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Structural completeness in propositional logics of
dependence

Rosalie Iemhoff · Fan Yang

Abstract In this paper we prove that three of the main propositional logics of de-
pendence (including propositional dependence logic and inquisitive logic), none of
which is structural, are structurally complete with respect to a class of substitutions
under which the logics are closed. We obtain an analogues result with respect to sta-
ble substitutions, for the negative variants of some well-known intermediate logics,
which are intermediate theories that are closely related toinquisitive logic.

Keywords structural completeness· dependence logic· inquisitive logic· interme-
diate logic

1 Introduction

In recent years there have appeared many results on admissible rules in logics. The
diversity of the results show that the properties of admissibility vary from logic to
logic, and the complexity of some of the results show that describing these rules is
not always an easy matter. The admissible rules of a logic arethe rules under which
the logic is closed, meaning that one could add them to the logic without obtaining
new theorems. Since adding a derivable rule to a logic cannotalter that what can
be derived, derivable rules are always admissible, thus showing that the notion of
admissibility is a natural extension of the notion of derivability.
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For structural logics, which means logics that are closed under uniform substi-
tution, a rule is admissible if every substitution that unifies the premiss, unifies the
conclusion, where a substitutionσ unifies a formulaϕ in a logic if σϕ is derivable in
the logic. Until now, most logics for which the admissibility relation has been studied
are structural. Main examples are classical and intuitionistic propositional logic and
certain modal logics such asK,K4, andS4. Except for classical logic, all these logics
have nonderivable admissible rules and their admissibility relations are decidable and
have concise axiomatizations [6,13,15,20,21]. In recent years, admissibility has been
studied for a plethora of other logics as well. However, logics that are not structural,
have received less attention. In order to obtain a meaningful notion of admissibility
for such a logic one first has to isolate a set of substitutions, as large as one thinks pos-
sible, under which the logic is closed. Admissibility can then be studied with respect
to this class of substitutions.

In this paper we show that three of the main propositional logics of dependence,
none of which is structural, are structurally complete withrespect to the class offlat
substitutions. We obtain an analogues result, but then withrespect tostablesubsti-
tutions, for the negative variants of some well-known intermediate logics, which are
intermediate theories that are closely related to one of thelogics of dependence. As
a byproduct we develop an extension of the usual logics of dependence in which the
use of negation and the dependence atom is not restricted to propositional variables,
but to the much larger class of flat formulas instead.

We think the interest in these results lies in the fact that logics of dependence,
to be described below, are versatile and widely applicable nonclassical logics. And
knowing that many nonclassical logics have nontrivial adimissible rules, establishing
that in these logics all rules that are admissible (with respect to flat substitutions)
are derivable, provides a useful insight in the logics. Moreover, these results provide
one of the first examples of natural nonstructural logics forwhich admissibility is
studied. A paper in which various admissibility relations of nonstructural logics, the
same logics that we treat in Theorem 5.5, have been studied is[18], but the results
are different from the ones obtained here.

Dependence logicis a new logical formalism that characterizes the notion of “de-
pendence” in social and natural sciences. First-order dependence logic was intro-
duced by Väänänen [23] as a development ofHenkin quantifier[8] andindependence-
friendly logic [10]. Recently, propositional dependence logic (PD) was studied and
axiomatized in [22,26]. With a different motivation, Ciardelli and Roelofsen [4] in-
troduced and axiomatizedpropositional inquisitive logic(InqL), which can be re-
garded as a natural variant of propositional dependence logic. BothPD andInqL are
fragments ofpropositional downwards closed team logic(PT), which was studied
in [26] and essentially also in [3]. Dependency relations are characterized in these
propositional logics of dependence by a new type of atoms=( #»p,q), calleddepen-
dence atoms. Intuitively, the atom specifies thatthe proposition q depends completely
on the propositions#»p. The semantics of these logics is calledteam semantics, in-
troduced by Hodges [11,12]. The basic idea of this new semantics is that properties
of dependence cannot be manifested insinglevaluations, therefore unlike the case
of classical propositional logic, formulas in propositional logics of dependence are
evaluated onsetsof valuations (calledteams) instead.
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The three logicsPD, InqL andPT are of particular interest, because they are
all expressively complete, in the sense that they characterize all downwards closed
nonempty collections of teams. As a result of the feature of team semantics, the sets
of theorems of these logics are closed under flat substitutions, but not closed under
uniform substitution. As mentioned above, in this paper we prove that the three logics
are structurally complete with respect to flat substitutions.

In the study of admissible rules there is a technical detail that needs to be ad-
dressed. InPD andPT, negation and the dependence operator can only be applied
to atoms. Therefore, the only substitutions under which these logics are closed are
renamings, substitutions that replace atoms by atoms. However, theselogics can be
conservativily extended to logics that are closed under flatsubstitutions. These exten-
sions,PD andPT, are closed under flat substitutions, and for these logics, as well as
for InqL, the notion of admissibility with respect to flat substitutions is shown to be
equal to derivability (Theorem 5.4).

There is a close connection between inquisitive logic and certain intermediate log-
ics. The set of theorems of the former equals the negative variant of Kreisel-Putnam
logic (KP), which is equal to the negative variant of Medvedev logic (ML). It is open
whetherKP is structurally complete, whereasML is known to be structurally com-
plete but not hereditarily structurally complete. An interesting corollary we obtain in
this paper is that the negative variants of bothML andKP are hereditarily structurally
complete with respect to negative substitutions.

2 Logics of dependence

2.1 Syntax and semantics

We first define propositional downwards closed team logic. All of the logics of de-
pendence we consider in the paper are fragments of propositional downwards closed
team logic.

Definition 2.1 Let p,q, #»p = p1, . . . , pk be propositional variables. Well-formed for-
mulas ofpropositional downwards closed team logic(PT) are given by the following
grammar:

ϕ ::= p | ¬p | ⊥ | ⊤ |=( #»p,q) | ϕ ∧ϕ | ϕ ⊗ϕ | ϕ ∨ϕ | ϕ → ϕ .

We call the formulasp,¬p,⊥ and⊤ propositional atoms. The formula=( #»p,q) is
called adependence atom, and it shall be read as “q depends on#»p ”. The connective
⊗ is calledtensor(disjunction), and the connectives∨ and→ are calledintuitionistic
disjunctionandintuitionistic implication, respectively. The formulaϕ →⊥ is abbre-
viated as¬ϕ , and the team semantics to be given guarantees that the formula¬p and
p→⊥ are semantically equivalent.

Fragments ofPT formed by certain sets of atoms and connectives in the standard
way are called(propositional) logics of dependence. The following table defines the
syntax of the other logics of dependence we consider in this paper.
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Logic Atoms Connectives

Propositional dependence logic (PD) p,¬p,⊥,⊤,=( #»p,q) ∧,⊗
Propositional inquisitive logic (InqL) p,⊥,⊤ ∧,∨,→

Given any of the three logicsL ∈ {PD, InqL,PT}, letLL denote the language of
L. We say that a formulaϕ is inLL if all symbols inϕ belong toLL. Clearly,LInqL is
the same as the language of intuitionistic propositional logic or intermediate logics.
We will discuss the connection betweenInqL and intermediate logics in the sequel.
Note that formulas inLPD are assumed to be in(strict) negation normal form, in the
sense that negation is allowed only in front of propositional variables and dependence
atoms can not be negated. We will revisit the issue about negation in Section 3.1.

For the semantics, propositional logics of dependence adopt team semantics. A
teamis a set of valuations, i.e., a set of functionsv : Prop→{0,1}, where Prop is the
set of all propositional variables.

Definition 2.2 We inductively define the notion of a formulaϕ in LPT beingtrueon
a team X, denoted by X|= ϕ , as follows:

– X |= p iff for all v ∈ X, v(p) = 1;
– X |= ¬p iff for all v ∈ X, v(p) = 0;
– X |=⊥ iff X = /0;
– X |=⊤ for all teams X;
– X |= =( #»p,q) iff for all v,v′ ∈ X: v( #»p) = s′( #»p) =⇒ v(q) = v′(q);
– X |= ϕ ∧ψ iff X |= ϕ and X |= ψ ;
– X |= ϕ ⊗ψ iff there exist teams Y,Z ⊆ X with X= Y∪Z such that Y|= ϕ and

Z |= ψ ;
– X |= ϕ ∨ψ iff X |= ϕ or X |= ψ ;
– X |= ϕ → ψ iff for any team Y⊆ X: Y |= ϕ =⇒ Y |= ψ .

If X |= ϕ holds for all teamsX, then we say thatϕ is valid, denoted by|= ϕ . For
a finite set of formulasΓ , we writeΓ |= ϕ and say thatϕ is alogical consequenceof
Γ if X |=

∧

Γ =⇒ X |= ϕ holds for all teamsX. In caseΓ = {ϕ}, we write simply
ϕ |= ψ instead of{ϕ} |= ψ . If ϕ |= ψ andψ |= ϕ , then we writeϕ ≡ ψ and say
that ϕ andψ aresemantically equivalent. Two logics of dependenceL1 andL2 are
said to have thesame expressive powerif for every L1-formulaϕ , ϕ ≡ ψ for some
L2-formulaψ , and vice versa.

The logics of dependence mentioned above are defined as follows. Since in this
paper we consider the logics from a semantical point of view,using the team seman-
tics, we define their finitary consequence relations semantically.

Definition 2.3 (Consequence relations for logics of dependence) For a logic L ∈
{PD, InqL,PT}, formulasϕ and finite sets of formulasΓ , Γ ⊢L ϕ if and only if ϕ
and all formulas inΓ are in LL andΓ |= ϕ . ϕ is valid in L, or a theoremof L, if
⊢L ϕ , which is short for/0⊢L ϕ . Thus theorems ofPD andInqL are the restrictions of
the theorems ofPT toLPD andLInqL, respectively.

Because of the semantical definition of the consequence relation ⊢L, soundness
and completeness with respect to the team semantics trivially holds. We will see,
however, that there do exist genuine syntactic characterizations of dependence logics,
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as given in Theorem 2.7 and the comments thereafter. Since inthis paper the methods
are purely semantical, the semantically defined consequence relations suffice for our
aims.

We write ϕ(p1, . . . , pn) if the propositional variables occurring inϕ are among
p1, . . . , pn. Given a setV of propositional variables, avaluation on V is a function
v : V → {0,1}, and ateam on Vis a set of valuations onV.

Theorem 2.4 Let ϕ(p1, . . . , pn) be a formula andΓ a set of formulas inLPT, and X
and Y two teams. Then the following holds.

(Locality) If {v ↾ {p1, . . . , pn} : v∈ X}= {v ↾ {p1, . . . , pn} : v∈Y}, then

X |= ϕ ⇐⇒ Y |= ϕ .

(Downwards Closure Property) If X|= ϕ and Y⊆ X, then Y|= ϕ .
(Empty Team Property)/0 |= ϕ .
(Deduction Theorem)Γ ,ϕ |= ψ if and only ifΓ |= ϕ → ψ .
(Compactness Theorem) IfΓ |= ϕ , then there exists a finite set∆ ⊆ Γ such that

∆ |= ϕ .

Given a formulaϕ and a finite set{ϕi | i ∈ I} of formulas we introduce a meta-
symbol

⊔

and useϕ
⊔

i∈I ϕi as an abbreviation for the statement: For all teamsX:
X |= ϕi impliesX |= ϕ for all i ∈ I , andX |= ϕ impliesX |= ϕi for somei ∈ I .

Theorem 2.5 (Disjunction property) Letϕ be a formula and{ϕi | i ∈ I} a finite set
of formulas inLL. If ϕ

⊔

i∈I ϕi and|= ϕ , then|= ϕi for some i∈ I.

Proof Let V = {p1, . . . , pn} be the set of propositional variables occurring inϕ and
{ϕi | i ∈ I}. Since|= ϕ , for the teamX = {0,1}V , we have thatX |= ϕ . It follows
from ϕ

⊔

i∈I ϕi thatX |= ϕi for somei ∈ I . Noting that every teamY onV is a subset
of X, by the downwards closure property we obtain thatY |= ϕi , which implies|= ϕi

by locality.

A formula of PT is said to beclassical if it does not contain any dependence
atoms or intuitionistic disjunction. Classical formulasϕ of PT areflat, that is,

X |= ϕ ⇐⇒ ∀v∈ X, {v} |= ϕ

holds for all teamsX. The following lemma shows that classical tautologies ofPT

are exactly the tautologies of classical propositional logic.

Lemma 2.6 For any classical formulaϕ in LPT, identifying tensor disjunction with
classical disjunction ofCPC, we have that|=CPC ϕ ⇐⇒ |=PT ϕ .

Proof An easy inductive proof shows thatv |=CPC ϕ ⇐⇒ {v} |=PT ϕ for all valua-
tionsv and all classical formulasϕ .

Having the same syntax as intuitionistic logic, the logicInqL has a close relation-
ship with intermediate logics betweenND andML. In [4], a Hilbert-style deductive
system forInqL is given. The axioms of this system will play a role in this paper, so
we present the system in detail as follows.



6 Rosalie Iemhoff, Fan Yang

Theorem 2.7 ([4]) InqL is sound and strongly complete with respect to the following
Hilbert-style deductive system:

Axioms:
1. all theorems ofIPC
2. ¬¬p→ p for all p∈ Prop
3. all substitution instances ofNDk for all k ∈ N:

(NDk)
(

¬ϕ →
∨

1≤i≤k

¬ψi
)

→
∨

1≤i≤k

(¬ϕ →¬ψi).

Rule:
Modus Ponens:

ϕ → ψ ψ
ψ (MP)

Remark 2.8 InqL extended with dependence atoms is calledpropositional intuition-
istic dependence logic(PID) in the literature (see e.g., [25,26]). As noted in [25,26],
PID andInqL have the same expressive power, as dependence atoms are definable in
InqL:

=(p1, . . . , pn,q)≡ (p1∨¬p1)∧·· ·∧ (pn∨¬pn)→ (q∨¬q). (1)

Adding an axiom that corresponds to the above equivalence tothe deductive system
of InqL, one obtains a complete axiomatization forPID. For simplicity, we will not
discuss the logicPID in this paper, but we remark that results obtained in this paper
can be easily generalized toPID.

The logicPD was first axiomatized by a natural deduction system in [25,26], and
a Hilbert-style axiomatization and a labelled tableau calculus forPD can be found
in [22]. Based on these, a natural deductive system for the fragment ofPT without
dependence atoms was given in [3]. Adding to the deductive system in [3] obvious
rules for dependence atom that correspond to the equivalence in (1), one easily ob-
tains a complete natural deductive system for fullPT. Interested readers are referred
to the literature given for the exact definitions of the deductive systems. Throughout
this paper, we take for granted the strong completeness theorem for these logics.

It is important to note that the deductive systems forPD, InqL andPT donot ad-
mit uniform substitution. Here substitutions, a crucial notion in this paper, are defined
as follows. The definition is sufficiently general to apply toboth propositional logics
of dependence and intermediate logics that we consider later in the paper.

Definition 2.9 (Substitution) A substitutionof a propositional logic or theoryL is a
mappingσ from the set of all formulas inLL to the set of all formulas inLL, that
commutes with the connectives and atoms.

Definition 2.10 Let⊢L be a consequence relation of a logic or theoryL. A substitu-
tion σ is called a⊢L-substitutionif ⊢L is closed underσ , i.e., for all formulasϕ ,ψ
in LL,

ϕ ⊢L ψ =⇒ σ(ϕ) ⊢L σ(ψ).

If ⊢L is closed under all substitutions, then we say that⊢L is structural.

The consequence relations of the logicsPD, InqL andPT are not structural, be-
cause, for example,p⊗ p⊢PD p and⊢InqL ¬¬p→ p, but=(p)⊗=(p) 0PD =(p) and
0InqL ¬¬(p∨¬p)→ p∨¬p.
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2.2 Normal forms

In this section, we recall from [4] and [26] the disjunctive normal forms for formulas
of PD, InqL andPT. These normal forms, reminiscent of the disjunctive normal
form in classical logic, play an important role in the main proofs of this paper and are
defined as follows.

Fix V = {p1, . . . , pn}. LetX be a nonempty team onV. For each of the logicsPD,
InqL andPT, we define a formulaΘX as follows:

ΘX :=















⊗

v∈X

(pv(p1)
1 ∧·· ·∧ pv(pn)

n ) for PD, (2)

¬¬
∨

v∈X

(pv(p1)
1 ∧·· ·∧ pv(pn)

n ) for InqL, PT, (3)

wherep1 := p andp0 := ¬p and we stipulate thatΘ /0 := ⊥. The reader can ver-
ify readily that the above two formulas are semantically equivalent. This is why we
decide to be sloppy here and use the same notationΘX to stand for two syntactically
different formulas. We tacitly assume thatΘX is given by (2) in the context ofPD
and by (3) in the context ofInqL. ForPT we could as well have chosen (2) as the
definition ofΘX, as both defining formulas belong toLPT and are equivalent.

With respect to the domainV, the formulaΘX defines the teamX (module sub-
teams), as stated in the following lemma, whose proof is leftto the reader or see
[26].

Lemma 2.11 Let X and Y be teams on V. For the logicsPD, InqL andPT, we have
that Y |=ΘX ⇐⇒ Y ⊆ X.

The setJϕK = {X ⊆ {0,1}V : X |= ϕ} is nonempty (as /0∈ JϕK) anddownwards
closed, i.e.,Y ⊆ X ∈ JϕK =⇒Y ∈ JϕK. We say that a propositional logicL of depen-
dence isexpressively complete, if every nonempty downwards closed collectionK of
teams onV is definable by a formulaϕ in LL, i.e.,K = JϕK.

Theorem 2.12 ([4][26]) (i) All of the logicsPT, PD andInqL are expressively com-
plete and have the same expressive power.

(ii) (Normal Forms) Letϕ(p1, . . . , pn) be a formula inLPT or LPD or LInqL. There
exists a finite collection{Xi | i ∈ I} of teams on V such thatϕ

⊔

i∈I ΘXi . In partic-
ular, ϕ ≡

∨

i∈I ΘXi holds forPT andInqL.

Proof We only give a proof sketch. For (i), letK be a nonempty downwards closed
collection of teams onV. The formula

∨

X∈KΘX in LPT or LInqL satisfiesK =
J
∨

X∈KΘXK by Lemma 2.11. The proof for the logicPD follows from a different
argument; we refer the reader to [26] for details.

For every formulaϕ , the setJϕK is nonempty and downwards closed. Thus the
item (ii) follows from the proof of item (i).
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2.3 Intermediate logics

There is a close relationship between logics of dependence and intermediate theories
(i.e., theories between intuitionistic and classical logic), as first formulated in [4].
Here we describe this connection, and in the sections on projectivity and admissibility
we will treat dependence logics and intermediate theories side by side.

An intermediate theoryis a setL of formulas closed under modus ponens such
that IPC ⊆ L ⊆ CPC. An intermediate logicis an intermediate theory closed under
uniform substitution. The intermediate logics that are most relevant in this paper are
Maksimova’s logicND, Kreisel-Putnam logicKP and Medvedev’s logicML (“the
logic of finite problems”). It is well-known thatND ⊆ KP ⊆ ML, andML is the
maximal intermediate logic extendingND that has the disjunction property.

We call a substitutionσ stablein a logicL that has implication and negation in
its language ifσ(p) is stablein L, i.e.,⊢L σ(p) ↔ ¬¬σ(p), for all p ∈ Prop. It is
easy to verify that the substitution(·)¬, defined asp¬ = ¬p for all p ∈ Prop, is a
stable substitution in all intermediate logics. For any intermediate logicL, define its
negative variantL¬ as

L¬ = {ϕ | ϕ¬ ∈ L}.

Lemma 2.13 ([4]) LetL be an intermediate logic.

(i) L¬ is the smallest intermediate theory that containsL and¬¬p → p for every
p∈ Prop.

(ii) The consequence relation⊢L¬ of L¬ is closed under stable substitutions.
(iii) If L has the disjunction property, then so doesL¬.

Lemma 2.14 Let L be an intermediate logic such thatND ⊆ L. Every formula is
provably equivalent to a formula of the form

∨

i∈I ¬ϕi in L¬.

Proof The lemma follows essentially from [4]. Each formula¬ϕi is aΘX formula as
defined in (3) for some setX of valuations, and the proof makes essential use of the
axioms ofND and Lemma 2.13(i).

It was shown in [4] that the negative variants of all of the intermediate logics
betweenND andML (including KP) are identical. Propositional inquisitive logic
InqL is the negative variant of such logics. We state this and other properties ofInqL
in the following theorem.

Theorem 2.15 ([4]) (i) For any intermediate logicL such thatND ⊆ L ⊆ ML, we
have thatInqL= L¬.

(ii) InqL has the disjunction property and its consequence relation⊢InqL is closed
under stable substitutions.

There are many intermediate logics, includingND andKP, for which not much
is known about their admissible rules. In Theorem 5.5 we showthat the negative
fragment of intermediate logics betweenND andML is structurally complete with
respect to stable substitutions. Although we cannot immediately draw conclusions
from this about the admissibility in the original logics, wehope that our results can
be of help in the understanding of admissibility in these logics some day.
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3 Extensions of the logics and substitutions

3.1 Extensions of the logics

For intermediate logics andInqL, all possible substitutions are well-defined, meaning
that given a formula and a substitution in the language of thelogic, applying that
substitution to the formula results in a formula in that language. However, for the
other logics of dependence that we consider in this paper (i.e.,PD andPT), substitu-
tion is not well-defined. A counter example is the formulas=(p1, . . . , pn,q) and¬p,
for which the substitution instances=(σ p1, . . . ,σ pn,σq) and¬σ(p) only belongs to
LPD or/andLPT if σ maps every propositional variable to a propositional variable.

For the study of admissibility one has to isolate the (or a meaningful) set ofwell-
definedsubstitutions under which a consequence relation of a logicis closed. For this
purpose, in this section we expand the languages of the logicsPD andPT so as to
force flat substitutions to be well-defined, and we will show in the next section that
these extensions are closed under flat substitutions.

Definition 3.1 The following grammars define well-formed formulas of the extended
logics of dependence.

– Theextended propositional downwards closed team logic(PT):

ϕ ::= p | ⊥ | ⊤ |=( #»ϕ ,ϕ) | ¬ϕ | ϕ ∧ϕ | ϕ ⊗ϕ | ϕ ∨ϕ | ϕ → ϕ .

– Theextended propositional dependence logic(PD):

ϕ ::= p | ⊥ | ⊤ |=( #»α ,β ) | ¬ϕ | ϕ ∧ϕ | ϕ ⊗ϕ ,

where#»α ,β are flat formulas.

The extended logics have arbitrary negation as well-formedformulas. In the se-
quel we will give a semantics for the negation that is well conservative over the re-
stricted negation in the original logics but not found in theliterature. The extension
PT has dependence atoms with arbitrary arguments, while in theextensionPD we
only allow dependence atoms with flat arguments. The restriction for PD is made for
technical simplicity that we discuss in the sequel, but as weconsider flat substitutions
only, this limitation does not affect the generality of the results in this paper. Gener-
alized dependence atoms with flat arguments are also studiedin the context of modal
dependence logic, see [5][7].

Below we define the semantics of the new formulas. We first treat PT and then
PD.

Definition 3.2 Letϕ1, . . . ,ϕn,ψ be arbitrary formulas ofPT. Define

(a) X |==(ϕ1, . . . ,ϕn,ψ) iff X |=
∧n

i=1(ϕi ∨ (ϕi →⊥))→ (ψ ∨ (ψ →⊥));1

(b) X |= ¬ϕ iff X |= ϕ →⊥ iff {v} 6|= ϕ for all v ∈ X.

1 The authors would like to thank Ivano Ciardelli for suggesting this definition, see also [3].
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In order for these definitions to be well-defined they have to agree with previ-
ously defined notions. For the dependence atom the observation in (1) suffices. For
negation, it suffices forPT that¬ϕ has been defined as a shorthand forϕ →⊥, thus
the semantics for negation as given in item (b) coincides with that in this logic.

We turn toPD. To define the semantics of the new formulas we need the following
equivalence relation between valuations. Given a sequence#»ϕ = ϕ1 . . .ϕn of formulas,
define an equivalence relation∼ #»ϕ on teams as follows:

u∼ #»ϕ v iff ∀1≤ i ≤ n({u} |= ϕi ⇔ {v} |= ϕi).

Definition 3.3 Define

(a) for flat formulasα1, . . . ,αk,β of PD,

X |==( #»α ,β )≡df ∀v,v′ ∈ X(v∼ #»α v′ =⇒ v∼β v′); (4)

(b) full negation inPD as X |= ¬ϕ iff {v} 6|= ϕ for all v ∈ X.

We have to show that the notions defined in Definition 3.3 are extensions of the
corresponding notions forPD, and also special case of those ofPT. Obviously for the
formula=( #»p,q), the semantics given in item (a) coincides with the semantics given
in Definition 2.2, and we leave it to the reader to check that italso coincides with
Definition 3.2(a).

The negation defined in item (b) deserves more comments. It isstraightforward
from the definition that¬ϕ is always flat, and such defined negation coincides with
that ofPT. In the literature of first-order dependence logic, negation is usually treated
only syntactically, in the sense that a negated formula¬ϕ is defined to have the same
semantics as the unique formulaϕ∼ in negation normal formobtained by exhaus-
tively applying the De Morgan’s laws and some other syntactic rewrite rules. The
corresponding syntactic rewrite rules for propositional dependence logic are as fol-
lows:

p∼ 7→ ¬p ⊤∼ 7→ ⊥ (ϕ ∧ψ)∼ 7→ ϕ∼⊗ψ∼

(¬p)∼ 7→ p ⊥∼ 7→ ⊤ (ϕ ⊗ψ)∼ 7→ ϕ∼∧ψ∼

=( #»ϕ ,ψ)∼ 7→ ⊥
(5)

It is easy to see that the syntactic rewrite procedure for a negated formula¬ϕ of PD
defined as above always terminates on a unique dependence atom-free formulaϕ∼ in
negation normal form inLPD.

When applying the syntactic negation, special attention needs to be paid to dou-
ble negations of dependence atoms, i.e., formulas of the form¬¬=( #»a ,b), where the
variables#»a ,b are first-order or propositional. Following Hintikka’s game-theoretic
perspective of logic (see, e.g., [9]), the negation in logics of dependence is usually
treated as a connective upon reading which the two players inthe corresponding se-
mantic game swap their roles. This way¬¬=( #»a ,b) should have the same meaning
as=( #»a ,b), however, this reading is not consistent with the syntacticrewrite rules as
in (5) (see e.g., [19] for further discussions). To avoid ambiguity, most literature of
logics of dependence does not allow double negation to occurin front of dependence
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atoms. In this paper, in the extended logicPD we do include double negated depen-
dence atoms as well-formed formulas, but as we do not take thegame-theoretic ap-
proach to propositional logics of dependence, the semantics of double negated depen-
dence atoms is computed simply according to Definition 3.3(b), namely,¬¬=( #»p,q)
is always semantically equivalent to⊤ (noting that=( #»p,q) is always true on single-
ton teams). Given such interpretation of the double negateddependence atoms, the
negation defined in Definition 3.3(b) coincides with the syntactic negation given by
the rewrite rules in (5), as we will show in the next lemma. However, on the other
hand, in the context of first-order dependence logic, regardless how double negated
dependence atoms are treated, the negation defined as in Definition 3.3(b) doesnot
coincide with the syntactic negation given by the rewrite rules (rather, it corresponds
to the defined connective∼↓ in Hodges [11,12]). For instance, the reader who is
familiar with the semantics of first-order dependence logiccan easily verify that
M 6|={s} ∀x=(x) holds for all assignmentss on all modelsM, assuming that the do-
main of a model has at least two elements. Thus by Definition 3.3(b)M |=X ¬∀x=(x)
for all teamsX on all modelsM, namely¬∀x=(x) ≡ ⊤. However, by the syntactic
rewrite rules,(∀x=(x))∼ = ∃x(=(x))∼ = ∃x⊥.

Lemma 3.4 For any formulaϕ in LPD, we have that¬ϕ ≡ ϕ∼.

Proof We prove by induction onϕ thatX |= ¬ϕ ⇐⇒ X |= ϕ∼ for all teamsX.
The caseϕ = p or ⊥ or ⊤ is easy. Ifϕ = ¬p, thenϕ∼ = p and we have that

X |= ¬¬p ⇐⇒ ∀v∈ X : {v} 6|= ¬p ⇐⇒ ∀v∈ X : {v} |= p ⇐⇒ X |= p.
If ϕ = =( #»p,q), thenϕ∼ = ⊥ and we have thatX |= ¬=( #»p,q) ⇐⇒ ∀v ∈ X :

{v} 6|==( #»p,q) ⇐⇒ X = /0 ⇐⇒ X |=⊥.
If ϕ = ψ ∧ χ , thenϕ∼ = ψ∼⊗ χ∼ and we have that

X |= ¬(ψ ∧ χ) ⇐⇒∀v∈ X : {v} 6|= ψ ∧ χ
⇐⇒∃Y,Z ⊆ X s.t.(∀v∈Y : {v} 6|= ψ) and(∀u∈ Z : {u} 6|= χ)
⇐⇒∃Y,Z ⊆ X s.t.Y |= ¬ψ andZ |= ¬χ
⇐⇒∃Y,Z ⊆ X s.t.Y |= ψ∼ andZ |= χ∼

(by the induction hypothesis)

⇐⇒ X |= ψ∼⊗ χ∼.

If ϕ = ψ ⊗ χ , thenϕ∼ = ψ∼∧ χ∼ and we have by the induction hypothesis that

X |= ¬(ψ ⊗ χ) ⇐⇒∀v∈ X : {v} 6|= ψ ⊗ χ
⇐⇒∀v∈ X : {v} 6|= ψ and{v} 6|= χ
⇐⇒ X |= ¬ψ andX |= ¬χ
⇐⇒ X |= ψ∼∧ χ∼ (by the induction hypothesis).

It is evident from Definition 3.3(b) that the full negation ofPD is a semantic
connective. An k-ary connective> is called asemantic connective, if

ϕ1 ≡ ψ1, . . . , ϕk ≡ ψk =⇒ >(ϕ1, . . . ,ϕk)≡>(ψ1, . . . ,ψk).
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Lemma 3.4 states that the semantical negation ofPD defined in Definition 3.3(b) and
the syntactic negation given by (5) coincide. It is worth emphasizing that in contrast
to PD and other familiar logics with negation, the syntactic negation of first-order
dependence logic isnot a semantic connective (regardless how double negated de-
pendence atoms are treated), as shown by Burgess [1] and Vä¨anänen and Kontinen
[16]. For an illustration,∀x=(x)≡∀x∀y(x= y), whereas by the syntactic rewrite rules
(∀x=(x))∼ = ∃x⊥ 6≡ ∃x∃y(x 6= y) = (∀x∀y(x= y))∼.

The logicsPD andPT are expressively complete, therefore their extensions have
the same expressive power as the original ones. Thus it is straightforward to verify
that Theorem 2.4 and Theorem 2.12 hold also for the extended logicsPD andPT.
One can easily extend the deductive systems of the original logics by adding char-
acterization rules for the negation and generalized dependence atoms and prove the
sound and completeness theorems for the extensions. To characterize the negation,
to the deductive systems ofPT andPD one adds the obvious rules that character-
ize the equivalence between¬ϕ andϕ →⊥, and the obvious rules that characterize
the rewrite rules in (5), respectively. To characterize generalized dependence atoms,
to the deductive system ofPT one adds obvious rules that correspond to the equiv-
alence in Definition 3.2(a). ForPD, following the idea in [26] one generalizes the
rules for dependence atoms in the deductive system ofPD according to the equiva-
lence in Definition 3.2(a) in an obvious way. To prove the completeness theorem for
such obtained system ofPD, one observes that wheneverϕ1, . . . ,ϕn,ψ are flat,

=(ϕ1, . . . ,ϕn,ψ)≡
∨

f∈{0,1}X

⊗

v∈X

(ϕv(ϕ1)
1 ∧·· ·∧ϕv(ϕn)

n ∧ψ f (v)) (6)

holds, whereX = {0,1}{ϕ1,...,ϕn}, ϕ1
i = ϕi andϕ0

i = ¬ϕi , and modifies the definition
of a realizationof a generalised dependence atom accordingly. Note that if the ar-
gumentsϕ1, . . . ,ϕn,ψ of a generalized dependence atom are not assumed to be flat,
Equation (6) will no longer hold, and we do not see at this moment how to obtain
a complete axiomatization of the extended logic also in the general case. But since
the notion of admissibility we study in this paper concernstheoremhoodof our log-
ics only, and we intensionally defined the consequence relations of our logics in a
semantic manner (see Definition 2.3), this obstacle in the axiomatization of the ex-
tended logic is not essential for the main results of this paper. In view of this, for
simplicity in PD we only allow generalized dependence atoms with flat arguments.

3.2 Closure under flat substitutions

The consequence relations of the logicsPD, InqL, andPT are not structural. In this
section we prove, however, that the consequence relations of these logics are closed
underflat substitutions, i.e., substitutionsσ such thatσ maps propositional variables
to flat formulas. To this end, we define the following translation on teams. For any
valuationv and any substitutionσ , define a valuationvσ as

vσ (p) =

{

1 if {v} |= σ(p);
0 if {v} 6|= σ(p).
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For any teamX, we defineXσ = {vσ | v∈ X}. Given a teamY ⊆ Xσ , let Yσ
X denote

the set{v∈ X | vσ ∈Y}. ClearlyYσ
X ⊆ X and(Yσ

X )σ =Y.

Lemma 3.5 Let L ∈ {PD, InqL,PT}. For all formulasϕ and all flat substitutionsσ
in LL,

X |= σ(ϕ) ⇐⇒ Xσ |= ϕ .

Proof We prove this lemma for all three logics at the same time by induction on the
complexity ofϕ , where we use the following complexityc(ϕ) on formulas inLPT.
The use of the complicated clause for the dependence atom will become clear in the
proof below.

c(p) = 0 p a propositional variable
c(⊥) = 0
c(⊤) = 0

c(¬ϕ) = c(ϕ)+1
c(ϕ ◦ψ) = c(ϕ)+ c(ψ)+1 ◦ ∈ {∧,→,⊗}

c(=( #»ϕ ,ψ)) =
(

∑n
i=1(2c(ϕi)+4)

)

+2c(ψ)+4 whereϕ = ϕ1, . . . ,ϕn.

The casesϕ =⊥ andϕ = ⊤ are trivial. Sinceσ(p) is flat, the following equiva-
lences hold:

X |= σ(p) ⇐⇒ ∀v∈ X({v} |= σ(p)) ⇐⇒ ∀vσ ∈ Xσ ({vσ} |= p) ⇐⇒ Xσ |= p.

Thus the caseϕ = p is proved.
Caseϕ ==(

#»

θ ,ψ). ForPT, from Definition 3.2(a) we know thatϕ is semantically
equivalent to a formula in its language whose subformulas are of lower complexity,
thus this case is reduced to the other cases. However forPD, the equivalent formula
given by Definition 3.2(a) is not in its language, neither does the equivalent formula
given by Equation (6). SincePD is expressively complete, there indeed exists a for-
mulaϕ ′ in the language ofPD that is equivalent toϕ . However, this translation is not
done in a compositional manner, neither in an inductive manner (see Theorem 2.12).
We therefore cannot reduce this case to the other cases forPD, as the reduction would
assume

ϕ ≡ ϕ ′ =⇒ σ(ϕ)≡ σ(ϕ ′),

a fact that we establish only in Theorem 3.7. To avoid such a circular argument, we
now proceed to prove this case forPD directly, using the equivalent semantics given
in Definition 3.2(a) and assuming thatθ andψ are flat.

For the direction “=⇒”, assumeX |==(σ(θ ),σ(ψ)) andY |=
∧n

i=1(θi ∨¬θi) for
someY⊆Xσ . As (Yσ

X )σ =Y andc(
∧n

i=1(θi ∨¬θi))<Σn
i=1(2c(θi)+4)< c(=(

#»

θ ,χ)),
by the induction hypothesis, we obtain thatYσ

X |=
∧n

i=1(σ(θi)∨ ¬σ(θi)). Clearly
Yσ

X ⊆ X, thus the assumption implies thatYσ
X |= σ(ψ)∨¬σ(ψ), which by the in-

duction hypothesis again gives the desired(Yσ
X )σ |= ψ ∨¬ψ , becausec(ψ ∨¬ψ) =

2c(ψ)+3< c(=(
#»θ ,ψ)). The other direction “⇐=” is symmetric, usingYσ ⊆ Xσ for

anyX,Y with Y ⊆ X.
The cases thatϕ = ψ ∧ χ andϕ = ψ ∨ χ follow immediately from the induction

hypothesis.
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Caseϕ = ψ ⊗ χ . We first prove the direction “=⇒”. AssumeX |= σ(ϕ) and
considerY,Z ⊆ X such thatX = Y ∪Z andY |= σ(ψ) andZ |= σ(χ). Using that
Yσ ∪Zσ = Xσ , this impliesXσ |= ψ ⊗ χ by the induction hypothesis.

For the direction “⇐=”, assumeXσ |= ϕ and considerY,Z ⊆ Xσ such thatXσ =
Y∪Z, Y |= ψ andZ |= χ . ThusYσ

X |= σ(ψ) andZσ
X |= σ(χ) by the induction hypoth-

esis. SinceX =Yσ
X ∪Zσ

X , this impliesX |= σ(ψ)⊗σ(χ), as required.
Caseϕ =ψ → χ . We first prove the direction “=⇒”. AssumeX |= σ(ϕ) and con-

siderY ⊆ Xσ such thatY |= ψ . As (Yσ
X )σ =Y, Yσ

X |= σ(ψ) follows by the induction
hypothesis. And asYσ

X ⊆ X, this impliesYσ
X |= σ(χ). HenceY |= χ by the induction

hypothesis, as required. The direction “⇐=” is similar.
Caseϕ = ¬ψ . It follows from the induction hypothesis thatX |= ¬σ(ψ) ⇐⇒

∀v∈ X : {v} 6|= σ(ψ) ⇐⇒ ∀v∈ X : {vσ} 6|= ψ ⇐⇒ Xσ |= ¬ψ .

Lemma 3.6 The set of flat formulas inLPT is closed under flat substitutions, i.e.,
wheneverϕ is a flat formula andσ is a flat substitution,σ(ϕ) is flat too.

Proof SupposeX is a team such that for allv ∈ X, {v} |= σ(ϕ). To show thatX |=
σ(ϕ), by Lemma 3.5, it suffices to show thatXσ |= ϕ . As ϕ is flat, we therefore have
to show that{vσ} |= ϕ for all s∈ X. Again by Lemma 3.5 it suffices to show that
{v} |= σ(ϕ) for all v∈ X. But that is what we assumed, so we are done.

As a consequence of the above lemma, for every generalized dependence atom
=(ϕ1, . . . ,ϕn,ψ) in LPD, whereϕ1, . . . ,ϕn,ψ are flat formulas, the resulting formula
=(σ(ϕ1), . . . ,σ(ϕn),ψ) under an arbitrary flat substitutionσ is still a well-formed
formula inLPD. This shows that flat substitutions are well-defined inPD.

Theorem 3.7 The consequence relations ofPD, InqL, andPT are closed under flat
substitutions. In particular, for all flat substitutionsσ , we have thatϕ ≡ ψ implies
σ(ϕ)≡ σ(ψ).

Proof By the definition of the consequence relations, it suffices toprove that for all
formulasϕ andψ , ϕ |= ψ =⇒ σ(ϕ) |= σ(ψ) holds for all flat substitutionsσ .

Assumeϕ |= ψ . We have that for any teamX, any flat substitutionσ ,

X |= σ(ϕ) =⇒ Xσ |= ϕ (by Lemma 3.5)

=⇒ Xσ |= ψ (by the assumption)

=⇒ X |= σ(ψ) (by Lemma 3.5)

Henceσ(ϕ) |= σ(ψ).

4 Flat formulas and projective formulas

Having proved that our logics are closed under flat substitutions we work towards
the proof of our main results by showing that flatness in theselogics is nothing but
projectivity, a key notion in the study of admissible rules.

As the building blocks of the normal form of formulas inLPT, the formulasΘX,
defined in Section 2.2, turn out to be of particular interest.They actually serve as a
syntactic characterization of flat formulas, as the following lemma shows.
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Lemma 4.1 Let ϕ(p1, . . . , pn) be a consistent formula inLPT. The following are
equivalent.

(i) ϕ is flat;
(ii) ϕ ≡ΘX for some nonempty team X on{p1, . . . , pn};
(iii) ϕ ≡ ¬¬ϕ ;
(iv) |= ϕ ⊗¬ϕ

Proof (ii)⇒(i) and (iii)⇒(i) follow from the fact that negated formulas are flat, and
(i)⇒(iii) follows immediately from the definition of negation.

(i)⇒(ii): In view of Lemma 2.11 and Theorem 2.12, without loss of generality,
we may assume thatϕ(p1, . . . , pn) =

∨k
i=1ΘXi , where{X1, . . . ,Xk} is a collection

of some nonempty maximal (with respect to set inclusion) teams on{p1, . . . , pn}.
Supposeϕ is flat andk > 1. For each 1≤ i < k, pick vi ∈ Xi \Xi+1 and pickvk ∈
Xk\X1. The maximality of theXi ’s guarantees that suchvi ’s exist. Since{vi}⊆Xi and
{v1, . . . ,vk}* Xi for all 1≤ i ≤ k, by Lemma 2.11,{vi} |=ΘXi and{v1, . . . ,vk} 6|=ΘXi

for all 1≤ i ≤ k, thereby{vi} |= ϕ for all 1≤ i ≤ k whereas{v1, . . . ,vk} 6|= ϕ . Hence
we conclude thatk= 1 andϕ =ΘX1, as required.

(i)⇒(iv): If ϕ is flat, to show (iv), it suffices to show{v} |= ϕ ⊗¬ϕ , i.e.,{v} |= ϕ
or {v} |= ¬ϕ , for all valuationsv. But this is also obvious.

(iv)⇒(i): Suppose{v} |= ϕ for all valuationsv in a teamX. ThenY 6|= ¬ϕ for all
nonemptyY ⊆ X. Now, if |= ϕ ⊗¬ϕ , then we must have thatX |= ϕ , which shows
thatϕ is flat.

Since some of the logics we consider in this paper do not have implication in the
language, and none of them is closed under uniform substitution, we modify the usual
definition of projective formula.

Definition 4.2 (Projective formula) LetL be a logic, andS a set ofL-substitutions.
A formulaϕ in LL is said to beS-projectivein L if there existsσ ∈ S such that

(a) ⊢L σ(ϕ),
(b) ϕ ,σ(p) ⊢L p andϕ , p⊢L σ(p) for all propositional variables p.

Such substitutions are calledS-projective unifiersfor ϕ in L.

Because of the Deduction Theorem (Theorem 2.4) of our logicsthat has implica-
tion in their languages the notion of projectivity can be formulated purely in terms of
theoremhood. A standard inductive proof shows that the condition in Definition 4.2(b)
implies thatϕ ,σ(ψ) ⊢L ψ andϕ ,ψ ⊢L σ(ψ) hold for all formulasϕ andψ of our
logics.

The proof of the following lemma uses what is known asPrucnal’s trick, which
consists of a method to prove projectivity via a connection between valuations and
substitutions.

Lemma 4.3 Let L ∈ {InqL,PT} and X a nonempty set of teams on a finite set of
propositional variables. The formulaΘX inLL (defined by Equation (3)) isF -projective
in L, whereF is the class of all flat substitutions.
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Proof Put ϕ = ΘX and pickv ∈ X. View ϕ as a formula ofCPC, clearly we have

v(pv(p1)
1 ∧·· ·∧ pv(pn)

n ) = 1, therebyv(ϕ) = 1. Define a substitutionσϕ
v as follows:

σϕ
v (p) =

{

ϕ ∧ p, if v(p) = 0;

ϕ → p, if v(p) = 1.
(7)

Putσ = σϕ
v . Clearly,σ(p) (in both cases) is classical, thus flat.

By a standard inductive argument, one proves that

⊢CPC σ(ψ) ⇐⇒ v(ψ) = 1 (8)

for all subformulasψ of ϕ . Now, asv(ϕ) = 1, we obtain⊢CPC σ(ϕ). Sinceϕ is a
classical formula, by Lemma 2.6 we derive⊢L σ(ϕ). Moreover, it follows from the
definition ofσ that⊢L ϕ → (σ(p)↔ p) holds for allp∈ Prop. Hence we conclude
thatϕ isF -projective inL.

It is known that negated formulas¬ϕ are projective in every intermediate logic
L, it follows, for example, from Ghilardi’s characterization in [6]. Here we prove that
the same holds for the negative variants of intermediate logics and that the projective
unifiers involved are moreover stable.

Lemma 4.4 Let L be an intermediate logic. Every consistent formula¬ϕ is ST -
projective inL¬, whereST is the class of all stable substitutions.

Proof Take a valuationv such thatv(¬ϕ) = 1. Define a substitutionσ¬ϕ
v for ¬ϕ in

exactly the same way as in (7) of the preceding lemma. Putσ = σ¬ϕ
v . The definition

of σ guarantees that⊢L ϕ → (σ(p)↔ p) holds for allp∈Prop. By (8) and Glivenko’s
Theorem (see e.g. Theorem 2.47 in [2]), we obtain that⊢L ¬σ(ϕ). Hence we have
proved that¬ϕ is projective inL. Now, by Lemma 2.13L⊆ L¬, thus¬ϕ is projective
also inL¬.

It remains to check that theσ defined as above is a stable substitution inL¬, i.e.,
⊢L¬ σ(p) ↔ ¬¬σ(p) for all p ∈ Prop. If v(p) = 0, then by the definition, we have
thatσ(p) = ¬ϕ ∧ p. Since⊢L¬ ¬¬p→ p (by Lemma 2.13), we have that

¬¬σ(p) = ¬¬(¬ϕ ∧ p) ⊣⊢ ¬¬¬ϕ ∧¬¬p⊣⊢ ¬ϕ ∧ p= σ(p),

as required. Ifv(p) = 1, then by the definition we have thatσ(p) = ¬ϕ → p. Since
⊢L¬ ¬¬p→ p, we have that

¬¬σ(p) = ¬¬(¬ϕ → p) ⊣⊢ ¬¬¬ϕ →¬¬p⊣⊢ ¬ϕ → p= σ(p),

as required.

Lemma 4.5 For any nonempty team X on a set{p1, . . . , pn} of propositional vari-
ables, the formulaΘX in LPD (defined by Equation (2)) isF -projective inPD.
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Proof This lemma is proved also using a similar argument to that of Lemma 4.3.
Put ϕ = ΘX. Take an arbitraryv ∈ X. Clearly,v(ϕ) = 1 whenϕ is viewed as a for-
mula ofCPC (hereafter in the proof, we identify tensor disjunction⊗ with classical
disjunction). Define a substitutionσϕ

v as follows:

σϕ
v (p) =

{

ϕ ∧ p, if v(p) = 0;

¬ϕ ∨ p, if v(p) = 1.

Putσ = σϕ
v . Clearly, the formulaσ(p) (in both cases) is classical, thus flat.

As in the proof of Lemma 4.3, we have that (8) holds for all subformulasψ of ϕ ,
thus⊢CPC σ(ϕ). Now, since the formulaσ(ϕ) is classical, we obtain by Lemma 2.6
that⊢PD σ(ϕ).

It remains to show thatϕ ,σ(p) ⊢L p andϕ , p⊢L σ(p) for all p∈ Prop. Ifv(p) =
0, then clearlyϕ ,ϕ ∧ p ⊢PD p andϕ , p ⊢PD ϕ ∧ p. If v(p) = 1, to see thatϕ ,¬ϕ ⊗
p⊢PD p, if X |= ϕ ∧ (¬ϕ ⊗ p), then for allv∈ X, we have that{v} |= ϕ ∧ (¬ϕ ⊗ p),
which implies that{v} |= p, therebyX |= p, as required. Thatϕ , p⊢PD¬ϕ⊗p follows
easily from the fact thatp⊢PD ¬ϕ ⊗ p.

Lemma 4.6 LetL ∈ {PD, InqL,PT}, andϕ a consistent formula inLL. The follow-
ing are equivalent:

(i) ϕ ⊣⊢ΘX for some nonempty n-team X;
(ii) ϕ is flat;
(iii) ϕ isF -projective inL;

Proof (ii) ⇐⇒ (i)=⇒(iii) follows from Lemmas 4.1, 4.3 and 4.5. Now, we show that
(iii)=⇒(i). Supposeϕ is F -projective inL and σ is a F -projective unifier forϕ .
Thus⊢L σ(ϕ), which implies|= σ(ϕ). By Theorem 2.5, this implies that there exists
1≤ i ≤ k such that|= σ(ΘXi ). SinceΘXi is in LL and thus so isσ(ΘXi ), ⊢L σ(ΘXi )
follows. On the other hand, we also have thatϕ ,σ(ΘXi ) ⊢L ΘXi . It then follows that
ϕ ⊢L ΘXi . Henceϕ ≡ΘXi , which givesϕ ⊣⊢ΘXi .

Lemma 4.7 Let L be an intermediate logic such thatND ⊆ L and ϕ a consistent
formula inLL. The following are equivalent:

(i) ⊢L¬ ϕ ↔¬¬ϕ ;
(ii) ϕ is ST -projective inL¬;

Proof (i)=⇒(ii) follows from Lemma 4.4. For (ii)=⇒(i), by Theorem 2.15, inL¬ we
have thatϕ ⊣⊢

∨

i∈I ¬ϕi for some formulas{¬ϕi | i ∈ I}. By a similar argument to
that in the proof of “(iii)=⇒(i)” of Lemma 4.6, we obtain inL¬ that ϕ ⊣⊢ ¬ϕi for
somei ∈ I , which implies that⊢L¬ ϕ ↔¬¬ϕ .

5 Structural completeness of the logics

In this section we prove the main results of our paper, namelythat the three proposi-
tional logics of dependencePD, InqL, andPT areF -structurally complete and that
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the negative variants of logics extendingND are hereditarilyST -structurally com-
plete. In both cases the proof of the fact is based on the existence, for every formula
ϕ , of certainS-projective formulasϕi such thatϕ

⊔

i∈I ϕi , where in the first caseS
consists of all flat substitutions and in the second case of all stable ones. As mentioned
in Remark 2.8, it is not hard to prove by the same methods that also the logicPID
is F -structurally complete, wherePID is an extension of propositional intuitionistic
dependence logicPID in the same manner asPT is an extension ofPT.

Definition 5.1 Let L be a logic, andS a set of⊢L-substitutions. A ruleϕ/ψ of L is
said to beS-admissible, in symbolsϕ |∼S

L ψ , if for all σ ∈ S, ⊢L σ(ϕ) =⇒⊢L σ(ψ).
In caseS is the set of all substitutions, we write|∼ for |∼S , and such a rule is

called anadmissible rule.

Definition 5.2 A logic L is said to beS-structurally completeif everyS-admissible
rule of L is derivable inL, i.e., ϕ |∼S

L ψ ⇐⇒ ϕ ⊢L ψ . In caseS is the set of all
substitutions andL is S-structurally complete, we say thatL is structurally complete.

Informally, a rule is admissible in a logicL if its addition to the logic does not
change the theorems that are derivable. Clearly, ifS is a set ofL-substitutions, then
ϕ ⊢L ψ =⇒ ϕ |∼S

L ψ for all formulasϕ andψ in LL. In particular, by Theorem 3.7,
all derivable rules ofPD and InqL areF -admissible in the logics. A logic that is
S-structurally complete has no nontrivialS-admissible rules: all such rules are deriv-
able in the logic. Classical logic is structurally complete, but intuitionistic logic is
not, as are many other intermediate logics. The well-known example showing that
intuitionistic logic is not structurally complete usesHarrop’s Rule:

ϕ → ψ ∨θ |∼IPC (ϕ → ψ)∨ (ϕ → θ ) andϕ → ψ ∨θ 6⊢IPC (ϕ → ψ)∨ (ϕ → θ ).

Recall the definition of
⊔

just below Lemma 2.4:ϕ
⊔

i ϕi holds if and only if
ϕi |= ϕ for all i, and for all teamsX: X |= ϕ impliesX |= ϕi for somei.

Lemma 5.3 For anyL which is an intermediate theory or one ofPD, InqL or PT,
and any setS of L-substitutions, if for every consistent formulaϕ in LL there exists
a finite set{ϕi | i ∈ I} of S-projective formulas inLL such thatϕ

⊔

i∈I ϕi , thenL is
S-structurally complete.

Proof We show that everyS-admissible ruleϕ |∼S

L ψ of L is derivable, i.e.,ϕ ⊢L ψ .
If ϕ is inconsistent, then clearlyϕ ⊢L ⊥ ⊢L ψ . Now assume thatϕ is consistent. By
assumption there exists a finite set{ϕi | i ∈ I} of S-projective formulas such that
ϕ
⊔

i∈I ϕi . Let σi ∈ S be the projective unifier ofϕi . Thus⊢L σi(ϕi). Hence⊢L σi(ϕ)
for all i ∈ I . Fromϕ |∼S

L ψ we derive⊢L σi(ψ) for eachi ∈ I . Sinceσi is a projective
unifier for ϕi , we have thatϕi ,σi(ψ) ⊢L ψ . It follows that ϕi ⊢L ψ for eachi ∈ I .
Thereforeϕ ⊢L ψ .

Theorem 5.4 PD, InqL andPT areF -structurally complete.

Proof By Theorem 2.12 for the extended logics, Lemmas 4.6 and 5.3.
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Let L be an intermediate theory/logic andS a set of⊢L-substitutions. We say that
L is S-hereditarily structurally completeif for any intermediate theoryL′ such that
L⊆ L′ andS is a set of⊢L′-substitutions,L′ isS-structurally complete. In caseS is the
class of all substitutions ofL, then we say thatL is hereditarily structurally complete.
It is known that none ofND, KP andML is hereditarily structurally complete.

Theorem 5.5 For any intermediate logicL such thatND ⊆ L, its negative variant
L¬ is ST -hereditarily structurally complete. In particular,ND¬, KP¬ andML¬ are
ST -hereditarily structurally complete.

Proof By Theorem 2.15, Lemmas 4.7 and 5.3.

6 Concluding remarks

We have shown that the three propositional logics of dependence,PD, PT, InqL, are
structurally complete with respect to flat substitutions and that the negative variant of
every intermediate logic that is an extension ofND is hereditarily structurally com-
plete with respect to stable substitutions. In particular,ND¬, KP¬ andML¬ areST -
hereditarily structurally complete. The reason for this are the strong normal forms
that hold in these logics or theories. In this aspect they resemble classical logic, with
its disjunctive normal form, that is also hereditarily structurally complete.

Apart from [18] there has not been much research on admissibility on interme-
diate theories that are not intermediate logics, and for propositional logics of depen-
dence the above results are the first of such kind. Thus, naturally, many questions
remain open. We discuss several of them.

Theorem 5.5 states that the negative variant of extensions of ND are hereditarily
structurally complete. It follows from results by Maxsimova and Prucnal that any
structurally complete intermediate logic with the disjunction property containsKP
and is contained inML, and in [24], which recaptures these results, it is moreover
shown thatKP itself is not structurally complete. The same holds forND, since it is
properly contained inKP. One wonders whether the fact that the negative variant of
ND andKP are structurally complete could shed some light on admissibility in the
original logics.

In this paper the results on admissibility are with respect to sets of substitutions,
such as the flat and the stable substitutions. There exist logics for which establishing
whether admissibility has certain properties, such as decidability, seems hard. These
problems are often considered only for admissibility with respect to all substitutions,
but one could start with smaller sets of substitutions, which may be easier to deal with.
And although certain properties, such as decidability of admissibility, do not transfer
from a smaller set of substitutions to its extensions, understanding a restricted case
may stil help understanding the general case.

On a more abstract level, there are two definitions of admissibility in the litera-
ture that in most instances amount to the same notion. Although intuitively clear, the
proper connection between the two is not completely straightforward [14,17]. And it
is mostly considered only for admissibility with respect tothe set of all substitutions.
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It would be nice to see whether this connection can be generalized to admissibility
with respect to any set of substitutions.

The results obtained in this paper made essential use of the disjunctive normal
form of formulas of propositional logics of dependence. It is known from the litera-
ture that modal dependence logic and propositional independence logic both have a
similar disjunctive normal form [25,5]. We conjecture thatthe argument in this paper
may apply to these two logics and lead to similar results.
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VII (1992)
21. Rybakov, V.: Admissibility of Logical Inference Rules.Elsevier (1997)
22. Sano, K., Virtema, J.: Axiomatizing Propositional Dependence Logics

(http://arxiv.org/abs/1410.5038, 2014)



Structural completeness in propositional logics of dependence 21

23. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge:
Cambridge University Press (2007)

24. Wojtylak, P.: On a problem of H. Friedman and its solutionby T. Prucnal. Reports on Mathematical
Logic 38, 69–86 (2004)

25. Yang, F.: On extensions and variants of dependence logic. Ph.D. thesis, University of Helsinki (2014)
26. Yang, F., Väänänen, J.: Propositional Logics of Dependence and Independence, Part I

(http://arxiv.org/abs/1412.7998, 2014)


	1 Introduction
	2 Logics of dependence
	3 Extensions of the logics and substitutions
	4 Flat formulas and projective formulas
	5 Structural completeness of the logics
	6 Concluding remarks

