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MAGIDOR-MALITZ REFLECTION

YAIR HAYUT

ABSTRACT. In this paper we investigate the consistency and consequences of the

downward Löwenheim-Skolem-Tarski theorem for extension of the first order logic

by the Magidor-Malitz quantifier. We derive some combinatorial results and im-

prove the known upper bound for the consistency of Chang’s Conjecture at succes-

sor of singular cardinals.

1. INTRODUCTION

Let M be a model of size λ over countable language and let κ be an infinite car-

dinal below λ. The downward Löwenheim-Skolem-Tarski theorem says that there
is an elementary submodel N ≺ M such that |N | = κ. This is one of the most

basic results in model theory, and it can be viewed as a reflection principle. The

metamathematical object which is reflected here is the first order logic. The theo-
rem asserts that if M is a model of some first order sentence and |M | > ℵ0, then a

strictly smaller elementary submodel of M already satisfies this sentence.
The Löwenheim-Skolem-Tarski theorem is extremely useful in model theory, and

it is quite natural that mathematicians investigate tentative generalizations of it.

One way to do this is to strengthen the underlying logic, and an important case is
second order logic, L2. In L2, one can quantify over subsets and predicates of the

model and thus express much more of its behavior.

Moving to second order properties, we are catapulted into the realm of large
cardinals:

Theorem 1 (Magidor). [10] Assume that there is a cardinal κ such that for every

model M with countable language, there is N ≺L2 M , |N | < κ, then there is a

supercompact cardinal ≤ κ.

Indeed, even full Π1
1-reflection implies the existence of a supercompact cardinal.

Magidor’s theorem demonstrates an important difference between first order
and second order logic. Focusing on first order logic, there are essentially no set-

theoretical restrictions on our ability to reflect valid sentences. But if we wish to

reflect all the second order properties, we need a supercompact cardinal.
In this paper we try to examine what happens at some intermediate logics be-

tween first order and second order logic. We shall focus mostly on first order logic
extended by the following quantifiers:

Definition 2 (Magidor-Malitz Quantifiers). Let M be a model in the language L.

For a formula ϕ(x0, x1, . . . , xn−1, p0, . . . , pm−1), we write

M |= Qnx0, . . . , xn−1ϕ(x0, x1, . . . , xn−1, p0, . . . , pm−1)

if there is a set A ⊆M with |A| = |M | such that

∀a0, a1, . . . , an−1 ∈ A, M |= ϕ(a0, . . . , an−1, p0, . . . , pm−1).

We write M ≺Qn N if M is an elementary submodel of N with respect to first

order logic enriched with the quantifier Qn. We Write M ≺Q<ω N if M ≺Qn N for

all n < ω.
1
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These quantifiers that were defined by Menachem Magidor and Jerome Malitz in
[11]. In this paper, Magidor and Malitz proved that if the set theoretical principle

♦(ω1) holds, then this quantifier satisfies a certain compactness theorem for models

of size ℵ1. This was generalized by Shelah in [17] to arbitrary successor of regular
cardinal, λ+, under the assumption ♦(λ) + ♦(λ+). In [15], Shelah and Rubin

showed that the the quantifiers Qn form a strict hierarchy and discussed some
cases in which compactness fails.

Basically, the Magidor-Malitz quantifiers express some of the second order prop-

erties of the model. This weakening enables us to get consistently some variants
of the Löwenheim-Skolem-Tarski theorem at accessible cardinals. See for example

Theorem 28 and section 3.4. The hierarchy of languages between first order and

second order logic reflects at the size of the large cardinals which are needed in
order to get reflection principles for those logics. For example, one can get Q1-

reflection at successor cardinal, starting from subcompact cardinal, but in order
to get a similar reflection principle relative to Q<ω using the same approach, one

needs Π1
1-subcompact cardinal.

A more concrete approach is related to the celebrated Chang’s conjecture. Recall:

Definition 3. Let κ, λ, µ, ν be cardinals, κ > λ, µ > ν. We say that (κ, λ) −→→ (µ, ν)
is for every model M of the countable language L with distinct unary predicate A
such that |M | = κ and |A| = λ there is an elementary submodel N ≺ M such that

|N | = µ, |A ∩N | = ν.

Chang’s conjecture is a natural strengthening of the model theoretical two cardi-
nals theorems of Vaught and Chang. There is an extensive literature about Chang’s

conjecture for various parameters. See, for example, [1, section 7.3].

It turned out that some instances of Chang’s conjecture are equivalent to re-
flection of sentences with the Chang’s quantifier Q1 (see below, Lemma 5). Some

results in this paper point towards a similarity between Chang’s conjecture and

the reflection of Q<ω, while other demonstrate the difference between them. For
example:

Theorem. It is consistent, relative to a (+ω + 1)-subcompact cardinal, that

(ℵω+1,ℵω) ։ (ℵ1,ℵ0).

But in Question 2 we ask whether the same situation can occur at all for Q<ω.

Our notation is standard. We work in ZFC. We force downwards (namely, p ≤
q =⇒ p 
 q ∈ Ġ, where Ġ is the canonical name for the generic filter). For

a formula ϕ(x0, . . . , xn−1, p) with free variables x0, . . . , xn−1 and parameter p (for
simplicity, we assume that there is only one parameter), a set A ⊆ M is called

ϕ-cube if for all a0, . . . , an−1 ∈ A, M |= ϕ(a0, . . . , an−1, p).
The paper is arranged in three sections. In section 2 we define theQ<ω analogue

for Chang’s conjecture and derive some reflection principles from it. In section 3 we

investigate the large cardinals which imply Q<ω reflection and prove consistency
results about some cases of Q<ω reflection at small cardinals.

2. COMBINATORIAL CONSIQUECES OF Q<ω REFLECTION

In this section we analyze the relationship between the reflection of the Magidor-
Malitz quantifiers, Q<ω, and some square like principles.

The Magidor-Malitz quantifiers allow us to access some of the second order prop-
erties of the model. As we will see, the downward Löwenheim-Skolem-Tarski theo-

rem for the quantifiers Qn is a strong reflection principle, yet it consistently holds

for some pairs of small cardinals (assuming the consistency of large cardinals).
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Definition 4. Let λ, µ and η be cardinals. λ
η

−−−→
Q<ω

→ µ iff for every model of cardi-

nality λ, over a language of cardinality η, there is a Q<ω−elementary submodel of

cardinality µ. When η = ℵ0 we write λ −−−→
Q<ω

→ µ. Similarly, λ −−→
Qn
→ µ iff for every

model of cardinality λ there is a Qn−elementary submodel of cardinality µ.

λ −−−→
Q<ω

→< µ abbreviates the assertion that for every model of cardinality λ there

is a Q<ω−elementary submodel of cardinality less than µ.

Let us recall that a weak instance of the reflection principle λ −−−→
Q<ω

→ µ is equiva-

lent to Chang’s conjecture:

Lemma 5 (Folklore). Let µ < λ be cardinals. λ+ −−→
Q1
→ µ+ iff (λ+, λ) ։ (µ+, µ).

Proof. Let us assume that λ+ −−→
Q1
→ µ+. Let (M,A) be a model of type (λ+, λ).

Assume, without loss of generality, that:

(1) A is a predicate in the language

(2) There is a definable well ordering ≤⋆ on M with order type λ+

(3) For every a ∈ M there is a definable surjection from A onto the elements
that are smaller than a in ≤⋆.

Let N ≺Q1 M be an elementary submodel of cardinality µ+. We claim that AN =
A ∩N has cardinality µ.
M |= ¬Q1x ∈ A (since |A| = λ < |M | = λ+) and therefore N |= ¬Q1x ∈ A, so

|AN | ≤ µ. On the other hand, by elementarity for every a ∈ N there is a surjection

from AN onto {b ∈ N | b ≤⋆ a} so |A|N cannot be strictly smaller than µ.
On the other hand, assume that (λ+, λ) ։ (µ+, µ). By enriching the language,

we may assume that for every formula φ(x, b) there is a function symbol fφ such

that

{fφ(x, b) | x ∈M} = {y ∈M |M |= φ(y, b).}

Moreover, if the set of x ∈ M such that φ(x, b) has cardinality ≤ λ then we pick fφ
such that:

{fφ(x, b) | x ∈ A} = {y ∈M | M |= φ(y, b).}

and if there are λ+ many elements x ∈M such that φ(x, b) we pick fφ to be one to

one.

Let N ≺ M be an elementary submodel with |AN | = µ. Let us look at the
formula Q1xφ(x, b). If it holds in M , then fφ(x, b) enumerates the set of witnesses

and when restricting this function to N , we get a one to one function from N such
that N |= ∀xφ(fφ(x, b), b). Thus |{x ∈ N | φ(x, b)}| = |N |. On the other hand, if

¬Q1xφ(x, b) then

M |= ∀xφ(x, b) → ∃a ∈ A, x = fφ(a, b).

Therefore, N satisfies the same formula and |{x ∈ N | φ(x, b)}| ≤ |AN |. �

The previous lemma shows that the reflection principle µ+ −−−→
Q<ω

→ κ is at least as

strong as Chang’s Conjecture. For example, since (ℵω+1,ℵω) 6։ (ℵn,ℵn−1) for all
n ≥ 4, we conclude that ℵω+1 6−−−→

Q<ω
→ ℵn for all n ≥ 4.

The proof of the lemma shows that if λ+ −−→
Q1
→ µ then µ must be a successor

cardinal and in particular regular. Similarly, if λ+ −−→
Q1
→ < κ then we may assume

always that the cardinalities of the elementary submodels are successor cardinals.

Let us start with the following useful observation which shows that models that

are obtained from Chang’s conjecture can be assumed to have a specific order type.
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Lemma 6. Assume λ −−→
Q1
→ µ. Then for every model A on set of ordinals of order type

λ there is an elementary submodel, B, such that otpB = µ.

Proof. Assume that the language of A has a predicate <, interpreted as the order
of the ordinals. Let us reflect the statement:

∀α¬Q1β, β < α

from A into B. Observe that for every α ∈ B, otp(B ∩ α) < µ. Therefore B is an

increasing union of chain of models, ordered by end-extension, where the order

type of the chain is µ and all the substructures in the chain has order type strictly
smaller than µ. �

Let us recall the definition of �(κ). Let A be a set of ordinals, we denote:

accA = {β | supA ∩ β = β}.

Definition 7. Let C = 〈Cα | α < κ〉 be a sequence of closed sets such that:

(1) supCα = α for all limit ordinal α.
(2) If β ∈ accCα then Cα ∩ β = Cβ .

(3) There is no club D such that ∀α ∈ (accD) ∩ κ, D ∩ α = Cα.

Then C is called a �(κ) sequence. We say that �(κ) holds if there is a �(κ) se-
quence.

This definition, due to Todorčević, is pivotal in the research of reflection proper-

ties, in particular when dealing with Π1
1-statements. See [14] for extensive review.

Theorem 8. Assume that κ −−→
Q2
→ µ where µ is regular. Then �(κ) fails.

Proof. Let C = 〈Cα | α < κ〉 be a coherent C-sequence, i.e., a sequence that satisfies
the first two conditions in Definition 7. We will show that there is a thread, namely

a club D such that for every α ∈ (accD) ∩ κ, D ∩ α = Cα.

Let A ≺ H(χ), for some large enough regular χ, with κ + 1 ⊆ A, C ∈ A and
|A| = κ.

Let B ≺Q2 A with |B| = µ and assume that κ, C ∈ B. Since µ is a regular

cardinal, by Lemma 6, we can take B so that sup(B ∩ κ) = ρ, cf ρ = µ.
Let us look at δ ∈ accCρ ∩ acc(B ∩ κ) below ρ. Let β = min(B ∩ κ \ δ). β is well

defined, since δ < ρ = sup(B ∩ κ). Let us show that δ ∈ accCβ . If δ = β, then this
is clearly true, so let us assume that δ 6= β.

Let α ∈ B∩β. By the minimality of β, α < δ. Let γ be minCβ \α. This ordinal is

definable from α, β, C and therefore γ ∈ B. Since Cβ is cofinal at β, γ < β. By using
the minimality of β again, we conclude that γ < δ. Therefore, δ is an accumulation

point of ordinals in B ∩Cβ and in particular δ ∈ accCβ .

Since C is coherent, we conclude that Cδ = Cβ ∩ δ, i.e. Cβ is an end extension of
Cδ which we denote by Cδ E Cβ .

Now, let δ < δ′ be in accCρ∩acc(B∩κ). Let β = min(B∩κ\δ), β′ = min(B∩κ\δ′).
We claim that Cβ E Cβ′ , since otherwise there is some γ < β such that γ ∈
Cβ△Cβ′ . Such γ must appear in B (by elementarity), so it is smaller than δ. But

Cδ E Cδ′ E Cβ′ - a contradiction.
We conclude that

B |= Q2α, β < κ, α ≥ β
∨

Cα E Cβ

Therefore, A contains a set of cardinality κ, I, of elements which are compatible in

C. D =
⋃

α∈I Cα is a thread. �
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2.1. The tree property at successor of singular. In this section we will show that
reflection of the Q2-quantifier can behave, in some ways, similarly to the existence

of strongly compact cardinals. In particular, we will show that in the successor of

singular limit of cardinals in which some Q<ω-reflection holds, the tree property
holds.

Let us recall the following definition:

Definition 9. [12] A triplet S = 〈I, κ,R〉 is called a system if:

(1) R is a set of partial orders on I × κ.
(2) For every α < β in I there are ζ < ξ < κ and ≤i∈ R such that 〈α, ξ〉 ≤i

〈β, ζ〉.
(3) For every ≤i∈ R, 〈α, ξ〉 ≤i 〈β, ζ〉 implies that either α < β or that α = β

and ξ = ζ.
(4) For every ≤i∈ R, if α ≤ β, 〈α, ξ〉 ≤i 〈γ, ρ〉 and 〈β, ζ〉 ≤i 〈γ, ρ〉 then 〈α, ξ〉 ≤i

〈β, ζ〉.

The system S is narrow if κ+, |R|+ < sup I.
A branch in the system S is a partial function b ⊆ I × κ such that there is ≤i∈ R

such that for every α < β in dom b, 〈α, b(α)〉 ≤i 〈β, b(β)〉. A branch b is cofinal if

sup dom b = sup I.
The Narrow System Property holds at a cardinal ν if every narrow system S =

〈I, κ,R〉 with sup I = ν has a cofinal branch.

For full discussion about narrow systems and the Narrow System Property, see
[8]. Systems and Narrow Systems appear naturally when dealing with the tree

property at successor of singular cardinals. Those narrow systems are usually re-

strictions of a given tree (which is assumed to be a partial order on ν+ × ν, partial
to the lexicographic order) to some rectangle I × κ in a way that still preserve a

significant portion of the properties of the original tree.

Theorem 10. Let µ be a singular cardinal and assume that 〈κi | i < cf µ〉 is cofinal

in µ, κ0 ≥ cf µ, cf κi = κi for all i. If for every i < cf µ, µ+ κi−−→
Q2
→ κi+1 then the tree

property holds at µ+.

Proof. We prove the theorem in two steps. First we apply Q2-reflection in order to

find for a given µ+-tree T a narrow subsystem. At this step we will use µ+ cf µ
−−→
Q2
→ λ

for some regular λ < µ+. Then we pick i large enough so that κi is larger than

the width of the system and use µ+ κi−−→
Q2
→ κi+1 in order to get a branch through the

narrow system.

Let T be a µ+-tree and assume, without loss of generality, that T = 〈µ+×µ,≤T 〉,
i.e. that the α-th level of T is given by {α}×µ. Let A0 be an elementary substructure

of H(χ) for some large enough χ, such that |A0| = µ+, µ+ ⊆ A0 and T ∈ A0.

Let B0 be aQ2-elementary substructure of A0, containing cf µ such that the order
type of B0 ∩ µ+ has cofinality above cf µ and |B0| < µ. We may assume, without

loss of generality, that {κi | i < cf µ} ⊆ B0. Let ∆ = B0 ∩ µ
+ - the set of levels that

appear in B0. Let δ = sup∆ and let us consider the branch below 〈δ, 0〉. Since T is

a tree, for every α ∈ ∆ there is ζ < µ such that 〈α, ζ〉 ≤T 〈δ, 0〉. Since µ is singular

and cf µ ⊆ B0, there is some i ∈ B0 such that ζ < κi.
If α, β are both in ∆, and 〈α, ζ〉, 〈β, ξ〉 ≤T 〈δ, 0〉 then 〈α, ζ〉 ≤T 〈β, ξ〉. If we

assume that ζ, ξ < κi then by elementarity there are ζ̃, ξ̃ ∈ B0 ∩ κi such that

〈α, ζ̃〉 ≤T 〈β, ξ̃〉.
Since the cofinality of δ is larger than cf µ, there is i < cf µ such that B0 satisfies

the Q<ω-formula:

Q2α, β∃ζ, ξ < κi, 〈α, ζ〉 ≤T 〈β, ξ〉
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By Q<ω-elementarity there is some subset I ⊆ A0 with cardinality µ+ such that
every element of I is an ordinal and the elements of I satisfy the same compatibility

relation. Therefore, we can define a narrow system on I × κi (with only single

relation), by the restriction of the tree T to this set.
Let us show that the Narrow System Property follows from the reflection as-

sumption µ+ κi−−→
Q2
→ κi+1 for cofinal set of regular κi < µ.

Lemma 11. Let µ be a singular cardinal and assume that for cofinal set of regular

cardinals κ < µ, there is a regular cardinal λ, such that κ < λ < µ and µ+ κ
−−−→
Q<ω

→ λ.

Then the narrow system property holds at µ+.

Proof. Let S = 〈I, κ,R〉 be a narrow system with height µ+, |R| ≤ κ.
Let A1 be an elementary substructure of H(χ) containing all ordinals in µ+ and

S. Let us pick a Q<ω−elementary substructure B1 of A1, of cardinality strictly

larger than κ, containing all ordinals below κ. Let δ = sup(B1 ∩ µ
+) and let us pick

some element ǫ ∈ I \ δ. Since S is a narrow system, for every α ∈ B1 there are

ζ, ξ < κ and index i < κ such that 〈α, ζ〉 ≤i 〈ǫ, ξ〉. By Lemma 6, we may assume

that otpB1 is regular and therefore, for unbounded many ordinals below ǫ in B1

the tuple (ζ, ξ, i) is constant. Therefore, for some ζ⋆, i⋆ < κ, B1 satisfies:

Q2α, β, 〈α, ζ⋆〉 ≤i⋆ 〈β, ζ⋆〉

The same holds in A1, and therefore there is a branch in S. �

Applying Lemma 11 on T ↾ I, we obtain a cofinal branch through T ↾ I, b′. The

set {s ∈ T | ∃s ∈ b, t ≤ s} is a cofinal branch through T .

�

The assumptions of Theorem 10 and Lemma 11 can be weakened to the assump-
tion that for every model A of cardinality µ+ over a language of cardinality η < µ
there is some regular cardinal κ < µ and a Q2-elementary submodel B of cardinal-

ity κ (note that in this case, η < κ). This is true, since the proof does not use the
fact that the values of the cardinals λn are pre-determined. The proof only uses the

fact that for every η < µ (which is the width of the narrow system), we can find a

Q2-elementary submodel of some fragment of the universe, B, such that η ⊆ B and
otpB is regular and large enough.

It is interesting to compare Theorem 10 to the theorem of Shelah and Magidor:

Theorem 12. [12] Let ν be a singular limit of cardinals which are ν+-strongly com-

pact. Then the tree property holds at ν+.

The reflection principle which is required for Theorem 10 follows from large car-

dinals at the level of partial supercompact (see Theorem 20). It is unclear whether
one can derive this kind of reflection from strongly compact cardinals. In fact, it is

unclear even if one can derive some instances of Chang’s Conjecture from strongly

compact cardinals. On the other hand, the reflection principle

λ −−−→
Q<ω

→ κ

itself does not imply that λ or κ are large cardinals (see 3.3).

The assumption that µ+ −−−→
Q<ω

→ κ for cofinally many κ < µ seems to be stronger

than the narrow system property. For example, it cannot hold for µ = ℵω, since
(ℵω+1,ℵω) 6։ (ℵn+1,ℵn) for every n ≥ 3. This fact is a combination of PCF related

results of Cummings, Foreman, Magidor and Shelah. For a proof, see [16, Section

4].
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3. CONSISTENCY RESULTS

This section is dedicated to the derivation of some consistency results regarding

the reflection principles that were defined above.

3.1. Chang’s conjecture at ℵω+1. We begin this section with two theorems about

the consistency of Chang’s conjecture at successor of singular cardinals.

Definition 13 (Jensen). [13] A cardinal κ is (+α)-subcompact if for every A ⊆
H(κ+α) there are ρ < κ, B ⊆ H(ρ+α) and an elementary embedding

j : 〈H(ρ+α),∈, ρ, B〉 → 〈H(κ+α),∈, κ, A〉

where ρ is the critical point of j. A cardinal κ is subcompact if it is (+1)-subcompact.

In order to get a general feeling about the place of this type of cardinals in

the large cardinal hierarchy, let us remark that if κ is κ+ω+1-supercompact and

κ+ω is strong limit then κ is (+ω + 1)-subcompact and it has a normal measure
concentrating on the set of cardinals below it which are (+ω + 1)-subcompact. On

the other hand, if a cardinal κ is (+ω+1)-subcompact then it is κ+n-supercompact

for every n < ω and it has a normal measure concentrating on cardinals ρ which
are ρ+n supercompact of all n < ω.

Lemma 14 (Folklore). Let κ be (+α)-subcompact cardinal, where κ+α is regular and

|H(κ+α)| = κ+α. Then there is a generic extension in which �(κ+α) holds and κ is

still (+α)-subcompact.

Proof. Let λ = κ+α. Let P be the forcing notion for adding a square sequence for
κ+α using bounded approximations. Namely, the conditions of P are sequences of

the form 〈Cα | α ≤ δ < λ〉 where Cα ⊆ α is a club at α and if β ∈ accCα then

Cα ∩ β = Cβ . We order P by end-extension, namely p ≤ q if p end extends q.
It is well known that P is λ-strategically closed and that if G ⊆ P is a generic

filter then
⋃

G is a �(λ) sequence in V [G]. Moreover, by the distributivity of P,

(H(λ))V [G] = H(λ)V Let us claim that κ is still (+α)-subcompact in the generic
extension.

Assume otherwise. Let Ȧ be a name for a subset of H(λ), and let p be a condition
that forces that there is no ρ < κ and B ⊆ H(ρ+α) such that there is an elementary

embedding

j : 〈H(ρ+α), B,∈〉 → 〈H(λ), Ȧ,∈〉.

Since j ∈ H(λ)V [G], j is a member of the ground model V . Therefore, one can

enumerate all candidates for j in a sequence of length λ, 〈jξ | ξ < λ〉. Let us also
enumerate the elements of H(λ) in a sequence of length λ, 〈aξ | ξ < λ〉.

As P is strategically closed, we can construct a sequence of conditions pξ ∈ P

and sets 〈Mξ | ξ < λ〉 such that for ζ < ξ, pξ ≤ pζ , p0 ≤ p and

(1) pξ 
Mξ ≺ 〈H(λ), Ȧ,∈〉
(2) aξ ∈Mξ. For all ρ < ξ, Mρ ⊆Mξ.

(3) pξ decides for all x ∈Mξ whether x ∈ Ȧ or not.

(4) The range of jξ is contained in Mξ.

(5) jξ not an elementary embedding from dom jξ to Mξ.

Let

Ã = {x ∈ H(λ) | ∃ξ < λ, pξ 
 x ∈ Ȧ}.

By condition (2),
⋃

ξ<λMξ = H(λ). Thus, by applying Tarski-Vaught’s test we

conclude that for all ξ,

〈Mξ,Mξ ∩ Ã,∈〉 ≺ 〈H(λ), Ã,∈〉

.
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In V , κ is (+α)-subcompact and therefore there is some ρ < κ, B and

j : 〈H(ρ+α), B,∈〉 → 〈H(λ), Ã,∈〉

elementary. For some ξ < λ, j = jξ. Therefore, pξ forces that j is not elementary as

a map to Mξ. But Mξ is an elementary submodel of 〈H(λ), Ã,∈〉 and contains the

image of j - a contradiction. �

Before stating the main theorems of this section, let us recall the following char-

acterization of Chang’s Conjecture.

Lemma 15. The following are equivalent:

(1) (κ, λ) ։ (µ, ν)
(2) For every function f : κ<ω → λ there is I ⊆ κ, |I| = µ such that

|f ” I<ω| ≤ ν.

(3) For every function f : κ<ω → κ there is I ⊆ κ, |I| = µ such that

|
(

f ” I<ω
)

∩ λ| ≤ ν.

The proof is done by using Skolem functions for one direction and by adding f
to the model in the other direction.

Theorem 16. Let κ be (+ω + 1)-subcompact cardinal, κ+ω strong limit. There is

ρ < κ such that (κ+ω+1, κ+ω) ։ (ρ+ω+1, ρ+ω).

Remark. This is an improvement of the current upper bound for this type of

Chang’s Conjecture, which is slightly above huge (namely, a cardinal κ such that
there is an elementary embedding j : V → M , crit j = κ and M is closed under

sequences of length j(κ)+ω+1), see [9].

Proof. Let µ = κ+ω. Assume otherwise, and let us pick for every ρ < κ a function

fρ : (µ
+)<ω → µ+ such that for all R ⊆ µ+ of cardinality ρ+ω+1, |f ′′

ρ [R]
<ω ∩ µ| 6=

ρ+ω.
Let us code this sequence of functions as a subset of H(κ+ω+1), A.

Let j : 〈H(ρ+ω+1),∈, B〉 → 〈H(κ+ω+1),∈, A〉 be an elementary embedding as in

the definition of (+ω + 1)-subcompactness. B codes a sequence of functions from
(ρ+ω+1)<ω to ρ+ω+1, 〈gη | η < ρ〉, witnessing the failure of Chang’s conjecture.

Note that ρ+ω is strong limit.

Let us look at fρ. Let R = j′′ρ+ω+1 ∈ H(κ+ω+1). By our assumption, |f ′′
ρ [R]

<ω ∩

µ| > ρ+ω. Let n be the first ordinal such that |f ′′[R]<ω ∩ κ+n| = ρ+ω+1.

Since cf ρ+ω = ω and ρ+ω+1 is regular, it is impossible that n = ω, so n is a

natural number.
Let 〈~αξ | ξ < ρ+ω+1〉 be a sequence of elements in (ρ+ω+1)<ω, and assume that

〈fρ(j( ~αξ)) | ξ < ρ+ω+1〉 is strictly increasing sequence of ordinals below κ+n.
By elementarity, for every ξ 6= ξ′,

〈gη(~αξ) ∩ ρ
+n | η < ρ〉 6= 〈gη(~αξ′) ∩ ρ

+n | η < ρ〉

Otherwise, for every ρ̃ < κ we would get that

fρ̃(j(~αξ)) ∩ κ
+n = fρ̃(j(~αξ′)) ∩ κ

+n

and evaluating at ρ̃ = ρ we get a contradiction.

The number of possible sequences of this form is (ρ+n)ρ which is strictly smaller
than ρ+ω - a contradiction. �

Theorem 17. Let κ be a (+ω + 1)-subcompact cardinal, κ+ω strong limit. There is

ρ < κ such that forcing with Col(ω, ρ+ω) × Col(ρ+ω+2, < κ) forces the instance of

Chang’s conjecture (ℵω+1,ℵω) ։ (ℵ1,ℵ0).
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Proof. Let µ = κ+ω.
Assume otherwise, and let us pick for all ρ < κ a Col(ω, ρ+ω)×Col(ρ+ω+2, < κ)-

name for a function fρ : (µ
+)<ω → µ+, witnessing the failure of Chang’s conjecture

in the generic extension. Note that we can still code this set of names as a subset
of H(κ+ω+1), A.

Let j : 〈H(ρ+ω+1),∈, B〉 → 〈H(κ+ω+1),∈, A〉 be the subcompact embedding. As
in the previous proof, we denote by ġη the names of the functions coded by B. Let

us look at ḟρ and the forcing Col(ω, ρ+ω)× Col(ρ+ω+2, < κ).
Let R = j′′ρ+ω+1.
By the assumption, 
 |f ′′

ρ [R]
<ω ∩ µ| = ρ+ω+1 and by the same argument as

before, there is some condition (p0, p1) and a minimal ordinal n such that

(p0, p1) 
 |f ′′
ρ [R]

<ω ∩ κ+n| = ρ+ω+1.

Since ρ+ω+1 is still regular after the forcing, n must be finite.
Let {ȧξ | ξ < ρ+ω+1} be a sequence of names of finite sequences of ordinals

below ρ+ω+1 such that it is forced by the empty condition that

fρ(j(ȧξ)) < fρ(j(ȧξ′ )) < κ+n

for all ξ < ξ′.
Since the Col(ρ+ω+2, < κ) is ρ+ω+2-closed, we can find a condition that below it

the value of ȧξ is determined only by the first coordinate for all ξ < ρ+ω+1.

There are ρ+ω many conditions in Col(ω, ρ+ω). Therefore, there is a single con-
dition p and a set of size ρ+ω+1 of finite sequences such that p decides the value of

all of them. Let {bξ | ξ < ρ+ω+1} be an enumeration of this set.

Back in H(ρ+ω+1), for every pair of ordinals ξ < ξ′ there is η < ρ and a condition
q ∈ Col(ω, η+ω)× Col(η+ω+2, < ρ) that forces gη(bξ) < gη(bξ′) < ρ+n.

This defines a coloring [ρ+ω+1]2 → ρ × Vρ. Let us restrict the coloring to the

first (2ρ
+n

)+ elements. By the Erdős-Rado theorem, there is a homogeneous set of
cardinality ρ+n+1, H . Let (η, q) be the color of all pairs in H . So for every ξ < ξ′ in

H ,

q 
Col(ω,η+ω)×Col(η+ω+2,<ρ) ġη(bξ) < ġη(bξ′) < ρ+n

and in particular, after forcing with Col(ω, η+ω) × Col(η+ω+2, < ρ) below the con-

dition q, there is a set of order type ρ+n+1 below ρ+n, which is impossible. �

Assuming the consistency of a (+ω+1)-subcompact cardinal, it is consistent that

κ is (+ω + 1)-subcompact and �(κ+ω+1) holds (yet �⋆
κ+ω and even the approach-

ability property must fail, by Theorem 16). Therefore in the model of Theorem 17
we may have �(ℵω+1) and therefore ℵω+1 6−−−→

Q<ω
→ ℵ1.

The assumption in both Theorem 16 and Theorem 17 is slightly below the as-

sumption of κ being κ+ω+1-supercompact.

Question 1. Is Chang’s conjecture (ℵω+1,ℵω) ։ (ℵ1,ℵ0) consistent assuming the

consistency of a strongly compact cardinal?

3.2. MM submodels. In this subsection we investigate which large cardinal as-
sumptions imply the Q<ω-reflection. We first deal with the case λ −−−→

Q<ω
→ κ for λ

successor cardinal.

3.2.1. Π1
1 Subcompact cardinals. The following large cardinal notion was defined

by Neeman and Steel in [13]. We will use a slightly different notation than the one

used in [13].
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Definition 18. A cardinal κ is Π1
1-(+α)-subcompact, if for every A ⊆ H(κ+α) and

Π1
1-statement φ such that 〈H(κ+α), κ,∈, A〉 |= φ there is ρ < κ and B ⊆ H(ρ+α)

such that 〈H(ρ+α),∈, ρ, B〉 |= φ.1

In order to get a general feeling about the place of Π1
1-subcompact cardinals

in the large cardinal hierarchy, we remark that a Π1
1-(+0)-subcompact is weakly

compact, while (+0)-subcompact cardinal is inaccessible cardinal2.

Lemma 19. Let κ be a Π1
1-(+α)-subcompact cardinal, α < κ. Then there is a station-

ary subset of κ of (+α)-subcompact cardinals.

Proof. Note that the notion of (+α)-subcompact cardinal is not changed when one

weakens the assumption of j to assuming only that j is Σ1 elementary relative to
additional predicate (by coding the full elementary diagram). Using this interpre-

tation, the statement "κ is (+α)-subcompact" is Π1
1-statement and therefore reflects

downwards. By adding a predicate C for a club, we obtain the desired result. �

Theorem 20. Let κ be Π1
1-(+α) subcompact, α < κ successor ordinal and assume

that |H(κ+α)| = κ+α. Then κ+α −−−→
Q<ω

→< κ.

Proof. Let λ = κ+α.
Let A be an algebra on λ. A can be coded by a single predicate on H(λ), A.

Moreover, we assume that A codes also the truth predicate of A and that the lan-
guage of A contains some bijection between H(λ) and λ.

For every formula ϕ in the language of the model A with the Q<ω quantifiers we

enrich the language of A by adding one function symbol. For formula ϕ of the form
Qnx0, . . . , xn−1ψ(x0, . . . , xn−1, b), let us add the function symbol Fϕ : A × A → A
and interpret it such that whenever A |= ϕ(b) (where b ∈ A), the function x →
Fϕ(x, b) is one to one and its image, I, witnesses ϕ. Namely,

∀x0, . . . , xn−1 ∈ A, A |= ψ(Fϕ(x0, b), . . . , Fϕ(xn−1, b), b).

We will assume that the truth predicate A contains also the truth value of all for-

mulas in the enriched language.

We want to code the fact that A is a truth predicate for Q<ω-formulas into a
single Π1

1-sentence.

Let Φ be the following Π1
1-sentence: For every X ⊆ H(λ) one of the following

cases hold:

(1) There is y ∈ X which is not of the form 〈φ, p, x〉 where φ is a (Gödel
number of a) Q<ω-formula, x, p ∈ H(λ).

(2) There is a pair of elements 〈φ, p, x〉, 〈φ′, p′, x′〉 ∈ X with 〈φ, p〉 6= 〈φ′, p′〉
(3) φ = Qnx0, . . . , xn−1ϕ(x0, . . . , xn−1, p) and there are a0, . . . , an−1 such that

∀i < n, 〈φ, p, ai〉 ∈ X and A |= ¬ϕ(a0, . . . , an−1).
(4) X is bounded.
(5) “φ(p)” belongs to the truth predicate of A.

Where all the truth values are evaluated using the truth predicate.

Clearly, the formula Φ holds in A.

Let ρ, B and j : 〈H(ρ+α),∈, B〉 → 〈H(κ+α),∈, A〉 witness the assumption that κ
is Π1

1-(+α)-subcompact relative to the Π1
1 formula Φ.

Let us claim that B = j′′H(ρ+α) is a Q<ω elementary substructure of A.

1In [13], Neeman and Steel denoted by Π2

1
-subcompact the large cardinal notion that is denoted

here by Π1

1
-(+1)-subcompact.

2This depends on the precise definition of H(χ) for singularχ. If we define H(χ) to be the collection

of sets of cardinality < χ such that every member of them belongs to H(χ) we conclude that (+0)-
subcompact cardinal is Mahlo.
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We need to show that for a Q<ω-formula ϕ, and b ∈ B, B |= ϕ(b) if and only if
A |= ϕ(b).

We prove the claim by induction on the complexity of ϕ. Elementarity for first

order quantifiers and connectives follows from the elementarity of j. Let us as-
sume that ϕ has the form Qnx0, . . . , xn−1ψ(x0, . . . , xn−1, y), and that the induction

hypothesis holds for all formulas in the complexity level of ψ.
If A |= ϕ(b), then g(x) = Fϕ(x, b) enumerates some set I such that for every

a0, . . . , an−1 ∈ I, A |= ψ(a0, . . . , an−1). By elementarity of j, when restricting g to

elements of B its range will be a subset of B which is a ψ-block of cardinality |B|.
Let us assume that B |= ϕ. Recall that j is an isomorphism between H(ρ+α) and

B. Thus,

〈H(ρ+α),∈, B〉 |= ∃I, |I| unbouneded ∀a0, . . . , an−1 ∈ I, ψ(a0, . . . , an−1, j
−1(b))

where I is the preimage under j of the subset of B which witnesses ϕ. Let X to be
{〈ϕ, b, x〉 | x ∈ I}. So 〈H(ρ+α),∈, B〉 is a model for ¬Φ as witnessed by X , unless

A |= ϕ(b). �

Theorem 20 is parallel to Theorem 16. Unfortunately, we do not know how to
generalize the stronger result of Theorem 17. For successors of regulars and target

ℵ1, subsection 3.4 gives some partial results.

3.2.2. Inaccessible cardinals. For inaccessible cardinals, the consistency strength

seems to be lower.

Theorem 21. Let κ be Ramsey cardinal. Then for every regular cardinal ω < µ < κ,

κ −−−→
Q<ω

→ µ.

Proof. Let A be an algebra on κ. Let I be a set of indiscernibles for A and let B be
the substructure of A generated by the first µ indiscernibles.

As in the previous proof, in order to show that B ≺Q<ω A, we may enrich the

language of A by functions that produce witnesses for all Q<ω-formulas that hold
in A and show only that for every Q<ω-formula ϕ = Qnx0, . . . , xnψ, if B |= ϕ then

A |= ϕ.

Let J ⊆ B be any set of cardinality µ. Every element a ∈ J can be represented
as f(α0, . . . , αm−1) where f is one of the Skolem functions of A and αi ∈ I.

Since there are only countably many Skolem functions, f , there is some fixed f⋆
and uncountable subset of J , K, such that for every a ∈ K there are indiscernibles

α0, . . . , αm−1 such that a = f⋆(α0, . . . , αm−1). Moreover, if γ is the maximal indis-

cernible that appears in the description of the parameters of the formula ψ, we may
assume that for all a ∈ K, a = f⋆(α0, . . . , αm−1) and the set {αi | i < m, αi ≤ γ}
is fixed (since µ is a regular cardinal, and there are less than µ finite sequences of

indiscernibles below γ).

By ∆-system arguments, there is some finite set r ∈ Ik and a set J̃ ⊆ Im−k such

that |J̃ | = µ and f⋆(r
as) ∈ I for all s ∈ J̃ . Moreover, we may assume that for all

s 6= s′, f⋆(r
as) 6= f⋆(r

as′) and max s < min s′ or min s > max s′. Otherwise, by

indiscerniblity, every two members of K were equal.
Since the members of I are indiscernible, and by our assumption on K, we have

that for every β0 < β1 < · · · < β(m−k)·n−1 in I if we let

bi = f⋆(r
a〈β(m−k)i, β(m−k)i+1, . . . , β(m−k)(i+1)−1〉)

then ψ(b0, . . . , bn−1). This provides a set of cardinality κ in A which is a ψ-cube. �
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3.3. Q<ω-reflection at successor cardinals. In this subsection we will discuss
some cases in which the one can force the Q<ω-reflection at successor of regular

cardinals, starting from large cardinals at the level of huge cardinals.

We will start with the following technical definition:

Definition 22. Let P be a forcing notion. We say that P is κ-Q<ω preserving if for

every algebra of cardinality κ, A, Q<ω-formula ϕ, and G ⊆ P a generic filter

V |= A |= ϕ ⇐⇒ V [G] |= A |= ϕ.

The class of κ-Q<ω preserving forcings is closed under finite iterations. Note

that in order to show that a forcing is κ-Q<ω-preserving, it is enough to show

that for every formula of the right signature ϕ, if V [G] |= A |= Qnϕ then also
V |= A |= Qnϕ.

Lemma 23. κ-closed forcing notion is κ-Q<ω preserving.

Proof. Let P be a κ-closed forcing notion and let A be a model of cardinality κ. Let
ϕ be a formula and assume that

V [G] |= A |= Qnx0, . . . , xn−1 ϕ(x0, . . . , xn−1, ~p).

By induction on the complexity of the formula ϕ we may assume that the satisfac-

tion of ϕ is absolute between V and V [G]. Let İ be a P-name for a subset of A,

and let p0 ∈ P be a condition that forces |İ| = κ and that I is a ϕ-block. Let us
construct, by induction, a decreasing sequence of conditions pi ∈ P, of length κ,

such that pi+1 
 ǎi ∈ İ for some ai ∈ A, and for every i 6= j, ai 6= aj .
By the κ-closure - this is possible. Let J = {ai | i < κ}. J is a ϕ-block since for

every ~a ∈ Jn, if we take ξ to be above all indices of the elements of ~a,

pξ 
 A |= ϕ(~a, ~p)

and therefore A |= ϕ(~a, ~p). Thus, in V , J is a ϕ block of size κ. �

A forcing P has the (λ, κ,< ζ)-c.c. if every set of cardinality λ of conditions, A,

has a subset B ⊆ A of cardinality κ such that for every C ⊆ B, |C| < ζ, there is a

lower bound for C. We will be interested in the case of (κ, κ,< ω)-c.c. which is a
minor strengthening of κ-Knaster property. We use the following terminology: For

a forcing notion P, we say that P has precaliber-κ if it is (κ, κ,< ω)-c.c.

Lemma 24. Assume that κ is regular. Every forcing notion that has precaliber-κ is

κ-Q<ω preserving.

Proof. Let P,A, İ and ϕ be as in the proof of 23. Let us construct a sequence of

conditions pi ∈ P such that pi 
 ǎi ∈ İ and for every i 6= j, ai 6= aj . Note that we
cannot assume that pi is compatible with pj for every i, j.

Since P has precaliber-κ, there is a subset J ⊆ κ such that for every finitely many
elements from J , ξ0, . . . , ξm−1, the conditions pξ0 , . . . , pxim−1

have a common lower

bound.

In particular, for every n elements from J , ξ0, . . . , ξn−1, there is a condition
q ∈ P stronger than pξ0 , . . . , pxin−1

and q forces ϕ(~a, ~p) where ~a = 〈aξ0 , . . . , aξn−1
〉.

Therefore, {aξ | ξ ∈ J} is a ϕ-block in the ground model. �

We remark that κ-c.c. forcing notions may not be κ-Q<ω preserving (e.g. a forc-
ing that adds a branch to a κ-Suslin tree does not preserve the Q<ω sentence "there

is no set of cardinality κ of incompatible elements").

Lemma 25. If there is a projection from P onto Q and P is κ-Q<ω preserving then Q

is also κ-Q<ω preserving.
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A κ-Q<ω preserving forcing notion does not collapse κ. Otherwise, if |κ| = µ in
the generic extension, for some µ < κ, then the truth value of the Q<ω formula

Q1x, x < µ in the model 〈κ,≤〉 was changed.

For the next theorem we would like to have a forcing notion that collapses car-
dinals below a Mahlo cardinal and behaves nicely under iterations and elementary

embeddings. There are several such forcing notions in the literature (see [7], [5],
[2], [18] and others).

For our results we will use a simple variation of the forcing notion that was

defined in [18]. The arguments for the properties of this forcing are mostly due to
Shioya.

We would like to thank Eskew for pointing our an error in the previous version

of this definition.

Definition 26. Let µ < κ be regular cardinals. Let S(µ,< κ) be the Silver collapse

between µ and κ. Namely, the µ+ support product of Col(µ, α) for every α ∈ [µ, κ).
We denote by EC(µ,< κ) the Easton support product

∏

µ≤α<κ S(α,< κ), where

the product ranges over regular cardinals.

Namely, EC(µ,< κ) is the set of all partial functions such that:

(1) dom(f) ⊆ {〈α, β, γ〉 | µ ≤ α < κ, β ∈ [α, κ) regular cardinals, γ < α}.

(2) f(α, β, γ) ∈ β.

(3) |{α | ∃〈α, β, γ〉 ∈ dom(f)} ∩ ρ| < ρ for all inaccessible ρ.
(4) For all α < κ, |{〈β, γ〉 | 〈α, β, γ〉 ∈ dom(f)}| ≤ α.

(5) For all α < κ, β < κ, |{γ | 〈α, β, γ〉 ∈ dom(f)}| < α.

Lemma 27. Let µ < κ be regular cardinals and assume that κ is Mahlo. Let P =
EC(µ,< κ).

(1) P has precaliber-κ and it is µ-closed.

(2) P collapses every cardinal between µ and κ.

Proof. Let {pi | i < κ} be a sequence of conditions in P. Let

g(i) = sup{α, β, γ, pi(α, β, γ) | 〈α, β, γ〉 ∈ dom(pi)}.

For all i < κ, g(i) < κ and therefore there is a club C ⊆ κ of cardinals such that
∀ρ ∈ C, sup g′′(ρ) ≤ ρ. Let {ρi | i < κ} be an increasing enumeration of all the

strongly inaccessible cardinals in C. Note that this is a stationary subset of κ.

Let qi = pi ↾ [ρi, κ) × [ρi, κ) namely the function pi restricted to inputs of the
form 〈α, β, γ〉 where ρi ≤ α, β. By the definition of C, for every i < j, qi and qj are

compatible, since their domain are disjoint - the domain of qi is a subset of ρi+1 ×
ρi+1 × ρi+1 while the domain of qi does not contain any triplet of the form 〈α, β, γ〉
with α, β < ρj . Similarly, for every finite collection of element qi0 , . . . , qin−1

, the

union
⋃

k qik is a condition, stronger than all qik .
Let us look at ri = pi ↾ ρi × ρi. Since ρi is strongly inaccessible, ri ∈ Vρi

(its domain is bounded below ρi). By fixing some enumeration of Vκ that maps

elements of Vρ to ordinals below ρ for every inaccessible ρ, the function ρi → ri
is equivalent to a regressive function on a stationary set. Therefore, by Fodor’s

lemma, there is a stationary subset S, such that for all ρi, ρj ∈ S, ri = rj . We

conclude that for every ρi, ρj ∈ S, pi is compatible with pj , and furthermore - for
every finite collection pi0 , . . . , pin−1

, such that ik ∈ S, the union
⋃

pik is a condition

stronger than each pik . �

Theorem 28. Let µ < κ ≤ λ < δ be regular cardinals and assume that there is an

elementary embedding j : V →M with j(κ) = δ, M j(λ) ⊆M .

Let P = EC(µ,< κ) and let Q̇ be the P-name for the forcing notion EC(λ,< δ) as

defined in V P.
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Then V P∗Q̇ |= j(λ) −−−→
Q<ω

→ λ.

Proof. By Lemma 27, P has precaliber-κ and Q̇ is forced to have precaliber-δ in V P.

Let N be the termspace forcing for Q̇ and let R be EC(λ,< δ)V .

Lemma 29. There is a projection from R onto N.

Proof. Using the fact that κ is a huge cardinal and in particular δ-supercompact, for

every regular cardinal, ρ ≥ κ, ρ<κ = ρ. In particular, we can construct a bijection
between all the nice P-names of ordinals below a regular ρ and ρ (using the fact

that P is κ-c.c.). Using this bijection we can identify a condition in R as a partial

function to names of ordinals in the appropriate domain and get a projection.
This projection is continuous in the following sense: if A ⊆ R is a collection of

conditions and A has a lower bound then (by the properties of R) it has an unique

greatest lower bound,
⋃

A, and the projection sends
⋃

A to the unique lower bound
of the image of A. �

By elementarity, j(P ∗ Q̇) = j(P) ∗ j(Q̇). We want to show that one can find a
weak master condition for this forcing.

j(P) =
∏

µ≤α<δ S(α,< δ), with Easton support. Let us decompose j(P) in the

following way:

j(P) =
(

∏

µ≤α<κ

S(α,< δ)
)

×
(

∏

κ≤α<λ

S(α,< δ)
)

×
(

∏

λ≤α<δ

S(α,< δ)
)

were all products are with Easton support. The first component projects onto P,

by taking the projection of each component S(α,< δ) and restrict it to its first κ
coordinates. The last coordinate is R.

Thus, there is a projection from j(P) to P × R and in particular to P ∗ Q̇. This

projection respects greatest lower bounds. Therefore, after forcing with j(P) we

have a generic filter G ⊆ P and a generic filter H ⊆ Q̇. The set q̃ =
⋃

q∈H j(q) is

a condition: its domain is bounded by sup j ” δ < j(δ), and therefore it is Easton.

For every inaccessible α < δ, and every β < j(α), q̃(β) is the union of at most α
many functions, and thus it is a condition in the relevant Silver collapse. Finally,

the support of q̃ in the product S(ρ,< j(δ)) is at most δ · ρ ≤ ρ for all ρ ≥ δ3.
Therefore, by using the directed closure of the forcing, q̃ is a condition.

Using Silver criteria for extending elementary embeddings to generic extension,

one can extend j by forcing with j(P) ∗ j(Q̇)/(P ∗ Q̇). j(Q̇) is a j(P)-name for

a highly directed closed (at least δ-closed). We claim that j(P) ∗ j(Q̇)/(P ∗ Q̇) is
j(λ)-Q<ω-preserving.

By the structure of the projection - we can split the discussion into two parts.

First, note that j(Q̇) is forced to be j(λ)-closed in V j(P), and therefore j(λ)-Q<ω-

preserving. j(P)/(P ∗ Q̇) is the quotient of two forcing notions of precalibre-δ. If

j(λ) > δ, then since the forcing notion j(P)/(P ∗ Q̇) has cardinality < j(λ), it

automatically has precaliber j(λ). Otherwise, we use the following claim:

Lemma 30. Let R and S be two precaliber δ forcing notions. Let us assume that for

every finite collection of conditions (either in R or in S), if it has a lower bound then

it has an unique greatest lower bound. Let π : R → S be a projection that respects

greatest lower bounds of finite collections.

Then the quotient forcing has precaliber δ.

3This is the only place in which using Silver collapse (instead of the more standard Levy collapse) is

important. In the original version of this paper, the Levy collapse forcing was used and this argument

was flawed. We would like to thank Eskew for pointing out this mistake.
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Proof. Let K̇ be the canonical name for the generic filter for S. Let İ be a name for

a subset of conditions in R/K̇ of size δ that has no subset of cardinality δ in which
every finitely many conditions are compatible.

Let us pick conditions si ∈ S such that si 
 ři ∈ İ, ri are all distinct and
i < δ. Note that in particular, si ≤ π(ri). Since S has precaliber-δ, there is a

subset of δ of cardinality δ, J , such that any finitely many conditions sξ0 , . . . , sξn−1
,

ξ0, . . . , ξn−1 ∈ J , are compatible. Since R has precaliber-δ, there is a set J ′ ⊆ J
of cardinality δ such that for every ξ0, . . . , ξn−1 ∈ J ′, rξ0 , . . . , rξn−1

are compatible.

Note that is s is the greatest lower bound of sξ0 , . . . , sξn−1
and r is the greatest

lower bound of rξ0 , . . . , rξn−1
then s ≤ π(r) and therefore s 
 ř ∈ R/K̇.

Let us show that there is a condition s ∈ S that forces {ξ ∈ J ′ | sξ ∈ K̇} is
unbounded. Otherwise, by the chain condition of S, there was a bound that was

forced by the weakest condition of S, β. But for ξ > β, ξ ∈ J ′, sξ provides the
contradiction. �

Let A be an algebra on j(λ). Let us extend j to an embedding j̃ by forcing with

j(P ∗ Q̇)/
(

P ∗ Q̇
)

. In M [j(G ∗ H)], j̃′′A is an elementary substructure of j(A) of

cardinality j(λ). We want to show that it is Q<ω-elementary.

Since the forcing j(P ∗ Q̇)/
(

P ∗ Q̇
)

is j(λ)-Q<ω preserving, every Q<ω formula

that holds in j′′A (and hence in A) in M [j(G)][j(H)], holds in A in V [G][H ] as
well. Therefore, it holds in j(A) - as wanted. �

It is interesting to check where exactly the proof fails when using Levy collapse

instead of EC. Indeed, the only point in which we use a property of EC which fails
for Levy collapse is the existence of a projection from EC(µ,< δ) to EC(κ,< δ).
While there is such projection, there is no projection from Col(µ,< δ) to Col(κ,< δ)
for κ > µ and cf δ ≥ µ+.

Taking λ = κ and µ regular we obtain µ++ −−−→
Q<ω

→ µ+. The proof shows that

the result holds also for languages of cardinality < κ, so we can write µ++ µ
−−−→
Q<ω

→

µ+. Assuming that GCH holds in the ground model, it also holds in the generic

extension.

Corollary 31. It is consistent, relative to a huge cardinal, that ℵ3 −−−→
Q<ω

→ ℵ2 and GCH

holds.

Using λ = κ+ω+1 in order to obtain a gap we can get:

Corollary 32. It is consistent, relative to a 2-huge cardinal, that ℵω·2+1 −−−→
Q<ω

→ ℵω+1.

3.4. MM reflection to ℵ1. In the subsection we will show how to derive instances
of Q<ω-reflection from some cardinal to ℵ1 using a sufficiently good ideal. For a

survey about ideals and their connection to large cardinals, see [4]. In particular
we will obtain the consistency of ℵ2 −−−→

Q<ω
→ ℵ1 from a measurable cardinal.

In an unpublished work from 1978, Shelah showed that the instance of Magidor-

Malitz reflection, ℵ2 −−−→
Q<ω

→ ℵ1, is consistent relative to a Ramsey cardinal. Our proof

gives weaker consistency result, but it shows an implication between the existence
of sufficiently good generically large cardinal and Q<ω-reflection.

Let I be an ideal on κ such that:

(1) {α} ∈ I for all α < κ.
(2) I is κ-complete.

(3) The forcing that adds a generic ultrafilter to P(κ)/I is ω + 1-strategically

closed.
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Theorem 33. Assume that there is ideal I as above and ♦(ω1). Then κ −−−→
Q<ω

→ ω1.

Proof. The proof follows closely the proof of the completeness theorem for the logic

L(Q<ω) - the first order logic extended by the Magidor-Malitz quantifier. This result

requires ♦(ω1) as well. See [6, Section 7.3]. The proof also resemble the proofs in
[3]. In this paper, similar methods are used in order to construct models of size ℵ1

that witness the completeness of extensions of L(Q<ω) (some of them under large
cardinal assumptions).

We start with a countable model M0, and repeatedly add new elements to it.

At each step we essentially enlarge Mα by adding some ordinal ζ < κ which is
generic over Mα for the forcing P(κ)/I (i.e. {A ∈ Mα | ζ ∈ A} is an Mα-generic

ultrafilter). Eventually, we will show that we can arrange the limit model Mω1
to

be a Q<ω elementary submodel of some elementary substructure of H(χ) (χ large
enough regular) of cardinality κ that contains all ordinals below κ. Note that this

is the general case, as for any algebra A on κ, we may assume that A ∈M0.
Throughout the rest of the proof, χ is a regular cardinal above 22

κ

.

Lemma 34. Let M be a countable elementary substructure of H(χ). There is ζ < κ
such that {A ∈ M | ζ ∈ A} is M -generic for the forcing (P(κ)/I)M . Moreover,

M⋆ := {f(ζ) | f : κ→ V, f ∈M} is a proper extension of M and M⋆ ≺ H(χ).

Proof. Let {In | n < ω} list all the maximal antichains of the forcing (P(κ)/I)M in

M . Since the forcing, consists of the I-positive sets is σ-strategically closed, there

is a sequence of I-positive sets 〈An | n < ω〉 such that An+1 ⊆ An, An ∈ In and
⋂

n<ω An /∈ I. Any ζ ∈
⋂

An will generate a M -generic filter.

Since for every x ∈M the constant function cx(α) = x is in M , M ⊆M⋆. Since

the identity function id(α) = α is in M , ζ ∈M⋆ so M⋆ is strictly larger than M .
In order to show that M⋆ ≺ H(χ) we use Tarski–Vaught criterion. Let ϕ(x, b)

be a formula with b ∈ M⋆, and assume H(χ) |= ∃xϕ(x, b). We need to show that

M⋆ |= ∃xϕ(x, b). b = g(ζ) for some g ∈M . Let

B = {α < κ | H(χ) |= ∃xϕ(x, g(α))}.

B is definable from parameters in M and therefore it is a member of M . B /∈ I,

since otherwise, we would have that ζ /∈ B. Thus, applying the axiom of choice

inside of M , there is a function f ∈M that assign to every element α ∈ B a witness
f(α) such that ϕ(f(α), g(α)). In M ,

B = {α < κ | ϕ(f(α), g(α))}

and by elementarity, the same holds in V . Since ζ ∈ B, ϕ(f(ζ), g(ζ)), so f(ζ)
witnesses M⋆ |= ∃xϕ(x, b). �

Let us define a sequence of models. M0 = M , Mα+1 = M⋆
α (we will define

the Mα-generic filters more explicitly in the course of the proof). For limit ordinal

β ≤ ω1, Mβ =
⋃

α<β Mα.

We would like to get that Mω1
witnesses an instance of κ −−−→

Q<ω
→ ω1. In order to

achieve this, during the iteration we will pick the generic elements in a way that
will handle any potential counterexample for the reflectionMω1

∩κ ≺Q<ω H(χ)∩κ.

Let φ(x) be a formula (with parameters from M) and let A be an I-positive set.

we define the following formula in the language of set theory:

∂Aφ(w) := “w is a function from κ and {α ∈ A | ¬φ(w(α))} ∈ I ′′.

For a type Φ(x) with parameters in M , (not necessary in M), we define

∂AΦ(w) = {∂Aφ | φ(x) ∈ Φ(x)}.
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These types control which types will be omitted in the next step of the construc-
tion. If w realizes ∂AΦ in M , then for every choice of ζ ∈ A, except an I-null set,

Φ is realized in M⋆. On the other hand, if for every ζ ∈ A, Φ is realized in M⋆

(where it is defined using ζ) then there is some positive set B ⊆ A such that ∂BΦ
is realized. Otherwise, we could remove, outside of M , an I-null set and verify

that this is not the case. This process cannot be done inside of M , since in general
Φ /∈M .

One can repeat this process countably many times (using the strategic closure of

the forcing) and verify that for a countable set of types {Φn(x) | n < ω} if ∂AΦn is
omitted in M for all n < ω and A ∈M then Φn(x) is omitted in M⋆.

In M , there are names for a positive sets in M⋆. Those are essentially the func-

tions f : κ→ I+ that appear in M . One can define, for a given formula ϕ, a positive

set A and a name of a positive set Ḃ the formula ∂A∂Ḃϕ, in the natural way:

∂A∂Ḃϕ(w) := “w is a function with domain κ2 and {α ∈ A | ¬∂Ḃ(α)(wα)} ∈ I”,

where wα(x) = w(α, x).
We can continue this way and define the derivative of a type relative to any finite

sequence of names of positive sets in the iterated forcing (in the narrow sense: the

m-th set Ḃ is a function from κm to the positive sets).

Let us enrich the language of set theory by all the members of M (as constants).

For simplicity of notations, we will use the fact that M is closed under pairs and we
will not distinguish between formulas which are provably equivalent.

Lemma 35. Let ϕ be a formula with k free variables. Let Z ⊆ M be a maximal
ϕ-cube. Let Φ be the type

{ψ(x, p) | p ∈M, ∀a ∈ Z, ψ(a, p)}
⋃

{x 6= a | a ∈ Z}.

If V |= ¬Qkϕ then M omits all the derivatives of Φ.

Proof. Φ contains the formulas ϕ(a0, . . . , ak−2, x) for all ai ∈ Z and therefore M
does not realize Φ, by the maximality of Z.

Let us denote by ∀⋆αϕ(α) the assertion that {α | ¬ϕ(α)} ∈ I.

Assume that M realizes ∂A0
∂Ȧ1

· · · ∂Ȧm−1
Φ for some A0, . . . , Ȧm−1 ∈ M . So

there is some b ∈M such that:

∀⋆α0 ∈ A0∀
⋆α1 ∈ Ȧ1(α0) · · · ∀

⋆αm−1 ∈ Ȧm−1(α0, . . . , αm−2)ψ(b(α0, . . . , αm−1))

for every ψ ∈ Φ.
We may assume that for all x ∈ M , ∀⋆α0, . . .∀

⋆αm−1 b(α0, . . . , αm−1) 6= x. For

all relevant ordinal (one which escape all the I-null sets in the quantifiers), this is

true by the maximality of Z and the fact that b is "forced" to be different than all
members of Z in M . We can complete the rest of the values (which are essentially

elements outside the sets in rangeAi, i < m and A0) with dummy values.

Taking ψ(x) to be ϕ(a0, . . . , ak−2, x) (and omitting the evaluations in the Ȧi) we

get:

∀⋆α0 ∈ A0∀
⋆α1 ∈ Ȧ1 · · · ∀

⋆αm−1 ∈ Ȧm−1ϕ(a0, . . . , ak−2, b(α0, . . . , αm−1))

By the definition of Φ, replacing ak−2 by the variable x, we obtain a formula in Φ.

So we conclude that:

∀⋆α0 ∈ A0∀
⋆α1 ∈ Ȧ1 · · · ∀

⋆αm−1 ∈ Ȧm−1

∀⋆β0 ∈ A0∀
⋆β1 ∈ Ȧ1 · · · ∀

⋆βm−1 ∈ Ȧm−1

ϕ(a0, . . . , ak−3, b(β0, . . . , βm−1), b(α0, . . . , αm−1))
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Repeating this process and relabeling:

∀⋆α0
0 ∈ A0∀

⋆α0
1 ∈ Ȧ1 · · · ∀

⋆α0
m−1 ∈ Ȧm−1

∀⋆α1
0 ∈ A0∀

⋆α1
1 ∈ Ȧ1 · · · ∀

⋆α1
m−1 ∈ Ȧm−1

...

∀⋆αk−1
0 ∈ A0∀

⋆αk−1
1 ∈ Ȧ1 · · · ∀

⋆αk−1
m−1 ∈ Ȧm−1

ϕ(b(α0
0, . . . , α

0
m−1), b(α

1
0, . . . , α

1
m−1), . . . , b(α

k−1
0 , . . . , αk−1

m−1))

Let us look on this last formula (which is true in M) and let us say that a set D is
solid iff for all a0, . . . , ar−1 ∈ D (0 ≤ r ≤ k),

∀⋆α0
0 ∈ A0∀

⋆α0
1 ∈ Ȧ1 · · · ∀

⋆α0
m−1 ∈ Ȧm−1

∀⋆α1
0 ∈ A0∀

⋆α1
1 ∈ Ȧ1 · · · ∀

⋆α1
m−1 ∈ Ȧm−1

...

∀⋆αr−k−1
0 ∈ A0∀

⋆αr−k−1
1 ∈ Ȧ1 · · · ∀

⋆αr−k−1
m−1 ∈ Ȧm−1

ϕ(a0, . . . , ar−1, b(α
0
0, . . . , α

0
m−1), b(α

1
0, . . . , α

1
m−1), . . . , b(α

k−r−1
0 , . . . , αk−r−1

m−1 ))

The empty set is solid. Using Zorn’s lemma in M , we can find a maximal solid set,
D ∈M .

Lemma 36. M |= |D| = κ.

Proof. Assume otherwise. We will find c ∈ M and outside D such that {c} ∪ D is

solid. If b−1(D) is I-positive then there must be some d ∈ D such that b−1({d}) is
I-positive, and we assumed that this is not the case.

Let us iteratively narrow down, in V , the positive sets A0, Ȧ1, . . . and replace
the quantifier ∀⋆ by ∀. We would still remain with positive sets. Moreover, we

may assume that all of them are disjoint from b−1(D). Pick any α0 ∈ A0, α1 ∈

Ȧ1(α0), . . . , αm−1 ∈ Ȧm−1(α0, . . . , αm−2). Let c = b(α0, . . . , αm−1). c /∈ D and for

every ai ∈ D, ϕ(a0, . . . , ak−2, c), as wanted. �

We conclude that D is a ϕ-cube of cardinality κ. But by elementarity, D is a

ϕ-cube in V as well. �

In order to finish the proof we need to explain how to choose the sets Z. Here
the diamond comes into the picture. Let 〈Sα | α < ω1〉 a ♦(ω1) sequence. For

convenience, we will assume that Sα is a pair (Aα, φα) where Aα ⊆ α and φα is a
Q<ω-formula Qnϕ with parameters in α.

For every i < ω1, let us choose a bijection between Mi+1 \Mi and ω · (i+1)\ω · i.
Connecting those bijections we obtain a continuous bijection between Mω1

and ω1.
For every α, if Aα is a maximal ϕα-cube in Mα, we define Φα to be the type

which was defined in lemma 35. Otherwise, we do nothing.

When enlarging Mi to be Mi+1 we omit the types {Φj | j ≤ i}. Let ψ = Qnϕ be
a Q<ω-formula. Assume that Mω1

satisfies ψ and that Z is a maximal ϕ-cube. Then

on club many points, Z ∩α is a maximal ϕ-cube. Therefore, there is a point α < ω1

such that Z ∩ α = Aα, ϕα = ϕ. But the corresponding type was not omitted, since

it was enlarged, so V |= ψ, as needed. �

We remark that for successor of a regular cardinal κ, the existence of such an

ideal I is equiconsistent with the existence of a measurable cardinal. Unfortunately,
for successor of singular cardinals of countable cofinality, such ideal cannot exist.

Question 2. Is ℵω+1 −−−→
Q<ω

ℵ1 consistent?
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