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THE DEFINABLE TREE PROPERTY

FOR SUCCESSORS OF CARDINALS

ALI SADEGH DAGHIGHI1, MASSOUD POURMAHDIAN2 †

Abstract. Strengthening a result of Amir Leshem [7], we prove that the consistency

strength of holding GCH together with definable tree property for all successors of regular

cardinals is precisely equal to the consistency strength of existence of proper class many

Π1
1
- reflecting cardinals. Moreover it is proved that if κ is a supercompact cardinal and

λ > κ is measurable, then there is a generic extension of the universe in which κ is a

strong limit singular cardinal of cofinality ω, λ = κ+, and the definable tree property

holds at κ+. Additionally we can have 2κ > κ+, so that SCH fails at κ.

1. Introduction

The tree property for a regular cardinal κ is the statement that there is no κ - Aronszajn

tree or equivalently every κ - tree has a cofinal branch. In general constructing a model for

tree property on a regular cardinal κ is not trivial and needs large cardinal assumptions.

The problem becomes even harder and needs stronger large cardinal assumptions when one

tries to get tree property on several successive regular cardinals. In this direction we have:

Proposition 1.1. The following results are known about tree property:

(1) (Konig) The tree property holds on ℵ0.

(2) (Aronszajn) The tree property does not hold on ℵ1.

(3) (Specker) For every infinite cardinal κ if κ<κ = κ then the tree property does not hold on

κ+. Specially if CH holds then ℵ2 does not have the tree property.

†The authors would like to thank Mohammad Golshani for helpful discussions during writing this paper

and generous sharing of his ideas regarding the proof of the theorem 1.7.
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(4) (Silver - Mitchell) The tree property on ℵ2 is equiconsistent with the existence of a weakly

compact cardinal.

(5) (Abraham) Assuming the consistency of a supercompact cardinal and a weakly compact

above it, it is consistent to have tree property on both ℵ2 and ℵ3.

(6) (Magidor) The consistency of tree property on both ℵ2 and ℵ3 implies the consistency of

”0♯ exists”.

(7) (Cummings - Foremann) Assuming the existence of an ω-sequence of supercompact car-

dinals, it is consistent that the tree property holds for all ℵn’s, 1 < n < ω.

Proof. For (1), (2), (3) see [6]. (4) is proved in [8]. For (5) and (6) see [1]. The result (7) is

proved in [3]. �

An importnat point about the Aronszajn’s result in proposition 1.1 is the essential use

of AC in his construction. Thus the existing ℵ1 - Aronszajn tree is not definable. Amir

Leshem [7] proved that assuming existence of a Π1
1 - reflecting cardinal, it is consistent that

a definable version of tree property (definition 1.3) holds on ℵ1.

Definition 1.2. An inaccessible cardinal κ is Πm
n - reflecting, if for every A ⊆ Vκ definable

over Vκ with parameters from Vκ and for every Πm
n - sentence Φ, if (Vκ,∈, A) |= Φ then

there is an α < κ such that (Vα,∈, A ∩ Vα) |= Φ.

Definition 1.3. Let κ be a regular cardinal. A κ - tree (T,<T ) is definable if its underlying

set is κ, and the relation <T is Σn - definable in the structure (Hκ,∈) for some natural

number n. We say the definable tree property holds on κ if every definable κ - tree has a

cofinal branch.

Remark 1.4. In his paper [7], Leshem considers several variants of definable tree property,

including what he calls definable tree property in the strict, wide and very wide sense. His

results are about definable tree property in the strict sense which is exactly what we stated

in the definition 1.3. According to Leshem’s definitions, every definable κ - tree in the strict

sense is definable in the wide sense and every definable κ - tree in the wide sense is definable

in the very wide sense. Also every definable κ - tree (T,<T ) in the wide sense is isomorphic

to a κ - tree (κ,<∗) that is definable in the strict sense. So it follows that without losing
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generality one can assume that the definable tree property in the strict and wide sense are

identical while the definable tree property in the very wide sense is different from them.

Theorem 1.5. (Leshem) The following statements are equiconsistent:

(1) The definable tree property holds on ℵ1.

(2) There is a Π1
1 - reflecting cardinal.

Proof. [7]. �

In section 2 we generalize Leshem’s result to the consistency of definable tree property for

proper class of all successors of regular cardinals using the existence of proper class many

Π1
1 - reflecting cardinals, a large cardinal assumption weaker than the existence of a Mahlo

cardinal and much weaker than what is theoretically expected for achieving tree property

in the usual sense for this class of regular cardinals.

Main Theorem 1.6. The following statements are equiconsistent:

(1) The definable tree property on successor of every regular cardinal.

(2) There are proper class many Π1
1 - reflecting cardinals.

The situation for the consistency of holding tree property at successor of a singular

cardinal is generally more complicated than the case of regulars. By a result of Magidor and

Shelah [9] it is known that if λ is the singular limit of λ+ - supercompact cardinals then λ+

has the tree property. This fact is used by them to prove the consistency of tree property

on ℵω+1 from a very strong large cardinal assumption. Later Sinapova [12] decreased the

necessary large cardinal assumption for proving the consistency of tree prperty on ℵω+1 to

the existence of ω - many supercompact cardinals.

On the other hand, answering an old question ofWoodin, Neeman [11] produced, assuming

the existence of ω-many supercompact cardinals, a model in which SCH fails at a singular

strong limit cardinal κ of cofinality ω and κ+ has the tree property. But in Neeman’s model,

GCH fails cofinally often below κ, and it is still an open problem if we can have a singular

cardinal κ such that GCH holds below κ, 2κ > κ+, and κ+ has the tree property.

In section 3 we prove the main theorem 1.7 which gives an affirmative answer to this ques-

tion if the tree property is replaced with the definable tree property. Our proof also reduces
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the large cardinal strength from the existence of infinitely many supercompact cardinals to

the existence of a supercompact cardinal and a measurable above it.

Main Theorem 1.7. Assume GCH holds, κ is supercompact and λ > κ is measurable.

Then there is a generic extension of the universe in which:

(1) κ is a strongly limit singular cardinal of cofinality ω,

(2) No bounded subsets of κ are added, in particular GCH holds below κ,

(3) λ = κ+ and the definable tree property holds at λ,

(4) 2κ = |j(λ)|, in particular if (in V ) |j(λ)| > λ+, then SCH fails at κ.

The generic extension in which the above theorem holds is essentially the extension ob-

tained by supercompact extender based Prikry forcing introduced by Merimovich in [10].

Our results show that the definable version of tree property is so different in nature

from its original form and needs much weaker large cardinal assumptions for proving its

consistency.

2. Definable tree property at successor of all regular cardinals

The entire argument in this section is for proving the main theorem 1.6.

2.1. From definable tree property to reflecting cardinals. In this subsection we prove

the (1) to (2) part of the main theorem 1.6 by showing that assuming definable tree property

for successors of regular cardinals in V , Π1
1 - reflecting cardinals form an unbounded subclass

of cardinals in L (theorem 2.6). First let’s review some facts and definitions from [7].

Definition 2.1. A cardinal κ has the extension property if and only if for every natural

number n and for every set A ⊆ Vκ definable over Vκ with parameters from Vκ, there is a

transitive set X, and a subset AX of X such that κ ∈ X and (Vκ,∈, A) ≺n (X,∈, AX).

Proposition 2.2. For a cardinal κ the following statements are equivalent:

(1) κ has the extension property.

(2) For every natural number n, there is a transitive set X which κ ∈ X and the structure

(X,∈) is a Σn - elementary end extension of (Vκ,∈).

Proof. [7]. �
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Proposition 2.3. For a cardinal κ the following statements are equivalent:

(1) κ is Π1
1 - reflecting.

(2) κ is inaccessible and has the extension property.

Proof. [7] theorem 3.2. �

Proposition 2.4. The definable tree property holds on every Π1
1 - reflecting cardinal.

Proof. [7] lemma 3.3. �

Lemma 2.5. Let κ be a successor of a regular cardinal, if κ has the definable tree property

in V then κ is Π1
1 - reflecting in L.

Proof. Similar to the proof of theorem 5.1. in [7]. �

Theorem 2.6. If the definable tree property holds for proper class many regular cardinals

in V then there are proper class many Π1
1 - reflecting cardinals in L.

Proof. Assume that Π1
1 - reflecting cardinals in L are bounded below a cardinal λ. There is

a regular cardinal κ > λ such that definable tree property holds for κ in V . By lemma 2.5,

κ is a Π1
1 - reflecting cardinal in L greater than λ, a contradiction. �

2.2. From reflecting cardinals to definable tree property. In this subsection we are

going to prove the (2) to (1) part of the theorem 1.6 using an Easton reverse iteration of

Levy collapses of reflecting cardinals (theorem 2.12). At the first setp we need to prove that

small forcings preserve the Π1
1 - reflecting cardinals.

Lemma 2.7. If κ is a Π1
1 - reflecting cardinal and P is a notion of forcing which |P| < κ

then κ remains Π1
1 - reflecting in V P.

Proof. Assume that κ is a Π1
1 - reflecting cardinal and |P| < κ. As small forcings preserve

inaccessibility of κ, by proposition 2.3 it suffices to show that κ has the extension property

in V [G]. Using the equivalence in proposition 2.2 it suffices to show that in V [G] for every

natural number n, there is a transitive set Y such that κ ∈ Y and the structure (Y,∈) is

a Σn - elementary end extension of (Vκ,∈). Note that by smallness of forcing notion we
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have V
V [G]
κ = Vκ[G]. Thus it is sufficient to show that for every natural number n, there is

a transitive set Y ∈ V [G] which κ ∈ Y and the structure (Y,∈) is a Σn - elementary end

extension of (Vκ[G],∈).

Fix the natural number n, without losing generality we may assume that the forcing

notion P in V is defined by a formula of complexity Σm. Choose the sufficiently large

natural number t ≥ m,n. By extension property of κ in V as a Π1
1 - reflecting cardinal, we

get a transitive set X ∈ V and a set PX ⊆ X such that κ ∈ X and the structure (X,∈,PX)

is a Σt - elementary extension of (Vκ,∈,P). In fact PX = P because by elementary extension

the structure (X,∈,PX) is agree with (Vκ,∈,P) on the notion of ∈.

Now we show that (Vκ[G],∈) ≺n (X [G],∈) which completes the proof because X [G] is a

transitive set in V [G] with our required property for Y . In order to do this fix a first order

Σn-formula ϕ(x1, · · · , xn). We have V [G] |= ϕ(a1, · · · , an) iff ∃p ∈ G p 
V
P
ϕ(ȧ1, · · · , ȧn).

Note that by smallness of forcing we may assume that P ∈ Vκ and so we can consider the

forcing relation 
V as 
Vκ , thus the last statement is equivalent to ∃p ∈ G (Vκ,∈,P) |=

p 
P ϕ(ȧ1, · · · , ȧn). As t was chosen sufficiently large we may assume that it exceeds the

complexity of the formula p 
P ϕ(ȧ1, · · · , ȧn) which is a Σs - formula like ψϕ(p,P, ȧ1, · · · , ȧn).

Thus by Σt - elementary extension, ∃p ∈ G (Vκ,∈,P) |= p 
P ϕ(ȧ1, · · · , ȧn) holds iff

∃p ∈ G (X,∈,P) |= p 
P ϕ(ȧ1, · · · , ȧn). Equivalently X [G] |= ϕ(a1, · · · , an) which means

(Vκ[G],∈) ≺n (X [G],∈) and so κ is a Π1
1 - reflecting cardinal in V [G]. �

We need to work with the notion of a weakly homogenous forcing that is defined as

follows:

Definition 2.8. A notion of forcing P is called weakly homogeneous if and only if for every

two conditions p, q in P there is an automorphism π of P such that π(p) and q are compatible.

An important property of weakly homogeneous forcings is that they don’t add any new

definable set with parameters from the ground model.

Lemma 2.9. Let V [G] be a forcing extension of V by a weakly homogeneous forcing notion

and S ∈ V [G] is a subset of V definable in V [G] using parameters from V . Then S ∈ V .

Proof. [5] proposition 2.2. �
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The next observation is that κ+ - closed weakly homogeneous forcings preserve definable

tree property on κ+.

Lemma 2.10. If definable tree property holds on κ+ and P is a κ+ - closed weakly homo-

geneous notion of forcing then in V P, κ+ has the definable tree property.

Proof. Assume the definable tree property holds on κ+ in V and T is a κ+ - tree in V [G]

which is definable in the structure (H
V [G]

κ+ ,∈). Thus there is a first order formula with

parameters from H
V [G]
κ+ which defines T . By κ+ - closure of forcing we have H

V [G]
κ+ = HV

κ+

and so T is definable in V [G] with parameters from V . Thus by homogeneity of forcing P

and lemma 2.9, T ∈ V .

T , dom(<T ), ran(<T ) are sets of ordinals. All these sets are definable in V [G] and so lie

in V . Since for homogeneous forcings every set of ordinals definable in V [G] with parameters

from V , then both T and <T are definable in V as well.

Now by κ+ - closure property of forcing we know that cardinals ≤ κ+ are preserved and

so T is a κ+ - tree in the ground model. Consequently by definable tree property for κ+ in

V , T has a cofinal branch b in V . Again by κ+ - closure of forcing, b is a cofinal branch for

T in the generic extension too. So in V [G] the definable tree property holds on κ+. �

Lemma 2.11. Let κ be a regular cardinal and λ > κ is a Π1
1 - reflecting cardinal, then in

V Col(κ,<λ) we have κ+ = λ and the definable tree property holds on κ+.

Proof. A straightforward modification of the proof of theorem 1.5. �

Theorem 2.12. If there are proper class many Π1
1 - reflecting cardinals in V , then there is a

generic extension of V by a weakly homogeneous forcing such that GCH holds and successor

of every regular cardinal has the definable tree property.

Proof. Let 〈κα : α ∈ Ord〉 be an increasing continuous sequence of cardinals such that

κ0 = ℵ0, and for each successor ordinal α, κα is a Π1
1 - reflecting cardinal and no κα, for

limit ordinal α, is inaccessible (otherwise cut the universe).

Let P = 〈〈Pα | α ≤ Ord〉, 〈Q̇α | α ∈ Ord〉〉 be the reverse Easton iteration such that

(1) P0 is the trivial forcing,
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(2) For α = 0, or α a successor ordinal, 
α ” Q̇α = Ċol(κα, < κα+1) ”,

(3) For limit ordinal α,
α ” Q̇α = Ċol(κ+α , < κα+1) ”.

Our defined forcing notion has the following properties:

Lemma 2.13. Let G be P-generic over V . Then

(1) CARDV [G] = {κα : α ∈ Ord} ∪ {κ+α : α ∈ Ord, α is a limit ordinal },

(2) If λ is successor of a regular cardinal in V [G], then λ = κα+1, for some α,

(3) If α = 0 or α is a successor ordinal, then P ≃ Pα ∗ Ṗ[α,∞), where 
α ” Ṗ[α,∞) is κα

- closed and weakly homogeneous ”.

(4) If α is a limit ordinal, then P ≃ Pα ∗ Ṗ[α,∞), where 
α ” Ṗ[α,∞) is κ+α -closed and

weakly homogeneous ”.

(5) GCH holds in V [G].

Proof. The proof is standard. The homogeneity part follows from the work of Friedman-

Dobrinen [4]. �

Now note that in V [G] the definable tree property holds for successor of every regular

cardinal. To see this let λ be the successor of a regular cardinal in V [G]. By part (2) of

lemma 2.13, there is an ordinal α such that λ = κα+1. Then we have the following cases:

Case 1: α = 0 or α is a successor ordinal.

As κα+1 is a Π1
1 - reflecting cardinal in V and all steps of our forcing up to Pα are small

with respect to cardinal κα+1, it follows from lemma 2.7 that κα+1 remains Π1
1 - reflecting

in V Pα . By definition of our iteration, we force with Ċol(κα, < κα+1) in V Pα . By lemma

2.11, λ will have definable tree property in V Pα+1. Also if we split our iteration at α as

P ≃ Pα ∗ Ṗ[α,∞), then by part (3) of lemma 2.13 the tail forcing at step α is κα - closed and

weakly homogeneous. If α is a successor ordinal like β + 1 then by lemma 2.10 it follows

that the already forced definable tree property on other successors of regular cardinals less

than λ which are in the form θ = κγ+1 for some γ < β, won’t be destroyed by tail forcing

because it is weakly homogeneous and has enough closure. Also in the case α = 0 there is

no successor of a regular cardinal below λ and so we have nothing to prove.

Case 2: α is a limit ordinal.
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Note that by continuity of the sequence 〈κα : α ∈ Ord〉, we have κα = sup{κβ | β < α}. By

smallness of forcing up to stage α with respect to κα+1, κα+1 remains Π1
1 - reflecting in V Pα .

Thus the inequality κα < κ+α < κα+1 holds in V Pα . By definition of our iteration we force

with Ċol(κ+α , < κα+1) in this stage which by lemma 2.11 makes the definable tree property

on κα+1 true in V Pα+1 . By part (4) of lemma 2.13 if we split our iteration as P ≃ Pα∗ Ṗ[α,∞),

the tail forcing is weakly homogeneous and κ+α - closed which by lemma 2.10 is sufficient to

preserve the already forced definable tree property on all successors of regular cardinals less

than λ = κα+1. �

3. Definable tree property at successor of a singular cardinal

In this section we give the proof of the main theorem 1.7.

3.1. Supercompact extender based Prikry forcing. In this subsection, we present Me-

rimovich’s supercompact extender based Prikry forcing which appeared in [10]. We present

it in some details as we need it for later use. For each α < j(λ) let λα be minimal η < λ

such that α < j(η), and let E(α) ⊆ P (λ) be defined by

A ∈ E(α) ⇔ α ∈ j(A).

Note that each E(α) is a κ-complete ultrafilter on λ and it has concentrated on λα. Also let

iα : V → Nα ≃ Ult(V, E(α)).

Finally put

E = 〈〈E(α) : α < j(λ)〉, 〈πβ,α : β, α < j(λ), α ∈ range(iβ)〉〉

to be the extender derived from j, where πβ,α : λ → λ is such that j(πβ,α)(β) = α (such

a πβ,α exists as α ∈ range(iβ)). Let i : V → N ≃ Ult(V, E) be the resulting extender

embedding. We may assume that j = i.

Definition 3.1. Let d ∈ [j(λ)]<λ be such that κ, |d| ∈ d. Then ν ∈ OB(d) if the following

conditions hold:

(1) ν : dom(ν) → λ, where dom(ν) ⊆ d,

(2) κ, |d| ∈ dom(ν),

(3) |ν| ≤ ν(|d|),

(4) ∀α < λ (j(α) ∈ dom(ν) ⇒ ν(j(α)) = α),
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(5) α ∈ dom(ν) ⇒ ν(α) < λα,

(6) α < β in dom(ν) ⇒ ν(α) < ν(β).

Also for ν0, ν1 ∈ OB(d), set ν0 < ν1 if and only if

(6) dom(ν0) ⊆ dom(ν1),

(7) For all α ∈ dom(ν0) \ j[λ], ν0(α) < ν1(α).

We now define the forcing notion P∗(E, κ, λ) as follows:

Definition 3.2. P∗(E, κ, λ) consists of all functions f : d → λ<ω, where d ∈ [j(λ)]<λ,

κ, |d| ∈ d, and such that

(1) For any j(α) ∈ d, f(j(α)) = 〈α〉,

(2) For any α ∈ d \ j[λ], there is some k < ω such that

f(α) = 〈f0(α), . . . , fk−1(α)〉 ⊆ λα

is a finite increasing subsequence of λα. For f, g ∈ P∗(E, κ, λ),

f ≤∗
P∗(E,κ,λ) g ⇔ f ⊇ g.

Remark 3.3. 〈P∗(E, κ, λ),≤∗
P∗(E,κ,λ)〉 ≈ Add(λ, |j(λ)|).

Definition 3.4. Assume d ∈ [j(λ)]<λ and κ, |d| ∈ d. Let T ⊆ OB(d)<ξ(1 < ξ ≤ ω) and

n < ω. Then

(1) Levn(T ) = T ∩OB(d)
n+1

,

(2) SucT (〈〉) = Lev0(T ),

(3) SucT (〈νo, . . . , νn−1〉) = {µ ∈ OB(d) : 〈νo, . . . , νn−1, µ〉 ∈ T }.

Definition 3.5. Assume d ∈ [j(λ)]<λ and κ, |d| ∈ d. Let T ⊆ OB(d)<ξ(1 < ξ ≤ ω). For

〈ν〉 ∈ T, let

T〈ν〉 = {〈νo, . . . , νk−1〉 : k < ω, 〈ν, νo, . . . , νk−1〉 ∈ T }

and define by recursion for 〈νo, . . . , νn−1〉 ∈ T,

T〈νo,...,νn−1〉 = (T〈νo,...,νn−2〉)〈νn−1〉.

Definition 3.6. Assume d ∈ [j(λ)]<λ and κ, |d| ∈ d. We define the measure E(d) on OB(d)

by
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E(d) = {X ⊆ OB(d) : mc(d) ∈ j(X)},

where mc(d) = {〈j(α), α〉 : α ∈ d}.

Definition 3.7. Assume d ∈ [j(λ)]<λ and κ, |d| ∈ d. Let T ⊆ OB(d)
<ω

be a tree. T is

called an E(d)-tree, if

(1) ∀〈ν0, . . . , νn−1〉 ∈ T (ν0 < · · · < νn−1),

(2) ∀〈ν0, . . . , νn−1〉 ∈ T (SucT (〈ν0, . . . , νn−1〉) ∈ E(d)).

Definition 3.8. Assume c ∈ [j(λ)]<λ and A ⊆ OB(d)
<ω
. Then

A ↾ c = {〈ν0 ↾ c, . . . , νn−1 ↾ c〉 : n < ω, 〈ν0, . . . , νn−1〉 ∈ A}.

Remark 3.9. For f ∈ P∗(E, κ, λ), we use OB(f), E(f) and mc(f) to denote OB(dom(f)), E(dom(f))

and mc(dom(f)) respectively.

We are now ready to define our main forcing notion, P(E, κ, λ).

Definition 3.10. p ∈ P(E, κ, λ) iff p = 〈fp, Ap〉 where

(1) fp ∈ P∗(E, κ, λ),

(2) Ap is an E(fp)-tree.

Definition 3.11. Let p, q ∈ P(E, κ, λ). Then p ≤∗ q (p is a Prikry extension of q) iff:

(1) fp ≤∗
P∗(E,κ,λ) f

q,

(2) Ap ↾ dom(f q) ⊆ Aq.

Definition 3.12. Let f ∈ P∗(E, κ, λ), ν ∈ OB(f) and suppose ν(κ) > max(f(κ)). Then

f〈ν〉 ∈ P∗(E, κ, λ) has the same domain as f and

f〈ν〉(α) =











f(α)⌢〈ν(α)〉 if α ∈ dom(ν), ν(α) > max(f(α)),

f(α) Otherwise.

Given 〈ν0, . . . , νn−1〉 ∈ OB(f)n such that ν0(κ) > max(f(κ)) and v0 < · · · < νn−1, define

f〈ν0,...,νn−1〉 by recursion as

f〈ν0,...,νn−1〉 = (f〈ν0,...,νn−2〉)〈νn−1〉.

Let p ∈ P(E, κ, λ), and suppose 〈ν0, . . . , νn−1〉 ∈ Ap is such that ν0(κ) > max(fp(κ)) and

v0 < · · · < νn−1. Then
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p〈ν0,...,νn−1〉 = 〈fp

〈ν0,...,νn−1〉
, Ap

〈ν0,...,νn−1〉
〉.

Remark 3.13. Whenever the notation 〈ν0, . . . , νn−1〉 is used, where ν0, . . . , νn−1 ∈ OB(f),

it is implicitly assumed ν0(κ) > max(f(κ)) and v0 < · · · < νn−1.

Definition 3.14. Let p, q ∈ P(E, κ, λ). Then

p ≤ q ⇔ ∃〈ν0, . . . , νn−1〉 ∈ Aq (p ≤∗ q〈ν0,...,νn−1〉).

Let us state the main properties of the forcing notion P(E, κ, λ). The proof can be found

in [10].

Theorem 3.15. Let G be P(E, κ, λ)-generic over V. Then

(1) 〈P(E, κ, λ),≤〉 satisfies the λ+ − c.c.,

(2) 〈P(E, κ, λ),≤,≤∗〉 satisfies the Prikry property,

(3) 〈P(E, κ, λ),≤∗〉 is κ-closed,

(4) cfV[G](κ) = ω,

(5) All V-cardinals in the interval (κ, λ) are collapsed,

(6) λ is preserved in V[G],

(7) In V [G], 2κ = |j(λ)|.

It follows that V and V[G] have the same bounded subsets of κ and (κ+)V[G] = λ.

3.2. Projection of forcing notions. Recall that we assumed λ > κ is a measurable

cardinal. Let i : V → N witnesses this; so crit(i) = λ and λN ⊆ N. Consider the forcing

notions P(E, κ, λ) and i(P(E, κ, λ)). Also note that by closure of N under λ-sequences, we

have

P(E, κ, λ) = P(E, κ, λ)N ,

also it is clear that

i(P(E, κ, λ)) = P(i(E), κ, i(λ))N .

Now by working in N , define π : i(P(E, κ, λ)) → P(E, κ, λ) as follows: let p = 〈fp, Ap〉 ∈

i(P(E, κ, λ)). Set

π(p) = 〈fp ↾ (dom(fp) ∩ j(λ)), Ap ↾ (dom(fp) ∩ j(λ))〉.

The next lemma can be proved easily.
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Lemma 3.16. (In N) π is a projection of forcing notions, in fact

(1) π(1i(P(E,κ,λ))) = 1P(E,κ,λ),

(2) π is order preserving with respect to both ≤ and ≤∗ relations,

(3) If p ∈ P(E, κ, λ), q ∈ i(P(E, κ, λ)) and p ≤ π(q), then there exists q∗ ≤ q such that

π(q∗) ≤∗ p.

Proof. Parts (1) and (2) can be proved easily, so we prove the part (3). Thus let p ∈

P(E, κ, λ), q ∈ i(P(E, κ, λ)) and suppose that p ≤ π(q). Let q∗ = 〈f∗, A∗〉 ∈ i(P(E, κ, λ)) be

such that:

(1) dom(f∗) = dom(fp) ∪ dom(f q),

(2) For α ∈ dom(fp), f∗(α) = fp(α),

(3) For α ∈ dom(f q) \ dom(fp), f∗(α) = f q(α),

(4) A∗ is an E(f∗)-tree,

(5) A∗ ↾ dom(fp) ⊆ Ap,

(6) A∗ ↾ dom(f q) ⊆ Aq.

Then it is clear that q∗ ≤ q and that π(q∗) ≤∗ p. The lemma follows. �

3.3. Homogeneity of the quotient forcing. Assume H is i(P(E, κ, λ))-generic over V

and let G be the filter generated by π[H ]. By Lemma 3.16 G is P(E, κ, λ)-generic over V ,

and in V [G], we can consider the quotient forcing:

i(P(E, κ, λ))/G = {p ∈ i(P(E, κ, λ)) : π(p) ∈ G}.

In the next lemma we show that the above forcing has enough homogeneity properties. We

will use this to show that some objects which are in V [H ] were already in V [G]. For a forcing

notion P and a condition p ∈ P, set P ↓ p = {q ∈ P : q ≤ p} consists of all extensions of p in

P. The homogeneity of our quotient forcing follows from the next theorem.

Lemma 3.17. (Homogeneity lemma) Suppose p, q ∈ i(P(E, κ, λ)) so that π(p) = π(q). Then

there are p∗ ≤ p, q∗ ≤ q and an isomorphism

Φ : i(P(E, κ, λ)) ↓ p∗ ∼= i(P(E, κ, λ)) ↓ q∗.

Proof. Let p1 ≤ p and q1 ≤ q be such that
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(1) dom(fp1) = dom(gq1), call it d,

(2) Ap1 = Aq1 , call it A.

For each n < ω and every 〈ν0, . . . , νn−1〉 ∈ A let T (ν0, . . . , νn−1) ⊆ A〈ν0,...,νn−1〉 be such that

for all 〈ν〉 ∈ T (ν0, . . . , νn−1) and all α ∈ dom(ν),

ν(α) > max(fp1(α)) ⇔ ν(α) > max(f q1(α)).

By Lemma 3.12 [10], there are p∗ ≤∗ p1 and q∗ ≤∗ q1 such that

(3) fp∗

= fp1 and f q∗ = f q1 ,

(4) For each n < ω and 〈ν0, . . . , νn−1〉 ∈ Ap∗

,

p∗〈ν0,...,νn−1〉
≤∗ 〈fp1

〈ν0,...,νn−1〉
, T (ν0, . . . , νn−1)〉,

(5) For each n < ω and 〈ν0, . . . , νn−1〉 ∈ Aq∗ ,

q∗〈ν0,...,νn−1〉
≤∗ 〈f q1

〈ν0,...,νn−1〉
, T (ν0, . . . , νn−1)〉.

We now define an isomorphism Φ from i(P(E, κ, λ)) ↓ p∗ onto i(P(E, κ, λ)) ↓ q∗ as follows:

Assume r ∈ i(P(E, κ, λ)) and r ≤ p∗. Let Φ(r) ∈ i(P(E, κ, λ)) be such that

(6) dom(fΦ(r)) = dom(f r),

(7) ∀α ∈ dom(f r) \ dom(fp∗

), fΦ(r)(α) = f r(α),

(8) ∀α ∈ dom(fp∗

), fΦ(r)(α) = f q∗(α) ∪ (f r(α) \ fp∗

(α)),

(9) AΦ(r) = Ar.

By our choice of T (ν0, . . . , νn−1)’s, Φ(r) is well-defined and it extends q∗, so Φ(r) ∈ i(P(E, κ, λ)) ↓

q∗ and

Φ : i(P(E, κ, λ)) ↓ p∗ → i(P(E, κ, λ)) ↓ q∗

is well-defined. It is also easily seen that Φ is in fact an isomorphism. The lemma follows. �

3.4. Completing the proof of main theorem 1.7. Finally we are ready to complete the

proof of theorem 1.7. Let V [G] be the generic extension obtained by P(E, κ, λ). By theorem

3.15, in V [G], κ is strong limit singular of cofinality ω and κ+ = λ. Further if |j(λ)| > λ,

then 2κ > κ+ in V [G]. So it suffices to show that the definable tree property holds in V [G]

at κ+ = λ.

Note that HV [G](λ) = HN [G](λ). Now let T ∈ V [G] be a λ-tree which is definable in

HV [G](λ) using parameters from HV [G](λ). Also consider the forcing i(P(E, κ, λ)), and let
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H be i(P(E, κ, λ))-generic over V so that G is the filter generated by π[H ]; this is possible as

π is a projection map. We have i[G] = G ⊆ H, so we can lift i to an elementary embedding

i∗ : V [G] → N [H ]

which is definable in V [H ].

Then i∗(T ) ∈ N [H ] is an i∗(λ)-tree, and since i∗(λ) = i(λ) > λ, we can take some

x ∈ i∗(T )λ, the λ-th level of i∗(T ). Now consider

b = {y ∈ i∗(T ) : y <i∗(T ) x}.

Then b is a branch of T which lies in N [H ] ⊆ V [H ]. But b is definable in V [H ] using

parameters from V [G], and hence using the homogeneity lemma 3.17, b ∈ V [G]. Thus T has

a cofinal branch in V [G], and the result follows.

4. Open questions

We proved that the consistency strength of having definable tree property for successor

of every regular cardinal is exactly the consistency strength of having proper class many Π1
1

- reflecting cardinals. As it is stated in the part (7) of proposition 1.1, the existing proof for

the consistency of usual tree property for a much smaller subclass of successors of regular

cardinals, namely {ℵn | 1 < n < ω}, uses a very strong large cardinal assumption in order

of ω - many supercompacts. We also decreased the large cardinal assumption necessary for

proving the consistency of definable tree property at successor of a singular cardinal.

The question regarding the consistency and consistency strength of usual tree property

for successors of all regular cardinals is still open. The questions related to the consistency

of tree property for successors of all singular cardinals and also for all regular cardinals in

general are also open. Inspired by these open problems regarding the usual tree property,

the following similar questions about definable tree property arise:

Question 4.1. Is it consistent to have definable tree property for successor of every singular

cardinal? What is the consistency strength of this statement?

Question 4.2. Is it consistent to have definable tree property for all regular cardinals? What

is the precise consistency strength of it?
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