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Structural completeness in propositional logics of
dependence

Rosalie lemhoff - Fan Yang

Abstract In this paper we prove that three of the main propositiongide of de-
pendence (including propositional dependence logic aqdisitive logic), none of
which is structural, are structurally complete with resgea class of substitutions
under which the logics are closed. We obtain an analoguah meith respect to sta-
ble substitutions, for the negative variants of some wethn intermediate logics,
which are intermediate theories that are closely relat@aoisitive logic.

Keywords structural completenesslependence logicinquisitive logic- interme-
diate logic

1 Introduction

In recent years there have appeared many results on admigdis in logics. The
diversity of the results show that the properties of adribsi vary from logic to

logic, and the complexity of some of the results show thatdeing these rules is
not always an easy matter. The admissible rules of a logithereules under which
the logic is closed, meaning that one could add them to thie leithout obtaining

new theorems. Since adding a derivable rule to a logic caaltet that what can
be derived, derivable rules are always admissible, thusisigothat the notion of
admissibility is a natural extension of the notion of delpiNiay.
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For structural logics which means logics that are closed under uniform substi-
tution, a rule is admissible if every substitution that wsfthe premiss, unifies the
conclusion, where a substitutianunifies a formulap in a logic if o¢ is derivable in
the logic. Until now, most logics for which the admissibjlielation has been studied
are structural. Main examples are classical and intusiimpropositional logic and
certain modal logics such &S K4, andS4. Except for classical logic, all these logics
have nonderivable admissible rules and their admissibgiations are decidable and
have concise axiomatizations([6]13[15/20,21]. In receaty, admissibility has been
studied for a plethora of other logics as well. However,dsghat are not structural,
have received less attention. In order to obtain a meanimghion of admissibility
for such a logic one first has to isolate a set of substitutias$arge as one thinks pos-
sible, under which the logic is closed. Admissibility caeitbe studied with respect
to this class of substitutions.

In this paper we show that three of the main propositionatkgf dependence,
none of which is structural, are structurally complete wéhpect to the class @ikt
substitutions. We obtain an analogues result, but then nggpect tostablesubsti-
tutions, for the negative variants of some well-known intediate logics, which are
intermediate theories that are closely related to one ofafjies of dependence. As
a byproduct we develop an extension of the usual logics oéd@gnce in which the
use of negation and the dependence atom is not restrictadpogitional variables,
but to the much larger class of flat formulas instead.

We think the interest in these results lies in the fact thgid® of dependence,
to be described below, are versatile and widely applicableclassical logics. And
knowing that many nonclassical logics have nontrivial ddgible rules, establishing
that in these logics all rules that are admissible (with eespo flat substitutions)
are derivable, provides a useful insight in the logics. Moes, these results provide
one of the first examples of natural nonstructural logicsvibich admissibility is
studied. A paper in which various admissibility relatiodsionstructural logics, the
same logics that we treat in Theorém|5.5, have been studi@@]isbut the results
are different from the ones obtained here.

Dependence logiis a new logical formalism that characterizes the notiordef-*
pendence” in social and natural sciences. First-order riigrece logic was intro-
duced by Vaananen [23] as a developmemiefkin quantifief8] andindependence-
friendly logic [10]. Recently, propositional dependence logi®] was studied and
axiomatized in[[21, 26]. With a different motivation, Ciaiti and Roelofsen[4] in-
troduced and axiomatizegropositional inquisitive logiqIngL), which can be re-
garded as a natural variant of propositional dependende Bgth PD andInqL are
fragments ofpropositional downwards closed team lodRT), which was studied
in [26] and essentially also in[3]. Dependency relatiors eraracterized in these
propositional logics of dependence by a new type of ateffi8,q), calleddepen-
dence atomdntuitively, the atom specifies thtte proposition q depends completely
on the propositions3. The semantics of these logics is calledm semantigsn-
troduced by Hodges$ [111,12]. The basic idea of this new sensistthat properties
of dependence cannot be manifestediimgle valuations, therefore unlike the case
of classical propositional logic, formulas in proposititogics of dependence are
evaluated orsetsof valuations (calledeam$ instead.
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The three logicD, IngL andPT are of particular interest, because they are
all expressively completén the sense that they characterize all downwards closed
nonempty collections of teams. As a result of the featureafit semantics, the sets
of theorems of these logics are closed under flat substitsitiout not closed under
uniform substitutionAs mentioned above, in this paper we prove that the thréedog
are structurally complete with respect to flat substitugion

In the study of admissible rules there is a technical detwit heeds to be ad-
dressed. I'PD andPT, negation and the dependence operator can only be applied
to atoms. Therefore, the only substitutions under whicls¢Hegics are closed are
renamings substitutions that replace atoms by atoms. However, tlogges can be
conservativily extended to logics that are closed undesélbstitutions. These exten-
sions,PD andPT, are closed under flat substitutions, and for these log&csiedl as
for InqgL, the notion of admissibility with respect to flat substituts is shown to be
equal to derivability (Theorefn 3.4).

Thereis a close connection between inquisitive logic amoeintermediate log-
ics. The set of theorems of the former equals the negativantasf Kreisel-Putnam
logic (KP), which is equal to the negative variant of Medvedev lodid §. It is open
whetherKP is structurally complete, whereddl is known to be structurally com-
plete but not hereditarily structurally complete. An irtsting corollary we obtain in
this paper is that the negative variants of bigth andKP are hereditarily structurally
complete with respect to negative substitutions.

2 Logics of dependence
2.1 Syntax and semantics

We first define propositional downwards closed team logit oAthe logics of de-
pendence we consider in the paper are fragments of prapuaitiownwards closed
team logic.

Definition 2.1 Let pg, B = p1,..., Pk be propositional variables. Well-formed for-
mulas ofpropositional downwards closed team loffidl) are given by the following
grammar:

¢pu=pl-p|LIT|=B.a)| o920 |oV[—¢.

We call the formulag, —p, L andT propositional atomsThe formula=(B,q) is
called adependence atgrand it shall be read ag|‘depends o3 ”. The connective
® is calledtensor(disjunction), and the connectivesand— are calledntuitionistic
disjunctionandintuitionistic implication respectively. The formulég — L is abbre-
viated as~¢, and the team semantics to be given guarantees that thelfotmpand
p — L are semantically equivalent.

Fragments oP T formed by certain sets of atoms and connectives in the stdnda
way are calledpropositional) logics of dependencthe following table defines the
syntax of the other logics of dependence we consider in tpep
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Logic Atoms Connectives
Propositional dependence logR) | p,—p, L, T,=(P,q) A®
Propositional inquisitive logiclql) p,L, T AV, —

Given any of the three logids € {PD,InqL,PT}, let £ denote the language of
L. We say that a formulé is in £ if all symbols in¢ belong tol, . Clearly,Lnq is
the same as the language of intuitionistic propositiongid@r intermediate logics.
We will discuss the connection betwebkrL and intermediate logics in the sequel.
Note that formulas irCpp are assumed to be (strict) negation normal formin the
sense that negation is allowed only in front of propositlmasiables and dependence
atoms can not be negated. We will revisit the issue abouttimega Section 3.1.

For the semantics, propositional logics of dependencetadam semanticsA
teamis a set of valuations, i.e., a set of functionsProp— {0, 1}, where Prop is the
set of all propositional variables.

Definition 2.2 We inductively define the notion of a formglan £pt beingtrueon
ateam X, denoted by ¥ ¢, as follows:

— X Epiffforallve X, v(p)=1,

— X E-piffforallveX,vp)=0;

- XELiffX=0;

— X E T for all teams X;

- X =(B,q)iffforallv,v e X:v(B) =s(P) = v(q) =V(q);

- XE¢AYiff X = ¢ and X[ y;

— X | ¢ ®@ y iff there exist teams,¥ C X with X=Y UZ such that Y= ¢ and
ZEy;

- XE¢VyifiX = orX =y,

- XE¢—yiffforanyteamYCX:YE¢ = Y E¢.

If X = ¢ holds for all team, then we say thap is valid, denoted by= ¢. For
a finite set of formula$ , we writel” = ¢ and say tha# is alogical consequencef
I if X=AlI = X = ¢ holds for all teams(. In casel" = {¢}, we write simply
¢ = g instead of{¢} = Y. If ¢ =@ andy = ¢, then we write¢p = ¢ and say
that ¢ andy aresemantically equivalenfwo logics of dependende, andL, are
said to have theame expressive powiifor every Li-formula¢, ¢ = ¢ for some
Lo-formulay, and vice versa.

The logics of dependence mentioned above are defined aw$ol&ince in this
paper we consider the logics from a semantical point of viming the team seman-
tics, we define their finitary consequence relations sertalhti

Definition 2.3 (Consequence relations for logics of dependee) For a logic L €
{PD,InqL,PT}, formulas¢ and finite sets of formulag, " k| ¢ if and only if ¢
and all formulas in” are in £, andl” = ¢. ¢ is valid in L, or a theoremof L, if
FL ¢, which is short fol - ¢. Thus theorems &fD andIngL are the restrictions of
the theorems dPT to Lpp and £i,qL, respectively.

Because of the semantical definition of the consequencgorela, , soundness
and completeness with respect to the team semantics lyivialds. We will see,
however, that there do exist genuine syntactic charaettiizs of dependence logics,
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as given in Theorein 2.7 and the comments thereafter. Sirthisipaper the methods
are purely semantical, the semantically defined conseguethations suffice for our
aims.

We write ¢ (p1,..., pn) if the propositional variables occurring th are among
p1,---,Pn- Given a sel of propositional variables, galuation on Vis a function
v:V — {0,1}, and ateam on Vis a set of valuations oy.

Theorem 2.4 Let¢(ps, ..., Pn) be a formula and”™ a set of formulas ilCpT, and X
andY two teams. Then the following holds.

(Locality) If{v]{p1,...,pn}:veEX}={v]{p1,...,pn}:VEY}, then
Xf¢ = YE¢.

(Downwards Closure Property) If ¥ ¢ and YC X, then Y= ¢.

(Empty Team PropertyD = ¢.

(Deduction Theorem] ,¢ = @ if and only if I = ¢ — .

(Compactness Theorem) Iif |= ¢, then there exists a finite sé& C I such that

Al ¢.

Given a formulap and a finite se{¢; | i € I} of formulas we introduce a meta-
symbol| | and useg | Ji; ¢i as an abbreviation for the statement: For all teafns
X k= ¢i impliesX |= ¢ foralli € 1, andX |= ¢ impliesX = ¢; for somei € I.

Theorem 2.5 (Disjunction property) Let¢ be a formula and ¢ |i €1} a finite set
of formulas inly. If ¢ ¢, ¢i and|= ¢, then= ¢; for some ie I.

Proof LetV = {pa,..., pn} be the set of propositional variables occurringpirand
{¢i | i €1}. Since|= ¢, for the teamX = {0,1}V, we have thaX = ¢. It follows
from ¢ | i, ¢i thatX |= ¢; for somei € |. Noting that every tea onV is a subset
of X, by the downwards closure property we obtain that ¢;, which implies= ¢;
by locality.

A formula of PT is said to beclassicalif it does not contain any dependence
atoms or intuitionistic disjunction. Classical formulp®f PT areflat, that is,

XE¢ < wWeX, {vi=¢

holds for all teamsX. The following lemma shows that classical tautologie$ of
are exactly the tautologies of classical propositionaildog

Lemma 2.6 For any classical formula in Lpr, identifying tensor disjunction with
classical disjunction o€EPC, we have thal=cpc ¢ < Ep1 .

Proof An easy inductive proof shows that=cpc ¢ < {v} =pT ¢ for all valua-
tionsv and all classical formulag.

Having the same syntax as intuitionistic logic, the logigL has a close relation-
ship with intermediate logics betwe®&D andML. In [4], a Hilbert-style deductive
system foringL is given. The axioms of this system will play a role in this pgso
we present the system in detail as follows.
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Theorem 2.7 ([4]) IngL is sound and strongly complete with respect to the following
Hilbert-style deductive system:

Axioms:
1. all theorems ofPC
2. -—p— pforall peProp
3. all substitution instances &fDy for all k € N:

(ND) (== \/ ~t) = \/ (=¢ ——~).

1<i<k 1<i<k

Rule:

Modus Ponensw (MP)
Remark 2.8 IngL extended with dependence atoms is cafiezpositional intuition-
istic dependence logi®ID) in the literature (see e.gl, [25,26]). As noted(in [25, 26],
PID andIngL have the same expressive power, as dependence atoms aadbbsifin
InqL:

=(P1,---Pn, @) = (P1V 7P1) A+ A(PnV =Pn) — (QV Q). ey

Adding an axiom that corresponds to the above equivalenteetdeductive system
of IngL, one obtains a complete axiomatization RID. For simplicity, we will not
discuss the logi®ID in this paper, but we remark that results obtained in thisgrap
can be easily generalized ®ID.

The logicPD was first axiomatized by a natural deduction systern il [2p 161
a Hilbert-style axiomatization and a labelled tableau dals for PD can be found
in [22]. Based on these, a natural deductive system for tignient ofPT without
dependence atoms was givenlin [3]. Adding to the deductistesyin [3] obvious
rules for dependence atom that correspond to the equivalend), one easily ob-
tains a complete natural deductive system for il Interested readers are referred
to the literature given for the exact definitions of the deihecsystems. Throughout
this paper, we take for granted the strong completenessdaireior these logics.

It is important to note that the deductive systemsHbr, IngL andPT donotad-
mit uniform substitutionHere substitutions, a crucial notion in this paper, arengefi
as follows. The definition is sufficiently general to applybimth propositional logics
of dependence and intermediate logics that we consideritatiee paper.

Definition 2.9 (Substitution) A substitutiorof a propositional logic or theory. is a
mappingo from the set of all formulas i, to the set of all formulas irf, , that
commutes with the connectives and atoms.

Definition 2.10 Lett be a consequence relation of a logic or thearyA substitu-
tion o is called at-_-substitutionif - is closed undeuw, i.e., for all formulasg,
in L,

prLY=0(¢)FLo(y).

If - is closed under all substitutions, then we say thats structural

The consequence relations of the logri3, InqL andPT are not structural, be-
cause, for exampl@® ppp p andtjnq. ——=p — p, but=(p) ® =(p) ¥pp =(p) and
FingL 72(PV—p) = pV -p.
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2.2 Normal forms

In this section, we recall from [4] and [26] the disjunctivermal forms for formulas
of PD, IngL and PT. These normal forms, reminiscent of the disjunctive normal
form in classical logic, play an important role in the maiogifis of this paper and are
defined as follows.

FixV ={p1,...,pn}. LetX be a nonempty team dn For each of the logicBD,
IngL andPT, we define a formul®yx as follows:

®(p‘1’(p1) NN p\r’](p”)) for PD, (2
@X — veX
= \/ (PP A A PRy for IngL, PT, ®3)
veX

wherep! := p andp® := —p and we stipulate tha®p := L. The reader can ver-
ify readily that the above two formulas are semanticallyiegjent. This is why we
decide to be sloppy here and use the same not&joto stand for two syntactically
different formulas. We tacitly assume th@ is given by [[2) in the context dPD
and by [(3) in the context dihql. For PT we could as well have chosdd (2) as the
definition of @, as both defining formulas belong fe and are equivalent.

With respect to the domal, the formula®x defines the tearX (module sub-
teams), as stated in the following lemma, whose proof isttehe reader or see
[26].

Lemma 2.11 Let X and Y be teams on V. For the logRB, InqL andPT, we have
thatYEOx <— Y CX.

The set]¢] = {X € {0,1}V : X |= ¢} is nonempty (as & [¢]) anddownwards
closedi.e.,.Y C X e [¢] =Y € [¢]. We say that a propositional loglicof depen-
dence iexpressively completd# every nonempty downwards closed collecticrof
teams o1V is definable by a formula in £, i.e.,K = [¢].

Theorem 2.12 ([4][26]) (i) All of the logicsPT, PD andInglL are expressively com-
plete and have the same expressive power.

(ii) (Normal Forms) Letp(ps,...,pn) be a formula inlpt or Lpp OF LingL. There
exists a finite collectiokX; | i € 1} of teams on 'V such thdt| |, ©x;. In partic-
ular, ¢ = Vi Ox holds forPT andlInqL.

Proof We only give a proof sketch. For (i), I&f be a nonempty downwards closed
collection of teams oV. The formula\/ycx Ox in Lpt Or Linq SatisfiesiC =
[Vxex ©x] by Lemmal 2.1]1. The proof for the logRD follows from a different
argument; we refer the reader to [26] for details.

For every formulap, the set[¢] is nonempty and downwards closed. Thus the
item (i) follows from the proof of item (i).
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2.3 Intermediate logics

There is a close relationship between logics of dependamtagermediate theories
(i.e., theories between intuitionistic and classical ¢pgas first formulated in_[4].
Here we describe this connection, and in the sections orgtieity and admissibility
we will treat dependence logics and intermediate theoiikestsy side.

An intermediate theorys a setlL of formulas closed under modus ponens such
thatIPC C L C CPC. An intermediate logids an intermediate theory closed under
uniform substitution. The intermediate logics that are tmekevant in this paper are
Maksimova’s logicND, Kreisel-Putnam logi&P and Medvedev’s logidvL (“the
logic of finite problems”). It is well-known thahD C KP C ML, and ML is the
maximal intermediate logic extendipD that has the disjunction property.

We call a substitutiorr stablein a logicL that has implication and negation in
its language ifo(p) is stablein L, i.e.,F o(p) «» =——a(p), for all p € Prop. It is
easy to verify that the substitution) ™, defined agp™ = —pforall p € Prop is a
stable substitution in all intermediate logics. For angintediate logid., define its
negative variant ™ as

L' ={gp|¢ elL}.

Lemma 2.13 ([4]) LetL be an intermediate logic.

(i) L™ is the smallest intermediate theory that containand ——p — p for every
p € Prop

(i) The consequence relatior - of L™ is closed under stable substitutions.

(iii) If L has the disjunction property, then so daes

Lemma 2.14 Let L be an intermediate logic such th&tD C L. Every formula is
provably equivalent to a formula of the foryh, —¢; in L™.

Proof The lemma follows essentially frorn|[4]. Each formulg; is a®x formula as
defined in[(B) for some s& of valuations, and the proof makes essential use of the
axioms ofND and Lemma_2.13(i).

It was shown in[[4] that the negative variants of all of theemtediate logics
betweenND and ML (including KP) are identical. Propositional inquisitive logic
IngL is the negative variant of such logics. We state this andrgtiaperties olnqlL
in the following theorem.

Theorem 2.15 ([4]) (i) For any intermediate logid such thatND C L C ML, we
have thatngL =L™.

(i) IngL has the disjunction property and its consequence relatigg, is closed
under stable substitutions.

There are many intermediate logics, includB andKP, for which not much
is known about their admissible rules. In Theoreni 5.5 we st the negative
fragment of intermediate logics betwesid and ML is structurally complete with
respect to stable substitutions. Although we cannot imatedi draw conclusions
from this about the admissibility in the original logics, Wwepe that our results can
be of help in the understanding of admissibility in thesédegome day.
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3 Extensions of the logics and substitutions
3.1 Extensions of the logics

For intermediate logics arldqL, all possible substitutions are well-defined, meaning
that given a formula and a substitution in the language ofidigec, applying that
substitution to the formula results in a formula in that laage. However, for the
other logics of dependence that we consider in this paperfD andPT), substitu-
tion is not well-defined. A counter example is the formuta&s, ..., pn,q) and—p,
for which the substitution instancegop;,...,0pn, 0q) and—a(p) only belongs to
Lpp orlandLpt if 0 maps every propositional variable to a propositional \meia

For the study of admissibility one has to isolate the (or amregul) set ofwell-
definedsubstitutions under which a consequence relation of a legiosed For this
purpose, in this section we expand the languages of thed®jicandPT so as to
force flat substitutions to be well-defined, and we will shovthie next section that
these extensions are closed under flat substitutions.

Definition 3.1 The following grammars define well-formed formulas of thermoed
logics of dependence.

— Theextended propositional downwards closed team IGgT0):

¢u=p|L|T|=(F.¢)| 07D o2 |oVe|d— 9.

— Theextended propositional dependence Iq§iD):

¢pu=p|LIT|=@.B)|-9|o |29,
whered, B are flat formulas.

The extended logics have arbitrary negation as well-forfoedulas. In the se-
guel we will give a semantics for the negation that is wellggmative over the re-
stricted negation in the original logics but not found in tiberature. The extension
PT has dependence atoms with arbitrary arguments, while iextensionPD we
only allow dependence atoms with flat arguments. The réistnifor PD is made for
technical simplicity that we discuss in the sequel, but asevesider flat substitutions
only, this limitation does not affect the generality of tkesults in this paper. Gener-
alized dependence atoms with flat arguments are also stindieel context of modal
dependence logic, se€ [5][7].

Below we define the semantics of the new formulas. We first ##daand then
PD.

Definition 3.2 Let ¢y, ..., ¢n, Y be arbitrary formulas oPT. Define

(@) X =(@1.....0n, ) iff X = ALy (i V (¢ — L)) — (WV (g — 1)
(b) X = iff X |= ¢ — Liff {v} j ¢ forallve X.

1 The authors would like to thank Ivano Ciardelli for suggegtihis definition, see alsp][3].
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In order for these definitions to be well-defined they havedrea with previ-
ously defined notions. For the dependence atom the obsemiati{d) suffices. For
negation, it suffices foPT that—¢ has been defined as a shorthanddfers L, thus
the semantics for negation as given in item (b) coincidek thiat in this logic.

We turn toPD. To define the semantics of the new formulas we need the foipw
equivalence relation between valuations. Given a sequ@nrees ... ¢, of formulas,
define an equivalence relatieny on teams as follows:

u~gv iff  V1<i<n({u} k¢ < {v} ).
Definition 3.3 Define

(a) for flat formulasay,. .., oy, B of PD,
XE=(0,B) =g W,V €EX(VrgV =>Vr~pV); (4)
(b) full negation inPD as X = —¢ iff {v} ~ ¢ forall v e X.

We have to show that the notions defined in Definifiod 3.3 aterestons of the
corresponding notions f&tD, and also special case of thoseé”df. Obviously for the
formula=(,q), the semantics given in item (a) coincides with the semafieen
in Definition|2.2, and we leave it to the reader to check thaisb coincides with
Definition[3.2(a).

The negation defined in item (b) deserves more commentssttaghtforward
from the definition that-¢ is always flat, and such defined negation coincides with
that of PT. In the literature of first-order dependence logic, negeiBaisually treated
only syntactically in the sense that a negated formulhis defined to have the same
semantics as the unique formupa’ in negation normal formobtained by exhaus-
tively applying the De Morgan’s laws and some other syntactivrite rules. The
corresponding syntactic rewrite rules for propositiongbendence logic are as fol-
lows:

p~ — —p T =1 (OAY)™ = ¢~ Y~
(—p)~ = p 1¥=T (PRY)~ — ¢~ AP~ (5)
:(walp)w = L

It is easy to see that the syntactic rewrite procedure foigateel formula-¢ of PD
defined as above always terminates on a unique dependentdratformulag™ in
negation normal form i pp.

When applying the syntactic negation, special attenticdedo be paid to dou-
ble negations of dependence atoms, i.e., formulas of time fer=(&,b), where the
variablesd,b are first-order or propositional. Following Hintikka's gartheoretic
perspective of logic (see, e.d.] [9]), the negation in leg€ dependence is usually
treated as a connective upon reading which the two playateicorresponding se-
mantic game swap their roles. This way.=(&,b) should have the same meaning
as=(4d,b), however, this reading is not consistent with the syntaetizrite rules as
in (8) (see e.g.[119] for further discussions). To avoid aully, most literature of
logics of dependence does not allow double negation to dadront of dependence
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atoms. In this paper, in the extended loBid we do include double negated depen-
dence atoms as well-formed formulas, but as we do not takgahee-theoretic ap-
proach to propositional logics of dependence, the senwofidouble negated depen-
dence atoms is computed simply according to Definltioh 3,3tBmely,~—=(P,q)

is always semantically equivalent 1o (noting that=(, q) is always true on single-
ton teams). Given such interpretation of the double negé¢épendence atoms, the
negation defined in Definiti .3(b) coincides with the sytit negation given by
the rewrite rules in[{5), as we will show in the next lemma. tewer, on the other
hand, in the context of first-order dependence logic, rdgasthow double negated
dependence atoms are treated, the negation defined as iitibef®3(b) doesiot
coincide with the syntactic negation given by the rewritesyrather, it corresponds
to the defined connective] in Hodges [[11,12]). For instance, the reader who is
familiar with the semantics of first-order dependence latfo easily verify that
M (s VX=(x) holds for all assignmentson all modelsM, assuming that the do-
main of a model has at least two elements. Thus by DefirlitiBb3M |=x —vx=(X)

for all teamsX on all modelsM, namely—vYx=(x) = T. However, by the syntactic
rewrite rules(Vx=(x))~ = 3x(=(x))~ = 3IxL.

Lemma 3.4 For any formulag in Lpp, we have that:¢ = ¢~

Proof We prove by induction o thatX &= —¢ < X = ¢~ for all teamsX.

The casep = por L or T is easy. If¢p = —p, then¢™~ = p and we have that
XE-p<= WeX: {Vl}fr-p= WeX:{v}Ep <<= XEDp

If ¢ ==(P,q), thenp~ = 1 and we have thaX  -=(P,q) < We X:
(VI E=(B.0) <= X=0 < XE L.

If ¢ =y Ax, theng™ = ¢~ ® x~ and we have that

XE-(PAX) = WeX: {V}IEWAX

— Y, ZCXst.(weY:{viFEyY)and(Vue Z: {u} }~ x)

< 3IY,ZC Xs.tY -y andZ = —-x

— Y, ZCXst.Y =y~ andZ = x~

(by the induction hypothesis)
= XE=EyYTex”.
If § = Y® x,theng™ = P~ A x~ and we have by the induction hypothesis that
XE-(Ye)) «<=WwWeX: {vI£Fyxyx
<« We X:{v}Fand{v} }~ x

< X - andX = —x
< X E ¢~ A x~ (by the induction hypothesis)

It is evident from Definitior_3]3(b) that the full negation BD is a semantic
connectiveAn k-ary connectivex is called asemantic connectivé

¢1Ew1;---;¢k5q-’k — 9:6(¢1,...,¢k)E%(l,Ul,...,l’Uk).
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Lemmd 3.l states that the semantical negatidtiefined in Definition 3]3(b) and
the syntactic negation given byl (5) coincide. It is worth é@gizing that in contrast
to PD and other familiar logics with negation, the syntactic negaof first-order
dependence logic isot a semantic connective (regardless how double negated de-
pendence atoms are treated), as shown by Burgess [1] aamth¥an and Kontinen
[16]. For an illustrationyx=(x) = VXvy(x =), whereas by the syntactic rewrite rules
(Vx=(x))~ = IxL Z IJY(X#y) = (VXVY(X=y))~.

The logicsPD andPT are expressively complete, therefore their extensions hav
the same expressive power as the original ones. Thus itagktforward to verify
that Theore 4 and Theorém 2.12 hold also for the extermgdsiPD and PT.
One can easily extend the deductive systems of the orighgédd by adding char-
acterization rules for the negation and generalized deperedlatoms and prove the
sound and completeness theorems for the extensions. Tacthdze the negation,
to the deductive systems & andPD one adds the obvious rules that character-
ize the equivalence betweenp and¢ — L, and the obvious rules that characterize
the rewrite rules in[(5), respectively. To characterizeegalized dependence atoms,
to the deductive system &T one adds obvious rules that correspond to the equiv-
alence in Definitio_3]2(a). Fd?D, following the idea in[[25] one generalizes the
rules for dependence atoms in the deductive systeRDo&ccording to the equiva-
lence in Definitior@Z(a) in an obvious way. To prove the ctetemess theorem for
such obtained system 8D, one observes that whenewr, ..., ¢n, @ are flat,

:(¢17”.,¢n7w) = \/ ®(¢1’(¢1)/\.”/\¢r\1/(¢n)/\wf(v)) (6)

fe{0,1}X veX

of arealizationof a generalised dependence atom accordingly. Note thaeift-
gumentsps, ..., ¢n, Y of a generalized dependence atom are not assumed to be flat,
Equation [[6) will no longer hold, and we do not see at this mani@w to obtain

a complete axiomatization of the extended logic also in theegal case. But since

the notion of admissibility we study in this paper concetheoremhooaf our log-

ics only, and we intensionally defined the consequenceisalabf our logics in a
semantic manner (see Definitiﬁ]Z.S), this obstacle in thensatization of the ex-
tended logic is not essential for the main results of thisepalm view of this, for
simplicity in PD we only allow generalized dependence atoms with flat argtenen

3.2 Closure under flat substitutions

The consequence relations of the logRi3, InqL, andPT are not structural. In this
section we prove, however, that the consequence relaticthgse logics are closed
underflat substitutionsi.e., substitutiongr such thair maps propositional variables
to flat formulas. To this end, we define the following translaton teams. For any
valuationv and any substitutioor, define a valuation, as

1if {v} = o(p);
Vo(P) = {o if {v} b= o(p).
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For any teanX, we defineX,; = {vy | v€ X}. Given a tean¥ C X, letYy denote
the set{ve X | vy € Y}. ClearlyYy C X and(Yy)s =Y.

Lemma 3.5 LetL € {PD,InqL,PT}. For all formulas¢ and all flat substitutionsr
in Ly,

X [ 0(9) < Xq = 9.

Proof We prove this lemma for all three logics at the same time bydtidn on the
complexity of ¢, where we use the following complexigf¢) on formulas inLprt.
The use of the complicated clause for the dependence atdrbegibme clear in the
proof below.

c(p)=0 p a propositional variable
c(l)=0
c(T)=0
c(—¢) =c(¢)+1
c(potp) =c(d)+c(P)+1 o€ {N,—,®}
(=(F.¥) = (SLa(2c(¢i) +4)) +2c(y) + 4 wherep = ¢1,..., fn

The caseg = | and¢ = T are trivial. Sinceo(p) is flat, the following equiva-
lences hold:

XEo(p) <= WeX({v}Ea(p) <= WeeXs({Vo} EP) <= Xs = p.

Thus the cas¢ =p is proved.

Casep ==(6,). ForPT, from Definition 3.(a) we know that is semantically
equivalent to a formula in its language whose subformulaso&tower complexity,
thus this case is reduced to the other cases. Howev&ipthe equivalent formula
given by Definitio@(a) is not in its language, neither sltdee equivalent formula
given by Equation(6). SincBD is expressively complete, there indeed exists a for-
mulag’ in the language oPD that is equivalent tgp. However, this translation is not
done in a compositional manner, neither in an inductive rea¢see Theorefm 2.12).
We therefore cannot reduce this case to the other casB®fas the reduction would
assume

¢p=9¢"=0a(¢)=0(¢),

a fact that we establish only in Theoréml3.7. To avoid suchiilzr argument, we
now proceed to prove this case 18D directly, using the equivalent semantics given
in Definition[3.2(a) and assuming th@andy are flat.

For the direction =", assumeX = =(0(60),a(y)) andY = AlL,1(6 vV —6) for
someY C Xg. As (YZ) o =Y andc(AlL (8 V—=6)) < I, (2¢(8) +4) < c(=(8 ., X)),
by the induction hypothesis, we obtain thf = AL1(0(6) VvV —o(6)). Clearly
YZ C X, thus the assumption implies théf = o(y) Vv —o(y), which by the in-
duction hypothesis again gives the desif¥f), = ¢ VvV -y, because(y vV —) =
2c(P)+3< c(:(é), ). The other direction¢="is symmetric, using/y C X, for
anyX,Y with Y C X.

The cases that = ¢ A x and¢ = @V x follow immediately from the induction
hypothesis.
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Case¢ = ¥ ® x. We first prove the direction==-". AssumeX = o(¢) and
considerY,Z C X such thatX =YUZ andY = o(¢) andZ | g(x). Using that
Yo UZs = Xg, this impliesXs = ¢ ® x by the induction hypothesis.

For the direction =", assumeX; = ¢ and consideY,Z C X, such thatX; =
YUZY = andZ = x. ThusYY = o(y) andZyg = a(x) by the induction hypoth-
esis. Sinc&X =Yy UZy, this impliesX = o(¢) ® a(x), as required.

Casep = @ — x. We first prove the direction=-". AssumeX |= g(¢) and con-
siderY C X such that = . As (V7)o =Y, Y = o(y) follows by the induction
hypothesis. And a%¢ C X, this impliesY = g(x). HenceY = x by the induction
hypothesis, as required. The directioa=" is similar.

Case¢ = —. It follows from the induction hypothesis thit = o () <~

WweX: {viEo) < WeX: {vo} Y = X; =Y.

Lemma 3.6 The set of flat formulas idpt is closed under flat substitutions, i.e.,
whenevep is a flat formula ands is a flat substitutiong (@) is flat too.

Proof SupposeX is a team such that for al€ X, {v} = o(¢). To show thaiX =
a(¢), by Lemmd 35, it suffices to show thgg E ¢. As ¢ is flat, we therefore have
to show that{vs} = ¢ for all s€ X. Again by Lemma-3]5 it suffices to show that
{v} = o(¢) forall ve X. But that is what we assumed, so we are done.

As a consequence of the above lemma, for every generalizgghdence atom
=(¢1,...,9n, ) in Lpp, Whered, ..., ¢n, Y are flat formulas, the resulting formula
=(o(¢1),...,0(¢dn), ) under an arbitrary flat substitutiam is still a well-formed
formula in Lpp. This shows that flat substitutions are well-define@in

Theorem 3.7 The consequence relations®bD, InqL, andPT are closed under flat
substitutions. In particular, for all flat substitutiorss, we have thaty = ¢ implies

a(¢)=o(y).

Proof By the definition of the consequence relations, it sufficegrave that for all
formulas¢ andy, ¢ = ¢ = o(¢) = () holds for all flat substitutions'.
Assumeg = (. We have that for any teab, any flat substitutioro,

X 0($) — Xo = ¢ (byLemmd 3k)
= X = ¢ (by the assumption)
= XEo(y) (byLemm )

Henceo(¢) = a(y).

4 Flat formulas and projective formulas

Having proved that our logics are closed under flat subgiitatwe work towards
the proof of our main results by showing that flatness in thegies is nothing but
projectivity, a key notion in the study of admissible rules.

As the building blocks of the normal form of formulasdrt, the formulagdy,
defined in Sectiof 212, turn out to be of particular inter&biey actually serve as a
syntactic characterization of flat formulas, as the follmgviemma shows.
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Lemma4.1 Let ¢(ps,...,pn) be a consistent formula idpt. The following are
equivalent.

() ¢ isflat;

(i) ¢ = Ox for some nonempty team X épy, ..., pn};
(i) ¢ =-—¢;

(iv) Fo®—¢

Proof (ii)=-(i) and (iii)=-(i) follow from the fact that negated formulas are flat, and
(i)=(iii) follows immediately from the definition of negation.

(i)=(ii): In view of Lemmal2.11 and Theorelm 2]12, without loss ehgrality,
we may assume that(pi,...,pn) = VK ;Ox, where{X,..., X} is a collection
of some nonempty maximal (with respect to set inclusionjnean{p;,...,pn}.
Supposep is flat andk > 1. For each K i < k, pick v; € X \ Xi;1 and picky, €
X\ X1. The maximality of theX;’s guarantees that suetis exist. Since{v;} C X; and
{vi,...,vi} € X forall 1 <i <k, by Lemmd 2.11{vi} = O and{vy,..., v} I Ox
forall 1 <i <k, thereby{vi} = ¢ forall 1 <i < kwhereagvy,...,w} ~ ¢. Hence
we conclude thalt = 1 and¢ = Ox,, as required.

()=(iv): If ¢ is flat, to show (iv), it suffices to shofw} = ¢ ® —¢, i.e..{v} E ¢
or {v} = —¢, for all valuationss. But this is also obvious.

(iv)=-(i): Suppos€v} = ¢ for all valuationsr in a teamX. ThenY [~ —¢ for all
nonemptyY C X. Now, if & ¢ ® —¢, then we must have that = ¢, which shows
that¢ is flat.

Since some of the logics we consider in this paper do not hapédation in the
language, and none of them is closed under uniform subetitwve modify the usual
definition of projective formula.

Definition 4.2 (Projective formula) LetL be a logic, andS a set ofL-substitutions.
A formulag in £ is said to beS-projectivein L if there existor € S such that

(@) FLo(e),
(b) ¢,0(p) L pand¢,ptL o(p) for all propositional variables p.

Such substitutions are calle$-projective unifierdor ¢ in L.

Because of the Deduction Theorem (Theo@ 2.4) of our lagetshas implica-
tion in their languages the notion of projectivity can benfiatated purely in terms of
theoremhood. A standard inductive proof shows that theitiondn Definition[4.2(b)
implies that¢, o () F_ @ and¢, Y - o(y@) hold for all formulasp andy of our
logics.

The proof of the following lemma uses what is knownRasicnal’s trick which
consists of a method to prove projectivity via a connectietwleen valuations and
substitutions.

Lemma 4.3 LetL € {InqL,PT} and X a nonempty set of teams on a finite set of
propositional variables. The formulgy in £ (defined by Equatioiil3)) i&-projective
in L, whereF is the class of all flat substitutions.
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Proof Put ¢ = Ox and pickv € X. View ¢ as a formula ofCPC, clearly we have
v(pPY A A prP)) = 1, thereby(¢) = 1. Define a substitutioay’ as follows:

AP, if v(p) =0;

of(p) = O/ P VD)= 0
o —p, ifv(p) =1

Puto = af. Clearly,a(p) (in both cases) is classical, thus flat.

By a standard inductive argument, one proves that

Fepc 0(W) <= v(P) =1 (8)

for all subformulasp of ¢. Now, asv(¢) = 1, we obtain-cpc 0(¢). Sinced is a
classical formula, by Lemnia 2.6 we derive o(¢). Moreover, it follows from the
definition of o that-_ ¢ — (o(p) + p) holds for allp € Prop. Hence we conclude
that¢ is F-projective inL.

It is known that negated formulasp are projective in every intermediate logic
L, it follows, for example, from Ghilardi's characterizatiin [6]. Here we prove that
the same holds for the negative variants of intermediatedand that the projective
unifiers involved are moreover stable.

Lemma 4.4 Let L be an intermediate logic. Every consistent formuié is S7-
projective inL™, whereST is the class of all stable substitutions.

Proof Take a valuatiov such thaw(—¢) = 1. Define a substitutiom, ? for —¢ in
exactly the same way as inl (7) of the preceding IemmaoPuta\f"’. The definition
of o guaranteesthat, ¢ — (a(p) <> p) holds for allp € Prop. By [8) and Glivenko’s
Theorem (see e.g. Theorem 2.47[ih [2]), we obtain that:.g(¢). Hence we have
proved that-¢ is projective inL. Now, by Lemm&2.18 C L™, thus—¢ is projective
alsoinL™.

It remains to check that the defined as above is a stable substitutiohi.e.,
k- a(p) «+» -—o(p) for all p € Prop. Ifv(p) = 0, then by the definition, we have
thato(p) = —¢ A p. Sincet- - -—p — p (by Lemma@S), we have that

-=0(p) = (=9 Ap) === A-—pH--dp Ap=0a(p),

as required. I¥(p) = 1, then by the definition we have thatp) = -¢ — p. Since
FL- ——p — p, we have that

—=0(p) = —=(=¢ — p) 4= =229 = ~=p-- ¢ — p=0(p),
as required.

Lemma 4.5 For any nonempty team X on a sy, ..., pn} of propositional vari-
ables, the formul@®x in Lpp (defined by Equation]2)) i&-projective inPD.
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Proof This lemma is proved also using a similar argument to thatehina 4.8.
Put¢ = ©x. Take an arbitrary € X. Clearly,v(¢) = 1 when¢ is viewed as a for-
mula of CPC (hereafter in the proof, we identify tensor disjunctigrwith classical
disjunction). Define a substitutiamﬁ’J as follows:

-pvp, ifv(p=L1
Puto = af. Clearly, the formular(p) (in both cases) is classical, thus flat.

As in the proof of Lemmb 4]3, we have that (8) holds for all subfulasy of ¢,
thust-cpc a(¢). Now, since the formula(¢) is classical, we obtain by Lem .6
thatrpp O'(¢)

It remains to show thap,o(p) . pand@, pH. a(p) for all p € Prop. Ifv(p) =
0, then clearlyp, ¢ Aptpp pandg,ptpp ¢ A p. If v(p) =1, to see thap, ¢ ®
pkpp P, if X = ¢ A (-9 @ p), then for allv € X, we have thaf{v} = ¢ A (—¢ @ p),
which implies thaf v} = p, therebyX = p, as required. That, p-pp —¢ & p follows
easily from the fact thap Fpp —¢ ® p.

Lemma 4.6 LetL € {PD,InqL,PT}, and¢ a consistent formula i . The follow-
ing are equivalent:

(i) ¢ 4F ©x for some nonempty n-team X;
(i) ¢ isflat;
(iii) ¢ is F-projective inL;

Proof (ii) <= (i)==(iii) follows from Lemmad 411 4]3 arld 4.5. Now, we show that
(iiiy =(i). Supposep is F-projective inL and o is a F-projective unifier for¢.
Thust-, a(¢), which implies= o(¢). By Theorenf 2]5, this implies that there exists
1 <i <ksuch that= 0(6x). SinceB is in £ and thus so i®(Ox, ), - 0(Bx)
follows. On the other hand, we also have tlhatr(Ox.) k| O . It then follows that

¢ kL Ox. Henceg = Ox;, which givesp -+ Ox..

Lemma 4.7 Let L be an intermediate logic such th&tD C L and ¢ a consistent
formula in £ . The following are equivalent:

(i) FL-¢ & =g,
(i) ¢ is ST-projective inL™;

Proof (i)==(ii) follows from Lemma 4.4. For (i=>(i), by Theoreni 2.15, it~ we
have thatp - \/i, —¢i for some formulaﬁqﬁi | i €1}. By a similar argument to
that in the proof of “(iii=-(i)” of Lemmal4.6, we obtain ii.™ that¢ -+ —¢; for
somei € |, which implies that-| - ¢ < ——¢.

5 Structural completeness of the logics

In this section we prove the main results of our paper, nathaithe three proposi-
tional logics of dependendeD, IngL, andPT are F-structurally complete and that
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the negative variants of logics extendiN@ are hereditarilyS7 -structurally com-
plete. In both cases the proof of the fact is based on theesst for every formula
¢, of certainS-projective formulagp; such thatp | |ic, ¢i, where in the first cas§
consists of all flat substitutions and in the second casé sifadlle ones. As mentioned
in Remarl2.B, it is not hard to prove by the same methods thatthe logicPID

is F-structurally complete, wheielD is an extension of propositional intuitionistic
dependence logieID in the same manner & is an extension oPT.

Definition 5.1 LetL be a logic, andS a set oft- -substitutions. A rul@ /¢ of L is
said to beS-admissiblein symbolsp ¢ @, ifforall o € S, a(¢9) = a(¢).

In caseS is the set of all substitutions, we write for b5, and such a rule is
called anadmissible rule

Definition 5.2 A logic L is said to beS-structurally completéf everyS-admissible
rule of L is derivable inL, i.e., ¢ }vf Y < ¢ L . In caseS is the set of all
substitutions andl is S-structurally complete, we say thhts structurally complete

Informally, a rule is admissible in a logic if its addition to the logic does not
change the theorems that are derivable. Clearly,ig a set ofL-substitutions, then
¢ L @ = ¢ ~F yfor all formulasg andy in £ . In particular, by Theoremn 3.7,
all derivable rules oPD andInqlL are F-admissible in the logics. A logic that is
S-structurally complete has no nontrivigtadmissible rules: all such rules are deriv-
able in the logic. Classical logic is structurally compldtet intuitionistic logic is
not, as are many other intermediate logics. The well-knoxamngle showing that
intuitionistic logic is not structurally complete usdsarrop’s Rule

¢ — YV O hipc (@ — Y)V (P —8)andd — PV O Hpc (¢ — Y)V (¢ — 6).

Recall the definition of | just below Lemma 2149 | J; ¢; holds if and only if
@i = ¢ for alli, and for all teamX: X |= ¢ impliesX = ¢; for somei.

Lemma 5.3 For any L which is an intermediate theory or one BD, InqL or PT,
and any setS of L-substitutions, if for every consistent formglain £, there exists
a finite set{¢; | i € I} of S-projective formulas inC, such thatg | |, ¢i, thenL is
S-structurally complete.

Proof We show that everg-admissible rulg ¢ ¢ of L is derivable, i.e.¢ .

If ¢ is inconsistent, then clearly - L - . Now assume thap is consistent. By
assumption there exists a finite defi; | i € 1} of S-projective formulas such that
@ lic) ¢i. Let g € S be the projective unifier of;. Thusk oi(¢i). HenceL ai(¢)
foralli € 1. From¢ ~¢  we derive ai() for eachi € |. Sincea; is a projective
unifier for ¢;, we have thaw;, gi(@) . . It follows that ¢; - ¢ for eachi € 1.
Thereforep - .

Theorem 5.4 PDQ InqL andPT are F-structurally complete.

Proof By Theoren 2.12 for the extended logics, Leminak 4.6 and 5.3.
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LetL be an intermediate theory/logic aiSca set of—| -substitutions. We say that
L is S-hereditarily structurally completé for any intermediate theori’ such that
L C L’ andS is a set of-|/-substitutionsl’ is S-structurally complete. In caseis the
class of all substitutions df, then we say thdt is hereditarily structurally complete
It is known that none oD, KP andML is hereditarily structurally complete.

Theorem 5.5 For any intermediate logi¢ such thatND C L, its negative variant
L™ is ST-hereditarily structurally complete. In particulaND™, KP™ and ML™ are
ST -hereditarily structurally complete.

Proof By Theorent 2.15, Lemmés 4.7 dndl5.3.

6 Concluding remarks

We have shown that the three propositional logics of depecel®D, PT, InqL, are
structurally complete with respect to flat substitutiond #rat the negative variant of
every intermediate logic that is an extension\dd is hereditarily structurally com-
plete with respect to stable substitutions. In particlNdr,”, KP™ andML™ areS7T -
hereditarily structurally complete. The reason for thie Hre strong normal forms
that hold in these logics or theories. In this aspect thegmidde classical logic, with
its disjunctive normal form, that is also hereditarily stiwrally complete.

Apart from [18] there has not been much research on adnliggibn interme-
diate theories that are not intermediate logics, and fop@sdional logics of depen-
dence the above results are the first of such kind. Thus, alBtumany questions
remain open. We discuss several of them.

Theoreni5b states that the negative variant of extensioN®are hereditarily
structurally complete. It follows from results by Maxsingoand Prucnal that any
structurally complete intermediate logic with the disjtion property contain&P
and is contained iML, and in [24], which recaptures these results, it is moreover
shown thaKP itself is not structurally complete. The same holdsNd@, since it is
properly contained ifKP. One wonders whether the fact that the negative variant of
ND andKP are structurally complete could shed some light on adnilggiin the
original logics.

In this paper the results on admissibility are with respeddts of substitutions,
such as the flat and the stable substitutions. There exisslégr which establishing
whether admissibility has certain properties, such asiaddity, seems hard. These
problems are often considered only for admissibility wigspect to all substitutions,
but one could start with smaller sets of substitutions, Wihiay be easier to deal with.
And although certain properties, such as decidability ahiadibility, do not transfer
from a smaller set of substitutions to its extensions, ustdeding a restricted case
may stil help understanding the general case.

On a more abstract level, there are two definitions of adbilggiin the litera-
ture that in most instances amount to the same notion. Adthantuitively clear, the
proper connection between the two is not completely sttéaghard [14/17]. And it
is mostly considered only for admissibility with respecthe set of all substitutions.
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It would be nice to see whether this connection can be gemedaio admissibility
with respect to any set of substitutions.

The results obtained in this paper made essential use ofishenctive normal
form of formulas of propositional logics of dependenceslknown from the litera-
ture that modal dependence logic and propositional indeggreee logic both have a
similar disjunctive normal form [25]5]. We conjecture tita¢ argument in this paper
may apply to these two logics and lead to similar results.
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