_{\overline{\mathfrak{y}}, \gamma}$, hence by the choice of $S_{\overline{\mathfrak{y}}}$ there are $\overline{\mathfrak{z}} \in X_{\kappa}$ and $\beta^{*} \leq \gamma$ such that $\beta \in w_{\bar{z}}^{\prime}$ and $f=g_{\bar{z}, \beta}$, so we are done
- clause $(d)(\delta)$: look again at the choice of $S_{\overline{\mathfrak{y}}}$
- clause $(d)(\varepsilon)$: let $\mathscr{F}_{\beta}=\left\{g_{\overline{\mathfrak{y}}, \beta}: \overline{\mathfrak{y}} \in X_{\kappa}\right.$ and β belongs to $\left.S_{\overline{\mathfrak{y}}}\right\}$
- clause $(d)(\zeta)$: check.

Conclusion 2.21. Assume $\mathrm{Ax}_{4, \partial}$. If $\partial \leq \kappa<\mu$ and $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(\kappa)\right)<\mu$. Then the following cardinals are almost equal (as in [She14, §(3A)]:
(a) $\operatorname{hrtg}\left({ }^{\kappa} \mu\right)$
(b) $\operatorname{wlor}\left({ }^{\kappa} \mu\right)$
(c) o-Depth $h_{\kappa}^{+}\left({ }^{\kappa} \mu\right)=\sup \left\{o-\operatorname{Depth}_{D}^{+}(\mu): D\right.$ a filter $\}$.

Proof. By 2.19.
A drawback of the pcf theorem is the demand $\theta \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ rather than just $\theta \geq \operatorname{hrtg}(\mathscr{P}(Y))$ or even $\theta \geq \operatorname{hrtg}(Y)$. Note: in [She82, Ch.XII, $\S 5]$ we work to assume just the parallel of $\theta \geq \operatorname{hrtg}(\mathscr{P}(Y))$, i.e. $\operatorname{Min}(\mathfrak{a})>2^{|\mathfrak{a}|}$ rather than the parallel of $\theta \geq \operatorname{hrtg}\left(\mathscr{P}(\mathscr{P}(Y))\right.$, i.e. $\operatorname{Min}(\mathfrak{a})>2^{2^{|\mathfrak{a}|}}$ and only in [She90] we succeed to use just the parallel of $\theta \geq \operatorname{hrtg}(Y)$.

We may try to analyze not $\Pi \bar{\delta}, \bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ but rather all $\Pi(\bar{\delta} \upharpoonright Z), Z \in \mathscr{A}$ simultaneously where $\mathscr{A} \subseteq \mathscr{P}(Y)$, demanding $Z \in \mathscr{A} \Rightarrow \theta \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Z)\right)$ but less on $|Y|$; hopefully see $\left[\mathrm{S}^{+} \mathrm{a}\right]$.
We may consider
Definition 2.22. Let $\mathrm{Ax}_{5, F}$ say: if $Y=\kappa \in$ Card then $\mathrm{Ax}_{5, \kappa, F(\kappa)}$ where $\mathrm{Ax}_{5, Y, \theta}$ means that: if $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ is a sequence of limit ordinals and $D=\mathrm{cf}-\mathrm{fil}_{<\theta}(\bar{\delta})$ then there is a pcf-system $\mathbf{x}_{\bar{\delta}}$ for $\left(\Pi \bar{\delta},<_{D}\right)$, see 2.13. Moreover, the choice of \mathbf{x}_{δ} is ∂-uniform.

Definition 2.23. 1) We say \mathbf{p} is a pcf-problem when it consists of:
(a) $\bar{\delta}=\left\langle\delta_{s}: s \in Y\right\rangle$ and $\mu=\sup \left\{\delta_{s}: s \in Y\right\}$ and $\mathscr{A} \subseteq \mathscr{P}(Y)$
(b) $D_{*}=D_{\mathbf{p}}$ is a filter on Y, it may be $\{Y\}$
(c) $\theta=\theta\left[Y, \bar{\delta}, D_{*}\right]=\theta\left[Y, \delta, D_{*}, \partial\right]$ is any cardinal satisfying:
$(\alpha) \operatorname{cf}-\mathrm{id}_{<\theta}(\bar{\delta}) \subseteq \operatorname{dual}\left(D_{*}\right)$, note that this holds when each δ_{s} is an ordinal $\leq \mu$ of cofinality $\geq \theta$, see below
(β) $\alpha<\theta \Rightarrow \operatorname{hrtg}\left([\alpha]^{\aleph_{0}} \times \partial\right) \leq \theta$ so $\partial<\theta$ and so if Ax_{4} then the demand is equivalent to " $\partial<\theta$ and $\alpha<\theta \Rightarrow|\alpha|^{\aleph_{0}}<\theta$ "
$(\gamma) \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Z)\right) \leq \theta$ for every $Z \in \mathscr{A}$.
2) For \mathbf{p} a pcf-problem let $\bar{\delta}_{\mathbf{p}}=\delta, \delta_{\mathbf{p}, s}=\delta_{s}$, etc., if clear from the context \mathbf{p} is omitted.
3) For D a filter on $Y_{\mathbf{p}}$ extending $D_{\mathbf{p}}$ let $c_{\mathbf{p}}(D)=c \ell(D, \mathbf{p})=\left\{A \subseteq Y_{\mathbf{p}}\right.$: if $Z \in \mathscr{A}_{\mathbf{p}}$ then $A \cup\left(Y_{\mathbf{p}} \backslash Z\right) \in D$.
4) \mathbf{p} is nice if $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \theta_{\mathbf{p}}$.

Definition 2.24. We say \mathbf{x} is a wide pcf system when \mathbf{x} consists of (if we omit $(f),(g)(\alpha),(\beta),($ as in $2.1(3))$ we say "almost wide"):
(a) \mathbf{p}, a pcf-problem let $D_{\mathbf{x}}=D_{\mathbf{p}}, \theta=\theta_{\mathbf{p}}$, etc.
(b) an ordinal $\varepsilon_{\mathbf{x}}=\varepsilon(\mathbf{x})$
(c) $\bar{\alpha}^{*}=\left\langle\alpha_{\varepsilon}^{*}: \varepsilon \leq \varepsilon_{\mathbf{x}}\right\rangle$ is increasing continuous
(d) (α) $\bar{D}=\left\langle D_{\varepsilon}: \varepsilon \leq \varepsilon_{\mathbf{x}}\right\rangle$ is a continuous sequence of filters on Y except that possibly $D_{\varepsilon_{\mathrm{x}}}=\mathscr{P}(Y)$
(β) $\quad D_{\varepsilon}=c \ell_{\mathbf{p}}\left(D_{\varepsilon}\right)$
$(\gamma) \quad$ for limit $\varepsilon, D_{\varepsilon}=c \ell_{\mathbf{p}}\left(\bigcup_{\zeta<\varepsilon} D_{\zeta}\right)$
(e) $D_{0}=D_{\mathbf{x}}$ is cf $-\operatorname{fil}_{\theta}(\bar{\delta})$
(f) $\bar{E}=\left\langle E_{\varepsilon}: \varepsilon<\varepsilon_{\mathbf{x}}\right\rangle$
(g) for each $\varepsilon<\varepsilon_{\mathbf{x}}<\theta$ there is $A_{\varepsilon} \in D_{\varepsilon}^{+}$such that
(α) $D_{\varepsilon+1}=D_{\varepsilon}+A_{\varepsilon}$
(β) $E_{\varepsilon}=D_{\varepsilon}+\left(u \backslash A_{\varepsilon}\right)$
$(\gamma) \quad$ there are $a_{\varepsilon} \subseteq \kappa$ and $h_{\varepsilon} \in \prod_{i \in \varepsilon} u_{i}$ such that $\left\{\left(i, h_{\varepsilon}(i)\right): i \in a_{\varepsilon}\right\} \notin D_{\varepsilon}$

- but A_{ε} is not necessarily unique, only $A_{\varepsilon} / D_{\varepsilon}$ is, and of course, also $a_{\varepsilon}, h_{\varepsilon}$ are not necessarily unique
(δ) there is $Z \in \mathscr{A}$ such that $Z \in \operatorname{dual}\left(D_{\varepsilon+1}\right) \backslash \operatorname{dual}\left(D_{\varepsilon}\right)$
(h) $\bar{f}=\left\langle f_{\alpha}: \alpha<\varepsilon_{\mathbf{x}}\right\rangle, f_{\alpha} \in \Pi \bar{\delta}$
(i) $\bar{f} \upharpoonright \alpha_{\varepsilon+1}$ is $\leq_{D_{\varepsilon}}$-increasing
(j) $\bar{f} \upharpoonright\left[\alpha_{\varepsilon}, \alpha_{\varepsilon+1}\right)$ is $<_{E_{\varepsilon}+Z}$-cofinal for some $Z \in D_{\varepsilon}^{+}$.

Theorem 2.25. Assume $\mathrm{Ax}_{4, \partial}$. Assume \mathbf{p} is a pcf-problem and $\operatorname{hrtg}\left(\mathscr{A}_{\mathbf{p}}\right) \leq$ $\theta_{\mathbf{p}}, \partial<\theta_{\mathbf{p}}$. Then there is a wide pcf-system \mathbf{x} such that $\mathbf{p}_{\mathbf{x}}=\mathbf{p}$.

Proof. As in $\S 1$ we try to choose α_{ε} and $\left\langle f_{\alpha}: \alpha \leq \alpha_{\varepsilon}\right\rangle, D_{\varepsilon}, E_{\varepsilon}$ by induction on ε satisfying the relevant demands. The main point is having chosen $\left\langle\alpha_{\xi}, D_{\xi}: \xi \leq\right.$ $\zeta\rangle,\left\langle f_{\alpha}: \alpha \leq \alpha_{\zeta}\right\rangle$, we try to choose for $\varepsilon=\zeta+1$. So we try to choose f_{α} for $\alpha>\alpha_{\zeta}$ by induction on α satisfying the relevant conditions. Arriving to limit α let $\mathscr{A}_{\alpha}^{1}:=\left\{Z \in \mathscr{A}: Z \notin \operatorname{dual}\left(D_{\varepsilon}\right)\right\}$ and $\mathscr{A}_{\alpha}^{2}=\left\{Z \in \mathscr{A}_{\alpha}^{1}:\left\langle f_{\beta}: \beta<\alpha\right\rangle\right.$ has a $<_{D_{\varepsilon}+Z}$-upper bound in $\left.\Pi \bar{\delta}\right\}$. If $\mathscr{A}_{\alpha}^{1}=\emptyset$ we are done. If $\mathscr{A}_{\alpha}^{2} \neq \emptyset$ by $\S 1$ we can define $\left\langle f_{\alpha, Z}: Z \in \mathscr{A}_{\alpha}^{2}\right\rangle$ such that $f_{\alpha, Z} \in \Pi \bar{\delta}$ is an $<_{D_{\varepsilon}+Z}$-upper bound of $\left\langle f_{\beta}: \beta<\alpha\right\rangle$ and let $f_{\alpha} \in \Pi \bar{\delta}$ be defined by $f_{\alpha}(s)=\sup \left\{f_{\alpha, Z}(s): Z \in \mathscr{A}_{\alpha}^{2}\right\}$ if $<\delta_{s}$ and zero otherwise. As $\theta \geq \operatorname{hrtg}\left(\mathscr{A}_{\mathbf{p}}\right) \geq \operatorname{hrtg}\left(\mathscr{A}_{\alpha}^{2}\right)$, clearly $\beta<\alpha \wedge Z \in \mathscr{A}_{\alpha}^{2} \Rightarrow f_{\beta}<f_{\alpha}$ $\bmod \left(D_{\varepsilon}+Z\right)$. If $\mathscr{A}_{\alpha}^{2}=\mathscr{A}_{\alpha}^{1} \neq \emptyset$, then f_{α} is as required as we are assuming $D_{\varepsilon}=c \ell_{\mathbf{p}}\left(D_{\varepsilon}\right)$. If $\mathscr{A}_{\alpha}^{2} \neq \mathscr{A}_{\alpha}^{1}$, let $\alpha_{\varepsilon+1}=\alpha$ and f_{α} is as required.

$\S 2(\mathrm{C})$. True successor cardinals.

Contrary to our ZFC intuition, without full choice successor cardinals, may be singular. On history we may start with Levy proving $\mathrm{ZF}+" \aleph_{1}$ is singular" is consistent and end with Gitik proving ZF $+(\forall \lambda), \operatorname{cf}(\lambda)=\aleph_{0}$ is consistent, using suitable large cardinals. Note: "two successive cardinals are singular" has quite high consistency strength.

A major open question is whether $\mathrm{ZF}+\mathrm{DC}+(\forall \lambda)\left(\operatorname{cf}(\lambda) \leq \aleph_{1}\right)$ is consistent. But when $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ holds the situation is very different. Also contrary to our ZFC intuition, successor cardinals may be measurable.

For a cardinal to be a true successor is saying it fits our ZFC intuition. In particular, it avoids the two anomalities mentioned above, and eventually itwill enable us to carry various constructions; all this motivates Question 2.27.

We continue the investigation in [Shee] of successor of singulars, not relying on [Shee].
Definition 2.26. 1) We say λ is a true successor cardinal when for some cardinal $\mu, \lambda=\mu^{+}$and we have a witness \bar{f}, which means $\bar{f}=\left\langle f_{\alpha}: \alpha \in[\mu, \lambda)\right\rangle$ and f_{α} is a one-to-one function from α into μ.
1A) We say \bar{f} is an onto-witness when each f_{α} is onto μ, see $2.28(1)$ below.
2) We say a set $\mathscr{U} \subseteq$ Ord is a smooth set when there is a witness \bar{f} which means that $\bar{f}=\left\langle f_{\alpha}: \alpha \in \mathscr{U}\right\rangle, f_{\alpha}$ is a one-to-one function from α onto $|\alpha|$.

We may naturally ask
Question 2.27. Assume, e.g. $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$.

1) Is there a class of successor of regular cardinals which are true successor cardinal? See 2.28(2).
2) Assume μ is strong limit (i.e. $\alpha<\mu \Rightarrow \operatorname{hrtg}(\mathscr{P}(\mu))<\mu)$ of cofinality \aleph_{1}, so μ^{+} is regular, but assume in addition that μ^{++}is regular $<\operatorname{pp}(\mu)$, see ${ }^{8}$ [She94, Ch.II]. Is μ^{++}truely successor?
3) Assume μ is strong limit of cofinality \aleph_{0} and μ^{+2} is singular, is μ^{+3} a true successor cardinal?

Claim 2.28. 1) If λ is a true successor, then λ is regular and has an onto-witness (computed uniformly from a witness).
2) $\left[\mathrm{Ax}_{\mu^{+}}^{4}\right.$ or just $\left.\mathrm{Ax}_{4, \mu^{+}, \partial}\right]$ Assume μ is singular and $(\forall \alpha<\mu)\left(\operatorname{hrtg}\left([\alpha]^{\aleph_{0}} \times \partial\right)<\mu\right)$. Then μ^{+}is a true successor cardinal.
3) $\left[\mathrm{Ax}_{4, \lambda}\right.$ or just $\left.\mathrm{Ax}_{4, \lambda, \partial}\right]$ The set \mathscr{U} of ordinals $\alpha<\lambda$ such that $|\alpha|$ is singular and $\left.(\forall \beta<|\alpha|)\left[\operatorname{hrtg}\left([\beta]^{\aleph_{0}} \times \partial\right) \leq|\alpha|\right]\right\}$ is a smooth set of ordinals.
4) For every ordinal $\alpha_{*}, \alpha_{*} \in \operatorname{cf}-\mathrm{id}_{\left\langle\left(\operatorname{hrtg}\left([\operatorname{cf}(\alpha)]^{\aleph_{0}} \times \partial\right): \alpha<\alpha_{*}\right\rangle\right.}\left(\left\langle\alpha: \alpha<\alpha_{*}\right\rangle\right)$.

Proof. Let pr be the classical one-to-one function from Ord \times Ord onto Ord such that $\operatorname{pr}(\alpha, \beta)<(\max \{\alpha, \beta\})^{2}$ and $\operatorname{pr}_{\mu}=\operatorname{pr} \upharpoonright(\mu \times \mu)$.

1) Let $\bar{f}=\left\langle f_{\alpha}: \alpha \in\left[\mu, \mu^{+}\right)\right\rangle$witness λ is truely a successor. First define, for $\alpha \in\left[\mu, \mu^{+}\right)$a fucntion $f_{\alpha}^{\prime}: \alpha \rightarrow \mu$ by $f_{\alpha}^{\prime}(\beta)=\operatorname{otp}\left(\operatorname{Rang}\left(f_{\alpha}\right) \cap f_{\alpha}(\beta)\right)$; obviously it is a one-to-one function from α into μ with range an initial segment; but $\left|\operatorname{Rang}\left(f_{\alpha}^{\prime}\right)\right|=$ $|\alpha|=\mu$ so Range $\left(f_{\alpha}^{\prime}\right)=\mu,\left\langle f_{\alpha}^{\prime}: \alpha \in\left[\mu, \mu^{+}\right)\right\rangle$is as promised.
[^6]Second proving λ is regular, toward contradiction let \mathscr{U} be such that $\mathscr{U} \subseteq$ $\lambda=\sup (\mathscr{U}), \mathscr{U} \cap \mu=\emptyset$ and $\operatorname{otp}(\mathscr{U})<\lambda$, so without loss of generality $\leq \mu$. Now we shall combine $\left\langle f_{\alpha}: \alpha \in \mathscr{U}\right\rangle$ to get $|\lambda| \leq \mu$ by getting a one to one function f from λ into $\mu \times \mu$; for $i<\lambda$ let $\alpha_{i}=\min \{\alpha \in \mathscr{U}: \alpha>i\}$ and define $f(i)=\operatorname{pr}\left(\operatorname{otp}\left(\mathscr{U} \cap \alpha_{i}\right), f_{\alpha_{i}}(\alpha)\right)$. So f exemplifies $|\lambda| \leq|\mu \times \mu|$ but the latter is μ, contradiction.
2) By part (3) applied to $\mathscr{U}=\left[\mu, \mu^{+}\right)$.
3) Let $\mathscr{S} \subseteq[\lambda]^{<\partial}$ witness $\mathrm{Ax}_{4, \lambda, \partial}$ and $<_{*}$ a well ordering of \mathscr{S}. Let $\alpha_{*}=\cup\{\alpha+1$: $\alpha \in \mathscr{U}\}$ let $c \ell:\left[\alpha_{*}\right]^{\aleph_{0}} \rightarrow \alpha_{*}$ be as in 0.6 , let $<_{*}$ be a well order \mathscr{S} and let u_{β} for $\beta<\alpha_{*}$ be defined by

- if $\beta=0$ then $u_{0}=\emptyset$
- if $\beta=\gamma+1$ then $u_{\beta}=\{\gamma\}$
- if $\operatorname{cf}(\beta)>\aleph_{0}$ then $u_{\beta}=\cap\left\{\cup\left\{c \ell(v): v \in[u]^{\aleph_{0}}\right\}: u\right.$ a club of $\left.\beta\right\}$
- if $\operatorname{cf}(\beta)=\aleph_{0}$ the $u_{\beta}=v_{\beta} \cap \beta$ where v_{β} is the $<_{*}$-first $v \in \mathscr{S}$ such that $\beta=\sup (v \cap \beta)$.

Now choose f_{α} for $\alpha \in \mathscr{U}$ by induction on α using $\operatorname{pr}_{|\alpha|}$ as in the proof of part (2). 4) By $(*)_{4}$ in the proof of 1.5 , in particular, $(c)_{2}$ there.

Recalling cf $-\mathrm{id}_{<\gamma}(\bar{\delta})$ from Definition 1.1.
Claim 2.29. 1) If $\lambda=\mu^{+}$then λ is a true successor iff $\lambda \in \operatorname{cf}-\mathrm{id}_{<(\mu+1)}(\lambda)$, (which means $\left.\lambda \in \operatorname{cf}-\operatorname{id}_{<(\mu+1)}(\langle\alpha: \alpha<\lambda\rangle)\right)$ iff $\lambda \in \operatorname{cf}-\mathrm{id}_{<\gamma}(\langle\alpha: \alpha<\lambda\rangle)$ for some $\gamma<\lambda$.
2) When μ is singular, we can add: iff $\lambda \in \operatorname{cf}_{<\mu}(\langle\alpha: \alpha<\lambda\rangle)$.

Proof. 1) First condition implies second condition:
So assume λ is a true successor, let $\left\langle f_{\alpha}: \alpha \in\left[\mu, \mu^{+}\right)\right\rangle$witness it. For each $\alpha<\mu^{+}=\lambda$ we choose u_{α} as follows:
Case 1: $u_{\alpha}=\alpha$ if $\alpha<\mu$
Case 2: $\alpha \geq \mu$
For any $j<\mu$ let $\mathscr{U}_{\alpha, j}=\left\{\beta<\alpha: f_{\alpha}(\beta)<j\right\}$, so $\left\langle\mathscr{U}_{\alpha, j}: j<\mu\right\rangle$ is \subseteq-increasing with union α and $\left|\mathscr{U}_{\alpha, j}\right| \leq|j|<\mu$. If for some j the set $\mathscr{U}_{\alpha, j}$ is unbounded in α let $j(\alpha)$ be the minimal such j and $u_{\alpha}=\mathscr{U}_{\alpha, j(\alpha)}$.

If for every $j, \mathscr{U}_{\alpha, j}$ is bounded in α let $u_{\alpha}=\left\{\sup \left(\mathscr{U}_{\alpha, j}\right): j<\mu\right\}$, so easily $\operatorname{otp}\left(u_{\alpha}\right) \leq \mu$. So $\left\langle u_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda \in \operatorname{cf}-\operatorname{id}_{<(\mu+1)}(\lambda)$, i.e. the second condition holds.

Second condition implies third condition:
Trivial.
Third condition implies first condition:
Let $\gamma<\lambda$ and let $\bar{u}=\left\langle u_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda \in \mathrm{cf}-\mathrm{id}_{<\gamma}(\langle\alpha: \alpha<\lambda\rangle)$; let $f_{*}: \gamma \rightarrow \mu$ be one-to-one. Defined a one-to-one function $f_{\alpha}: \alpha \rightarrow \mu$ by induction on $\alpha \in[\mu, \lambda)$, the induction step as in the proof of $2.28(1)$.
2) Lastly, assume μ is singular; obviously the fourth condition implies the third.
$\underline{\text { Second condition implies the fourth condition: }}$

Let $\left\langle u_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda \in \operatorname{cf}-\operatorname{id}_{<(\mu+1)}(\langle\alpha: \alpha<\lambda\rangle)$, let f_{α} be the unique order preserving function from u_{α} onto $\operatorname{otp}\left(u_{\alpha}\right)$. Let $u \subseteq \mu=\sup (u)$ has order type $\operatorname{cf}(\mu)$ or just $<\mu$. Let u_{α}^{\prime} be u_{α} if $\operatorname{otp}\left(u_{\alpha}\right)<\mu$ and be $\left\{\beta \in u_{\alpha}: f_{\alpha}(\beta) \in u\right\}$ if $\operatorname{otp}\left(u_{\alpha}\right)=u$.
The next claim says that quite many partial squares on $\lambda=\mu^{+}$exists.
Claim 2.30. $\left[\mathrm{Ax}_{4, \partial}\right]$ Assume λ is the true successor of $\mu, \theta \leq \kappa=\operatorname{cf}(\mu), \theta \leq \theta_{1}<$ $\mu, \partial<\theta$ and $\alpha<\mu \Rightarrow \operatorname{hrtg}\left({ }^{\theta>} \alpha\right)<\mu$ and $\alpha<\theta=\operatorname{hrtg}\left([\alpha]^{<\partial}\right)<\theta_{1}$.

Then we can find $\bar{C}=\left\langle C_{\varepsilon, \alpha}: \varepsilon<\mu, \alpha \in S_{\varepsilon}\right\rangle$ such that:
(a) $S_{\varepsilon} \subseteq S_{<\theta_{1}}^{\lambda}:=\left\{\delta<\lambda: \operatorname{cf}(\delta)<\theta_{1}\right\}$
(b) $S_{<\theta}^{\lambda} \subseteq \cup\left\{S_{\varepsilon}: \varepsilon<\mu\right\}$
(c) $C_{\varepsilon, \alpha} \subseteq \alpha$ and $C_{\varepsilon, \alpha}$ is closed unbounded in α
(d) $\beta \in C_{\varepsilon, \alpha} \Rightarrow C_{\varepsilon, \beta}=C_{\varepsilon, \alpha} \cap \beta$
(e) $\operatorname{otp}\left(C_{\varepsilon, \alpha}\right)<\theta_{1}$.

Proof. Let $X \subseteq \lambda$ code:

- a witness to " λ is the true successor of μ "
- the set $S_{0}^{*}:=S_{<\theta}^{\lambda}, S_{1}^{*}=S_{<\theta_{1}}^{\lambda}$
- a witness to $\operatorname{cf}(\mu)=\kappa$
- $\left\langle e_{\alpha}: e<\lambda\right\rangle$ as in $(*)_{4}$ of the proof of 1.5 so $\alpha \in S_{0}^{*} \Rightarrow\left|e_{\alpha}\right|<\theta_{1}$.

So $\mathbf{L}[X] \models " \lambda=\mu^{+}, \operatorname{cf}(\mu)=\kappa \geq \theta$ " and $\chi<\mu \Rightarrow \chi^{<\theta}<\mu$. If $\mathbf{L}[X] \models " \mu$ is regular", by [She91, §4] and if $\mathbf{L}[X] \models$ " μ is singular" by Dzamonja-Shelah [DS95] we get the result in $\mathbf{L}[X]$ and the same \bar{C} works in \mathbf{V}.

For more on successor, see $[\operatorname{She} 14, \S(3 \mathrm{~A})]$ and in $\left[\mathrm{S}^{+} \mathrm{a}, 0 \mathrm{x}=\mathrm{Ls} 3\right]$.

§ 2(D). Covering number.

Definition 2.31. 1) Let $\operatorname{cov}(\lambda, \theta, \leq Y, \sigma)$ be the minimal cardinal χ such that (if no such χ exists, it is ∞ (or not well defined)): there is a set \mathscr{P} of cardinality χ such that:
(a) $\mathscr{P} \subseteq[\lambda]^{<\theta}$
(b) if $f \in{ }^{Y} \lambda$ then there is $\mathscr{P}^{\prime} \subseteq \mathscr{P}$ of cardinality $<\sigma$ such that $\operatorname{Rang}(f) \subseteq$ $\cup\left\{u: u \in \overline{\mathscr{P}^{\prime}}\right\}$.
1A) Writing κ instead " $\leq Y$ " means $f \in \bigcup_{\alpha<\kappa}{ }^{\alpha} \lambda$.
2) If $\sigma=2$ we may omit it.
3) Writing " $\leq \theta$ " instead of θ means θ^{+}, i.e. $\mathscr{P} \in[\lambda] \leq \theta$.

Definition 2.32. 1) We say $\left([\gamma]^{\theta}, \subseteq\right)$ strongly ${ }^{9}$ has cofinality $\leq \chi$ when there is $\bar{f}=\left\langle f_{\alpha}: \alpha<\alpha_{*}\right\rangle$ such that $\left|\alpha_{*}\right|=\chi$ and $f_{\alpha}: \theta \rightarrow \mu$ and for every $u \in[\gamma]^{\theta}$ there is α such that $u \subseteq \operatorname{Rang}\left(f_{\alpha}\right)$.
2) We replace " $\leq \chi$ " by " χ " when in addition $\left([\gamma]^{\theta}, \subseteq\right)$ has cofinality χ.

[^7]Claim 2.33. If $\left([\gamma]^{\theta}, \subseteq\right)$ has cofinality χ and θ^{+}is a truely successor then $\left([\gamma]^{\theta}, \subseteq\right)$ strongly has cofinality χ.

Proof. Easy.
Theorem 2.34. Assume $\mathrm{Ax}_{4, \partial}, \partial<\theta_{*},\left\langle\theta_{Y}=\theta(Y): Y \in \theta_{*}\right\rangle$ is such that $\left(\theta_{Y}, Y\right)$ satisfies the demands on (θ, Y) in 1.5 and $\theta_{Y}<\theta_{*}$ and so θ_{*} is strong limit in the sense that $Y \in \theta_{*} \Rightarrow \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)<\theta_{*}$, equivalently $\kappa<\theta_{*} \Rightarrow \operatorname{hrtg}(\mathscr{P}(\mathscr{P}(\kappa))<$ θ_{*} (and $\theta_{*}>\partial$; see 0.17).

1) For all cardinals $\lambda \geq \theta_{*}$ we have $\operatorname{cov}\left(\lambda, \leq \theta_{*},<\theta_{*}, 2\right)$ is well defined (i.e. $<\infty$).
2) Even ∂-uniformly and in some inner model $\mathbf{L}[X], X \subseteq$ Ord we have witness for those covering numbers.

Proof. Let $\lambda_{*}=\cup\left\{\operatorname{hrtg}\left({ }^{\kappa} \lambda\right): \kappa<\theta_{*}\right\}$
$\boxplus_{1}(a) \quad$ let $\left(\mathscr{S}_{*},<_{*}\right)$ be such that $\mathscr{S}_{*} \subseteq\left[\lambda_{*}\right]^{<\partial}$ satisfy
$\left(\forall u \in\left[\lambda_{*}\right]^{\aleph_{0}}\right)\left(\exists v \in \mathscr{S}_{*}\right)[u \subseteq v]$ and $<_{*}$ is a well ordering of \mathscr{S}_{*}
(b) we define $c \ell$ and $\mathscr{S}_{\lambda_{*}, \kappa} \subseteq\left[\lambda_{*}\right]^{<\partial},<_{\lambda_{*}, \kappa},\left\langle w_{\kappa, i}^{*}, i<\operatorname{otp}\left(\mathscr{S}_{\lambda_{*}},<_{*}\right)\right\rangle, \Omega_{\kappa}, \bar{e}_{\kappa}$ as in $(*)_{1}-(*)_{4}$ in the proof of 1.5 with κ here standing for Y there, from $\left(\mathscr{S}_{*},<_{*}\right)$.

So we can choose $\bar{F}=\left\langle F_{\kappa}^{1}: \kappa<\theta_{*}\right\rangle$ where
$\boxplus_{2}(a) \quad F_{\kappa}^{1}$ is a function
(b) $\operatorname{Dom}\left(F_{\kappa}^{1}\right)=\left\{f: f \in{ }^{\kappa}(\lambda+1)\right.$ and $i<\kappa \Rightarrow \operatorname{cf}\left(f(i) \geq \theta_{\kappa}\right\}$
(c) $F_{\kappa}^{1}(f)$ is a pair $\left(\mathscr{F}_{f}^{1},<_{f}^{1}\right)$ such that
(α) $\quad \mathscr{F}_{f}^{1} \subseteq \prod_{i<\kappa} f(i)$ is cofinal, i.e. modulo the filter $\{\kappa\}$
$(\beta) \quad<_{f}^{1}$ is a well ordering of \mathscr{F}_{f}^{1}.
[Why possible? By 2.2 and 2.3(2).]
Let $\left(\theta_{n+1}(\kappa)\right)$ exist and is $<\theta_{*}$, see [Shee, 0.14] where
\boxplus_{3} for $\kappa<\theta_{*}$, let $\theta_{0}(\kappa)=\theta_{\kappa}$ and $\theta_{n+1}(\kappa):=\min \left\{\sigma\right.$: if $\left\langle u_{i}: i<\kappa\right\rangle$ is a sequence of sets of ordinals each of cardinality $<\theta_{n}(\kappa)$ then $\left.\sigma>\left|\bigcup_{i<\kappa} u_{i}\right|\right\}$.

Choose $\left\langle\left(\mathscr{F}_{\kappa, n}^{2},<_{\kappa, n}^{2}\right): \kappa<\theta_{*}\right\rangle$ by induction on n, so $\left\langle\left(\mathscr{F}_{\kappa, n}^{2},<_{\kappa, n}^{2}\right): n<\omega\right.$ and ordinal $\left.\kappa<\theta_{*}\right\rangle$ exists, such that:
$\boxplus_{4}(a) \quad$ if $n=0$ then $\mathscr{F}_{\kappa, n}^{2}=\left\{f_{*}^{2}\right\}, f_{*}^{2} \in{ }^{\kappa}(\lambda+1)$ is constantly λ
(b) if $f \in \mathscr{F}_{\kappa, n}^{2}$ then f is a function from κ into $\left\{u \subseteq \lambda+1:|u| \leq \theta_{n}(\kappa)\right\}$
(c) $\quad<{ }_{\kappa, n}^{2}$ well orders $\mathscr{F}_{\kappa, n}^{2}$
(d) if $f \in \mathscr{F}_{\kappa, n}^{2}$ then for $\ell<4$ we let g_{f}^{ℓ} be the following function; its domain is κ and for $i<\kappa$ we let:
$\underline{\ell=0}: g_{f}^{\ell}(i)=\{\alpha \in f(i): \alpha=0\}$
$\underline{\ell=1}: g_{f}^{\ell}(i)=\{\alpha \in f(i): \alpha$ is a successor ordinal $\}$
$\underline{\ell=2}: g_{f}^{\ell}(i)=\left\{\alpha \in f(i): \alpha\right.$ is a limit ordinal of cofinality $\left.<\theta_{\kappa}\right\}$
$\underline{\ell=3}: g_{f}^{\ell}(i)=\left\{\alpha \in f(i): \operatorname{cf}(\alpha) \geq \theta_{\kappa}\right\}$

```
\((d)(\alpha) \quad\) if \(f_{1} \in \mathscr{F}_{\kappa, n}^{2}\) then for some \(f_{2} \in \mathscr{F}_{\kappa, n+1}^{2}, f_{2}(i)=\)
                \(\left\{\beta: \beta+1 \in g_{f_{1}}^{1}(i)\right\}\)
    \((\beta) \quad\) if \(f_{1} \in \mathscr{F}_{\kappa, n}^{2}\) then for some \(f_{2} \in \mathscr{F}_{\kappa, n+1}^{2}\) we have \(f_{2}(i)=\cup\left\{e_{\kappa, \alpha}\right.\) :
        \(\alpha \in g_{f_{1}}^{2}(i)\) and \(\left.\operatorname{cf}(\alpha)<\theta\right\}\),
    \((\gamma) \quad\) if \(f_{1} \in \mathscr{F}_{\kappa, n}^{2}\) letting \(u:=\operatorname{otp}\left(\cup\left\{g_{f_{1}}^{3}(i): i<\kappa\right\}\right)\), i.e. \(\zeta=\zeta_{f}=\)
        \(\operatorname{otp}(u)<\theta_{*}, \bar{\delta}_{f_{1}}=\left\langle\delta_{f_{1}, \iota}: \iota<\zeta\right\rangle\) increasing \(\delta_{f_{1}, \iota} \in u\) and
        \(\operatorname{otp}\left(\delta_{f_{1}, \iota} \cap u\right)=\iota\) then \(F_{\operatorname{otp}(u)}^{1}\left(\bar{\delta}_{f_{1}}\right) \subseteq \mathscr{F}^{2}\)
\((e)(\alpha) \quad \mathscr{F}_{\kappa, n+1}^{2}\) is minimal under the conditions above
    \((\beta) \quad<_{\kappa, n+1}^{2}\) is chosen naturally.
```

We can choose a set X_{2} of ordinals such that $\left\langle\mathscr{F}_{\kappa, n}^{2}: \kappa \in \theta_{*}, n<\omega\right\rangle$ belongs to $\mathbf{L}\left[X_{2}\right]$ hence a list $\left\langle w_{\alpha}^{*}: \alpha<\alpha_{2}(*)\right\rangle \in \mathbf{L}\left[X_{2}\right]$ of $\left\{\operatorname{Rang}(f): f \in \mathscr{F}_{\kappa, n}^{2}\right.$ for some $\left.\kappa<\theta_{*}, n<\omega\right\}$ and a list $\bar{u}=\left\langle u_{\alpha}: \alpha<\alpha_{3}(*)\right\rangle$ of a cofinal subset of $\left[\alpha_{2}(*)\right]^{\kappa_{0}}$ and X_{3} such that $X_{2}, \bar{u} \in \mathbf{L}\left[X_{3}\right]$.

Now for any ordinal $\kappa<\theta_{*}$ and $f \in{ }^{\kappa} \lambda$ we can choose finite $v_{n} \subseteq \alpha_{2}(*)$ by induction on n such that:
$(*)_{n}(a) \quad \lambda \in \cup\left\{w_{\alpha}^{*}: \alpha \in v_{n}\right\}$ for $n=0$
(b) if $i<\kappa, f(i) \notin \cup\left\{w_{\alpha}^{*}: \alpha \in v_{n}\right\}$ then $\min \left(\bigcup_{\alpha \in v_{n}} w_{\alpha}^{*} \backslash f(i)\right)>\min \left(\bigcup_{\alpha \in v_{n}} w_{\alpha}^{*} \backslash f(i)\right)$.

So $\left\langle v_{n}: n<\omega\right\rangle$ exists hence $v=\bigcup_{n} v_{n} \in \mathbf{L}\left[X_{3}\right]$, hence $w=\bigcup_{\alpha \in v} w_{\alpha}^{*} \in \mathbf{L}\left[X_{3}\right]$ has cardinality $\leq \theta_{*}$ and includes $\operatorname{Rang}(f)$ because if $i<\kappa \wedge f(i) \notin \cup\left\{w_{\alpha}^{*}: \alpha \in v\right\}$ then $\left\langle\min \left(\bigcup_{\alpha \in v_{n}} w_{\alpha}^{*} \backslash f(i)\right): n<\omega\right\rangle$ is a strictly decreasing sequence of ordinals. So we should just let $\mathscr{P}=\left\{u \subseteq \lambda: u \in \mathbf{L}\left[X_{3}\right]\right.$ and $\left.\mathbf{L}\left[X_{3}\right] \models "|u| \leq \theta_{*}\right\}$ witness the desired conclusion.

Now (like [She14, §(3A)] see definitions there)
Conclusion 2.35. Assume Ax_{4}. If μ is a singular cardinal such that $\kappa<\mu \Rightarrow$ $\theta_{\kappa}:=\operatorname{hrtg}\left(\mathscr{P}(\mathscr{P}(\kappa))^{+}<\mu\right.$ and $\lambda \leq \kappa \underline{\text { then for some } \kappa<\mu \text { we have }: \operatorname{cov}(\lambda, \mu, \mu, \kappa)=}$ λ.
Proof. Use [She00] in $\mathbf{L}[X]$ where $X \subseteq$ Ord is as in 2.34(2). $\square_{2.35}$
Discussion 2.36. 0) From 2.34, 2.35 we can get also smooth closed generating sequence (see [She96, §6], [Shed] (an earlier version is [Shea]).

1) We would like to get better bounds. A natural way is to fix κ, consider $\theta_{1}>\kappa$ and $\mathbf{f}: \kappa \rightarrow[\lambda]^{<\theta_{1}}$ and ask for $\mathscr{F} \subseteq\left\{f: \kappa \rightarrow[\lambda]^{<\theta_{2}}\right\}$ such that for every $g \in$ $\prod_{i<\kappa}(\mathbf{f}(i) \cup\{1\} \backslash\{0\})$ and $g_{i} \in \prod_{i<\kappa} g_{*}(i)$ there is $f \in \mathscr{F}$ such that $(\forall i<\kappa)(f(i) \cap$ $\left.\left[g_{1}(i), g_{*}(i)\right) \neq \emptyset\right)$.
2) We can get also strong covering, see [She94, Ch.VII].
3) Can we get something better on μ singular strong limit? a BB?, (BB means black box, see [Sheb] and in $\S 3$, possibly see more in $\left[\mathrm{S}^{+} \mathrm{c}\right]$.
4) We like to improve 2.34 , in particular $\S(2 \mathrm{C})$, for this we have to improve $\S(2 \mathrm{~A})$. We would like to replace $\operatorname{Fil}_{\aleph_{1}}^{4}(Y)$, i.e. $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ by $\operatorname{hrtg}(\mathscr{P}(Y))$ and even $\operatorname{hrtg}(Y)$, as done in ZFC in [She90]. We do not know to do this but we try a more modest aim: suppose we deal only with $[Y]^{\leq \kappa}$ or so. So hopefully in $\left[\mathrm{S}^{+}\right.$a], we still have $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(\kappa)\right)$ but $\operatorname{hrtg}(\mathscr{P}(Y))$ only.

§ 3. Black Boxes

There are many proofs in ZFC using diagonalization of various kinds so they seem to depend heavily on choice. Using Ax_{4} we succeed to generalize one such method - one of the black boxes from [Sheb], it seems particularly helpful in constructing abelian groups and modules; see on applications in the books Eklof-Mekler [EM02] and Göbel-Trlifaj [GT12].

The proof specifically uses countable models and Ax_{4}. Naturally we would like to assume we have only $\mathrm{Ax}_{4, \partial}$. But existing versions implies $\mathscr{P}(\mathbb{N})$ is well ordered and more, whereas $\mathrm{Ax}_{4, \partial}$ does not imply this.

§ 3(A). Existence proof.

Hypothesis 3.1. $\mathrm{ZF}+\mathrm{DC}+\mathrm{Ax}_{4}$ [so $\left.\partial=\aleph_{1}\right]$
The following is like [Sheb, 3.24(3)], the relevant cardinals provably exists but may be less common than there: conceivably true successor are only successor of singular strong limit cardinals.

Theorem 3.2. If (A) then (B) where:
(A) (a) $\lambda=\mu^{+}$is a true successor
(b) $\mu=\mu^{\aleph_{0}}$
(c) $S=\left\{\delta<\lambda: \operatorname{cf}(\delta)=\aleph_{0}\right.$ and μ divides $\left.\delta\right\}$ or just S is a stationary subset of λ such that $\delta \in S \Rightarrow \operatorname{cf}(\delta)=\aleph_{0} \wedge \mu<\delta \wedge(\mu \mid \delta)$
(d) $\bar{\gamma}^{*}=\left\langle\bar{\gamma}_{\delta}^{*}: \delta \in S\right\rangle$ with $\bar{\gamma}_{\delta}^{*}=\left\langle\gamma_{\delta, n}^{*}: n<\omega\right\rangle$ an increasing ω-sequence of ordinals with limit δ
(B) we can find $\mathbf{w}=(\alpha, \mathbf{W}, \dot{\zeta}, h, \overline{\mathbf{k}})=\left(\alpha_{\mathbf{w}}, \mathbf{W}_{\mathbf{w}}, \dot{\zeta}_{\mathbf{w}}, h_{\mathbf{w}}, \overline{\mathbf{k}}_{\mathbf{w}}\right)$ such that (we may denote $\alpha_{\mathbf{w}}$ by $\ell g(\mathbf{w})$ and may omit it):
(a) $(\alpha) \quad \mathbf{W}=\left\langle\bar{N}_{\alpha}: \alpha<\alpha_{\mathbf{w}}\right\rangle$
(β) $\quad \bar{N}_{\alpha}=\left\langle N_{\alpha, n}: n<\omega\right\rangle$ is \prec-increasing sequence of models
$(\gamma) \quad \tau\left(N_{\alpha, n}\right) \subseteq \mathcal{H}\left(\aleph_{0}\right)$ and $\tau\left(N_{\alpha, n}\right) \subseteq \tau\left(N_{\alpha, n+1}\right)$
(δ) $\mathbf{k}=\left\langle\bar{k}_{\alpha}: \alpha<\alpha_{\mathbf{w}}\right\rangle, \bar{k}_{\alpha}=\left\langle k_{\alpha, n}: n<\omega\right\rangle$ is increasing, let $k_{\mathbf{w}}(\alpha, n)=k(\alpha, n)=k_{\alpha, n}$
(ع) $\left|N_{\alpha, n}\right| \subseteq\left|N_{\alpha, n+1}\right| \subseteq \lambda$ but $N_{\alpha, n} \neq N_{\alpha, n+1}$
(广) let $N_{\alpha}=N_{\alpha, \omega}=\lim \left(\bar{N}_{\alpha}\right)$, that is, $\tau\left(N_{\alpha, \omega}\right)=$ $\cup\left\{\tau\left(N_{\alpha, n}\right): n<\omega\right\}$ and $\left(N_{\alpha, \omega}\left\lceil\tau\left(N_{\alpha, n}\right)\right) \supseteq N_{\alpha, n}\right.$
(η) the universe of $N_{\alpha, n}$ is a countable subset of λ
(b) (α) $\dot{\zeta}$ is a function from $\alpha_{\mathbf{w}}$ into S, non-decreasing
$(\beta) \quad$ if $\dot{\zeta}(\alpha)=\delta$ then $\delta=\sup \left\{\gamma_{\delta, n}^{*}: n<\omega\right\}=\sup \left(N_{\alpha}\right)$
$(\gamma) \quad$ if $\alpha<\alpha_{\mathbf{w}}$ and $\dot{\zeta}(\alpha)=\delta \in S$ and $n<\omega$ then $N_{\alpha, n+1} \backslash N_{\alpha, n}$
$\subseteq\left(\gamma_{\delta, k(\alpha, n)}^{*}, \gamma_{\delta, k(\alpha, n)+1}^{*}\right)$ and $\left|N_{\alpha, n}\right| \subseteq \gamma_{\delta, k(\alpha, n)}^{*}$
(c) if M is a model with universe λ and vocabulary $\subseteq \mathcal{H}\left(\aleph_{0}\right)$ then for stationarily many $\delta \in S$, there is α such that $\dot{\zeta}(\alpha)=\delta, N_{\alpha} \prec M$.
(d) $(\alpha) \quad$ if $\dot{\zeta}(\alpha)=\delta=\dot{\zeta}(\beta)$ then $N_{\alpha} \cong N_{\beta},\left|N_{\alpha}\right| \cap \mu=\left|N_{\beta}\right| \cap \mu, \bar{k}_{\alpha}=\bar{k}_{\beta}$; moreover, $\operatorname{otp}\left(\left|N_{\alpha}\right|\right)=\operatorname{otp}\left(\left|N_{\beta}\right|\right)$ and the unique order preserving mapping is an isomorphism from $N_{\alpha, n}$ onto $N_{\beta, n}$ for every n and is the identity on $\left|N_{\alpha}\right| \cap \mu$ and on $N_{\alpha} \cap N_{\beta}$ and so maps $N_{\alpha} \cap \gamma_{\delta, k(\alpha, n)}^{*}$ onto $N_{\beta} \cap \gamma_{\delta, k(\beta, n)}^{*}$ if $\dot{\zeta}(\alpha)=\delta=\dot{\zeta}(\beta)$ but $\alpha \neq \beta$ then

- $\quad N_{\alpha} \cap N_{\beta}$ is an initial segment of both N_{α} and of N_{β}
- $N_{\alpha} \cap N_{\beta} \subseteq N_{\alpha, n+1} \cap N_{\beta, n+1}$ and $N_{\alpha} \cap N_{\beta} \supseteq N_{\alpha, n}=N_{\beta, n}$ for some n.

Remark 3.3. 1) The existence proof is uniform (that is, \mathbf{w} can be defined from $\left(<_{*}, \bar{f}\right)$ where: $<_{*}$ is a well ordering of $[\chi]^{\aleph_{0}}$ for χ large enough and \bar{f} is a witness for λ being a true successor. Moreover, also $\bar{\gamma}^{*}$ can be chosen uniformly (as well as the witness for λ-being a true successor.
2) We would like to add (A)(e) to the assumption and add (B)(e) to the conclusion of 3.2 where:
$(A)(e)(\alpha) \quad \bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$
(β) $\quad C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right)$
$(\gamma) \operatorname{otp}\left(C_{\delta}\right)=\omega$ and let $\bar{\gamma}_{\delta}^{*}=\left\langle\gamma_{\delta, n}^{*}: n<\omega\right\rangle$ list C_{δ} in increasing order
(δ) \bar{C} weakly guess clubs, i.e. for every club E of λ for stationarily many $\delta \in S$ we have $(\forall n)\left(E \cap\left(\gamma_{\delta, n}^{*}, \gamma_{\delta, n+1}^{*}\right) \neq \emptyset\right)$, moreover
(ع) $\left\langle S_{\varepsilon}: \varepsilon<\lambda\right\rangle$ is a partition of S such that $\bar{C} \upharpoonright S_{\varepsilon}$ weakly guess clubs for each ε
(B) (e) $\quad N_{\alpha, n+1} \backslash N_{\alpha, n}$ is included in $\left[\gamma_{\delta, n}^{*}, \gamma_{\delta, n+1}^{*}\right)$, that is $k_{\mathbf{w}}(\alpha, n)=n$.

But not clear if (A) is provable in our context. Still, repeating the ZFC proof works in $\mathrm{ZF}+\mathrm{DC}_{\aleph_{1}}$ and gives even " \bar{C} guess clubs", i.e. " $\left\{\gamma_{\delta, n}: n<\omega\right\} \subseteq C_{\delta}$ ". But we ask only for "weakly guess", see $3.3(2),(A)(e)(\delta)$ so using Ax_{4} just adding $\mathrm{AC}_{\mathscr{P}(\mathbb{N})}$ suffice ${ }^{10}$. However, clause $(B)(d)(\beta)$ is a reasonable substitute.
2) We may strengthen clause (B)(d) by adding:
(γ) if $\dot{\zeta}(\alpha)=\delta=\zeta(\beta)$ then $\left|N_{\alpha}\right| \cap \gamma(\delta, 0)=\left|N_{\beta}\right| \cap \gamma(\delta, 0)$ call it u_{δ}.
For this in $(*)_{6}$ the partition should be $\left\langle S_{\varepsilon}: \varepsilon<\lambda\right\rangle$ as ε should determine also N_{δ}, etc.
3) The use of κ possibly $>\aleph_{1}$ in 3.4 is not necessary for 3.2.
4) Note that in proof we need $\mu=\mu^{\aleph_{0}}$ for proving $(*)_{3}$. Note that for $(*)_{6}(a),(b),(c)$ we need just " λ is a true successor of μ ". To get clause (d) too, it suffices to have $\mu=\mu^{\aleph_{0}}$.
5) We may prove also 3.7 inside the proof of 3.2.

Proof. Now
\boxplus_{1} there are g^{0}, g^{1} such that
(a) g^{0}, g^{1} are two-place functions from λ to λ which are zero on μ

[^8](b) (α) if $\alpha \in[\mu, \lambda)$ then $\left\langle g^{0}(\alpha, i): i<\mu\right\rangle$ enumerate $\{j: j<\alpha\}$ without repetitions
(β) if $\alpha, i<\lambda$ and $\alpha<\mu \vee i \geq \mu$ then $g^{0}(\alpha, i)=0$
(c) $(\alpha) g^{1}\left(\alpha, g^{0}(\alpha, i)\right)=i$ when $i<\mu \leq \alpha<\lambda$
$(\beta) \quad$ if $\alpha<\mu$ and $i<\lambda$ then $g^{1}(\alpha, i)=0$
$(\gamma) \quad$ if $\alpha \leq i<\lambda$ then $g^{1}(\alpha, i)=0$
(d) there is $\gamma_{*} \in(\mu, \lambda)$ such that for every countable $u \subseteq \lambda$ closed under g^{0}, g^{1} there is v such that:
(α) $v \subseteq \gamma_{*}$ is countable
(β) $\operatorname{otp}(v)=\operatorname{otp}(u)$
$(\gamma) \quad v \cap \mu=u \cap \mu$
($\delta) \quad v$ is closed under g^{0}, g^{1}
(ε) the (unique) order preserving function from u onto v commute with g^{0}, g^{1}
$(\zeta) \quad$ we can arrange that $\gamma_{*}=\mu+\mu$.
[Why? As λ is truely successor there is no problem to choose g^{0}, g^{1} satisfying clauses (a),(b),(c). On $\mathscr{U}=\left\{u \subseteq \mu^{+}: u\right.$ countable closed under $\left.g^{0}, g^{1}\right\}$ we define an equivalence relation E by $(d)(\beta),(\gamma),(\varepsilon)$. Now as $\mu=\mu^{\aleph_{0}}, \mathscr{U} / E$ has cardinality μ hence recalling λ is regular we can prove that there is γ_{*} as required in $(d)(\alpha)-(\varepsilon)$ exists. In fact, ∂-uniformly we have a well ordering $<\mathscr{U}$ of \mathscr{U}; without loss of generality $u_{1}<\mathscr{U} u_{2} \Rightarrow \sup \left(u_{1}\right) \leq \sup \left(u_{2}\right)$.

To have $\gamma_{*}=\mu+\mu$, let τ_{*} be the vocabulary $\left\{F_{0}, F_{1}\right\}$ with F_{0}, F_{2} binary function and let $\mathbf{M}=\left\{M: M\right.$ is a τ_{*}-model with universe $|M|$ a countable subset of $\mu+\mu$ such that $\alpha, \beta \in M \cap \mu \Rightarrow F_{0}(\alpha, \beta)=0=F_{1}(\alpha, \beta)$ and the functions F_{0}^{M}, F_{1}^{M} satisfies the relevant cases of the demands $(a),(b),(c)$ on $\left.\left(g^{0}, g^{1}\right)\right\}$.

Clearly \mathbf{M} has cardinality μ and moreover we can (uniformly) define a list $\left\langle M_{\varepsilon}\right.$: $\varepsilon<\mu\rangle$ of \mathbf{M}.

Let $i_{\varepsilon}=\operatorname{otp}\left(\left|M_{\varepsilon}\right| \backslash \mu\right)$ and by induction on $\varepsilon<\mu$ we choose $\left(h_{\varepsilon}, \gamma_{\varepsilon}\right)$ such that:

$$
\boxplus_{1.2} \quad(a) \quad \gamma_{0}=\mu
$$

(b) $\left\langle\gamma_{\zeta}: \zeta \leq \varepsilon\right\rangle$ is increasing continuous
(c) h_{ε} is an order preserving function from $\left|M_{\varepsilon}\right| \backslash \mu$ onto $\left[\gamma_{\varepsilon}, \gamma_{\varepsilon+1}\right)$.

Next let $N_{\varepsilon} \in \mathbf{M}$ be such that $h_{\varepsilon} \cup \mathrm{id}_{\left|M_{\varepsilon}\right| \cap \mu}$ is an isomorphism from M_{ε} onto N_{ε}.
Now we define the two-place function g_{0}^{*}, g_{1}^{*} from λ to λ as follows
$\boxplus_{1.3}(a) \quad$ if $\varepsilon<\mu$ and $\gamma_{\varepsilon} \leq \alpha<\gamma_{\varepsilon+1}$ then

- if $i \in N_{\varepsilon} \cap \mu$ then $g_{0}^{*}(\alpha, i)=F_{0}^{N_{\varepsilon}}(\alpha, i)$
- $\left\langle g_{0}^{*}(\alpha, i): i \in \mu \backslash N_{\varepsilon}\right\rangle$ lists $\alpha \backslash N_{\varepsilon}$ without repetition and is derived from $\left\langle g^{0}(\alpha, i): i<\mu\right\rangle$ and N_{ε} as in the proof of the Cantor-Bendixon theorem (that $|A| \leq|B| \wedge|B| \leq|A| \Rightarrow|A|=|B|$):
(b) if $\alpha \in[\mu+\mu, \lambda)$ then $i<\mu \Rightarrow g_{0}^{*}(\alpha, i)=g^{0}(\alpha, i)$
(c) if $\alpha \in[\mu, \lambda)$ and $j<\alpha$ then $g_{1}^{*}(\alpha, j)$ is defined as the unique $i<\mu$ such that $g_{0}^{*}(\alpha, i)=j$
(d) in all other cases the value is zero.

Now g_{0}^{*}, g_{1}^{*} are well defined, just recall $\boxplus_{1}(a),(b),(c)$. So \boxplus_{1} holds indeed.]
Clearly
$(*)_{1}$ if $u_{1}, u_{2} \subseteq \lambda$ are closed under g^{0}, g^{1} and $u_{1} \cap \mu=\mu_{2} \cap \mu$ then $u_{1} \cap u_{2}$ is an initial segment of u_{1} and of u_{2}.

Let \mathbf{N} be the set of tuples $(\bar{N}, \bar{\gamma})$ satisfying
$(*)_{2}(a) \quad \bar{N}=\left\langle N_{n}: n<\omega\right\rangle$
(b) $\quad N_{n}$ is a model with vocabulary $\tau\left(N_{n}\right) \subseteq \mathcal{H}\left(\aleph_{0}\right)$
(c) $N:=\cup\left\{N_{n}: n<\omega\right\}$ is countable with universe $\subseteq \gamma_{*}$
(d) $\quad \tau\left(N_{n}\right) \subseteq \tau\left(N_{n+1}\right)$ with $N_{n} \subseteq N_{n+1} \upharpoonright \tau_{n}$
(e) $\bar{\gamma}=\left\langle\gamma_{n}: n<\omega\right\rangle$ is an increasing sequence of ordinals satisfying $\cup\left\{\gamma_{n}: n<\omega\right\}=\cup\left\{\alpha+1: \alpha \in \cup\left\{N_{n}: n<\omega\right\}\right\}<\gamma_{*}$
(f) $\quad N_{n}=\left(N_{n+1} \upharpoonright \tau\left(N_{n}\right)\right) \upharpoonright \gamma_{n}$
(g) $\sup \left(N_{n}\right)<\gamma_{n}=\min \left(N_{n+1} \backslash N_{n}\right)$
(h) $\quad N_{n}$ is closed under g_{0}, g_{1}.

Recalling $\mathcal{H}_{<\aleph_{1}}(\gamma)=\{u: u$ a countable set such that $u \cap \operatorname{Ord} \subseteq \gamma$ and $y \in u \backslash \gamma \Rightarrow$ $|y|<\aleph_{1}$. Clearly $\mathbf{N} \subseteq \mathcal{H}_{<\aleph_{1}}\left(\gamma_{*}\right)$ so as $\mu^{\aleph_{0}}=\mu=\left|\gamma_{*}\right|$, clearly \mathbf{N} is well orderable so (and using parameter witnessing, $\mathrm{Ax}_{\lambda}^{4}+$ " λ is a true successor cardinal" to uniformize) let
$(*)_{3}(a) \quad\left\langle\left(\bar{N}_{\varepsilon}, \bar{\gamma}_{\varepsilon}\right): \varepsilon<\mu\right\rangle$ list \mathbf{N}
(b) $\bar{N}_{\varepsilon}=\left\langle N_{\varepsilon, n}: n<\omega\right\rangle, \bar{\gamma}_{\varepsilon}=\left\langle\gamma_{\varepsilon, n}: n<\omega\right\rangle$
(c) $N_{\varepsilon}=N_{\varepsilon, \omega}:=\cup\left\{N_{\varepsilon, n}: n<\omega\right\}$, i.e. $N_{\varepsilon}=\lim \left(\bar{N}_{\varepsilon}\right)$.

Next
$(*)_{4}$ for each $\varepsilon<\mu$ let \mathbf{N}_{ε} be the set of pairs $(\bar{N}, \bar{\gamma})$ such that:
(a) $\bar{N}=\left\langle N_{n}: n<\omega\right\rangle$
(b) $N=\cup\left\{N_{n}: n<\omega\right\}$ is a $\tau\left(N_{\varepsilon}\right)$-model
(c) $\quad N_{n}$ is a $\tau\left(N_{\varepsilon, n}\right)$-model with universe $\subseteq \lambda$
(d) there is h, an order preserving function from $N_{\varepsilon, \omega}$ onto N commuting with g^{0}, g^{1} mapping $N_{\varepsilon, n}$ onto N_{n},
(i.e. $h \upharpoonright N_{\varepsilon, n}$ is an isomorphism from $N_{\varepsilon, n}$ onto N_{n}) and being the identity on $N_{\varepsilon} \cap \mu$ and so mapping $\gamma_{\varepsilon, n}$ to γ_{n}
$(*)_{5}$ for $\delta \in S$ and $\varepsilon<\mu$ let $\mathbf{N}_{\varepsilon, \delta}$ be the set of pairs $(N, \bar{\gamma}) \in \mathbf{N}_{\varepsilon}$ such that $\sup \left\{\gamma_{n}: n<\omega\right\}=\delta$ and for clause $(B)(b)(\gamma)$ for every n for some $k, N_{n+1} \backslash N_{n} \subseteq\left(\gamma_{\delta, k}^{*}, \gamma_{\delta, k+1}^{*}\right)$
$(*)_{6}$ there is a partition $\bar{S}=\left\langle S_{\varepsilon}: \varepsilon<\mu\right\rangle$ of S to stationary sets.
[Why? By Larson-Shelah [LS09].]
$(*)_{7}$ there is $\left\langle\bar{\gamma}_{\delta}^{*}: \delta \in S\right\rangle$ such that each $\bar{\gamma}_{\delta}^{*}$ is an increasing ω-sequence with limit δ.
[Why? By Ax ${ }_{4}$.]
$(*)_{8}$ there is, (in fact as in all cases in this proof, uniformly definable), a sequence $\left\langle\left(\bar{N}_{\alpha}, \bar{\gamma}_{\alpha}, u_{\alpha}\right): \alpha<\alpha(*)\right\rangle$ and function $\dot{\zeta}: \alpha(*) \rightarrow S$ such that:
(a) $\dot{\zeta}$ is non-decreasing
(b) $\left(\bar{N}_{\alpha}, \bar{\gamma}_{\alpha}\right) \in \mathbf{N}_{\varepsilon, \dot{\zeta}(\alpha)}$ when $\dot{\zeta}(\alpha) \in S_{\varepsilon}$, moreover
$(b)^{\prime} \quad$ if $\varepsilon<\mu$ and $\delta \in S_{\varepsilon}$ then $\left\{\left(\bar{N}_{\alpha}, \bar{\gamma}_{\alpha}\right): \alpha<\alpha(*)\right.$ satisfies $\left.\dot{\zeta}(\alpha)=\delta\right\}$ list $\mathbf{N}_{\varepsilon, \delta}$
$(*)_{9}$ let $N_{\alpha, \omega}=\cup\left\{N_{\alpha, n}: n<\omega\right\}$.
[Why? By $(*)_{5},(*)_{6}$ and using a well ordering of $[\lambda]^{\aleph_{0}}$.]
Now ignoring clause (c), clauses of (B) should be clear. Lastly, clause (c) holds by the following Theorem 3.4, in our case $\kappa=\aleph_{1}$.

Theorem 3.4. If (A) then (B) where:
$(A)(a)(\alpha) \quad \lambda>\kappa$ are regular uncountable cardinals
(β) $\quad \alpha<\lambda \Rightarrow|\alpha|^{\aleph_{0}}<\lambda$
$(b)(\alpha) \quad$ if $\alpha<\lambda$ then $\operatorname{cf}\left([\lambda]^{<\kappa}, \subseteq\right)$ is $<\lambda$
$(\beta) \quad \mathbf{U}_{*} \subseteq[\lambda]^{<\kappa}$ is well orderable and cofinal (under \subseteq)
(γ) $\left|\mathbf{U}_{*} \cap[\alpha]^{<\kappa}\right|<\lambda$ for $\alpha<\lambda$
(c) M is a model with universe λ and vocabulary τ, τ not necessarily well orderable
(d) if $\alpha<\kappa$ then $\lambda>\operatorname{hrtg}(\{N: N$ a τ-model with universe α; may add that some order preserving mapping is an elementary embedding of N into $M\}$)
(B) there is \bar{N}, uniformly defined from witnesses to (A) such that:
(a) $\bar{N}=\left\langle N_{\eta}: \eta \in^{\omega\rangle} \lambda\right\rangle$
(b) $\tau\left(N_{\eta}\right)=\tau$
(c) N_{η} has cardinality $<\kappa$ and $N_{\eta} \cap \kappa$ is an ordinal $<\kappa$
(d) N_{η} is an elementary submodel of M
(e) if $\nu \triangleleft \eta$ then N_{ν} is a (proper) initial segment of N_{η}
(f) if $n<\omega$ and $\eta, \nu \in{ }^{n} \lambda$ then there is an order preserving function from N_{η} onto N_{ν} which is an isomorphism
(g) if $n<\omega, \eta \in{ }^{n} \lambda$ and $\gamma<\lambda$ then there is ν such that $\eta \triangleleft \nu \in{ }^{n+1} \lambda$ and $\min \left(N_{\nu} \backslash N_{\eta}\right)>\gamma$.

Remark 3.5. 1) We may consider adding: $N_{\eta}\left(\eta \in{ }^{\omega} \lambda\right)$ has Σ_{1}-property and use: hrtg (the set of expansions of $\left.\bar{N}^{*}\right)<\lambda$.
2) The ZFC version of 3.4 is from Rubin-Shelah [RS87].
3) Note that in 3.4 the vocabulary is constant whereas in 3.2 it is not. But the difference is not serious as in 3.2 the vocabulary is $\subseteq \mathcal{H}\left(\aleph_{0}\right)$ so there is one vocabulary which is enough to code any other.
4) We may continue in $\left[\mathrm{S}^{+} \mathrm{a}, 8.2=\mathrm{Lg} 19\right]$.

Proof. Now
$(*)_{0}$ without loss of generality $\mathbf{U}_{*} \subseteq[\lambda]^{<\kappa}$ is closed under countable unions and initial segments.
[Why? By (A)(a),(b), the point is that the closure retains the properties.]
$(*)_{1}$ let \mathbf{N} be the set of \bar{N} such that
(a) $\bar{N}=\left\langle N_{n}: n<\omega\right\rangle$
(b) (α) $\quad N_{n} \prec M$ has cardinality $<\kappa$
(β) moreover, $\left|N_{n}\right| \in \mathbf{U}_{*}$
(c) $\left|N_{n}\right|$ is an initial segment of $\left|N_{n+1}\right|$
(d) N_{n} has cardinality $<\kappa$ and $N_{0} \cap \kappa$ is an ordinal $<\kappa$
(e) $\tau\left(N_{n}\right)=\tau$

Now
$(*)_{2} \mathbf{N}$ is well orderable
[Why? Recall \mathbf{U}_{*} is well orderable so let $\left\langle u_{\alpha}^{*}: \alpha<\alpha_{*}\right\rangle$ list it. Now N_{n} is determined by $\left|N_{n}\right|$ (because $N_{n} \prec M$) and $\left|\alpha_{*}\right|^{\aleph_{0}}$ is well orderable so we are done.]
$(*)_{3}$ let $\left\langle\bar{N}_{\alpha}: \alpha<\alpha_{*}\right\rangle$ list \mathbf{N} and let $\left\langle u_{\alpha}^{*}: \alpha<\alpha_{*}\right\rangle$ list \mathbf{U}_{*}.
[Why exists? By $(*)_{2}$ and $(A)(b)(\beta)$ of the theorem assumption.]
$(*)_{4}(a) \quad$ we say $\bar{N}^{\prime}, \bar{N}^{\prime \prime} \in \mathbf{N}$ are equivalent and write $\bar{N}^{\prime} \mathscr{E} \bar{N}^{\prime \prime}$ when
for every $n, \operatorname{otp}\left(\left|N_{n}^{\prime}\right|\right)=\operatorname{otp}\left(N_{n}^{\prime \prime}\right)$ and the order preserving function from $\left|N_{n}^{\prime}\right|$ onto $\left|N_{n}^{\prime \prime}\right|$ is an isomorphism and $N_{0}^{\prime}=N_{0}^{\prime \prime}$
(b) let $\mathbf{N}^{\prime}=\left\{\bar{N}: \bar{N}=\left\langle N_{\ell}: \ell \leq n\right\rangle=\bar{N}^{\prime} \upharpoonright(n+1)\right.$ for some $\left.\bar{N}^{\prime} \in \mathbf{N}, n \in \mathbb{N}\right\}$
(c) we define the equivalence relation \mathscr{E} ' on \mathbf{N}^{\prime} by $\bar{N}^{1} \mathscr{E}^{\prime} \bar{N}^{2}$ if \bar{N}^{1}, \bar{N}^{2} has the same length and the parallel of clause (a) holds
(d) \mathscr{E} and \mathscr{E}^{\prime} have $\leq \mu$ equivalence classes.
[Why? E.g. clause (d) by clause $(A)(d)$ of the theorem's assumption.]
$(*)_{5} E_{1}$ is a club of λ where $E_{1}:=\{\delta<\lambda: \delta$ is a limit ordinal such that $M \upharpoonright \delta \prec M$ and if $\bar{N} \in \mathbf{N}$ and $\sup \left(N_{0}\right)<\delta$ then there is $\bar{N}^{\prime} \in \mathbf{N}$ which is \mathscr{E}-equivalent to \bar{N} with $N_{0}^{\prime}=N_{0}$ and $\left.\sup \left(\cup\left\{N_{n}^{\prime}: n<\omega\right\}\right)<\delta\right\}$.
[Why? Think, noting that we can consider only $\left\{\bar{N}_{\alpha}: \alpha<\alpha_{* *}\right.$ and \bar{N}_{α} is not \mathscr{E}-equivalent to \bar{N}_{β} when $\left.\beta<\alpha\right\}$.]
$(*)_{6}$ for $\bar{N}^{*} \in \mathbf{N}$ and $\bar{N} \in \mathbf{N}^{\prime}$ such that $N_{0}=N_{0}^{*}$ we define $\operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \in$ $\operatorname{Ord} \cup\{-1, \infty\}$ by defining when $\operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \geq \alpha$ by induction on the ordinal α as follows:
(a) $\underline{\alpha=0}: \operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \geq \alpha$ iff $\bar{N} \mathscr{E}^{\prime}\left(\bar{N}^{*} \upharpoonright \ell g(\bar{N})\right)$
(b) $\underline{\alpha \text { limit: }}: \operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \geq \alpha$ iff $\beta<\alpha \Rightarrow \operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \geq \beta$
(c) $\alpha=\beta+1: ~ \operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \geq \alpha$ iff for every $\gamma<\lambda$ there is \bar{N}^{+}such that

- $\bar{N} \triangleleft \bar{N}^{+} \in \mathbf{N}^{\prime}$
- $\operatorname{rk}\left(\bar{N}^{+}, \bar{N}^{*}\right) \geq \beta$
- $\ell g\left(\bar{N}^{+}\right)=\ell g(\bar{N})+1$
- if $n=\ell g(\bar{N})$ then $\gamma<\min \left(N_{n}^{+} \backslash N_{n-1}\right)$.

Consider the statement
\boxtimes for some $\bar{N}^{*} \in \mathbf{N}, \operatorname{rk}\left(\left\langle N_{0}^{*}\right\rangle, \bar{N}^{*}\right)=\infty$.
Why enough? Reflect.
Why true? First
$\boxplus_{1} E_{2}$ is a club of λ where

$$
\begin{aligned}
E_{2}=\left\{\delta \in E_{1}: \quad\right. & \text { if } \bar{N}^{*} \in \mathbf{N}, \sup \left(\cup\left\{N_{n}^{*}: n<\omega\right\}<\delta, \bar{N} \in \mathbf{N}^{\prime},\right. \\
& \sup \left(\cup\left\{\bar{N}_{\ell}: \ell<\ell g(\bar{N})\right\}<\delta \operatorname{and} 0 \leq \operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right)<\infty,\right. \text { then there is no } \\
& \bar{N}^{\prime} \operatorname{such} \text { that } \bar{N} \triangleleft \bar{N}^{\prime} \in \mathbf{N}^{\prime}, \operatorname{rk}\left(\bar{N}^{\prime}, \bar{N}^{*}\right)=\operatorname{rk}\left(\bar{N}, \bar{N}^{*}\right) \text { and } \ell g\left(\bar{N}^{\prime}\right)=\ell g(\bar{N})+1 \\
& \text { such that letting } \left.n=\ell g(\bar{N}) \text { we have } \min \left(N_{n}^{\prime} \backslash N_{n-1}\right) \geq \delta\right\}
\end{aligned}
$$

[Why? Reflect.]
Now choose
\boxplus_{2} there is an increasing sequence $\left\langle\delta_{n}: n<\omega\right\rangle$ of members of E_{2} with limit $\delta \in E_{2}$ (in fact can do this uniformly; e.g. let δ_{n} be the n-th member of E_{2}).

Lastly, choose $\left\langle u_{n, \ell}: n<\omega\right\rangle$ by induction on n such that
(a) $u_{n, \ell} \in \mathbf{U}_{*} \cap\left[\delta_{n}\right]^{<\kappa}$
(b) $u_{n, \ell+1}$ is u_{α}^{*} for the minimal α such that $u_{\alpha}^{*} \subseteq \delta_{n}$ and it includes $u_{n, \ell+1}^{*} \cap \delta_{n}$ where $u_{n, \ell+1}^{*}$ is the M-Skolem hull of the set

- $\left(\cup\left\{u_{m, k} \cup\left\{\delta_{m}\right\}: m<\omega, k<\ell\right\} \cup\left\{\alpha: \alpha \leq \sup \left(u_{n, \ell} \cap \kappa\right)\right\}\right.$,
(the Skolem function are just "the first example"; note that the $\sup \left(u_{n, \ell} \cap \kappa\right)$ may be zero).

Let $u_{n}=\cup\left\{u_{n, \ell}: \ell<\omega\right\}, N_{n}^{*}=M\left\lceil u_{n}\right.$. Now we are done by $(*)_{0}(a)$ so \boxplus is indeed true and said above is enough.

Conclusion 3.6. Assume $\lambda=\mu^{+}$is a true successor and $\mu=\mu^{\aleph_{0}}$. Then there is an \aleph_{1}-free Abelian group of cardinality λ such that $\operatorname{Hom}(G, \mathbb{Z})=\{0\}$.
Proof. Straightforward by Theorem 3.2 as in [She84] or see in §(3B).
Theorem 3.7. 1) We can strengthen the conclusion of 3.2 by replacing (B)(c) to
(B) $(c)^{+} \quad$ if $\left\langle\bar{N}_{\eta}^{\prime}: \eta \in{ }^{\omega>} \lambda\right\rangle$ is as in 3.4 (B) (a), (c)-(f) for $\kappa=\aleph_{1}$, replacing (B)(b) by " $\tau\left(N_{\eta}\right) \subseteq \mathcal{H}\left(\aleph_{0}\right),\left|N_{\eta}^{\prime}\right| \in[\lambda] \leq \aleph_{0}$ " then for stationarily many $\delta \in S$ for some $\alpha<\alpha_{\mathbf{w}}$ and $\eta \in{ }^{\omega} \lambda$ we have $\dot{\zeta}(\alpha)=\delta$ and $\bar{N}_{\alpha}=\left\langle N_{\eta \upharpoonright n}^{\prime}: n<\omega\right\rangle$.
2) In 3.2, if $\kappa<\lambda$ as in 3.4 and we can replace $(\bar{N}, \bar{\gamma})$ by $\left\langle N_{\eta}: \eta \in{ }^{\omega\rangle} \kappa\right\rangle$.

Discussion 3.8. There is a recent BB helpful in constructing \aleph_{n}-free abelian groups, (usually is the product of $n \mathrm{BB}$'s); in [She07] it is proved to exist, and using it construct \aleph_{n}-free Abelian group G such that $\operatorname{Hom}(G, \mathbb{Z})=0$. This is continued, Göbel-Shelah [GS09], Göbel-Shelah-Strüngman [GSS13] use it to deal with modules and in Göbel-Herden-Shelah [GHS14] use it to construct \aleph_{n}-free Abelian group with endomorphism ring isomorphic to a given suitable ring. Lately is [She20].

We try to generalize a version of it but note that we cannot use BB for λ_{n+1} with $\left\|N_{\eta}\right\|=\lambda_{n}$ as in the ZFC-proof. But instead we can use 3.7! See $\S(3 \mathrm{~B})$ below and maybe more in $\left[\mathrm{S}^{+} \mathrm{a}\right]$.

§ 3(B). Black Boxes with No Choice.

Context 3.9. We assume ZF only (for this sub-section).
Here we try to deal with ZF-proofs.
We now define a black box, BB suitable without choice (even weak ones).
Definition 3.10. 1) For a natural number k we say \mathbf{x} is a k-g.c.p. (general combinatorial parameter) when \mathbf{x} consists of (so $Y=Y_{\mathbf{x}}$, etc.):
(a) the set Y and the sets X_{m} for $m<\mathbf{k}$ are pairwise disjoint
(b) $\Lambda \subseteq\left\{\bar{\eta}: \bar{\eta}=\left\langle\eta_{m}: m<\mathbf{k}\right\rangle\right.$ and $\eta_{m} \in{ }^{\omega}\left(X_{m}\right)$ for $\left.m<\mathbf{k}\right\}$
(c) $|Y| \leq\left|X_{0}\right|$ and moreover
$(c)^{+} f_{0}: Y \rightarrow X_{0}$ is one to one
(d) if $m \in(0, \mathbf{k})$ then $\left|X_{m}\right| \geq{ }^{\left(X_{<m}\right)} Y$ where $X_{<m}=\prod_{\ell<m}{ }^{\omega}\left(X_{\ell}\right)$, moreover
$(d)^{+} f_{m}:\left\{t: t\right.$ a function from $X_{<m}$ to $\left.Y\right\} \rightarrow X_{m}$ is one to one.
1A) We say a k-g.c.p. \mathbf{x} is standard when $f_{\mathbf{x}, m}$ is the identity for every $m<\mathbf{k}$ and we fix $y_{*} \in Y$.
2) For \mathbf{x} a \mathbf{k}-g.c.p. (as above) we say \mathbf{w} is an \mathbf{x}-BB, i.e. an \mathbf{x}-black box when \mathbf{w} consists of ($\mathbf{x}=\mathbf{x}_{\mathrm{w}}$ and):
(a) $\Lambda=\Lambda_{\mathbf{w}} \subseteq \Lambda_{\mathbf{x}} ;\left(\right.$ if $\Lambda=\Lambda_{\mathbf{x}}$ we may omit it)
(b) (α) $h: \Lambda \rightarrow^{(\mathbf{k}+1) \times \omega} Y$, so we write $h(\bar{\eta})=\left\langle h_{m, n}(\bar{\eta}): m \leq \mathbf{k}, n<\omega\right\rangle$ so $h_{m, n}$ is a function from Λ into Y
$(\beta) \quad$ for every $g: \Omega \rightarrow Y$, see below for some $\bar{\eta} \in \Lambda$ we have

$$
(\forall m<\mathbf{k})(\forall n)\left(h_{m, n}(\bar{\eta})=g(\bar{\eta} \upharpoonleft(m, n))\right.
$$

(c) notation:
$(\alpha) \quad$ if $\bar{\eta} \in \Lambda_{\mathbf{x}}$ then $\bar{\nu}=\bar{\eta} \upharpoonleft(m, n)$ when $\bar{\nu}=\left\langle\nu_{\ell}: \ell<\mathbf{k}\right\rangle$ and ν_{ℓ} is η_{ℓ} if $\ell<\mathbf{k} \wedge \ell \neq m$ and is $\nu_{\ell}=\eta_{\ell}\lceil n$ if $\ell=m$
(β) $\quad \Omega_{m}=\left\{\bar{\eta} \upharpoonleft(m, n): n<\omega\right.$ and $\left.\eta \in \Lambda_{\mathbf{w}}\right\}$ so $\Omega_{m} \subseteq\left\{\bar{\eta}: \bar{\eta}=\left\langle\eta_{\ell}: \ell<\mathbf{k}\right\rangle\right.$ and for $\ell<\mathbf{k},\left[\ell \neq m \Rightarrow \eta_{\ell} \in{ }^{\omega}\left(X_{\ell}\right)\right]$ and $\left.\left[\ell=m \Rightarrow \eta_{\ell} \in{ }^{\omega>} X_{\ell}\right]\right\}$
(γ) $\Omega=\bigcup_{m<\mathbf{k}} \Omega_{m}$.
3) Above $\mathbf{k}_{\mathbf{x}}=\mathbf{k}(\mathbf{x})=\mathbf{k}, \Omega_{\mathbf{w}}=\Omega, \Omega_{\mathbf{w}, m}=\Omega_{m}$, etc.
4) In Claim 3.13 below we call \bar{z} simple when it has the form $\left\langle a_{\bar{\eta}, n} z: \bar{\eta} \in \Lambda_{\mathbf{x}}, n<\omega\right\rangle$ where $a_{\bar{\eta}, n} \in \mathbb{Z}$.

Claim 3.11. 1) For every $Y, y_{*} \in Y$ and \mathbf{k} there is, moreover we can define a standard \mathbf{k}-g.c.p. $\mathbf{x}_{\mathbf{k}}$ (with witnesses $f_{\mathbf{x}, m}=$ identity).
2) For every such $\mathbf{x}_{\mathbf{k}}$ we can define an $\mathbf{x}-B B \mathbf{w}=\mathbf{w}_{\mathbf{x}_{\mathbf{k}}}$.

Remark 3.12. Why we do not choose $\Lambda_{\mathbf{w}}=\Lambda_{\mathbf{x}}$? We can have $\Lambda_{\mathbf{w}}=\Lambda_{\mathbf{x}}$ using a constant value $\in Y$ for the additional cases, so for definability choose a fixed $y_{*} \in Y$ in $3.10(1)$, see $3.10(2)$.

Proof. 1) By induction $m<\mathbf{k}$ we define $\left(X_{m}, f_{m}\right)$ by:

- $X_{m}=Y$ if $m=0$
- $X_{m}=\left\{t: t\right.$ is a function from $X_{<m}=\prod_{\ell<m}\left(X_{\ell}\right)$ to $\left.Y\right\}$ if $m>0$
- $f_{m}=\mathrm{id}_{X_{m}}$ (so is one to one onto).

Now check.
2) Case 1: $\mathbf{k}=1$
$\overline{\text { Let } \Lambda_{\mathbf{w}}}={ }^{\omega}\left(\operatorname{Rang}\left(f_{0}\right)\right)$, so $\Omega_{\mathbf{w}}=\Omega_{\mathbf{w}, 0}={ }^{\omega>}\left(\operatorname{Rang}\left(f_{0}\right)\right), h_{\mathbf{w}, n}$ or pedantically $h_{\mathbf{w}, 0, n}$ is a function from $\Omega_{\mathbf{w}, 0}=\Lambda_{\mathbf{w}}=\left\{\langle\eta\rangle: \eta \in{ }^{\omega}\left(\operatorname{Rang}\left(f_{0}\right)\right)\right\}$ and $\Omega_{\mathbf{w}}=\{\langle\eta\rangle$: $\left.\eta \in^{\omega\rangle}\left(\operatorname{Rang}\left(f_{0}\right)\right)\right\}$ and $\langle\eta\rangle \in \Lambda_{\mathbf{w}} \Rightarrow\langle\eta\rangle \upharpoonleft(0, n)=\langle\eta \upharpoonright n\rangle$.

Now for $n<\omega$ we let $h_{\mathbf{w}, 0, n}: \Lambda_{\mathbf{w}} \rightarrow Y$ be defined by

$$
\text { - } h_{\mathbf{w}, 0, n}(\langle\eta\rangle)=\eta(n) \in Y \text { for } \eta \in \Lambda_{\mathbf{w}} \text {. }
$$

Obviously clauses (a),(b)(α) from $3.10(2)$ holds but what about clause (b) (β) of 3.10?

Now for any $g: \Omega_{\mathbf{w}} \rightarrow Y$ we choose $y_{n} \in Y$ by induction on n as follows: $y_{n}=g\left(\left\langle f_{0}\left(y_{\ell}\right): \ell<n\right\rangle\right)=g\left(\left\langle y_{\ell}: \ell<n\right\rangle\right)$. So $\eta:=\left\langle y_{\ell}: \ell<\omega\right\rangle \in{ }^{\omega}\left(\operatorname{Rang}\left(f_{0}\right)\right)$ is as required.
Case 2: $\mathbf{k}>1$
Let $\Lambda_{\mathbf{w}}=\left\{\bar{\eta}: \bar{\eta}=\left\langle\eta_{m}: m<\mathbf{k}\right\rangle\right.$ and $\eta_{m} \in{ }^{\omega}\left(\operatorname{Rang}\left(f_{m}\right)\right)$ for $\left.m<\mathbf{k}\right\}$ hence $\Omega_{m}=\Omega_{\mathbf{w}, m}$ and $\Omega_{*}=\Omega_{\mathbf{w}}$ are well defined.

We now define $h_{m, n}=h_{\mathbf{w}, m, n}$ for $m<\mathbf{k}, n<\omega$
$(*)_{1}$ for $\bar{\eta} \in \Lambda_{m}=\left\{\bar{\eta} \upharpoonleft(m, n): \bar{\eta} \in \Lambda_{\mathbf{w}}\right.$ and $\left.n<\omega\right\}$ we let $h_{m, n}(\bar{\eta})=$ $\left(f_{m}^{-1}\left(\eta_{m}(n)\right)\right)(\bar{\eta} \upharpoonright m)$ if $m>0$ and $h_{m, n}(\bar{\eta})=f_{m}^{-1}\left(\eta_{m}(n)\right)$ if $m=0$.
Why well defined and $\in Y$? Clearly if $m=0$ then $h_{m, n}(\bar{\eta})=f_{m}^{-1}\left(\eta_{m}(n)\right) \in Y$ as $\eta_{m} \in{ }^{\omega}\left(X_{0}\right)={ }^{\omega} Y$ and if $m>0$ then $\eta_{m}(n) \in X_{m}$ hence $f_{m}^{-1}\left(\eta_{m}(n)\right) \in$ ${ }^{\left(X_{<m}\right)} Y$ so is a function from $X_{<m}:=\prod_{\ell<m}{ }^{\omega} X_{\ell}$ into Y so $\bar{\eta} \upharpoonright m \in X_{<m}$ hence $\left(f_{m}^{-1}\left(\eta_{m}(n)\right)\right)(\bar{\eta} \upharpoonright m) \in Y$. So clause $(b)(\alpha)$ of Definition 3.10 is satisfied. What about clause $(b)(\beta)$ of Definition $3.10(2)$? so let a function $g: \Omega \rightarrow Y$ be given and we shall prove that there is $\bar{\eta} \in \Lambda_{\mathrm{w}}$ as required, in fact define it. Toward this we choose $\eta_{m} \in{ }^{\omega}\left(\operatorname{Rang}\left(f_{m}\right)\right) \subseteq{ }^{\omega}\left(X_{m}\right)$ by downward induction on m, and for each n, we shall let $\eta_{m}=\left\langle f_{m}\left(t_{m, n}\right): n<\omega\right\rangle$, where we choose $t_{m, n} \in \operatorname{Dom}\left(f_{m}\right)$ by induction on $n<\omega$ as follows:
$(*)_{2}$ if $m>0$ then $t_{m, n}$ is the following function from $\left\{\bar{\eta} \upharpoonright m: \bar{\eta} \in \Lambda_{\mathbf{w}}\right\}=X_{<m}=$ $\prod_{\ell<\omega}^{\omega}\left(X_{\ell}\right)$ to $Y:$ if $\bar{\nu}=\left\langle\nu_{\ell}: \ell<m\right\rangle \in \operatorname{Dom}\left(t_{m, n}\right)$ then $t_{m, n}(\bar{\nu})$ is $g(\bar{\rho}) \in Y$ where $\bar{\rho}=\left\langle\rho_{\ell}: \ell<\mathbf{k}\right\rangle$ is defined by:

- if $\ell>m$ then $\rho_{\ell}=\eta_{\ell}$, is well defined by the induction hypothesis on m
- if $\ell=m$ then $\rho_{\ell}=\left\langle f_{m}\left(t_{m, 0}\right), \ldots, f_{m}\left(t_{m, n-1}\right)\right\rangle$, well defined by the induction hypothesis on n
- if $\ell<m$ then $\rho_{\ell}=\nu_{\ell}$, given
$(*)_{3}$ if $m=0$ then $t_{m, n}=g(\bar{\rho})$ where $\bar{\rho}$ is chosen as above except that there is no $\bar{\nu}$.

Now check.
Claim 3.13. Let \mathbf{x} be a \mathbf{k}-g.c.p. see 3.10(1) and \mathbf{w} an $\mathbf{x}-B B$, see 3.10(2) and $\Lambda=\Lambda_{\mathbf{w}}, \Omega=\Omega_{\mathbf{w}}$, etc. Then $G \in \mathscr{G}_{\mathbf{x}} \Rightarrow G_{\mathbf{x}, 0} \subseteq G \subseteq_{\text {purely }} G_{\mathbf{x}, 1}$ where $\subseteq_{\text {purely }}$ is from 3.16(0) and $G \in \mathscr{G}_{\mathbf{x}}$ iff some $\bar{z}, G=G_{\mathbf{x}, \bar{z}}$, which means:
(a) $G_{0}=G_{\mathbf{x}, 0}=\oplus\left\{\mathbb{Z} x_{\rho}: \rho \in \Omega\right\} \oplus \mathbb{Z} z$
(b) $G_{1}=G_{\mathbf{x}, 1}=\oplus\left\{\mathbb{Q} x_{\rho}: \rho \in \Omega\right\} \oplus \mathbb{Q} z \oplus\left\{\mathbb{Q} y_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\mathbf{x}}\right\}$
(c) $\bar{z}=\left\langle z_{\bar{\eta}, n}: \eta \in \Omega_{\mathbf{w}}\right\rangle$ is a sequence of members of $G_{\mathbf{x}, 1}$
(d) for $\bar{\eta} \in \Lambda$ we define $y_{\bar{\eta}, n}=y_{\bar{z}, \bar{\eta}, n}$ by induction on n :

- $y_{\bar{\eta}, 0}=y_{\bar{\eta}}$,
- $n!y_{\bar{\eta}, n+1}=y_{\bar{\eta}, n}-\sum_{m<\mathbf{k}} x_{\bar{\eta} \eta(m, n+1)}-z_{\bar{\eta}, n}$
(e) G is the (Abelian) subgroup of G_{1} generated by $\left\{x_{\bar{\eta}}: \bar{\eta} \in \Omega\right\} \cup\left\{y_{\bar{\eta}, m}: \bar{\eta} \in\right.$ $\Lambda, n<\omega\} \cup\{z\}$.
Proof. Straightforward.
Claim 3.14. Let $\mathbf{k}, \mathbf{x}, \mathbf{w}, \bar{z}$ be as in 3.10, 3.10(2), 3.13.

1) $G_{\mathbf{x}, \bar{z}}$ is almost $\aleph_{\mathbf{k}(\mathbf{x})}$-free (see below Definition 3.16 and 3.15) provided that \bar{z} has the form $\left\langle a_{\bar{\eta}, n} z: \bar{\eta} \in \Lambda_{\mathbf{x}}, n<\omega\right\rangle$ where $a_{\bar{\eta}, n} \in \mathbb{Z}$ (or less as in [She07]).
1A) If $\mathbf{k} \geq 2$ then $G_{\mathbf{x}, \bar{z}}$ is strongly \aleph_{1}-free.
2) In Claim 3.13 above, $G_{\mathbf{x}, \bar{z}}$ is definable (in ZF!) from (\mathbf{x}, \bar{z}).
3) For \mathbf{x} a \mathbf{k}-g.c.p. and \mathbf{w} an $\mathbf{x}-B B$ such that $Z \subseteq Y_{\mathbf{x}}$ we can define $\bar{z}=\bar{z}_{\mathbf{w}}$ such that $G_{\mathbf{x}, \bar{z}}$ (is well defined and) satisfies $h \in \operatorname{Hom}\left(G_{\mathbf{x}, \bar{z}}, \mathbb{Z}\right) \Rightarrow h(z)=0$.
4) For \mathbf{x} a \mathbf{k}-g.c.p. and \mathbf{w} an $\mathbf{x}-B B$ we can define an $\aleph_{\mathbf{k}(\mathbf{x})}$-free Abelian group G such that $\operatorname{Hom}(G, \mathbb{Z})=\{0\}$.

Discussion 3.15. 1) Assume $H \subseteq G=G_{\mathbf{x}, \bar{z}}$ is a subgroup of cardinality $<\aleph_{\mathbf{k}(\mathbf{x})}$. For each $t \in G$ let Y_{t} be the minimal $Y \subseteq Y_{\mathbf{x}}=\left\{x_{\rho}: \rho \in \Omega_{\mathbf{x}}\right\} \cup\{z\} \cup\left\{y_{\bar{\eta}}: \eta \in \Lambda_{\mathbf{x}}\right\}$ such that $t \in \oplus\{\mathbb{Q} x: x \in Y\}$. If $\Omega_{\mathbf{x}} \cup \Lambda_{\mathbf{x}}$ is linearly ordered then $\cup\left\{Y_{t}: t \in H\right\}$ has cardinality $<\aleph_{\mathbf{k}(\mathbf{x})}$ but in general this explains the "weakly" or "almost" in 3.14. However, it may occur that this holds for the "wrong" reason say $\aleph_{0} \not \leq|A|$ in Definition 3.16(2). But the proof of 3.11, 3.10 gives "many" such subsets of the set A.
2) For proving $3.14(1)$ note that in the definition of \mathscr{G}_{x} in [She07] there is a use of choice: dividing the stationary set $S_{m} \subseteq \lambda_{m}$ to λ_{m} pairwise disjoint sets or just the choice of $\bar{z}=\left\langle z_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\mathbf{w}}\right\rangle$. However, we can just "glue together" copies of the G constructed above; i.e. start with G and for every non-zero pure $z \in G$, add G_{z} of $h_{z}: G \rightarrow G_{z}$ identify $x_{<>}$with z, etc.

Definition 3.16. Let G be a torsion free Abelian group (the torsion free means $G \models$ " $n x=0 ", n \in \mathbb{Z}, x \in G$ implies $n=0 \vee x=0_{G}$).
0) Recall $H \subseteq G$ means H is a subgroup. Let $H \subseteq_{\text {purely }} G$ mean H is a pure subgroup of G, which means $H \subseteq G$ and $n \in \mathbb{Z} \backslash\{0\}, n x \in G, n x \in H \Rightarrow x \in H$.

1) We say G is a weakly κ-free when: there is a set A such that the pair (G, A) is κ-free, see part (2).
2) We say (G, A) is κ-free when: $A \subseteq G$ and $\mathrm{PC}_{G}(A)=G$ and if $B \subseteq A$ has cardinality $<\kappa$ then $\mathrm{PC}_{G}(B) \subseteq G$ is a free Abelian group recalling $\mathrm{PC}_{G}(A)=$ the minimal pure subgroup of G which includes A.
3) We say G is almost κ-free when there is a set A such that the pair (G, A) is almost κ-free, see part (4).
4) The pair (G, A) is almost κ-free when: (G, A) is κ-free and A is independent in G (i.e. $\sum_{\ell<n} a_{\ell} x_{\ell}=0 \Rightarrow \bigwedge_{\ell<n} a_{\ell}=0$ when $x_{0}, \ldots, x_{n} \in A$ without repetitions).
Proof. Proof of 3.14:
5) Let $A=\left\{x_{\rho}: \rho \in \Omega_{\mathbf{x}}\right\} \cup\{z\} \cup\left\{y_{\bar{\eta}}: \bar{\eta} \in \Lambda_{\mathbf{x}}\right\}$. It is easy to check that A is independent in G (see $3.16(4))$ and $\mathrm{PC}_{G}(A)=G$ so for any $t \in G$ there is a unique finite $Y_{t} \subseteq A$ such that $t \in \mathrm{PC}_{G}\left(Y_{t}\right), Y_{t}$ of minimal cardinality.

Now if $B \subseteq A$ has cardinality $<\aleph_{\mathbf{k}(\mathbf{x})}$, then also $Y_{B}:=\left\{\rho: x_{\rho} \in B\right\} \cup\{\bar{\eta} \upharpoonleft$ $(m, n): y_{\bar{\eta}} \in B, m<\mathbf{k}(\mathbf{x})$ and $\left.n<\omega\right\}$ has cardinality $<\aleph_{\mathbf{k}(\mathbf{x})}$.

For some $Y \subseteq$ Ord in $\mathbf{L}[Y]$ there is a $\mathbf{k}-\mathrm{c} . \mathrm{p}$. \mathbf{x}_{1}^{\prime} and \bar{z}_{1} such that $G_{\mathbf{x}_{1}, \bar{z}_{1}} \in \mathbf{L}[Y]$ is isomorphic (in \mathbf{V}) to $\mathrm{PC}_{G}(B)$. So by [She07] we are done.
2) Should be clear.
3) We shall define uniformly (in $Z F$) from \mathbf{k}-g.c.p. \mathbf{x} and \mathbf{w} an \mathbf{x}-BB a sequence \bar{z} such that the Abelian group $G=G_{\mathbf{x}, z_{\mathbf{w}}}$ satisfies $h \in \operatorname{Hom}(G, \mathbb{Z}) \Rightarrow h(z)=0$.

For each $\bar{\eta} \in \Lambda$ let $\bar{a}=\left\langle a_{\mathbf{w}, \bar{\eta}, n}: n<\omega\right\rangle \in{ }^{\omega} \mathbb{Z}$ be defined by:
(*) $a_{\mathbf{w}, \bar{\eta}, n}$ is

- $\sum_{m<\mathbf{k}} h_{m, n+1}(\bar{\eta})$ when $\left\{h_{m, n}(\bar{\eta}): m<\mathbf{k}\right\} \subseteq \mathbb{Z}$
- 0 when otherwise.

We shall choose $b_{\mathbf{w}, \bar{\eta}, n} \in \mathbb{Z}$ for $n<\omega$ such that
$(*)$ if $a_{\mathbf{w}, \bar{\eta}, 0} \neq 0$ then there are no $t_{n} \in \mathbb{Z}$ for $n<\omega$ such that for every n we have

$$
\left(\mathrm{eq}_{n}\right) n!t_{n+1}=t_{n}-a_{\mathbf{w}, \bar{\eta}, n+1}=b_{\mathbf{w}, \bar{\eta}, n} \cdot a_{\mathbf{w}_{\eta, 0}}
$$

Why then can we choose? We choose $b_{\mathbf{w}, \bar{n}, n} \in \mathbb{N} \subseteq \mathbb{Z}$ as minimal such that we cannot find $t_{0}, \ldots, t_{n} \in \mathbb{Z}$ such that $t_{0}=\{-n,-n-1, \ldots,-1,0,1, m \ldots, n\}$ and for every $m<n+$ we have $\mathbb{Z} \models$ " $n!t_{m+1}=t_{n}-a_{\mathbf{w}, \bar{\eta}, m+1}-b_{\mathbf{w}, \bar{\eta}, m}-a_{\mathbf{w}_{\eta, 0}}$.

Now we define

$$
(*) \bar{z}=\bar{z}_{\mathbf{w}}=\left\langle b_{\mathbf{w}, \bar{\eta}, n} \cdot z: \bar{\eta} \in \Lambda_{\mathbf{x}}, n<\omega\right\rangle
$$

So
(*) (a) $G_{\mathbf{x}, \bar{z}}$ is well defined
(b) if $g \in H\left(G_{\mathbf{x}, \bar{z}}, \mathbb{Z}\right)$ then $h(z)=0_{\mathbb{Z}}$.
[Why? Clause (a) is obvious. For clause (b) if g is a counterexample by the choice of \mathbf{w} there is $\bar{\eta} \in \Lambda_{\mathbf{w}}$ such that $m<\mathbf{k} \wedge n<\omega \Rightarrow g\left(x_{\bar{\eta} \eta(m, n)}\right)=h_{m, n}(\bar{\eta})$ that is $n<\omega \Rightarrow \sum_{m<\mathbf{k}} g\left(x_{\bar{\eta} 1(m, n+1)}=a_{\mathbf{w}, \bar{\eta}, n}\right.$. Now use the choice of $\left\langle b_{\mathbf{w}, \bar{\eta}, n}: n<\omega\right\rangle$ to get a contradiction.]
4) We derive an example from $G_{\mathbf{w}}$ from part (3).

Let $\Omega^{\prime}=\Omega_{\mathbf{x}}^{\prime}=\{\rho: \rho$ a finite sequence of members of $\Omega\}$ and for $\rho \in \Omega^{\prime}$ let
(*) (a) $X_{\rho}=X_{\mathbf{x}, \rho}=\left\{x_{\rho, \bar{\eta}}: \bar{\eta} \in \Omega_{\mathbf{w}}\right\}$
(b) $Y_{\rho}=Y_{\mathbf{x}, \rho}=\left\{y_{\rho, \bar{\eta}}: \bar{\eta} \in \Lambda_{\mathbf{w}}\right\}$
(*) (a) $G_{0}^{\prime}=G_{\mathbf{x}, 0}^{\prime}=G_{0,0}^{\prime} \otimes G_{0,1}^{\prime}$ where
(b) $G_{0,0}^{\prime}=G_{\mathbf{x}, 0,0}^{\prime}=\oplus\left\{\mathbb{Z}_{\rho, \bar{\eta}}: \rho \in \Omega_{\mathbf{w}}^{\prime}, \bar{\eta} \in \Omega_{\mathbf{w}}\right\}$
(c) $G_{0,1}^{\prime}=G_{\mathbf{x}, 0,1}^{\prime}=\mathbb{Z} z$
(*) (a) $\quad G_{1}^{\prime}=G_{\mathbf{x}, 1}^{\prime} \oplus G_{\mathbf{w}, 2,1} \oplus G_{\mathbf{w}, 2,1} \oplus G_{\mathbf{w}, 1,2}$ where
(b) $G_{1,0}^{\prime}=G_{\mathbf{w}, 1,0}^{\prime}=\oplus\left\{\mathbb{Q} x_{\rho, \bar{\eta}}: \rho \in \Omega_{\mathbf{x}}^{\prime}\right.$ and $\left.\bar{\eta} \in \Omega_{\mathbf{x}}\right\} \supseteq G_{0,1}^{\prime}$
(c) $G_{1,1}^{\prime}=G_{\mathbf{w}, 1,1}^{\prime}=\mathbb{Q} z \supseteq G_{0,1}^{\prime}$
(d) $\quad G_{1,2}^{\prime}=G_{\mathbf{w}, 1,2}^{\prime}=\oplus\left\{\mathbb{Q} y_{\rho, \bar{\eta}}: \rho \in \Omega_{\mathbf{x}}^{\prime}\right.$ and $\left.\bar{\eta} \in \Lambda_{\mathbf{x}}\right\}$.

Let
(*) (a) z_{ρ} be z if $\rho=\langle \rangle$ and $x_{\rho \backslash \ell, \rho(\ell)}$ if $\left.\beta \in \Omega_{\mathbf{x}}^{\prime} \backslash\{<\rangle\right\}$
(b) let $y_{\rho, \bar{\eta}, 0}=y_{\rho, \bar{\eta}}$
(c) for $\rho \in \Omega_{\mathbf{w}}^{\prime}$ and $\bar{\eta} \in \Lambda_{\mathbf{x}}$ we define $y_{\rho, \bar{\eta}, n}$ by induction on $n>0$

- $y_{\rho, \bar{\eta}, n+1}=\left(y_{\rho, \bar{\eta}, n}+\sum_{m<k} x_{\rho \bar{\eta} 1(m, n)}+\bar{a}_{\bar{\eta}, n} z_{\bar{\eta}}\right.$ where

$$
\left\langle a_{\bar{\eta}, n}: n<\omega\right\rangle \in{ }^{\omega} \overline{\mathbb{Z}} \text { was defined above using } h(\bar{\eta})
$$

$(*)(a) \quad$ for every $t \in G_{1}^{\prime}$ let $\operatorname{supp}(x)$ be the minimal subset X_{t} of $X_{\mathbf{s}}=\left\{x_{\rho, \bar{\eta}}\right.$: $\left.\rho \in \Omega_{\mathbf{x}}^{\prime}, \bar{\eta} \in \Omega_{\mathbf{x}}\right\} \cup\left\{y_{\rho, \bar{\eta}}: \rho \in \Omega_{\mathbf{x}}^{\prime}\right.$ and $\left.\bar{\eta} \in \Lambda_{\mathbf{w}}\right\}$ such that: $t \in \Sigma\left\{\mathbb{Q} x: x \in X_{*}\right\} ;$ used in part (2)
$(*)$ for $\rho \in \Omega^{\prime}$ we define an embedding h_{ρ} from $G_{\mathbf{w}}$ into G_{1}^{\prime} by (see \boxplus_{4} below):
(a) $h_{\rho}(z)=z_{\rho}$
(b) $h_{\rho}\left(x_{\bar{\eta}}\right)=x_{\rho, \bar{\eta}}$ for $\bar{\eta} \in \Omega_{\mathbf{w}}$
(c) $h_{\rho}\left(y_{\bar{\eta}, n}\right)=y_{\rho, \bar{\eta}, n}$.

Now
\boxplus_{1} let $G_{\mathbf{w}}^{\prime}$ be the subgroup of $G_{\mathbf{w}, 1}^{\prime}$ generated by $\left\{X_{\rho, \bar{\eta}}: \rho \in \Omega_{\mathbf{w}}^{\prime}\right.$ and $\bar{\eta} \in$ $\left.\Omega_{\mathbf{w}}\right\} \cup\{z\} \cup\left\{y_{\rho, \bar{\eta}, n}: \rho \in \Omega_{\mathbf{w}}^{\prime}, \bar{\eta} \in \Lambda_{\mathbf{w}}\right.$ and $\left.n<\omega\right\}$
$\boxplus_{2} \quad G_{\mathrm{w}, 0}^{\prime} \subseteq G_{\mathrm{x}}^{\prime}$ is dense in the \mathbb{Z}-adic topology.
[Why? Just look at each $y_{\rho, \bar{\eta}, n}$.]
\boxplus_{3} for $\rho \in \Omega_{\mathrm{x}}^{\prime}$
(a) h_{ρ} is a well defined homomorphism
(b) h_{ρ} is indeed an embedding
(c) $\operatorname{Rang}\left(h_{\rho}\right) \subseteq G_{\mathbf{x}}^{\prime}$
(d) $\operatorname{Rang}\left(h_{\rho}\right)$ is a pure subgroup of $G_{\mathbf{x}}^{\prime}$
(e) $h_{<>}$is?
[Why? For clause (a) note the definition of $y_{\rho, \bar{\eta}, n}$, also the other clauses are obvious.]
$\boxplus_{4} \operatorname{Hom}\left(G_{\mathrm{w}}^{\prime}, \mathbb{Z}\right)=0$.
[Why? Let $g \in \operatorname{Hom}\left(G_{\mathbf{w}}^{\prime}, \mathbb{Z}\right)$. For each $\rho \in \Omega_{\mathbf{x}}^{\prime}$, the function $g \circ h_{\rho}$ is a homomorphism from $G_{\mathbf{x}}$ into \mathbb{Z} hence by the previous claim 3.14, $\left(G \circ h_{\rho}\right)(z)=0$. This means that $0=\left(g \circ h_{\rho}\right)(z)=g\left(h_{\rho}(z)\right)=g\left(z_{\rho}\right)$ hence $g(z)=0$, using $\rho=\langle \rangle$ and $g\left(x_{\rho, \bar{\eta}}\right)=0$ for $\rho \in \Omega_{\mathbf{x}}^{\prime}, \bar{\eta} \in \Omega_{\mathbf{x}}$ using $z_{\rho^{\wedge}\langle\bar{z}\rangle}=X_{\rho, \bar{\eta}}$. By the choice of $G_{\mathbf{w}, 0}^{\prime}$ this implies $g \upharpoonright G_{\mathbf{x}, 0}^{\prime}$ is zero and by \boxplus_{3} this implies $g \upharpoonright G_{\mathbf{w}}^{\prime}$ is zero, as promised.] $\square_{3.14}$

References

[DS95] Mirna Džamonja and Saharon Shelah, On squares, outside guessing of clubs and $I_{<f}[\lambda]$, Fund. Math. 148 (1995), no. 2, 165-198, arXiv: math/9510216. MR 1360144
[EM02] Paul C. Eklof and Alan Mekler, Almost free modules: Set theoretic methods, NorthHolland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002, Revised Edition.
[GHS14] Rüdiger Göbel, Daniel Herden, and Saharon Shelah, Prescribing endomorphism algebras of \aleph_{n}-free modules, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 9, 1775-1816. MR 3273308
[GK] Moti Gitik and Peter Koepke, Violating the singular cardinals hypothesis without large cardinals.
[GS09] Rüdiger Göbel and Saharon Shelah, \aleph_{n}-free modules with trivial duals, Results Math. 54 (2009), no. 1-2, 53-64. MR 2529626
[GSS13] Rüdiger Göbel, Saharon Shelah, and Lutz H. Strüngmann, \aleph_{n}-free modules over complete discrete valuation domains with almost trivial dual, Glasg. Math. J. 55 (2013), no. 2, 369-380. MR 3040868
[GT12] Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, vol. i, ii, de Gruyter Expositions in Mathematics, Walter de Gruyter, 2012.
[KS00] Menachem Kojman and Saharon Shelah, The PCF trichotomy theorem does not hold for short sequences, Arch. Math. Logic 39 (2000), no. 3, 213-218, arXiv: math/9712289. MR 1758508
[LS09] Paul B. Larson and Saharon Shelah, Splitting stationary sets from weak forms of choice, MLQ Math. Log. Q. 55 (2009), no. 3, 299-306, arXiv: 1003.2477. MR 2519245
[RS87] Matatyahu Rubin and Saharon Shelah, Combinatorial problems on trees: partitions, Δ-systems and large free subtrees, Ann. Pure Appl. Logic 33 (1987), no. 1, 43-81. MR 870686
[S $\left.\mathrm{S}^{+} \mathrm{a}\right] \quad$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F1303.
$\left[\mathrm{S}^{+} \mathrm{b}\right] \quad$, Tba, In preparation. Preliminary number: Sh:F1438.
$\left[\mathrm{S}^{+} \mathrm{c}\right] \quad, T b a$, In preparation. Preliminary number: Sh:F1200.
[Shea] Saharon Shelah, 3 lectures on pcf.
[Sheb] , Black Boxes, arXiv: 0812.0656 Ch. IV of The Non-Structure Theory" book [Sh:e].
[Shec] , Combinatorial background for Non-structure, arXiv: 1512.04767 Appendix of [Sh:e].
[Shed] , PCF: The Advanced PCF Theorems, arXiv: 1512.07063.
[Shee] — PCF without choice, arXiv: math/0510229.
[She82] , Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, BerlinNew York, 1982. MR 675955
[She84] _, A combinatorial principle and endomorphism rings. I. On p-groups, Israel J. Math. 49 (1984), no. 1-3, 239-257. MR 788269
[She90] ——, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), no. 2, 129-187. MR 1070264
[She91] , Reflecting stationary sets and successors of singular cardinals, Arch. Math. Logic 31 (1991), no. 1, 25-53. MR 1126352
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She96] - Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114, arXiv: math/9610226. MR 1418289
[She97a] , Set theory without choice: not everything on cofinality is possible, Arch. Math. Logic 36 (1997), no. 2, 81-125, arXiv: math/9512227. MR 1462202
[She97b] _-, The pcf theorem revisited, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, arXiv: math/9502233, pp. 420-459. MR 1425231
[She00] , The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285-321, arXiv: math/9809200. MR 1759410
[She06] , More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056
[She07] \aleph_{n}-free abelian group with no non-zero homomorphism to \mathbb{Z}, Cubo 9 (2007), no. 2, 59-79, arXiv: math/0609634. MR 2354353
[She11] , Models of expansions of \mathbb{N} with no end extensions, MLQ Math. Log. Q. 57 (2011), no. 4, 341-365, arXiv: 0808.2960. MR 2832642
[She12] , PCF arithmetic without and with choice, Israel J. Math. 191 (2012), no. 1, 1-40, arXiv: 0905.3021. MR 2970861
[She14] , Pseudo PCF, Israel J. Math. 201 (2014), no. 1, 185-231, arXiv: 1107.4625. MR 3265284
[She20] _ Quite free complicated Abelian groups, pcf and black boxes, Israel J. Math. 240 (2020), no. 1, 1-64, arXiv: 1404.2775. MR 4193126

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Version 2021-09-15. See https://shelah.logic.at/papers/1005/ for possible updates. Date: February 3, 2016.
 2010 Mathematics Subject Classification. Primary 03E04, 03E25; Secondary:
 Key words and phrases. set theory, weak axiom of choice, pcf, abelian groups, group. References to outside papers like [Shee, $2.13=$ Ls.2] means to 2.13 where s. 2 is the label used there, so intended only to help the author if more is added to [Shee].

 The author thanks Alice Leonhardt for the beautiful typing. The author would like to thank the ISF for partial support of this research (Grant No. 1053/11). Publication 1005. First typed August 12, 2010.

[^1]: ${ }^{1}$ We temporarily cheat a little, only $A_{\varepsilon} / I_{\varepsilon}$ is defined.
 ${ }^{2}$ Still by [She97b], in ZFC, we can deal with $\left(\Pi \bar{\lambda},<_{I}\right)$ if $\lambda_{s}>\theta$ and a relative of " $\mathscr{P}(I) / I$ satisfies the θ-c.c." hold.

[^2]: ${ }^{3}$ We can use any index set instead of δ (in particular the empty one), except in part (5); this applies also to Definition 0.9.

[^3]: ${ }^{4}$ Clause (A) here is as in $1.5(\mathrm{~A})$ but D_{*} is just a filter on Y, not necessarily \aleph_{1}-complete filter on Y (i.e. we weaken clause (b)), noting that possibly $D_{*}=\{Y\}$, still we require cf $-\mathrm{fil}_{<\theta}(\bar{\delta}) \subseteq D_{*}$.
 ${ }^{5}$ This is reasonable as we normally use $D_{*}=\operatorname{dual}\left(\mathrm{cf}-\mathrm{id}_{<\theta}(\bar{\delta})\right)$ which is \aleph_{1}-complete by 1.3(1A).

[^4]: ${ }^{6}$ But see 2.16 .

[^5]: ${ }^{7}$ recall the one-to-one function from Ord \times Ord onto Ord such that ($\left.\alpha_{1} \in \alpha \wedge \beta_{1} \leq \beta\right) \Rightarrow$ $\operatorname{pr}\left(\alpha_{1}, \beta_{1}\right) \leq \operatorname{pr}(\alpha, \beta)$.

[^6]: ${ }^{8}$ generality with weak choice there is a choice to be made, but assuming Ax_{4} or so and $\mathrm{cf}(\mu)=$ \aleph_{0}, there is no problem

[^7]: 9 without "strongly" we have only $f_{\alpha}: \gamma_{\alpha} \rightarrow \mu$ where $\gamma_{\alpha}<\theta^{+}$

[^8]: ${ }^{10}$ That is, having $\bar{S}=\left\langle S_{\varepsilon}: \varepsilon<\mu\right\rangle$ for each ε choose the first increasing function $f \in{ }^{\omega} \omega$ such that $\left\langle\gamma_{\delta, f(n)}^{*}: \delta \in S_{\varepsilon}\right\rangle$ weakly guess clubs.

