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MENGER REMAINDERS OF TOPOLOGICAL GROUPS

ANGELO BELLA, SEÇİL TOKGÖZ, AND LYUBOMYR ZDOMSKYY

Abstract. In this paper we discuss what kind of constrains combina-
torial covering properties of Menger, Scheepers, and Hurewicz impose
on remainders of topological groups. For instance, we show that such a
remainder is Hurewicz if and only it is σ-compact. Also, the existence
of a Scheepers non-σ-compact remainder of a topological group follows
from CH and yields a P -point, and hence is independent of ZFC. We
also make an attempt to prove a dichotomy for the Menger property of
remainders of topological groups in the style of Arhangel’skii.

1. Introduction

All topological spaces are assumed to be completely regular. All un-
defined topological notions can be found in [13]. For a space X and its
compactification bX the complement bX \ X is called a remainder of X .
The interplay between the properties of spaces and their remainders has
been studied since more than 50 years and resulted in a number of dual-
ity results describing properties of X in terms of those of their remainders.
A typical example of such a duality is the celebrated result of Henriksen
and Isbell stating that a topological space X is Lindelöf if and only if all
(equivalently any) of its remainders is of countable type, that is, any com-
pact subspace can be enlarged to another compact subspace with countable
outer base.

In the last years, remainders in compactifications of topological groups
have been a popular topic. This is basically due to the fact that topological
groups are much more sensitive to the properties of their remainders than
topological spaces in general. A major role in this study was played by
Arhangel′skii, who initiated a systematic study of this topic. Among many
other things, he obtained two elegant results, which are dichotomies for
non-locally compact topological groups.

Theorem 1.1 ([5]). Let G be a topological group. If bG is a compactification
of G, then bG \G is either Lindelöf or pseudocompact.
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Theorem 1.2 ([4]). Let G be a topological group. If bG is a compactification
of G, then bG \G is either σ-compact or Baire.

We recall that a topological space X is Baire if the intersection of count-
ably many open dense subsets is dense.

In this paper we will focus our attention on topological properties which
are strictly in between σ-compact and Lindelöf. Recall from [22] that a space
X is Menger (or has the Menger property) if for any sequence (Un)n∈ω of
open covers of X one may pick finite sets Vn ⊂ Un in such a way that
{
⋃

Vn : n ∈ ω} is a cover of X . A family {Wn : n ∈ ω} of subsets of X
is called an ω-cover (resp. γ-cover) of X , if for every F ∈ [X ]<ω the set
{n ∈ ω : F ⊂ Wn} is infinite (resp. co-finite). The properties of Scheepers
and Hurewicz are defined in the same way as the Menger property, the
only difference being that we additionally demand that {

⋃

Vn : n ∈ ω} is a
ω-cover (resp. γ-cover) of X . It is immediate that

σ-compact ⇒ Hurewicz ⇒ Scheepers ⇒ Menger ⇒ Lindelöf.

The properties mentioned above have recently received great attention,
mainly because of their combinatorial nature and game-theoretic charac-
terizations. One of the most striking results about the Menger property is
due to Aurichi who proved [6] that any Menger space is a D-space.

Our initial idea was to find counterparts of the properties of Menger,
Scheepers, and Hurewicz in the style of Theorems 1.1 and 1.2. It turned
out that the counterpart of the Hurewicz property is already given by The-
orem 1.1 because of the following result, see Section 2 for its proof.

Theorem 1.3. Let G be a topological group. If βG \ G is Hurewicz, then
it is σ-compact.

Let us note that there are ZFC examples of Hurewicz sets of reals which
are not σ-compact (see [17, Theorem 5.1] or [25, Theorem 2.12]), and thus
Theorem 1.3 is specific for remainders of topological groups.

As it follows from the theorems below, which are the main results of this
paper, for the properties of Scheepers and Menger the situation depends
on the ambient set-theoretic universe. Each subspace of P(ω) (e.g., an
ultrafilter) is considered with the subspace topology. Let us recall from [17,
Theorem 3.9] that if all finite powers of a topological space X are Menger
thenX is Scheepers. The converse of this statement fails consistently: under
CH there exists a Hurewicz subspace of P(ω) whose square is not Menger,
see [17, Theorem 3.7].

Theorem 1.4. There exists a Scheepers ultrafilter iff there exists a topo-
logical group G such that βG \ G is Scheepers and not σ-compact iff there
exists a topological group G such that all finite powers of βG\G are Menger
and not σ-compact.

Corollary 1.5. The existence of a topological group G such that βG \ G
is Scheepers (resp. has all finite powers Menger) and not σ-compact is
independent from ZFC. More precisely, such a group exists under d = c,
and its existence yields P -points.
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Theorem 1.4 and Corollary 1.5 are proved in Section 3. Let us note that
there exists a ZFC example of a dense Baire subspace X of [ω]ω all of whose
finite powers are Menger (and thus also Scheepers), and hence it is indeed
essential in Theorem 1.4 and Corollary 1.5 that we consider remainders of
topological groups. In fact, such a subspace X can be chosen to be a filter,
see [11, Claim 5.5] and the proof of [20, Theorem 1].

It is worth mentioning here that Scheepers ultrafilters have been studied
intensively under different names for decades: In [10] Canjar proved that
d = c implies the existence of an ultrafilter whose Mathias forcing does not
add dominating reals. By [11, Theorem 1.1] the latter property for filters
on ω is equivalent to the Menger one, and by [11, Claim 5.5] all finite pow-
ers of a Menger filter are Menger. Combining this with [17, Theorem 3.9]
we conclude that for filters on ω, the Menger property is equivalent to the
Scheepers one, and hence Scheepers (equivalently Menger [in all finite pow-
ers]) ultrafilters are exactly those studied in [10]. Another descriptions of
such ultrafilters may be found in [9] and [15], where they were characterized
as ultrafilters with certain topological and combinatorial properties stronger
than being a P -point, respectively. In particular, there are no Scheepers ul-
trafilters in models of ZFC without P -points.

Regarding the Menger property, we have the following partial result es-
tablished in Section 4. Note that the assumption on the remainder we
make in it is formally weaker than that made in Theorem 1.4, see the last
equivalent statement there.

Theorem 1.6. It is consistent that for any topological group G and com-
pactification bG, if (bG \G)2 is Menger, then it is σ-compact.

Let us note that the properties of Menger, Scheepers, Hurewicz, having
Menger square, etc., are preserved by perfect maps in both directions. This
implies that if one of the remainders of a space X has one of these covering
properties, then all others also have it, see the beginning of Section 3 for
more details and corresponding definitions. Thus Theorems 1.3, 1.4, and 1.6
admit several equivalent reformulations, given by the freedom to consider
either all or some (specific) compactifications.

In light of Theorems 1.6 and 1.4 it is natural to ask the following ques-
tions.

Question 1.7. Is there a ZFC example of a topological group with a Menger
non-σ-compact remainder?

Question 1.8. Is it consistent that there exists a topological group G such
that βG \G is Menger and not Scheepers? Does CH imply the existence of
such a group?

Since we do not have an analogous statement to Theorem 1.4 for the
Menger property (in Theorem 1.6 we make a somewhat unpleasant assump-
tion that the square of the remainder is Menger), it may still be the case
that for the Menger property there exists a dichotomy similar to Theo-
rems 1.1 and 1.2. In Section 5 we analyze some properties which might be
counterparts of the Menger one for remainders of topological groups.
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2. Hurewicz remainders

According to the definition on [3, p. 235], a topological group G is feath-
ered if it contains a non-empty compact subspace with countable outer base.
Recall that a family U of open subsets of a topological space X is an outer
base for a subset A of X if A ⊂ U for all U ∈ U , and for every open O ⊃ A
there exists U ∈ U such that U ⊂ O. By [3, Lemma 4.3.10] every feathered
group has a compact subgroup with countable outer base. A topological
group G is Raikov-complete if it is complete in the uniformity generated by
sets {(x, y) ∈ G2 : xy−1, x−1y ∈ U}, where U is a neighbourhood of the
neutral element of G, see [3, § 3.6] and references therein.

The following fact is probably well-known.

Lemma 2.1. For a feathered group G the following conditions are equiva-
lent:

(1) G is Čech-complete;
(2) Each closed subgroup G0 of G admitting a dense σ-compact subspace

is Čech-complete;
(3) There exists a compact subgroup H of G with countable outer base

such that 〈QH〉 is Čech-complete for every countable Q ⊂ G, where
for X ⊂ G we denote by 〈X〉 the smallest subgroup of G containing
X.

Proof. The implication (1) → (2) is straightforward, and (2) → (3) is a
direct consequence of [3, Prop. 4.3.11]. The proof of (3) → (1) will be
obtained by a tiny modification of that of [3, Theorem 4.3.15]. In particular,
all details missing below can be found in the proof of the above-mentioned
theorem.

Let 〈Vn : n ∈ ω〉 be a decreasing sequence of open symmetric neigh-
bourhoods of H such that V 2

n+1 ⊂ Vn for all n and H =
⋂

n∈ω Vn. By [3,
Lemma 3.3.10] there exists a continuous prenorm1 on G which satisfies

{x ∈ G : N(x) < 1/2n} ⊂ Vn ⊂ {x ∈ G : N(x) < 2/2n}

for all n ∈ ω. Thus H = {x ∈ G : N(x) = 0}. Let ρ be a pseudometric on G
defined by ρ(x, y) = N(xy−1) +N(x−1y) for all x, y ∈ G. Then ρ is contin-
uous and ρ(x, y) = 0 iff xy−1, x−1y ∈ H . Consider the equivalence relation
∼ on G defined by x ∼ y iff ρ(x, y) = 0 and denote by X the quotient space
G/ ∼. Let π : G→ X be the quotient map and set ρ∗(π(x), π(y)) = ρ(x, y)
for any x, y ∈ G. It follows that π is perfect , ρ∗ is well-defined, and is a
metric generating the quotient topology on X .

The proof of [3, Theorem 4.3.15] is done as follows: Assuming that G
is Raikov-complete, it is shown that ρ∗ is complete. The same argument,
applied to any subgroup G′ of G which contains H (and hence is closed
under ∼) yields that if G′ is Raikov-complete, then ρ∗ ↾ π[G′] is complete.

Our item (3) implies that 〈QH〉 is Raikov-complete for every countable
Q ⊂ G because Čech-complete groups are Raikov-complete, see, e.g., [3,

1Following [3, § 3.3] we call a function N : G → R+ a prenorm, if N(e) = 0, N(x−1) =
N(x), and N(xy) ≤ N(x) +N(y) for all x, y ∈ G.
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Theorem 4.3.7]. Therefore by (3) we have that ρ∗ ↾ π[〈QH〉] is complete
for any countable Q ⊂ G. Since π is perfect, the latter gives that ρ∗ ↾ Y
is complete for any separable closed Y ⊂ X , and hence ρ∗ is complete.
therefore G is Čech-complete being a perfect preimage of a complete metric
space, see [13, Theorems 3.9.10 and 4.3.26]. �

We are in a position now to present the

Proof of Theorem 1.3. Let G be a topological group such that βG \ G
is Hurewicz. Then βG \ G is Lindelöf, hence G is of countable type [14],
and therefore it is feathered. By Lemma 2.1 it is enough to show that each
closed subgroup G0 of G admitting a dense σ-compact subspace is Čech-
complete. Let G0 be as above, F be a dense σ-compact subspace of G0, and
X = G0 \G0, where the closure is taken in βG. Since X is closed in βG\G,
it is Hurewicz. Applying [8, Theorem 27]2 to the Hurewicz space X and
Čech-complete space G0 \ F containing it, we conclude that there exists a
σ-compact space F ′ such that X ⊂ F ′ ⊂ G0 \F , which implies that G0 \F

′

is a dense (because it contains F ) Čech-complete subspace of G0. Thus G0

is Čech-complete by [5, Theorem 1.2], which completes our proof. ✷

It is well-known [27, Lemma 22] that if player II has a winning strategy
in the Menger game on a space X (see Section 4 for its definition) then X
is Hurewicz. Therefore Theorem 1.3 generalizes [7, Corollary 3.5].

3. Scheepers remainders

In the proof of Theorem 1.4, which is the main goal of this section, we
shall need set-valued maps, see [19] for more information on them. By a
set-valued map Φ from a set X into a set Y we understand a map from X
into P(Y ) and write Φ : X ⇒ Y (here P(Y ) denotes the set of all subsets
of Y ). For a subset A of X we set Φ(A) =

⋃

x∈A Φ(x) ⊂ Y . A set-valued
map Φ from a topological space X to a topological space Y is said to be

• compact-valued, if Φ(x) is compact for every x ∈ X ;
• upper semicontinuous, if for every open subset V of Y the set Φ−1(V ) =
{x ∈ X : Φ(x) ⊂ V } is open in X .

To abuse terminology, we shall call compact-valued upper semicontinuous
maps cvusc maps. It is known [28, Lemma 1] that all combinatorial covering
properties considered in this paper are preserved by cvusc maps. Also, if
f : X → Y is a perfect map, then f−1 : Y ⇒ X assigning to y ∈ Y the
subset f−1(y) of X , is a cvusc maps. Therefore the properties of Menger,
Scheepers, Hurewicz, having Menger square, etc., are preserved by perfect
maps in both directions. That is, if f is perfect and Z ⊂ X (resp. Z ⊂
Y ) has one of these properties, then so does f(Z) (resp. f−1(Z)). In
particular, this implies that if one of the remainders of a space X has one
of these covering properties, then all others also have it. In addition, all

2We refer here to the online version of the paper available from the web-pages of the
authors, which is an extended version of the published one.
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these properties are preserved by product with ω equipped with the discrete
topology3.

We shall also need some additional notation. For X ⊂ P(ω) we shall
denote by ∼ X the set {ω \x : x ∈ X}. Note that ∼ X is homeomorphic to
X because x 7→ ω \ x is a homeomorphism from P(ω) to itself. For subsets
a, b of ω (resp. a, b ∈ ωω) a ⊂∗ b (resp. a ≤∗ b) means |a \ b| < ω (resp.
|{n : a(n) > b(n)}| < ω). A collection F of infinite subsets of ω is called a
semifilter if for any a ∈ F and a ⊂∗ b we have b ∈ F . For a semifilter F
we set F+ = {x ⊂ ω : ∀a ∈ F(a ∩ x 6= ∅)}. Note that F+ = P(ω)\ ∼ F .
Fr denotes the minimal with respect to inclusion semifilter which consists
of all co-finite sets. For the other notions used in the proof of the following
statement we refer the reader to [3].

Lemma 3.1. Suppose that G is a topological group, K is a compact sub-
group of G with countable outer base in G, and QK is dense in G for some
countable Q ⊂ G. Let P be a property of topological spaces preserved by
images under cvusc maps and product with ω equipped with the discrete
topology.

If βG \ G has P and is not σ-compact, then there exists a semifilter F
such that F+ ⊂ F and F has P. If, moreover, (βG \ G)2 is Menger, then
there exists a semifilter F such that F = F+ and F2 is Menger.

Proof. Observe that G is not locally compact because otherwise its remain-
ders would be compact. Since G is feathered, there exists a Čech-complete
group G̃ containing G as a dense subgroup, see [3, Theorem 4.3.16]. Let βG̃
be the Stone-Čech compactification of G̃. It follows that βG̃ \ G is not σ-

compact, and hence G 6= G̃. Fix g ∈ G̃\G and note that gG is dense in βG̃
and gG∩G = ∅. Therefore both βG̃\G and βG̃\gG have property P being

remainders of spaces homeomorphic to G, and βG̃ = (βG̃ \G)
⋃

(βG̃ \ gG).
Note that K has a countable outer base also in G̃, and hence the quotient

space X := G̃/K = {zK : z ∈ G̃} is metrizable. It is also separable by our
assumption on G, so there exists a metrizable compactification bX of X .
In addition, the quotient map πK : G̃ → X , πK(z) = zK, is perfect by [3,
Theorem 1.5.7], and hence by [13, Theorem 3.7.16] it can be extended to a
(perfect) map π : βG̃ → bX such that π(βG̃ \ G̃) = bX \X . π ↾ G̃ = πK ,

henceG = π−1(π(G)), gG = π−1(π(gG)), and consequently A := π(βG̃\gG)
and B := π(βG̃ \ G) are both co-dense subsets of bX with property P

covering bX .
Note that bX has no isolated points because both G = π−1(π(G)) and

βG̃ \ G = π−1(π(βG̃ \ G)) are nowhere locally compact. Since bX is a
metrizable compact, there exists a continuous surjective map f : P(ω) →
X . Applying [13, 3.1.C(a)] we can find a closed subspace T of P(ω) such
that f ↾ T → bX is surjective and irreducible, i.e., f [T ′] 6= bX for any
closed T ′ ( T . T has no isolated points: if t ∈ T were isolated then the
irreducibility of f ↾ T would give that t = (f ↾ T )−1[f(t)], which infers

3For the Scheepers property this fact is slightly non-trivial and follows from [26, Propo-
sition 4.7].
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that f(t) is isolated in bX and this leads to a contradiction. Therefore T
is homeomorphic to P(ω), and hence there exists a continuous surjective
irreducible h : P(ω) → bX . Since h is irreducible, both C := h−1(A) and
D := h−1(B) are co-dense. Since h is perfect, they also have P: both of

them are cvusc images of βG̃ \G. Note also that P(ω) = C
⋃

D.
The Cantor set P(ω) has the following fundamental property (see [2]

and references therein) which can be directly proved by Cantor’s celebrated
back-and-forth argument: for any countable dense subsets I0, I1, J0, J1 of
P(ω) such that I0 ∩ I1 = ∅ and J0 ∩ J1 = ∅ there exists a homeomorphism
i : P(ω) → P(ω) with the property i(I0) = J0 and i(I1) = J1. Therefore
there is no loss of generality to assume that [ω]<ω ⊂ P(ω) \ C and Fr ⊂
P(ω) \D. Set

F0 = {x ⊂ ω : ∃c ∈ C, u ∈ [ω]<ω, v ⊂ ω (x = (c \ u) ∪ v)},

I0 = {x ⊂ ω : ∃d ∈ D, u ∈ [ω]<ω, v ⊂ ω (x = (d ∪ u) \ v)},

and note that both F0 and ∼ I0 are semifilters. It follows that both F0 and
I0 are countable unions of continuous images of C × P(ω) and D × P(ω),
respectively, and consequently they are cvusc images of (βG̃\G)×ω, where
ω is considered with the discrete topology. Since the property P is preserved
by product with ω, we conclude that both F0 and I0 have it.

Set F = F0∪ ∼ I0 and note that it has property P for the same reason
as F0, I0 do. Since C ⊂ F0 ⊂ F and D ⊂ I0 =∼ (∼ I0) ⊂∼ F , we have
that P(ω) = F

⋃

∼ F . Therefore F+ ⊂ F because F+ = P(ω)\ ∼ F .

To prove the “moreover” part assume that F2 is Menger and consider
the following map φ : (F∩ ∼ F) → [ω]ω:

φ(a) = (a ∪ {n+ 1 : n ∈ a}) \ a.

Note that F∩ ∼ F is homeomorphic to the closed subset {(x, x) : x ∈
P(ω)}∩ (F× ∼ F) of the Menger space F× ∼ F and thus is Menger itself.
Therefore φ(F∩ ∼ F) is not dominating.

Every strictly increasing sequence k̄ = (kn)n∈ω of integers such that
k0 = 0 generates a monotone surjection ψk̄ : ω → ω by letting ψ−1

k̄
(n) =

[kn, kn+1). We claim that there exists k̄ as above such that ψk̄(F)+ = ψk̄(F).
Suppose to the contrary that for every k̄ there exists ak̄ ∈ F such that
ψk̄(ak̄) ∈ ψk̄(F) \ ψk̄(F)+, i.e., ω \ ψk̄(ak̄) ∈ ψk̄(F). Then both bk̄ :=
ψ−1
k̄
(ψk̄(ak̄)) and ω\bk̄ are in F , and therefore bk̄ ∈ F∩ ∼ F . Note, however,

that φ(bk̄) ⊂ {kn : n ∈ ω}, which means that k̄ ≤∗ φ(bk̄). Since k̄ was chosen
arbitrarily we get that φ(F∩ ∼ F) is dominating, which is impossible. This
contradiction implies that ψ(F)+ = ψ(F) for some monotone surjection
ψ : ω → ω, and then ψ(F) is the semifilter with Menger square we were
looking for. �

Recall that a family X ⊂ P(ω) is centered if
⋂

X ′ is infinite for every
X ′ ∈ [X ]<ω. We are in a position now to present the

Proof of Theorem 1.4. If F is a Scheepers ultrafilter, then ∼ F is a subgroup
of (P(ω),∆) and F∪ ∼ F = P(ω). Thus F is a Scheepers non-σ-compact
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(no ultrafilter can be Borel) remainder of the group (∼ F ,∆). Moreover, all
finite powers of F are Menger (and hence also Scheepers) by [11, Claim 5.5].

Let us now prove the “if” part, i.e., assume that (βG \ G) is Scheepers
and not σ-compact. In the same way as at the beginning of the proof
of Theorem 1.3 we conclude that G is feathered. By Lemma 2.1 we may
assume without loss of generality that G satisfies the premises of Lemma 3.1.
Applying this lemma for P being the Scheepers property, we conclude that
there exists a Scheepers semifilter F such that F+ ⊂ F . For every n ∈ ω
let us denote by On the open subset {x ⊂ ω : n ∈ x} of P(ω) and note
that each x ∈ F belongs to infinitely many members of U0 = {On : n ∈ ω}.
Applying [21, Theorem 21] (namely the implication (1) → (2) there) we
conclude that there exists an increasing number sequence (nk)k∈ω such that
n0 = 0 and

{

{
⋃

On : n ∈ [nk, nk+1} : k ∈ ω
}

is an ω-cover of F . The latter means that for any family {x0, . . . , xl} ⊂ F
there exist infinitely many k ∈ ω such that xi ∩ [nk, nk+1) 6= ∅ for all i ≤ l.

Let us define φ : ω → ω by letting φ−1(k) = [nk, nk+1) for all k and set

S = {s ⊂ ω : φ−1(s) ∈ F} = {φ(x) : x ∈ F}.

Then S is a Scheepers semifilter being a continuous image of F .

Claim 3.2. S is centered.

Proof. Given any s0, . . . , sl ∈ S, set xi = φ−1(si) and take k ∈ ω such that
xi∩ [nk, nk+1) = xi∩φ

−1(k) 6= ∅ for all i ≤ l. There are infinitely many such
k’s, and each of them is an element of si for all i because si = φ(xi). �

Claim 3.3. S+ ⊂ S.

Proof. Take any x ∈ S+ and set y = φ−1(x). Then y ∈ F+: given u ∈ F ,
note that φ(u) ∈ S, and hence |φ(u)∩x| = ω, which implies that |u∩y| = ω
and thus y meets all elements of F . Since F+ ⊂ F , we have that y ∈ F ,
and consequently x = φ(y) ∈ S. �

Let us fix now s0, . . . , si ∈ S and take arbitrary s ∈ S. Claim 3.2
implies that |s∩

⋂

i≤l si| = ω, hence
⋂

i≤l si ∈ S+, and therefore
⋂

i≤l si ∈ S
by Claim 3.3. Thus S is a filter, and consequently it is an ultrafilter by
Claim 3.3. This completes our proof. ✷

We call a semifilter F a P -semifilter if for every sequence (Fn)n∈ω ∈ Fω

there exists a sequence (An)n∈ω such that An ∈ [Fn]
<ω and

⋃

n∈ω An ∈ F .
Note that if F is a filter then we get a standard definition of a P -filter.
P -filters which are ultrafilters are nothing else but P -points.

Recall that for every n ∈ ω we denote by On the clopen subset {x ⊂ ω :
n ∈ x} of P(ω). The following fact is straightforward.

Observation 3.4. Let A ⊂ ω and F be a semifilter. Then {On : n ∈ A}
covers F+ iff A ∈ F . Consequently, if F+ is Menger, then F is a P -
semifilter.
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Proof of Corollary 1.5. It is known [10] that under d = c there exists
an ultrafilter F on ω such that the Mathias forcing M(F) does not add
dominating reals, see [10] for corresponding definitions. Applying [11, The-
orem 1] we conclude that F is Menger when considered with the topology
inherited from P(ω). By [11, Claim 5.5] we have that all finite powers of F
are Menger, and hence F is Scheepers by [17, Theorem 3.9].

Now suppose that F is a Menger ultrafilter. By the maximality of F we
have F = F+. Now it suffices to apply Observation 3.4. ✷

4. Menger remainders

This section is devoted to the proof of Theorem 1.6 which is divided into
a sequence of lemmata. In the proof of the next lemma we shall need the
following game of length ω on a topological space X : In the nth move player
I chooses an open cover Un of X , and player II responds by choosing a finite
Vn ⊂ Un. Player II wins the game if

⋃

n∈ω

⋃

Vn = X . Otherwise, player I
wins. We shall call this game the Menger game on X . It is well-known that
X is Menger if and only if player I has no winning strategy in the Menger
game on X , see [16] or [22, Theorem 13].

Formally, a strategy for player I is a map § : τ<ω → O(X), where τ is
the topology of X and O(X) is the family of all open covers of X . The
strategy § is winning if

⋃

n∈ω Un 6= X for any sequence (Un)n∈ω ∈ τω such
that Un is a union of a finite subset of §(U0, . . . , Un−1) for all n ∈ ω.

Lemma 4.1. Suppose that F is a Menger semifilter. Then for every se-
quence 〈Bi : i ∈ ω〉 ∈ (F+)ω and increasing h ∈ ωω there exists increasing
δ ∈ ωω such that

⋃

i∈ω

Bi ∩ [h(2δ(i)), h(2δ(i+ 1))) ∈ F+.

Proof. For every n ∈ ω let us denote by On the subset {x ⊂ ω : n ∈ x}
of P(ω) and note that On is clopen. It is easy to see that for B ⊂ ω the
collection UB := {On : n ∈ B} is an open cover of F if and only if B ∈ F+.
Set δ(0) = 0 and consider the following strategy for player I in the Menger
game on F : In the 0th move he chooses UB0\h(0) = UB0\h(δ(0)). Suppose
that for some i ∈ ω we have already defined δ(i). Then player I chooses
UBi\h(2δ(i)). If player II responds by choosing Vi ∈ [UBi\h(2δ(i))]

<ω, then we
define δ(i + 1) to be so that Vi ⊂ {On : n ∈ [h(2δ(i)), h(2δ(i + 1))) ∩ Bi},
and the next move of player I is UBi+1\h(2δ(i+1)).

The strategy for player I we described above is not winning, so there
exists a run in the Menger game in which he uses this strategy and looses.
Let δ be the function defined in the course of this run. It follows that
⋃

{Vi : i ∈ ω} ⊃ F , where the Vis are the moves of player II , and hence
⋃

i∈ω

Bi ∩ [h(2δ(i)), h(2δ(i+ 1))) ∈ F+

because Vi ⊂ {On : n ∈ [h(2δ(i)), h(2δ(i+ 1))) ∩ Bi}. �
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For a semifilter F we denote by PF the poset consisting of all partial maps
p from ω×ω to 2 such that for every n ∈ ω the domain of pn : k 7→ p(n, k) is
an element of ∼ F . If, moreover, we assume that and dom(pn) ⊂ dom(pn+1)
for all n, the corresponding poset will be denoted by P∗

F . A condition q is
stronger than p (in this case we write q ≤ p) if p ⊂ q. For filters F the
poset P∗

F is obviously dense in PF , and the latter is proper and ωω-bounding
if F is a non-meager P -filter [23, Fact VI.4.3, Lemma VI.4.4]. In light of
Observation 3.4, the following lemma may be thought of as a topological
counterpart of [23, Fact VI.4.3, Lemma VI.4.4].

Lemma 4.2. If F+ is a Menger semifilter, then both PF and P∗
F are proper

and ωω-bounding.

Proof. We shall present the proof for PF . The one for the poset P∗
F is

completely analogous.
To prove the properness let us fix a countable elementary submodelM ∋

PF of H(θ) for θ big enough, a condition p ∈ PF∩M , and list all open dense
subsets of PF which are elements of M as {Di : i ∈ ω}. Let us denote by
τ the collection of all open subsets of P(ω). For every s ∈ [ω]<ω we shall
denote by Os the set {x ⊂ ω : x ∩ s 6= ∅}. Os is clearly a clopen subset of
P(ω).

In what follows we shall define a strategy § : τ<ω → O(F+) of player I
in the Menger game on F+ as well as a map §0 : τ

<ω ∩M → PF ∩M . Set
p0 = p, §0(∅) = p0, and

§(∅) = {Os : ∃l ∈ ω [s = (ω \ dom(p00)) ∩ l]}.

Now suppose that for some n ∈ ω and all sequences (Uk)k<n of open subsets
of P(ω) we have defined pn = §0((Uk)k<n) and §((Uk)k<n), and fix such a
sequence (Uk)k≤n of length n. If Un is not of the form

⋂

i≤nOsn
i
, where

sni = (ω \ dom(pni )) ∩ l for some l ∈ ω, then §0((Uk)k≤n) and §((Uk)k≤n) are

irrelevant. Otherwise write
∏

i≤n 2
{i}×sn

i in the form {(tn,ji )i≤n : j ≤ N},
set pn,−1 = pn, and by induction on j ≤ N define a decreasing sequence
(pn,j)j≤N of conditions in PF ∩M with the following properties:

(i) dom(pn,ji ) ∩ sni = ∅ for all j ≤ N and i ≤ n;

(ii) pn,j ∪
⋃

i≤n t
n,j
i ∈ Dn for all j ≤ N .

Then we let pn+1 = pn,N , §0((Uk)k≤n) = pn+1 and

§((Uk)k≤n) = {
⋂

i≤n+1

Osn+1

i

: ∃l ∈ ω∀i ≤ n+ 1
[

sn+1
i = (ω \ dom(pn+1

i ))∩ l
]

}.

Since F+ is Menger, § cannot be a winning strategy for player I , and hence
there exists a sequence (Un)n∈ω of open subsets of P(ω) with the following
properties:

(iii) pn := §0((Ui)i<n) ∈ PF ∩M for all n ∈ ω;
(iv) For every n ∈ ω there exists ln ∈ ω such that Un =

⋂

i≤nOsn
i
, where

sni = (ω \ dom(pni )) ∩ ln;
(v) ln ≤ ln+1 for all n ∈ ω;
(vi) dom(pn+1

i ) ∩ sni = ∅; and
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(vii) F+ ⊂
⋃

n∈ω Un.

Items (iv) and (vii) imply that for every i ∈ ω we have F+ ⊂
⋃

n≥iOsn
i
,

therefore for every x ∈ F+ there exists n ≥ i such that x ∩ sni 6= ∅, which
is equivalent to yi :=

⋃

n≥i s
n
i ∈ (F+)+ = F . By the definition of sni in (iv)

together with items (v) and (vi) we have that sni ⊂ sn+1
i for all n ∈ ω and

i ≤ n, and hence yi∩
⋃

n≥i dom(pni ) = ∅. Since i ∈ ω was chosen arbitrarily,
we conclude that q :=

⋃

n∈ω pn ∈ PF .
We claim that q is (M,PF)-generic. Indeed, pick q′ ≤ q, n ∈ ω, and

r ≤ q′ such that dom(ri) ⊃ sni for all i ≤ n. Then there exists j ≤ N such
that ri ↾ ({i} × sni ) = tn,ji for all i ≤ n, and consequently

r ≤ q ∪
⋃

i≤n

tn,ji ≤ pn,j ∪
⋃

i≤n

tn,ji ∈ Dn

by (ii). This implies that r is compatible with an element of Dn ∩M and
thus completes our proof of the properness.

Note that for every n we have found a finite subset An (namely {pn,j :
j ≤ N}) of Dn ∩M such that any extension of q is compatible with some

element of An. If ḟ ∈M is a PF -name for a real, then the open dense subset
of PF consisting of those conditions which determine ḟ(k) equals Dnk

for

some nk ∈ ω. It follows from the above that q forces that ḟ(k) cannot exceed

max{l : ∃u ∈ Ank
(u  ḟ(k) = ľ)}, and therefore PF is ωω-bounding. �

For a relation R on ω and x, y ∈ ωω we denote by [x R y] the set {n :
x(n)R y(n)}.

Lemma 4.3. Suppose that F = F+ is a semifilter with Menger square. Let
x be P∗

F -generic, Q ∈ V [x] be an ωω-bounding poset, and H be a Q-generic
over V [x]. Then in V [x ∗ H ] there is no semifilter G = G+ containing F
such that G2 is Menger.

Proof. Throughout the proof we shall identify x with ∪x : ω × ω → 2.
Suppose to the contrary that such a G exists. Set xj(n) = x(j, n). In
V [x ∗H ], the following 2 cases are possible.

a). For every m ∈ ω there exists k > m such that
⋃

j∈[m,k)[xj = xm] ∈ G.

Then we can inductively construct an increasing sequence 〈mk : k ∈ ω〉 such
that

(1)
⋃

j∈[mk,mk+1)

[xj = xmk
] ∈ G for all k.

Since P∗
F ∗Q is ωω-bounding, we may additionally assume that this sequence

is in V .
b). There exists m such that

⋃

j∈[m,k)[xj = xm] ∈∼ G for all k > m.

This means that
⋂

j∈[m,k)[xj 6= xm] ∈ G for all k > m. Then

[xi = xi+1] ⊃ [xi 6= xm] ∩ [xi+1 6= xm] ⊃
⋂

j∈[m,i+2)

[xj 6= xm] ∈ G

for all i > m. Thus the sequence mk = m + 1 + 2k satisfies (1), and hence
there always exists a sequence 〈mk : k ∈ ω〉 ∈ V satisfying (1).
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Set Ak =
⋃

j∈[mk,mk+1)
[xj = xmk

] ∈ G and Uk = {Uk
n : n ∈ ω}, where

Uk
n = {〈X, Y 〉 ∈ P(ω)2 : ∀i ≤ k

(

(X∩Ai∩[k, n) 6= ∅)∧(Y ∩Ai∩[k, n) 6= ∅)
)

}.

Since Ak ∈ G = G+ for all k, Uk is easily seen to be an open cover of G2. The
Menger property of G2 yields a strictly increasing f ∈ ωω∩V [x∗H ] such that
{Uk

f(k) : k ∈ ω} covers G2. Since P∗
F∗Q is ωω-bounding, we could additionally

assume that f ∈ V . Set h(0) = f(0) + 1 and h(l + 1) = f(h(l)) + 1 for all
l. Note that Uk

n = (W k
n )

2, where

W k
n = {X ∈ P(ω) : ∀i ≤ k (X ∩Ai ∩ [k, n) 6= ∅)}.

Therefore there exists ǫ ∈ 2 such that

Oǫ :=
⋃

{W k
f(k) : k ∈

⋃

l∈ω

[h(2l + ǫ), h(2l + ǫ+ 1))} ⊃ G :

If there were Xǫ ∈ G \ Oǫ for all ǫ ∈ 2, then 〈X0, X1〉 could not be an
element of Uk

f(k) for any k thus contradicting the choice of f . Without loss
of generality ǫ = 0 is as above.

Claim 4.4. Let δ ∈ ωω be strictly increasing. Then

Aδ :=
⋃

i∈ω

Ai ∩ [h(2δ(i)), h(2δ(i+ 1))) ∈ G.

Proof. Given any X ∈ G, find l ∈ ω and k ∈ [h(2l), h(2l + 1)) such that
X ∈ W k

f(k). Let i ∈ ω be such that l ∈ [δ(i), δ(i+ 1)). Note that i ≤ l ≤ k,

hence X ∈ W k
f(k) implies X ∩Ai ∩ [k, f(k)) 6= ∅. It follows that

[k, f(k)) ⊂ [h(2l), f(h(2l+1))) ⊂ [h(2l), h(2l+2)) ⊂ [h(2δ(i)), h(2δ(i+1))),

consequently X ∩Ai ∩ [h(2δ(i)), h(2δ(i+ 1))) 6= ∅, which implies
⋃

i∈ω Ai ∩
[h(2δ(i)), h(2δ(i+ 1))) ∈ G+. �

Let us fix any p ∈ P∗
F and set Bi = ω \ supp(pmi+1

) ∈ F+. By
Lemma 4.1 used in V there exists an increasing δ such that B :=

⋃

i∈ω Bi ∩
[h(2δ(i)), h(2δ(i + 1))) ∈ F+ = F . For every m ∈ ω find i such that
m ∈ [mi, mi+1) and set

qm = pm ∪
(

Bi ∩ [h(2δ(i)), h(2δ(i+ 1)))× {0}
)

if m = mi and

qm = pm ∪
(

Bi ∩ [h(2δ(i)), h(2δ(i+ 1)))× {1}
)

otherwise. This q obviously forces (i.e., any condition in P∗
F ∗Q whose first

coordinate is q forces) that Bi ∩ Ȧi ∩ [h(2δ(i)), h(2δ(i + 1))) = ∅ for all i,
and hence it also forces B ∩ Ȧδ = ∅. Thus the set of those q ∈ P∗

F which

force B∩ Ȧδ = ∅ is dense, which means that B∩Aδ = ∅ (here Aδ = Ȧδ

G∗H
).

However, B ∈ F ⊂ G by the choice of δ and Aδ ∈ G by Claim 4.4, and
therefore B ∩Aδ = ∅ contradicts G = G+. This contradiction completes our
proof. �
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Proof of Theorem 1.6. Suppose that there exists a topological group G and
a compactification bG, such that (bG \ G)2 is Menger but not σ-compact.
Then in the same way as at the beginning of the proof of Theorem 1.3 we
conclude that G is feathered. By Lemma 2.1 we may assume without loss of
generality that G satisfies the premises of Lemma 3.1. Applying this lemma
for P being the property of having the Menger square we get a semifilter
F = F+ such that F2 is Menger. Thus the theorem will be proved as soon
as we construct a model of ZFC in which there are no semifilters F = F+

with Menger square.
To this end let us assume that GCH holds in V and consider a function

B : ω2 → H(ω2), the family of all sets whose transitive closure has size
< ω2, such that for each x ∈ H(ω2) the family {α : B(α) = x} is ω1-

stationary. Let 〈Pα, Q̇β : β < α ≤ ω2〉 be the following iteration with at
most countable supports: If B(α) is a Pα-name for P∗

Ḟ
for some semifilter

Ḟ such that Pα
“Ḟ = Ḟ+ and Ḟ2 is Menger”, then Q̇α = P∗

Ḟ
. Otherwise

we let Q̇α to be a Pα-name for the trivial forcing. Then Pω2
is ωω-bounding

forcing notion with ω2-c.c. being a countable support iteration of length ω2

of proper ωω-bounding posets of size ω1 over a model of CH.
Let G be a Pω2

-generic over V and suppose that F ∈ V [G] is a semifilter
such that F = F+ and F2 is Menger. Then the set

{

α : Fα := (F ∩ V [G ∩

Pα]) ∈ V [G ∩ Pα], Fα = F+
α and F2

α is Menger in V [G ∩ Pα]
}

contains an

ω1-club subset of ω2, and hence for one of these α we have that Q̇α = P∗
Ḟα

,

where Ḟα is a Pα-name such that ḞG∩Pα

α = F ∩ V [G ∩ Pα]. Now, a direct
application of Lemmata 4.3 and 4.2 implies that Fα ⊂ F cannot be enlarged
to any semifilter U ∈ V [G] such that U2 is Menger and U+ = U , which
contradicts our choice of F . ✷

Let us note that in the proof of Theorem 1.6 above we have also proven
the following

Theorem 4.5. It is consistent with ZFC that there are no semifilters F
such that F = F+ and F2 is Menger.

5. On a possible dichotomy for the Menger property

Our first attempt to find a counterpart of the Menger property is based
on its game characterization we have exploited in Section 4. As the Menger
game produces a strengthening of the Lindelöf property, we should consider
a game which produces a strengthening of the Baire property.

There is an obvious candidate for this purpose: the Banach-Mazur game,
see for instance [18] for more information. This game BM(X) is played on
the space X in ω-many innings between two players α and β as follows. β
makes the first move by choosing a non-empty open set U0 and α responds
by taking a non-empty open set V0 ⊆ U0. In general, at the n-th inning
β chooses a non-empty open set Un ⊆ Vn−1 and α responds by taking
a non-empty open set Vn ⊆ Un. The rule is that α wins if and only if
⋂

{Vn : n < ω} 6= ∅. The relationship of the Banach-Mazur game with
Baire spaces is given by the following [18, Theorem 8.11].
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Theorem 5.1. A space X is Baire if and only if player β does not have a
winning strategy in BM(X).

Consequently, if α has a winning strategy, then the space is Baire.

Definition. A space X is weakly α-favorable if player α has a winning
strategy in the Banach-Mazur game. X is said to be α-favorable if player
α has a winning tactic, i. e. a winning strategy depending only on the last
move of β. ✷

Every pseudocompact space is α-favorable: player α has an easy winning
tactic by choosing for any Un a non-empty open set Vn such that Vn ⊆
Un. Of course, every weakly α-favorable space is Baire. Moreover, the
following observation shows that being weakly α-favorable often contradicts
the Menger property.

Observation 5.2. No nowhere locally compact weakly α-favorable subset X
of the real line is Menger.

Proof. Since X is nowhere locally compact, we may assume that X ⊂ R\Q,
and the latter we shall identify with ωω. By [18, Theorem 8.17(1)] X ⊃ Y
for some dense Gδ subset Y of ωω. By the Baire category theorem Y cannot
be contained in a σ-compact subspace of ωω, and hence it contains a copy
Z of ωω which is closed in ωω according to [18, Corollary 21.23]. Therefore
Z is a closed in X copy of ωω, which implies that X is not Menger as the
Menger property is inherited by closed subspaces. �

Therefore, weak α-favorability seems to be a good candidate to be the
counterpart of the Menger property. However, this is not the case by The-
orem 5.6 below. Let us recall that a set S ⊂ R is a Bernstein set provided
that both S and R\S meet every closed uncountable subset of R. The next
two lemmas seem to be known, but we were not able to find them in the
literature. That is why we present their proofs.

Lemma 5.3. There is a subgroup G of the real line R containing the ratio-
nals which is a Bernstein set.

Proof. Let {Cα : α < c} be the collection of all closed uncountable subsets of
R. Here, we will consider R as a Q-vector space. Choose a point x0 ∈ C0 and
denote by G0 the vector subspace of R generated by {1, x0}. Obviously, we
have |G0| = ω. Then, pick a point y0 ∈ C0 \G0. We proceed by transfinite
induction, by assuming to have already constructed a non decreasing family
of vector subspaces {Gβ : β < α} of R satisfying |Gβ| ≤ |β| + ω for each
β and points xβ, yβ ∈ Cβ in such a way that xβ ∈ Gβ and {yβ : β <
α}∩

⋃

{Gβ : β < α} = ∅. The set Hα =
⋃

{Gβ : β < α} has cardinality not
exceeding |α|+ ω and therefore even the vector subspace Kα generated by
the set Hα∪{yβ : β < α} has cardinality less than c. So we may pick a point
xα ∈ Cα \Kα. Then, let Gα be the vector subspace generated by Hα∪{xα}
and finally pick a point yα ∈ Cα \ Gα. It is clear that |Gα| ≤ |α| + ω. To
complete the induction, we need to show yβ /∈ Gα for each β < α. Indeed,
if we had yβ ∈ Gα for some β, then yβ = z + qxα, where z ∈ Hα and
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q ∈ Q \ {0}. But, this would imply xα = q−1z − q−1z ∈ Kα, in contrast
with the way xα was chosen.

Now, we let G =
⋃

{Gα : α < c}. It is clear that G is a Q-vector
subspace, and hence a subgroup, of R which is also a Bernstein set. �

Lemma 5.4. A Bernstein set X ⊂ ωω does not have the Menger property.

Proof. For any f ∈ ωω there exists some g ∈ X such that f(n) < g(n)
for each n ∈ ω. This comes from the fact that X must meet the Cantor
set

∏

n<ω{f(n) + 1, f(n) + 2}. To finish, recall that a dominating subset
of ωω is never Menger. Indeed, for any n < ω let πn : ωω → ω be the
projection onto the n-th factor and put Un = {π−1

n (k) ∩X : k ∈ ω}. Each
Un is an open cover of X . For any choice of a finite set Vn ⊆ Un, we may
define a function g : ω → ω by letting g(n) = max πn(

⋃

Vn), if Vn 6= ∅, and
g(n) = 0 otherwise. Since X is dominating, there is some f ∈ X such that
g(n) < f(n) for each n. Clearly, f /∈

⋃

{
⋃

Vn : n < ω} and so X is not
Menger. �

Lemma 5.5. A Bernstein set X ⊆ R is not weakly α-favorable.

Proof. By [18, Theorem 8.17(1)] any weakly α-favorable subspace of R is
comeager, while no Bernstein set can be comeager because any comeager
subspace of R contains homeomorphic copies of the Cantor set. �

These three lemmas imply:

Theorem 5.6. There exists a topological group G and its compactification
bG such that the remainder bG\G is neither Menger nor weakly α-favorable.

Proof. Recall that the set of irrationals R \Q is homeomorphic to ωω. Let
G be such as in Lemma 5.3. By Lemma 5.4 R \G ⊆ ωω is not Menger, and
by Lemma 5.5 R \ G is not weakly α-favorable. Now, it suffices to take as
bG the compactification of R obtained by adding two end-points. �

Theorem 5.6 implies that the counterpart of the Menger property should
be in between of weakly α-favorable and Baire.

6. Miscellanea

A very important example of a topological group is Cp(X), the subspace
of RX with the Tychonoff product topology consisting of all continuous func-
tions. We expect that the remainder of Cp(X) cannot distinguish between
being Menger and σ-compact, but we cannot prove this.

Question 6.1. Is it true that a remainder of Cp(X) is Menger if and only
if it is σ-compact?

Below we present some results giving a partial solution of Question 6.1.

Proposition 6.2. Let Z be a compactification of Cp(X). If Z \ Cp(X) is
Menger, then Cp(X) is first countable and hereditarily Baire.
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Proof. Since Menger spaces are Lindelöf, by Henriksen-Isbell’s theorem [14],
Cp(X) is of countable type, and therefore it contains a compact subgroup
with countable outer base according to [3, Lemma 4.3.10]. It is easy to
see that there is no compact subgroup of Cp(X) except for {0}: for any
f ∈ Cp(X) \ {0}, the set {nf : n ∈ ω} is not contained in any compact
K ⊂ Cp(X) because {nf(x) : n ∈ ω} is unbounded in R if f(x) 6= 0.
Therefore Cp(X) is first-countable, and hence X is countable.

Since Z \ Cp(X) is Menger, it follows that Cp(X) contains no closed
copy of Q. Now, a theorem of Debs [12] implies that Cp(X) is hereditarily
Baire. �

The following fact together with Proposition 6.2 gives the positive answer
to Question 6.1 for spaces containing non-trivial convergent sequences.

Observation 6.3. If X contains a non-trivial convergent sequence then
Cp(X) is not Baire.

Proof. There is nice characterization of the Bairness for spaces of the form
Cp(X) due to Tkachuk. However, we shall present here a direct elementary
proof. Suppose that (xn)n∈ω is an injective sequence converging to x. Set

Fn = {f ∈ Cp(X) : ∀m ≥ n (|f(x)− f(xm)| ≤ 1)}.

It is easy to check that each Fn is closed nowhere dense in Cp(X) and
Cp(X) =

⋃

n∈ω Fn. �

By a theorem of Lutzer (see Problem 265 in [24]), Cp(X) is Čech-
complete if and only if X is countable and discrete. So to answer Ques-
tion 6.1 in the affirmative we need to show that Cp(X) has a Menger re-
mainder only if X is countable and discrete.

Note that in the proof of the “if” part of Theorem 1.4 the compactifi-
cation was a topological group itself, namely (P(ω),∆). We do not know
whether complements to Menger subspaces in other Polish groups (e.g., R)
may consistently be subgroups. The next proposition imposes some restric-
tions.

Proposition 6.4. Let G be an analytic topological group and M be a non-
empty Menger subspace of G. If G \ M is a subgroup of G, then G is
σ-compact and M contains a topological copy of P(ω).

Proof. Suppose that H = G \M is a subgroup of G and fix g ∈ M . Then
H ⊂ g−1 ∗M , where ∗ is the underlying operation on G. Therefore G =
M ∪ g−1 ∗M is Menger, and hence it is σ-compact, see [1].

Now suppose thatM contains no topological copy of P(ω) and letX ⊂ G
be homeomorphic to P(ω). If X ⊂ H then g ∗ X ⊂ g∗H ⊂ M which is
impossible by our assumption above. Thus X ∩M 6= ∅. Since M contains
no copy of P(ω), X \M is dense in X , and hence there exists a countable
dense subset Q of X disjoint from M . Then X ∩M = (X \ Q) ∩M is a
closed subset of M . Note that (X \Q) is a copy of ωω and M ∩ (X \Q) is
a Bernstein set in (X \Q). To finish, it suffices to apply Lemma 5.4. �
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The following statement shows that the classical Cantor-Bendixon induc-
tive procedure does not have any variant allowing to separate a “nowhere
perfect” core of a Menger space from its “σ-compact part”.

Proposition 6.5. There exists a Baire dense nowhere locally compact sub-
group I of P(ω) with the Menger property such that for every σ-compact sub-
space S of I there exists K ⊂ I homeomorphic to P(ω) such that K∩S = ∅.

Proof. It is well-known that there exists a non-meager Menger filter F on
ω, see, e.g., the proof of Theorem 1 in [20]. Let I be the dual ideal of
F . Then I is Menger, nowhere locally compact, and non-meager being
homeomorphic to F . Also, I is a subgroup of P(ω), and hence it is Baire
because each non-meager topological group is so. Note that I contains
copies of P(ω): for every infinite I ∈ I the set P(I) ⊂ I is such a copy. Let
us fix X ⊂ I homeomorphic to P(ω) and a σ-compact S ⊂ I. Then there
exists I ∈ I \ (S +X ) because S +X is σ-compact and I is not. It follows
that K := {I} − X is a copy of P(ω) disjoint from S. �
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