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COMPUTABLE RAMSEY’S THEOREM FOR PAIRS NEEDS

INFINITELY MANY Π0
2 SETS

GREGORY IGUSA AND HENRY TOWSNER

Abstract. In [1], Theorem 4.2, Jockusch proves that for any com-
putable k-coloring of pairs of integers, there is an infinite Π0

2 homoge-
neous set. The proof uses a countable collection of Π0

2 sets as potential
infinite homogeneous sets. In a remark preceding the proof, Jockusch
states without proof that it can be shown that there is no computable
way to prove this result with a finite number of Π0

2 sets. We provide a
proof of this latter fact.

1. Introduction

In [1], Jockusch initiated the study of the effective content of Ramsey’s
theorem, stated below. This study has proved to be enormously fruitful in
effective combinatorics, and also in reverse mathematics. In Theorem 4.2
of [1], Jockusch proves that for any computable k-coloring of pairs of inte-
gers, there is an infinite Π0

2 homogeneous set. Before this proof, he makes
the remark that even for 2-colorings of pairs of integers (basic recursive parti-
tions, in his language), it can be shown that there is no uniform computable
way to take an index for an arbitrary computable coloring, and to produce
a finite number of indices of Π0

2 sets with the property that one of those Π0
2

sets will be an infinite homogeneous set for that coloring.
The proof of this fact appears to have been lost, and recently Jockusch

has asked for a proof, which we present here.

2. Definitions

Definition 2.1. A k-coloring of the n-element subsets of N is a function
c : [N]n → k, from the set of unordered n-element subsets of N, to k.

We think of such a coloring as a rule that assigns a color to every n-element
subset of N, using up to k different colors.

Ramsey’s theorem is then the following theorem of combinatorics.

Theorem 2.2 (Ramsey’s Theorem). For any n, k ≥ 1, and any k-coloring

c : [N]n → k, there exists an infinite subset H ⊆ N such that c ↾ [H]n is a

constant function.

Date: January 19, 2021.

1

http://arxiv.org/abs/1507.03256v1


2 GREGORY IGUSA AND HENRY TOWSNER

We call such an H an infinite homogeneous set for c.
In this paper, we will be primarily concerned with the case when n = k =

2.
In [1], Jockusch proves the following.

Theorem 2.3 (Jockusch, [1], Theorem 4.2). If c : [N]2 → k is a computable

k-coloring of pairs, then there exists an infinite Π0
2 homogeneous set for c.

We prove the following.

Theorem 2.4. There does not exist a partial computable f with the property

that for any e, if e is the code of a total computable 2-coloring c : [N]2 → 2
of pairs, then f(e) halts, producing the code for a finite set {a0, a1, . . . , ak}
of indices for Π0

2 sets with the property that at least one of those Π0
2 sets is

an infinite homogeneous subset for c.

Indeed, we prove slightly more: that there is no such f where f(e) is the
code for a c.e. set Wf(e) enumerating finitely many codes for Π0

2 sets.

3. Trains

Definition 3.1. An n-train is a sequence of distinct sets of size n, τ0, τ1, . . . , τm

such that for every a ∈ τi+1 \ τi, a > τi.
For instance

{1, 2, 3}, {2, 3, 5}, {5, 7, 9}, {5, 9, 12}

is a 3-train.
If 0 ≤ k < n we write τ(k) for the k + 1-st element of τ in the usual

ordering of N.

Our main tool is the following combinatorial lemma. We color pairs from
R, B, and if ι ∈ {R, B}, we write ι for the opposite color: R = B, B = R.

Theorem 3.2. Suppose that for each j < n, τ
j
0 , τ

j
1 , . . . , τ j

mj
is an n+1-train.

Let c : [N]2 → {R, B} be given. Then there is a coloring c∗ :
⋃

τ
j
i → {R, B}

such that for each τ
j
i on which c ↾ [τ j

i ]2 = ι homogeneously, there is an

a ∈ τ
j
i with c∗(a) = ι.

Proof. We define an ordering ≺ on the sets τ
j
i : we say τ

j
i ≺ τ

j′

i′ if, taking

k < n + 1 largest such that τ
j
i (k) 6= τ

j′

i′ (k), we have τ
j
i (k) > τ

j′

i′ (k). (This is
the opposite of the reverse lexicographic order, which we choose not to refer
to as the reverse reverse lexicographic order.) Note that for a fixed j and

i′ < i, we have that τ
j
i (n) > τ

j
i′(n), and so τ

j
i ≺ τ

j
i′ .

For each r, let jr, ir be such that τ
jr

ir
is the r-th element in this ordering.

We define the coloring c∗ in stages, considering τ
jr

ir
at the r-th stage. We

let c0 = ∅. At stage r, we meet the rth requirement: that if c ↾ [τ jr

ir
]2 = ι

homogeneously, then there is at least one a ∈ τ
jr

ir
such that c∗(a) = ι.

Suppose we have constructed a partial function c∗

r and, for some set of
s < r, chosen values as so that:
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• at stage r, c∗

r is only defined on as for s < r,

• if as is defined then as = τ
js

is
(k) for some k > 0, c ↾ [τ js

is
]2 = ιs

homogeneously, and c∗

r(as) = ιs,

• for each s < r, if c ↾ [τ js

is
]2 = ιs homogeneously then there is an

s′ ≤ s so that as′ ∈ τ
js

is
with c∗

r(as′) = ιs, and

• if s′ < s < r, as′ , as are both defined, and as′ ∈ τ
js

is
then c∗

r(as) 6=
c∗

r(as′).

The first clause asserts that we meet our requirements in order. The
second asserts that if we acted at stage s, then we acted because there was a
requirement to meet, and we acted to meet that requirement. It furthermore

asserts that we did not act with the smallest element of τ
js

is
. The third clause

asserts that each earlier requirement has been met. The final clause asserts
that if a requirement was already met, then we did not act again to meet it.

We make the following crucial observation: suppose s′ < s ≤ r, js′ = js,

as′ ∈ τ
js

is
, and c ↾ [τ js

is
]2 = ιs homogeneously. Then c∗

r(as′) = ιs. (This
implies that as is not defined.) To see this, set j = js′ = js and observe

that every a ∈ τ
j
is′

\ τ
j
is

must have a > τ
j
is

. Since τ
j
is′

(0) < as′ , we must have

τ
j
is′

(0) ∈ τ
j
is

, and therefore c(τ j
is′

(0), as′) = ι. Therefore c∗

r(as′) = ι.

We now attempt to construct c∗

r+1 ⊇ c∗

r . If c ↾ [τ jr

ir
]2 is not homogeneous,

we have no commitment regarding c∗ ↾ τ
jr

ir
, so set c∗

r+1 = c∗

r . Suppose

c ↾ [τ jr

ir
]2 = ι homogeneously. If there is an s < r such that as is defined,

as ∈ τ
jr

ir
, and c∗(as) = ι, then again we may set c∗

r+1 = c∗

r .
So suppose there is no such as. By the observation, if s < r, js = jr, and

as is defined, we have as 6∈ τ
jr

ir
.

If s′ < s < r with js′ = js and as′ , as both defined, the observation implies

that as′ 6∈ τ
js

is
. Therefore as′ > τ

js

is
. But τ

js

is
(n) ≥ τ

jr

ir
(n), so as′ 6∈ τ

jr

ir
.

So c∗

r is defined on at most n − 1 elements of τ
jr

ir
—at most one for each

j < n other than jr. In particular, there are at least two elements in τ
jr

ir
on

which c∗

r is undefined; taking the larger to be ar, we set c∗

r(ar) = ι, and we

have ar = τ
jr

ir
(k) for some k > 0.

We define c∗ to be any extension of
⋃

r c∗

r to a total function on
⋃

τ
j
i . �

4. Construction

Theorem 4.1. Fix finitely many Π2 functionals given by formulas ∀x∃yR0(z, x, y, c),
. . ., ∀x∃yRn−1(z, x, y, c) depending on a coloring c. There is a computable c

so that for each j < n, the set

Sj = {z | ∀x∃yRj(z, x, y, c)}

fails to be an infinite homogeneous set for c.

Proof. We describe how, for a given b, we define c(a, b) for all a < b. Fix
the value b and suppose we have defined c(a, a′) for all a < a′ < b. For
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each j < n we define an n + 1-train by taking the set τ
j
i for i ≤ b to be the

n + 1 smallest elements a < b such that ∀x < i∃y < bRj(a, x, y, c) (where
the computation is always true if c is not yet sufficiently defined to interpret
Rj(a, x, y, c)). Let c∗ be given by the theorem above, and extend c∗ to be
defined on all a < b by defining it arbitrarily where it is not already defined.
Set c(a, b) = c∗(a) for all a < b.

Suppose that for some j < n, the set Sj is infinite. Let τ j be the n + 1
smallest elements of Sj. We claim that, for b sufficiently large, there is

always some i so that τ
j
i = τ j . For every a < τ j(n) such that a 6∈ τ j , there

is some i such that ∃x ≤ i∀y¬Rj(a, x, y, c), so certainly for every b, if i′ ≥ i

and a ∈ τ
j
i , either a ∈ τ j or a > τ j . Let i be large enough to witness this

bound for all a < τ j(n).
For each a ∈ τ j and each x ≤ i, there is some y such that Rj(a, x, y, c).

If b is big enough to bound these finitely many values of y, it must be the

case that τ
j
i = τ j. Therefore for all sufficiently large b, τ

j
i = τ j .

Since Sj is infinite, let b be some element of Sj sufficiently large so that

τ
j
i = τ j . If c ↾ [τ j ] = ι then there is some a ∈ τ j with c(a, b) = c∗(a) = ι.

Therefore Sj is not homogeneous. �

We can now prove our main theorem:

Theorem 4.2. There is no partial computable f such that for any e, if

e is the code of a total computable 2-coloring c : [N]2 → 2 of pairs, then

f(e) halts, producing the code for a c.e. set Wf(e) enumerating a finite set

{a0, a1, . . . , an−1} of indices for Π0
2 sets with the property that at least one

of those Π0
2 sets is an infinite homogeneous subset for c.

Proof. Let f be a partial computable function such that for any e, if e is the
code of a total computable 2-coloring c : [N]2 → 2 of pairs, then f(e) halts,
producing the code for a c.e. set Wf(e) enumerating a set {a0, a1, . . . , an−1}

of indices for Π0
2 sets.

We define a coloring c as follows. Via the recursion theorem, we obtain
the code for c, and begin evaluating f(e). If f(e) has not halted after b

steps, we define c(a, b) for a < b arbitrarily. If f(e) has halted, then we
begin enumerating Wf(e). If Wf(e) is empty after b steps, we continue to
define c(a, b) for a < b arbitrarily. Each time that Wf(e) enumerates a new
element, we continue the construction of c as in the proof of the previous
theorem, assuming that Wf(e) will never enumerate any new elements.

If Wf(e) is indeed finite, then at some point this assumption will be true,
and we will be able to conclude that no ai is the code for an infinite homo-
geneous Π0

2 subset for c. Note that c always produces a total computable
2-coloring, whether or not f(e) halts, so the recursion theorem must produce
a value e on which f(e) does halt. �
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