A PARALLEL TO THE NULL IDEAL FOR INACCESSIBLE ).
PART I

SAHARON SHELAH

ABSTRACT. It is well known how to generalize the meagre ideal replacing Rg
by a (regular) cardinal A > Ro and requiring the ideal to be (< \)-complete.
But can we generalize the null ideal? In terms of forcing, this means finding
a forcing notion similar to the random real forcing, replacing Rg by A. So
naturally, to call it a generalization we require it to be (< A)-complete and A\t-
c.c. and more. Of course, we would welcome additional properties generalizing
the ones of the random real forcing. Returning to the ideal (instead of forcing)
we may look at the Boolean Algebra of A-Borel sets modulo the ideal. Common
wisdom have said that there is no such thing because we have no parallel of
Lebesgue integral, but here surprisingly first we get a positive = existence
answer for a generalization of the null ideal for a “mild” large cardinal A - a
weakly compact one. Second, we try to show that this together with the meagre
ideal (for A\) behaves as in the countable case. In particular, we consider the
classical Cichon diagram, which compares several cardinal characterizations of
those ideals. We shall deal with other cardinals, and with more properties of
related forcing notions in subsequent papers [Sh:F1199]
and Cohen and Shelah and a joint work with

Baumhauer and Goldstern.
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§ 0. INTRODUCTION

§ 0(A). Aims: for general audience.

The ideals of null sets and of meagre sets on the reals are certainly central in
mathematics. From the forcing point of view we speak of random real forcing and
Cohen forcing. The Cohen forcing has natural generalizations (and relatives) when
we replace Z(N) by (), or the set of the characteristic functions of subsets of ),
for a regular uncountable cardinal A, replacing finite by “of cardinality <A”. But
we lack a generalization of random real forcing to higher cardinals A, replacing reals
by A-reals, e.g. members of *2. It has seemed that this lack is due to nature; the
reason being that on the one hand the Baire category theorem generalizes naturally
(when we are allowed to approximate in A-steps and information of size < A instead
finite; all this for regular A\), but on the other hand we know nothing remotely like
Lebesgue measure.

Surprisingly, at least for me, there is a generalization: not of the Lebesgue
measure, but of the ideal of null sets, i.e., the ones of Lebesgue measure zero. This
is done here (i.e., in this part) for a mild large cardinal A: weakly compact. The
solution for more cardinals will be dealt with in a continuation (at some price).
The present definition should be examined in two ways. First, we may list the
well known properties of the null ideal (and of random real forcing) and try to
prove (or disprove) them for our ideal. Second, random real forcing was used quite
extensively in independence results; in particular for related cardinal invariants, so
it is natural to try to generalize such applications.

The first issue is dealt with in §2 (assuming Definition and intended for
wider audience) and then §3-§8 here. The second is treated in the continuation.
Whereas success in the second issue should be easy to judge, concerning the first
issue the reader may first list what are reasonable hopes and compare them with
the discussion and description in §3. This is not done in the present section in order
to help the reader to make a list of expectations independent of what we have done.

A set theoretically uninitiated reader may read the rest of §(0A) to see what are
those large cardinals, look casually at Definition [[L3] just enough to see that the
definition of Qy, the parallel of the family of all closed subsets of [0, 1]g or 2 which
are not Lebesgue null for k strongly inaccessible, is natural and simple, then jump
to §2 to see what we hope for and what is done.

Let us describe for the non-set-theoretic reader, what are these “large cardinals”.
Note that N; is parallel in some respect to Ny, whereas Ny is “the first infinite
cardinal”; the number of natural numbers; ¥, is the first uncountable cardinal, and
is the number of countable ordinals (that is, isomorphism types of countable linear
well orderings). Also both are so called regular: the union of less than X, sets each
of cardinality < W, is < Np. But ¥y is strong limit: x < Ny = 2" < Ny whereas
N; is not. We can prove that there are strong limit cardinals: let Jg = Ng, 3,1 =

27+ 3, = > 1,, now 2, is a strong limit cardinal but alas is not regular. We say
nw
a cardinal ) is (strongly) inaccessible when X is regular and strong limit, it is called

“large cardinal” because we cannot prove its existence in ZFC but, modulo this, it is
considered a very reasonable, small one. Similarly, the weakly compact ones which
we now introduce: an uncountable cardinal is weakly compact when it is strongly
inaccessible and satisfies the analog of the infinite Ramsey theorem: every graph
with A nodes has a subgraph with A nodes which is complete or empty (alternatively,
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it satisfies the generalization of Konig lemma). So weakly compact cardinals are
more similar to Ny than other cardinals, so it is not unnatural assumption when
trying to generalize the null ideal.

§ 0(B). For Set Theorists.

In the present paper we prove that for a weakly compact cardinal A there are
(naturally defined) forcing notions adding a new 1 € *2 which have not few parallels
(replacing “finite” by “of cardinality < A”) of the properties associated with random
real forcing (and we define the relevant ideal). It seems natural to hope this will
enable us to understand better related problems, in particular cardinal invariants of
A; on cardinal invariants for A = R, i.e. the continuum see Blass [BIs10]; in higher
cases see Cummings and Shelah [CuSh 541]; in particular on strongly inaccessible
see Rostanowski and Shelah [RoSh 777, [RoSh 888 [RoSh 889, [RoSh:942] and also
[Sh:945].

In §1 we show for A weakly compact that there is a (non-trivial) A-bounding
At-c.c. (< \)-strategically complete forcing notion and even a A-complete one, see

[0 We also generalize the construction for adding a member of [] 6..
e<A
In the second section we discuss desirable properties of the ideal. In Sections

3-8 we try to deal systematically with parallels of properties of the null ideal.

The ideal id(Q) (of subsets of *2) determined by our forcing notion Q, is
introduced in §3. There we also study the properties of k—Borel subsets of "2
related to this ideal.

Cardinal characteristics of the ideal id(Q,) and their relations to b,,0, and
the characteristics of the k—meagre ideal are investigated in Sections 4 and 5. We
present a parallel of Cichonn Diagram in Theorem [5.9

In §6 we compare QQ, and Cohen,.. We note that forcing with one makes the set
of ground model k-reals small in the dual sense. We also investigate the class Sawc
of all inaccessible cardinals x for which Q. adds a Cohen real.

In the next section we introduce a parallel to “amoeba forcing” — a forcing
notion Q%™ adding a generic condition p, € Q. And then, in §8, we investigate
x~Borel and k—stationary—Borel sets and show that some relations associated with
Q) are absolute.

We shall continue in successive papers, things delayed for various reasons. In
particular in Cohen and Shelah [CnSh 1085] we shall eliminate the assumption “A
is weakly compact” and in [Sh:E82, §1] we will investigate non-inaccessible case.
A work with Baumhaver and Goldstern (see [Sh:F1580]) will deal with consistency
results complimentary to the ZFC implications (i.e., inequalities) here. In [Sh:E82]
§1] we investigate adding many “X-randoms”. Further research concerning consis-
tency results using iteration of creature forcing will be presented in [Sh_1100]. We
will also consider there constructions starting not with Cohen but other nice forcing
notions and more.

§ 0(C). Preliminaries.

Definition 0.1. 0) We say 7 is a A-real when n € *2.
1) We define when B C *2 is a \-Borel set naturally (see [Sh_630]), that is X C *2
is a basic \-Borel set if there exists v € *>2 such that X = (*2)l = { € 22 :



NULL IDEAL FOR INACCESSIBLE A 5

v<n}. The family of A\-Borel sets is the closure of the basic ones under unions and
intersections of at most A members, hence also by complements.

Note: actually B is an absolute definition of a subset of *2 so BY, “B as inter-
preted in the universe V7, is well defined for suitable V.
2) “Fis a A-Borel function” is defined similarly.
3) B C *2is a X} (\)-set when B = {(n(2a) : a < \) : 7 € By} for some A-Borel
set By.
4) B C A2 is a A—stationary Borel set when for some A—Borel function F : A2
P () we have n € B & F(n) is stationary.
5) A set X C *#()) is A-nowhere stationary Borel iff there is a A-Borel function
B from *J7(\) to &2()\) such that for every n € *J2(\) we have: n € X iff F(n)
is a nowhere stationary subset of A (see [[.6(2)). The complements of such X are
A-somewhere stationary sets.
6) Similarly replacing *>2 by other trees with ) levels and A nodes.

Definition 0.2. 1) We say that a set B C *2 is A-closed when :
e ne*2A(Va<N)(3veB)(nla=via) = neEB,
equivalently
e for some sub-tree T C *>2 we have

B = limy(T) def {n : n a sequence of length A such that « < A = nla € T}.

2) Let Q be a family of subtrees of *>2 (or a quasi order with such set of elements).
We say that B C 2 is a Q-basic set when B = lim(p) for some p € Q.
3) Similarly replacing *>2 by other trees, as in [I.1}(6).

Definition 0.3. 1) We say that a forcing notion P is a-strategically complete
when the player COM has a winning strategy in the following game o, (p,P) for
each p € P.

The game 0, (p,P) involves two players, COM and INC. A play lasts a moves;
in the -th move, first the player COM chooses pg € P such that p <p ps and
v < B = qy <p pg and second the player INC chooses gz € IP such that pg <p ¢s.

The player COM wins a play if it has a legal move for every £ < a.

2) We say that a forcing notion P is (<\)-strategically complete when it is a-
strategically complete for every a < A.

Remark 0.4. The difference between “IP is A-strategically complete” and “A-complete”
is not real, i.e., when we do not distinguish between equivalent forcing, those prop-
erties are very close (as in [Shifl Ch.XIV]), and here the difference does not matter,

see e.g. [LH(2).

Definition 0.5. 1) The A-Cohen forcing is (*>2, <).

2) A forcing notion Q is A-bounding or *\-bounding when I-q “for every function
f from X to A there is g € (*A)V such that f < g, i.e., a < A= f(a) < g(a)”.

3) We say that a Q-—name n € ®f is a generic of Q when for some sequence

(1, : p € Q), 7, an absolute function definable in V (or even a (|a|+ |3])-Borel one)
from “f into {0, 1} we have I~ “p € G iff 7,(n) = 17,

Definition 0.6. (1) Let Sinac be the class of all (strongly) inaccessible cardi-
nals and let S . = {0 : 0 < & is inaccessible}.
(2) We say “S' is nowhere stationary” when S is a set of ordinals, and for every

ordinal § of uncountable cofinality, S N J is not a stationary subset of 4.
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(3) For a set p of sequences of ordinals and 7 let p" = {v € p: v Inorn v}
and pl2" = {v ep:n v}

Definition 0.7. For an ideal I of subsets of X, including all singletons for simplicity,
we define “the four basic cardinal invariants of the ideal”:

(a) cov(I), the covering number is min{@: there are A; € I for i < 6 whose
union is X'},

(b) add(I), the additivity of I is min{6: there are A; € I for ¢ < 6 whose union
is not in T},

(c) cf(I), the cofinality of I is min{#: there are A; € I for i < 6 such that
(VA eI)(Fi)(A C A;)},

(d) non(T), the uniformity of I is min{|Y'|: Y C X but Y ¢ I}.

Remark 0.8. We may use, e.g., cov(meagre,) and cov(Coheny), they denote the
same number.

Observation 0.9. For any ideal I:

(a) add(I) < cov(l) < cf(D),
(b) add(I) < non(I) < cf(D)

§ 1. LIKE RANDOM REAL FORCING FOR WEAKLY COMPACT K

We consider the following question.

Question 1.1. (1) Ts there a non-trivial forcing notion which is At—c.c., (<\)—
strategically complete and which does not add a A~Cohen sequence from
A
27

(2) Moreover is A-bounding ?

Recall that for A = Rp, “random real forcing” is such forcing notion but we do
not know to generalize measure to A with A-completeness or so, whereas for Cohen
forcing and many other definable forcing notions which add a Cohen real we know
how to generalize.

We have wondered about this a long time, see [Sh:945] and some papers of
Rostanowski and Shelah [RoSh 777, [RoSh 860, [RoSh 888 [RoSh:942]. Up to re-
cently, we were sure that the answer was negative. Surprisingly for A weakly com-
pact there is a positive answer, a posteriori a straightforward one.

We will define a forcing notion Q, by induction on the inaccessible k. Now, for
the first inaccessible Q, is the k-Cohen forcing. In fact, if x is inaccessible but not
a limit of inaccessible cardinals, then Q) is equivalent to the k-Cohen forcing. If s
is a limit of inaccessibles, the conditions are such that the generic n € *2 satisfies
for many inaccessibles 9 < r, that 1[0 is somewhat 0-Cohen, e.g., if (F9:0€08)
is a sequence such that %5 is a dense open subset of 92 and S = {0 < k : 9 is
the first strong inaccessible in (a, k) for some a < k}, then for every large enough
0 € S we have n[0 € Z5.

At first glance this may look ridiculous: 7 is made more Cohen-like, but still in
the end, i.e., for k weakly compact, it has an antithetical character.
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§ 1(A). Adding an n € *2.

Notation 1.2. 1) Here 0, k will denote strongly inaccessible cardinals.
2) For 7 C*>2and ne€*>2let I ={v:v<dnorndve T}
3) For 7 C%>2let lims(.7) = {v € 92 : (Va < §)(v]a € T)}.

Definition 1.3. We define a forcing notion Q, = Q2 by induction on inaccessible
K
(A) p € Q, iff there is a witness (o, S, A) which means:
(a) p is a subtree of 2, i.e., a non-empty subset of *>2 closed under
initial segments,
(b) (a) S C k is not stationary, moreover
(B) for every strongly inaccessible 9 < k the set SN 3 is not station-
ary,
() every member of S is (strongly) inaccessible,
(¢) o= tr(p) is the trunk of p which means:
(@) o€ "2,
(B) o< Lg(o) = pN 2= {ola}, hence tr(p) € p,
() both p"(0) and o (1) belongs to p,
(d) if o < n € p then n"(0),n"(1) € p,
(e) [continuity] if § € x\S is a limit ordinal > £g(0) and 1 € °2 then

nep iff (Va <d)(nla € p),

(0 () A=(As:0€8),

(B) Ay is a set of < O dense open subsets of Qg,
(g) if 0 € S and 9 > £g(p) and n € 92, then

(@) pN?>2€ Qo,

(B) n e piff (Vo < 9)(nla € p) and (VI € Ap)(3g € S)[n €
(B) Q%M: “p<q iff p2g.

limy (q)].
(C) (a) Let S, = {6 <K :48 > Lg(tr(p)),d is a limit ordinal and —(Vn € °2)[n €
p < (Ya <d)(nla € p)]}, so S, € S when (tr(p), S, A) is a witness.
(b) We say (tr(p),S,A,E) is a full witness for p € Q, if (tr(p),S,A)
is a witness for p € Q. and E is a club of & disjoint to S and to

[0, £9(tx(p))),

Claim 1.4. 1) For any k and 1 € *>2 we have (*>2)" is a member of Q.. with
(> 2)0) = 1.

2) If p € Q. and £g(tr(p)) < O < Kk then pN 2>2 belongs to Qp.

3) If p € Qu and n € p then pi € Q. and p < pl" and tr(p!™) is n if Lg(n) >
Lg(tr(p)) and is tr(p) otherwise.

4) =2 is the minimal member of Q,.

5) If (tr(p),S,A) is a witness for p € Q. and Lg(tr(p)) > sup(S) then p =
(r>2)lr(r)].

6) Any triple (0,5, A) is a witness for at most one p.

7) If (0, S, A) satisfies clauses (c)(a), (b)(a), (B), (7), (f)(a), (B) of Definition[L3(A)
then there is one and only one p € Q. which it witnesses.

8) If (0, S, A) witnesses p € Q,, then also (o, Sp, AISp) witnesses it recalling Defi-
nition [L3(C)(a).
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9) For every p € Q, there is a mazimal antichain & to which p belongs and q; #
g2 € & = lim,(q1)Nlim,(g2) = 0 hence {q € Qx : p <g,, ¢ orlim,(¢)Nlim,(p) =0}
is dense open.

Proof. 1) Let S = (. Then (1,0, <>) is a witness.

2) If (tr(p), S, (Ag : 0 € S)) witnesses p € Qy, then (tr(p),SN I, (Ag: 6 € SNI))
witnesses p N 9>2 € Qg.

3) - 8) Easy, too.

9) Let & = {(*>2)lF) . p € *>2\p and a < Lg(p) = pla € p} U {p}. Ut

Claim 1.5. 1) If p € Q. and p € p, then there is ) such that p I n € lim,(p).
2)If p=(p; : i < &) is a sequence of members of Q,, p is increasing or at least
i< j<d=tr(pj) €ps, (tr(p;) : i < &) is J-increasing and

() a<d = min(S,, \sup{lg(tr(p;) +1:i < d}) >4,
then ps = ({pi : ¢ < 6} is a <g,—lub of p.
3) If § < k, p; € Qs is <q, —increasing with i < &, (n;,S:, N, E;) is a full witness
for p; satisfying i < j < 6 = E; C E; Amin(E;) < lg(tr(p;)), then the sequence
(pi 11 < &) has a <g, —upper bound.
4) If p € Q, and .9 is a dense subset of Q, for i <i(x) and i(x) < kT and p € p
then there is n such that p<n € lim,(p) and (Vi < i(x))(3q € &) (n € lim,(q)).
5) In (2) we may replace the demand (®) with

(®) (a) sup{lg(tr(p;)) :i <0} ¢ Sy, for o <6,

(b) if (tr(p;) : i < ) is eventually constant, say p, then min (Sp, \ (¢g(p)+
1)) > 4.

Proof. We prove by induction on the inaccessibles « that the five parts of the claim
hold.

1) Let (tr(p), S, A) be a witness for p. By[[L4(3) without loss of generality p < tr(p).

Case 1: In S there is a last member 0 and 9 > £g(tr(p)) > Lg(p).

By L4(2), p1 = pN9>2 belongs to Qg. Apply the induction hypothesis [L5(4) for
0 with p N 9>2, Ay here standing for p, (% : i < i(x)) there to find ¢ such that
p<o€pn?2 Now pld = (v>2)lel by [TZ(5), so the rest should be clear.

Case 2: sup(9) < Lg(tr(p)).
By [L4(5) we know that p = (#>2)t®)],

Case 3: Neither Case 1 nor Case 2, i.e., sup(S) > fg(tr(p)) and S has no last
element.
Let 6 = cf(otp(S)) and let (ae : € < ) be increasing continuous with limit sup(S).
Without loss of generality «g = £g(tr(p)) and ¢ < 0 = a1 € S and we < 0 =
Qe ¢ S; recalling that every member of S is strongly inaccessible and .S is nowhere
stationary this is clear. Now we choose 7. € p N *2 by induction on € < 8 such
that ny = tr(p) and ¢ < e = ne < 7.

If £ < 0 is limit, then we let 7. = |J{n¢ : ¢ < ¢} and we note that it belongs to
p by clause (A)(e) of Definition [[3] (because . ¢ S).

If e =(+1 < 6, then we use the induction hypothesis of part (4) for 9 = «a,
because a. € S, a set of inaccessibles.

After the inductive construction is carried out, if § = k, i.e., sup(S) = k then
ne = U{n: : € < K} is as required. If § < &, ie., sup(S) < & then ny := U{n: :
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£ < 0} € pN P2 (remember Definition [L3(A)(e)) and again by [LA(5) we have
plnel = (5>2)lm] 50 we can easily finish.

2) Let (n;,S;,A;) be a witness for p; € Q, for i < J, without loss of generality
S; = Sp,, see clause (C) of Definition or Claim [[4(8). By our assumptions
the sequence (n; : i < 0) is <J-increasing and let ns = (J{m: : ¢ < ¢}. Now if
i,j < 6 and i < j then n; = tr(p;) € p; and if j < ¢ then n; < n; = tr(p;).
Hence n; € (\{pj : j < 6} = ps for all i < §. Consequently, recalling i < § =
min(S;\ sup{lg(tr(p;)) +1: j < §}) > 0, we get 05 € p; for all i < § and thus
Ns € Ps- B

Let S := J{Si : ¢ < d}\(lg(ns) + 1) and A; = (Ajp : 0 € S;) and for 9 € S
let Ag := U{Aip : i < d and J € S;}. So clearly Ay is a set of < |§] - O dense
subsets of Qy. Also 0 € S = 0 > § because if 9 € S then for some i < §, 9 € S;
and by an assumption min(S;\ sup{fg(tr(p;) +1 : ¢ < ¢}) > § hence 0 > §. It
follows that |Ap| < 0. Now one easily shows that 75,5, (As : @ € S) witness that
ps = ({p:i : i < &} belongs to Qy; being a <g, -lub of p is obvious by the definition
of <g,.

3) Without loss of generality 0 is a limit ordinal. The assumptions on p;, F; imply
that n; < m; when i < j < §and § <sup{lg(n;) :i <} € ), .5 Lo Consequently,

min (S, \ sup{lg(tr(p:)) : i < 6}) > sup{lg(tr(p;)) : i <6} >0
and we may apply part (2).

4) Without loss of generality p < tr(p) (recalling [[L4(3)) and i(*) = k.
First, if K > d, := sup{0 : 9 < & inaccessible} then by part (1) which, for x, was
already proven there is 17 € p such that £g(n) > 6., £g(tr(p)). Then p <q, p" =

(%>2)" and pl"l <g, ¢ = ¢ = (5>2) (@], Consequently, the claim becomes a
case of the Baire category theorem for *2.
So we assume that §, = x and by induction on i < x we choose p;, 7;, Si, i, E;
such that:
(a) pi € Q. and (n;, Si, Ay, E;) is a full witness for this,
(b) p<po,andi<j<k = p; <q, D
(c)i<j<k = E; CE;, Amin(E;) < Lg(tr(p;)),
(d) for every i < k, for some ¢; € .%; we have ¢; < p;.
Why can we carry out the induction? At stage ¢ of the construction we use part (3)
which we have already proved to find an upper bound ¢ to {p; : i <} U{p}. Then,
as Fy is dense, we may pick g5 € 5 stronger than ¢. Let 0 < k be an inaccessible
cardinal larger than ¢g(tr(gs)) and sup{min(E;) + 1 : ¢ < ¢}. By part (1) which
we have already proved there exists 75 € ¢s N ?2. Now it should be clear that we
may choose ps, Ss, As, Es5 such that (ns, Ss, As, Es) is a full witness for ps € Q, and
qs < ps and Es C (5 Ei.
Having carried out the induction, n := [J{tr(p;) : ¢ < k} is as required.

5) It can be easily reduced to part (2), but let us elaborate. Without loss of
generality 6 = cf(d) and let v = [J{tr(p;) : ¢ < d}. For each i < J, we have
j € (4,0) = tr(p;) < tr(pj) € p; and j < i = tr(p;) € p;, so together we have
<

tr(pi) € ({p; : j < §)}. Hence, remembering (®)(a), we have v € (| p;. If
<8
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(tr(p;) : © < J) is not eventually constant, then lg(v) > cf(4), and hence (®) of part
(2) holds and we are done. If (tr(p;) : @ < ) is eventually constant then also (®) of
part (2) holds so we are done too. By the last two sentences we are done. U

Claim 1.6. Assume
(a) o < B <k,
(b) n € P2, B
(c) (tr(ps),Si, i) witness p; € Q. fori < a,
(d) tr(pi) < € ps,
(€) S =U{Si:i <a}\(lg(n) +1),
(f) for 0 € S welet Ag :=J{Ai,p: 0 € S;} (so it is a set of < O dense subsets
of Qo).
Then ﬂ{pgn] i< a} € Q is a <g,-lub of {pz[-n] 14 < a} and has the witness
(n,S,(Ap: 0 €8)).

Proof. Should be clear. Urs

Observation 1.7. (1) If p,q € Q. and Q. = “p £ ¢” then for some r, we

have q <g, r and r,p are incompatible (so lim,(p),lim,(r) are disjoint).

(2) If p1,p2 € Q, then the following conditions are equivalent:
(a) p1,p2 are compatible,
(b) the sets limy(p1), lim,(p2) are not disjoint,
(c) tr(p1) € p2 and tr(p2) € p1,
(d) tr(p1) < tr(p2) € p1 or tr(p2) Jtr(p1) € pa.

(3) If p € Qy, then there is a mazimal antichain above p of cardinality k.

(4) The Qx—name n, = J{tr(p) : p € Gg,.} is a name for a k-real which is
generic for Q,, i.e., Gq, 1s computable from 7, over V.

Proof. (1) As p £ g, by the definition of <g, we have ¢  p, so we can choose
veq\p. Let r = ¢, soq<rby@LZ3). Since tr(r) = v ¢ p, we are done by (2).
(2) First, (a) = (b) as letting r be a common upper bound of pi,ps we have
lim, (r) C lim,(p1) N lim,(p2) and recall r € Q, = lim,(r) # § by L5(1).

Second, (b) = (c) as n € lim,(pe) = tr(pe) IAnA{nla:a <k} Cps.

Third, (¢) = (d) trivially.

Fourth, (d) = (a) as without loss of generality tr(p1) < tr(p2) € p1, hence
p[ltr(m”,pg are members of Q, with the same trunk so are compatible by As
Qx| “p1 < p[ltr(m)]”, we are done.

(3) Let n € limk(p) and for « € [g(tr(p)), k) let vy = (nla)"(1 — n(a)). Then
{plel s € [Lg(tr(p)), w)} is as required.

(4) Should be clear. U1

Claim 1.8. (1) Q is k—strategically closed.
(2) Q. satisfies the kT —c.c.
Proof. (1) Immediate by [[3(3).

(2) Obviously

(¥)1 ®~2 has cardinality & (recall that x is inaccessible), and
()2 if p1,p2 € Q4 have the same trunk then they are compatible.

Together we are clearly done. Ury
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Claim 1.9. 1) If k is weakly compact then Q. is k-bounding, i.e. for every f €
(*k)VIQ] there is g € ("K)V such that f < g, that is, o« < k= f(a) < g(c).
2) Moreover, if p kg, “f €"K” and B < K then for some B and q € Q,; we have:

P=q,

pﬂﬁZQZqQBZQ,

B = (B(i) : i < k) is increasing continuous, 3(0) > 3, B(i) < k
if v e qn P2 then ¢ forces a value to f(i).

Proof. 2) Let p I “f € ®x”. By induction on i < k we choose pi, B(3), 0i, Si, A
and F; such that

(i) pi € Qx,
(if) (B(j) : j < i) is an increasing continuous sequence of ordinals < &,
(iii) po = p and B(0) = max {B, £g(tr(p)) + 1},
(iv) (i, S:, Ai, E;) is a full witness for pl € Q.,
(v) if j < i then
(a) pj <q, Pis
(B) p; NPUZ2 = p, N P22 (hence g; = oo
Si N (BG) +1), A 1(BG) +1) = A;1(8()
(v) B(i) € Ej,
(6) E; € Ej and if 4 is limit then B; =, Fa,
(vi) ifi =7+ 1 and v € p; N A2 then pgl'] forces a value to f(j).

), and S; N (B(j) +1) =
+1),

For i = 0 choose a full witness (o, So, Ao, Eg) for p, and use clause (iii) to define
o, 5(0).

For a limit ¢ < k work as in the proof of [[5(2).

For a successor i, say i« = j + 1, we shall use the definition of “k is weakly
compact”. Let {g; 3 : § < B(x)) be a maximal antichain of Q, such that g; g IF
“f(j) = for some v = v, g and ¢; g is <g,—above p; or lim (g, g) Nlim,(p;) = 0,
recalling [L4Y9). Since Q, satisfies the k*-c.c., see [L8(2), we know that 8(x) < &,
so by [L7(3) without loss of generality 3(x) = k. Recalling each S, , is nowhere
stationary, clearly there is a club E of x such that

p<deE = d€kE;\S,, and hence also § ¢ S,

By the weak compactness there is a strongly inaccessible cardinal 0(j) > 5(j )
belonging to E such that {q; s N ?0)>2: 8 < 3(j)} is a pre-dense subset of Qagj)
Let

S = {q € Qa(j) : for some B < 9(j) we have (gj5 N 8(j)>2) <Qo) q}.
Clearly, .# is a dense open subset of Qg(;). Let
2 ={nep;n?D2: (38 <8(j))(n € q;5N°92)}.

For each p € 2 there is r; , > p; such that tr(r; ,) = p and r; , forces a value to
J(j)- Indeed, there is 3 < 0(j) such that p € g; 5N 9(1)2, so by our assumptions on

the g; g’s necessarily p; < g;,g, so q[pg can serve as 1j,,. Let (p, S} ,,A;,) witness

750 € Qx. Lastly, we let

(&) pi=U{rjp:pe 27},
(b) 5(2) = min (E; \ (9(j) + 1)),
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(c) S; =S/uUS’U{d(j)}, where
=J{8,,, pein®D2N(0@G) +1) and S =S;N0()),

/
(d) A; = <A1)(9 : 0 € 5;), where
(@) Ajois Ajpif 0 €S/, and
(B) Niois U{Ajpo:pepn®D2and 9 e s, }ifde S,
(9) Asog s {7},
(e) E;is E\(B(i) +1) or just a club of x which is C E;\f(¢) and is disjoint to
Sy, , for every pe 2.
It should be clear that the objects defined above have the desired properties.
So we can carry out the induction on i < k. After it is completed we define

(*)1 g ={pi i <k},

(¥)2 S =U{S:i:i <k},

(x)3 A= (Ap:0€S) where Ag = J{As 0 : i < k satisfies 9 € S;} and
(x)3 E={d <k :0=0(9) is a limit ordinal such that i < = ¢ € E;}.

It easily follows from conditions (i)—(vi) that:

(@)1 ¢ € Q has trunk g,

(@®)2 (00,5,A, E) is a full witness for ¢ € Qs,

(®)s p <q, gand pN P22 =¢n P22,

(@) if v € ¢nPUTD2 then ¢ forces a value to f)-

1) Follows from (2) proven above: (®)4, that is the last bullet in[[.9(2), suffices
for defining a function g € V such that g forces that it bounds f, we are done. [T

Conclusion 1.10. (1) If k is a weakly compact cardinal then there is a (<K)-
strategically complete, kT -c.c., k—bounding forcing notion (hence not adding
a k-Cohen), and of course, adding a new n € *2.

(2) In fact, the forcing is k—Borel and is k—strategically complete and it is
equivalent to a (<k)-complete forcing notion (which necessarily is k+—c.c.
k—bounding adding a new subset to k). Also, the forcing is definable even
without parameters.

Proof. (1) See above.

(2) Note that when & is not weakly compact, Q,; is not k—Borel because “nowhere
stationary” is not. However, if we replace the conditions by full witnesses of condi-
tions with the natural order, this becomes easy. Ur1o

§ 1(B). Adding a dominating member of [] 6.. Here we present a variant
e<A
of the forcing from §(1A), this time dealing with sequences from [] 6. instead
e<A

of 2 and we have an |¢|T-complete filter D. on . for ¢ < A\. The main case
is D = {a C 6. : |0\ a| < 6.}, so we write only this case, but the changes
needed for the general case are minor. This is also true for (¢,,D, : n € J) and
T ={v:e <lg(v) = v(e) < b,}. So our starting point, e.g. the forcing for the
first k, is not the xk-Cohen forcing but Qg of [Sh:945], which is the parallel for k of
the forcing of [Sh 326] for A = V.

Note that Definitions [.T3] are used in [Sh:F1580], too. Also note that Qg
is the “one step” forcing on which we shall build later.
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The reader may ignore the version with &, i.e., use the default 2,, = 2(# (k)).

Remark 1.11. For § = (0, : a < k), Q5 = QL was designed to make the old s-reals
k—meagre, we still have to expect it to behave like random real forcing and do this
indeed.

Definition 1.12. 1) Recall the weakly compact ideal on X is I} = {A C
some first order formula ¢(X,Y) and B C J#(\) we have (VX C 5(\)) (2
©[X, B]) but for no strongly inaccessible k € A do we have (VX C 5 (k))(S
o[, B A ()]}, )
2) <>s*,1;vc means that some A = (4, : a € S,) is an I}°-diamond sequence, which
means: for every A C J#(\) the set {k € S, : AN (k) = Ay} is # 0 mod I}°.
3) We say & = (P, : a € S,) is I¥°-positive when S, € (I°)* and (Z,,q, €)
and (£ (a), o, €) have the same first order theory, and moreover (a) = (b) where
(a) ¢(X,Y) is first order, A C J7(\) satisfies X C S(\) = (H(N),€) =
o[X, A,
(b) 3%k € SW[ANH (k) € P, and X C H (k) = (H(r), €) = p[X, ANK]].
4) The default value of & is (P(H(k)) : k € S).

A: for
(N E
(k) E

Definition 1.13. 1) We say ¢ is a 1-ip when ¢ consists of:

(A) a weakly compact cardinal A,
(B) a sequence 6 = (6. : ¢ < \), where

e<A = (2<6. <RV (e<b:=cf(b:) <N,

(C) a stationary set Sy C X of strongly inaccessible cardinals satisfying

(<keS = []b-<nr
e<(
(D) (a) Os,,1ye, i-e. diamond on S, holds even modulo the weakly compact
ideal, or just
(b) P = (P, C P(H(r)) : k € S) is IVpositive, see Definition
[LI2(3) above, so necessarily Sy € (IY°)"; the default value is &, =
P(H (r)),
(E) S :== {k < XA : Kk weakly compact and S Nx € (I¥°)* moreover the
sequence Z[(S, N k) is I[I**—positive (see [LI2(3)) }.
2) If k € S; we may say “k is p-weakly compact”.
3) Let 6 = (0. : € < \) be as in clause 1(B) (we will fix it for this sub-section).
Define Ty, = [] 0 for o < X and T<o = J{Ts: 8 < a} for a < A.
e<a
Convention 1.14. For this subsection
0) ¢ is as in Definition
1) Let &, denote members of S;.
2) Always p is a subtree of T—,, for some x < \, typically it belongs to QL for
some k < Xand forne€plet pil ={vep:v<norn v}

Definition 1.15. We define the forcing notion QL by induction on & (so x € Sy)
as follows:
(A) p € QL iff some S C kNS, witnesses it, which means
(a) pis a subtree of T,
(b) p has trunk tr(p) € T, that is
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e B < lg(tr(p)) = pNTs = {tr(p)[B} but
o (3220)(tr(p) (o) € 7).
(c) it nepAlyg(tr(p)) < Llg(n) < B < k then (Fv)(n<v € pNTg), follows
from the rest,
(d) if n € p and Lg(tr(p)) < Lg(n) < & therl]
o if Oyg(y) > Vo then (Vi < Oyy¢y))n” (i) € p,
o if efg(n) < Np then (Vl < 9@g(n))(77A<Z> € p)u
(e) if 6 € k\S is a limit ordinal and n € Ts := [] 6.,

e<d
then n € p & (V8 < 46)(nlB € p),

(f) if & € KNS hence O € S, so is strongly inaccessible, then pNT<y € Q}
and for some predense subsets .%; of Q) for i < i, < 9, [if we have &
also .%; € P,] for every n € Ty we have:

e e piff (V68 < 9)(nIB € p) and (Vi < iy)(Fg € F)(VB <
9)(nIB € q),

(g) S € kNS, is not stationary in any inaccessible 0 < k, even if 9 ¢ S
(yes also for 0 = k), equivalently for any limit § < k as S; is a set of
inaccessibles and S C S,.

(B) <q is the inverse inclusion.

Claim 1.16. 1) T, belongs to QL and
epeQ. = Q.F “T<, <p”, and
enecpeQ = p<gpeql
2) Forp € QL and o < k the set {p!"l : € pN Ty} is predense in QL. above p.
3) If p € QL and lg(tr(p)) < & < k then pNTcy € Q. Moreover, if p, € Qf,
Lg(tr(pe)) < O < k for £ =1,2, then
p1<qgr P2 = P1NTcy<qg p2NTco,
and
p1lorpe = p1NTco Loy p2NTeo.
4) QL is a forcing notion and it satisfies the k™ -c.c. Moreover, it is kT -centered as
if p,q € QL have the same trunk then p,q are compatible, in fact, p N q belongs to
Q}Q and is a S@i -lub with the same trunk.
5) Suppose that v € T., and p; € QL, tr(p;) = v for i <i(x) and assume that
(B) either i(x) <+, or
(Ve)lg(v) <e <k NB:>RNg=i(x) <O and i(x)<min(S\(lg(v)+1)).

Then p = ({pi = i < i(x)} belongs to Q, has the trunk v and is a <g -lub of

{pi i <i(%)}.

6) p,q € QL are incompatible iff tr(p) ¢ qVtr(q) ¢ p.

7) Ifv e T, p; € QL, and tr(p;) < v € p; for i <i(x) and (B) of part (5) holds,

then p = ﬂ{pz[-y] 21 <i(%)} is a lub of {pgu] 14 <i(x)} in QL and has trunk v.

8) n=U{tr(p) : p € Gq: } is a QL-name of a member of [] 0.

- " e<k

9) If v e [] 0 then gy “for arbitrarily large ¢ < K we have 1(e) # v(e) and for
e<k -

every € < K large enough 0. > No = n(e) > v(e)”.

IRemember “v*°i < 67 means “for all but boundedly many ¢ < 6”.
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10) n is a new branch of T<, and is generic for QL, ie. G={peQl: n s a
branch of p}.
11) QL is (< k)-strategically complete.

Proof. 1), 2), 3) Straightforward (for the second sentence of (3) use part (6)).

Concerning parts (4), (5) and (6), see more in [[L.T8 and
4) By (7) and the number of possible trunks of p € Q} is |T<| = &.

5) By (7).

6) Clearly if tr(p) ¢ ¢ then p,q are incompatible, and similarly if ¢ ¢ tr(p) so the
implication “if” holds. For the other direction assume tr(p) € g A tr(q) € p, and
we shall prove that p,q are compatible. By symmetry without loss of generality
Lg(tr(p)) < Lg(tr(q)), let v = tr(q). Now pl*l and ¢ = ¢/ have the same trunk, so
we are done by part (4).

7) Let S; be a witness for p; € QL, and let S = [J{S; : i <i(x)}\(lg(v) +1). We
shall prove that S witnesses that p = ﬂ{pgul 14 < i(x)} belongs to QL, then we are
done as obviously 7 < i(x) = p C pEU] by the choice of p.

If & < lg(v) then NS = 0 and if fg(v) < & < K, then each S; NI is not a
stationary subset of d for ¢ < i(x). Also i(x) < 0.

[Why? If i(x) < g(v) clear, if i(x) > £g(v), then SN[lg(v),i(x)] = 0 by assumption
as 0 > Lg(v) clearly i(x) < 0.] Together also S = [J{S; : i < i(x)} is not stationary
in 0; that is, clause (g) of [LT5(A) holds.

Now obviously p is a subtree of T, i.e. (a) of [[IB(A) holds. Also obviously
a < lg(v) = pNTy = {vfa} and pN Trgu)1 € {v (1) 1 ¢t < Oy}t To prove
clauses (b), (d) assume that n € pNT. and v < n. If 6. < Ny then clearly
n < 0. Ni <i(x) = n"(n) € p; hence {n"(¢) : ¢ < -} € pN Tyy41 50 equality
holds. Hence clause (d) holds in this case, and for ¢ = £g(v) so n = v then v is
indeed the trunk of p and [LTE(A)(b) holds.

If 0. > Ro then Oyy(,;) = cf(feg(y)) > i(x). Now, for each i < i(x) there is ¢(i) < 6.
such that {n"(t) : ¢+ € [t(4),0:)} C p; and hence ¢(*) = sup{e(i) : i < i(x)} < 0.
Thus {n" () : ¢ € [t(*),0:)} C p and again clause (d) holds in this case, and for
e ={Lg(v) so n = v, clearly tr(p) is well defined and equal to v, so [[.I8(b) holds.

The proof of clause [LTE(A)(c) follows from the rest.

The proofs of clauses (e), (f) are straightforward and clause (g) holds by the
choice of S.

8)-11) Left to the reader. Or1g

Observation 1.17. If p <q1 q and S is a witness for q and tr(p) = tr(q) then S
is a witness for p.

Definition 1.18. Let x € S,.
1) For v < k let S““C’r be the set of sequences ((pa, qa, Ea) : @ < 7) satistyingd

Pa € Qp,
QQte
ﬂ<an6<lem

)

)

c)

d) E, is a club of « disjoint to some witness for g5 € QL for every 8 < «,
)
)

(a
(b
(
(
( Pa <Q1 o,

(f) Lg(tr(pa)) > «,

’may add: (h) if & <~ is a limit ordinal then ps = N{pa : @ < 8}, we do not use this
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(&) Lg(tr(pa)) € N{Es : < a}.
2) For v <k let SPE = U{SI'y : B <~} and S = S,
3) For v <k let SP', be the set of sequences ((pa;, ga, Fa) : @ < ) such that
(a) Pasqa € QL have trunks tr(po),
(b) Eq is a club of s disjoint to £g(tr(po)) such that for every 8 < «, E, is
disjoint to some witness of g € QL,
) min(E,) > « is increasing (for transparency),
) Da SQk qo,
e) gs <qi Pa When 3 < a,
) if ﬁ < « then qs N Tmin(EB) C Pas
) if 0 < v is a limit ordinal then

DPs = m {pa o< 6} and ps N Tmin(ﬁ{Ea:a<6}) - qp for ﬁ € [57 7)
4) S, =U{Sy 5 : B <~} and SP* = U{SY", : v < w}.

Claim 1.19. 1) For every p € QL the sequence {(p, p, k)) belongs to Sncr.

2) Siner s closed under unions of <l—increasing chains of length < k.

3) Ifx = ((Pa, Gas Ea) : @« < B) € S then for some pg we have: a < 8= qo < pp
and if pg < qg and Eg is a club of k disjoint to some witness of qg or just of pg or
just of qy for every v < 3 then X" ((pg,qs, Ep)) € SI*".

Proof. 1) For v = 1 we have ((p,p, )) € S’ (note that clause (d) of Definition
[CI8(1) is trivially satisfied) and S;“)CVY C Siner,

2) Obvious.

3) If B is a successor ordinal this is easier, so we assume [ is a limit ordinal. Let
Vo = tr(qqe) for @ < B hence (v, : a < ) is a <-increasing sequence of members
of T« and £g(va) > a. Hence vg := U{v, < 8} € T<, has length > 8. As f < kK
and k is regular, necessarily ¢g(vg) < k so vg € T«,. Also recall oy < as < 8 =
09(Vay) € Eq,, but E,, is a club of  hence a1 < 8 = lg(vg) € Eq,. Asa; +1<
ag < = Va, € qo, and E,, 41 is disjoint to a witness for g,, and by the previous
sentence £g(vg) € Eq, 41 we can deduce vg = | J{va, : @2 € (1 +1,8)} € go,- So
clearly vg € [\ ¢o hence <q£¢l’ﬁ la< ) is an increasing sequence of members of QL
a<fp
with fixed trunk vg of length > 8 as a < 8 = lg(vg) > lg(va) = Lg(tr(ga)) > «,

see [LI8(1)(f). So by [LIGI5) we have pg := ﬂ{qg/ﬁ] ta < B} € QL has trunk vg
and is equal to (ﬂ{qa fa< B})[UB]. Let Eg = (\{Ea : @ < 8} and clearly pg, E

are as required. Ur1o

Claim 1.20. 1) For every p € QL the sequence ((p, p, x)) belongs to SPr.
2) If v < k and X = ((pa, 4o, Ba) : @ <) € SP% then there are (py, E) with E a
club of k and py = ({pa : @ < v} such that:

ifpy <4y, <7 = 48N T<nmine,) € ¢y and E, C E is a club of k,

then X" ((p+, ¢, E5)) € SE'.
3) The union of a <\—increasing sequence of members of SP™ of length < k belongs
to SPr.
3A) If (xg : B < §) is J-increasing, Xg = {(Pa,Ga; Fa) * @ < v3) € SP' and
(vp : B < 8) is <-increasing and v := J{vp : B < 0} < k then ((Pa,qa,Fa): a <
7) € SR,
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3B) If in (3A), v = k then p. = ({pa : a < K} belongs to Q} and is a <g: -lub of
{Pas Qo : @ < K}.

Proof. Straightforward. Uron
Crucial Claim 1.21. Ifx = X or just k € Sy (see[L13), v < K, X = ((Pas Ga, Fa) :

a < y) €8 4 and T is a QL-name of a member of V then we can find
(Pw+1, Gy+1, E’y-‘,—l) such that

(a) X" ((Py+1,@y+1, Eyy1)) € SET,

(b) if n € ¢y+1 N Twine, ) then qgﬁ]rl forces a value to .

Proof. Let
(x)1 @ = {tr(p) : p € QL forces a value to 7 and tr(p) has length > min(E,)}.
For n € & let p; exemplify n € ¥, i.e.
(*)2 tr(py) = n and p; forces a value to T, necessarily £g(n) > min(E.,).
Clearly
(¥)s (2) ¥ CTep,
(b) if p € QL then for some n € % we have tr(p) < n € p.

By Convention [[.14] there is 0 € S; N kN E, but > min(F,) such that letting
Wy =% N'T.y we have

(*)a (a) Ly(tr(py)) <O,
(b) if p € Q then {n: tr(p) In € p} NP # 10,
(c) recalling LI(D)(b), {(n,v):n € NTcpand v € p; NTcp} € Pp.
Define:
e pyy1={n€py iflg(n) >0and {nle:e <IN # 0 and ¢ < I is
minimal such that n[¢ € # then n € pfﬁc},

® Gy+1 = Py+1)
e B, 1 CEN(O+1)is aclub of k such that if n € ¢y41 N T<p then E, 44 is

disjoint to some witness for pj.

Clearly (py+1,¢y+1, Ey41) is as required. Ut
Claim 1.22. If k € S; then Q}, is k-bounding, i.e. lkg “("r)V is < jpa-cofinal in
K/I{” .

Proof. By .21l and Claim [[.20) Oro9

§ 2. WHAT ARE THE DESIRED PROPERTIES OF THE IDEAL

Our original aim was to disprove the existence of a forcing notion for A having the
properties of random real forcing equivalently, finding for an uncountable cardinal
A, a A-complete ideal on Z2(*2) parallel to the ideal on null sets on N2. Having
constructed one raises hopes for generalizing independence results about reals to
22, so deriving independence results on A-cardinality invariants.

In this section we try systematically to go over basic properties of the null ideal
(and its relation with the meagre ideal). This results in a list of possible test
problems for our ideal. Some of these questions are addressed in the present work,
some are left for further research. The case of Q5 = QL (of is similar and
we intend to comment on it in Part II, i.e. [Sh:F1199).
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On the meagre and null ideals (for A = ®g) see Oxtoby [Oxt80]. On the measure
algebra and random reals see Fremlin’s treatise [Fr0x| or Bartoszynski and Judah
[BaJu95].

How do we measure success? The main properties of the null ideal which come
to my mind are:

B (a) an Nj-complete ideal (with no atoms),
(b) the quotient Boolean Algebra satisfies the c.c.c., i.e. there is no un-
countable family of non-null pairwise disjoint Borel sets,
(¢) the forcing is bounding: this means the quotient Boolean Algebra is
(Rg, co)—distributive, that is if for each n, (B, : k € N) is a Borel
partition of a non-null Borel set B then for some function f: N — N,
the set (1 |J Bp,k is not null.
n k<f(n)
A priori, for the set theoretic purposes, generalizing (a),(b),(c) was the aim. But
for the ideal itself, a prominent property of the null ideal, and a very nice one, is

(d) the Fubini theorem: for a Borel set A C [0,1] x [0, 1] the following are
equivalent:
(i) for all but null many z, for all but null many y we have (z,y) € A,
(ii) for all but null many y, for all but null many x we have (z,y) € A.

But alas, this fails, see Claim
Maybe it is helpful to stress, that

X we are looking for A™-complete, A*-c.c., ideal with no atoms.

Below we make a list of statements generalizing the null ideal case, including the
natural analogs of the properties listed above, delaying a try on some further prop-
erties.

A reader who goes first to this section can note just that

@ (a) the forcing notion Q is a set of subtrees of *>2 representing \—closed
subsets limy (p) of 22, where limy(p) = {n € *2: (V¢ < \)(n[¢ € p)},
parallel to the closed subsets of [0, 1]g with positive Lebesgue measure,
partially ordered by inverse inclusion,

(b) *2 is the set of functions from A to 2 = {0, 1}.

Definition 2.1. Let A be an inaccessible cardinal and let Q) = Qi be the forcing

notion introduced in §
(1) For n € *2 and .# C Q,, saying 7 fulfills .# means (3¢ € .#)(n € lim)(q)).
(2) For .# C Qy let set(.#) = {n € *2: n fulfills .#} and for a set A of subsets
of Qy let set(A) = N{set(&) : £ € A}.
(3) We define id(Q,) = {A C *2: there are i(x) < X and dense open subsets
Z; of Qy for i < i(x) such that n € A A < i(x) = n does not fulfill .7;}.
(4) A M-real is n € *2.

Convention 2.2. ), 0,k vary on inaccessibles.

We have consulted several people on additional properties to be examined. For
instance T. Bartoszyniski suggested (P),(S),(U) of the first list below.
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§ 2(A). Desirable Properties: First List. In this subsection we list various
desirable properties and questions and sometimes give a relevant reference (in this
paper) but we do not prove anything (whereas §3 on contain proofs).

(A)

(B)

(a) The ideal id(Qy) is AT—complete, i.e. closed under union of < \ sets.

(8) The forcing notion Q) is A-complete (or at least A-strategically com-
plete, depending on the choice of the order).

(7) The Boolean Algebra of A-Borel subsets of *2 modulo the ideal id(Q5)
satisfies the AT-c.c., see[3.9(2). Note that modulo id(Q,), Q, is dense
in this Boolean Algebra, this is (E) below.

(0) The forcing notion Q) is A-bounding, see[.5)2), §1, when A is a weakly
compact cardinal.

The definability of Qy, i.e., Q, is nicely definable (with no parameters), see
the definition by induction in §1; if X is weakly compact then Q) is A-Borel,
the ideal is similarly definable, see[8I} for other inaccessible cardinals A the

“nowhere stationary” is 31(\) but by a somewhat cumbersome definition

giving an equivalent forcing it is A-Borel, see the proof of [[.10
Generalizing “adding (forcing) a Cohen real makes the set of old reals null”,
see

Generalizing “adding (i.e. forcing) a random real makes the old real mea-
gre”, see

Modulo the ideal id(Qy), every A-Borel set is equal to a union of at most
A sets of the form limy(p), p € Qy, see B9

Can we define integral? We do not know; may we replace [0,1]g as a set
of values by some complete linear order, e.g. by “nice” ordered fields?
Are symmetrically complete real closed fields relevant (see [Sh_757])? If we
waive linearity does it help?

Modulo the ideal, every A-Borel function can be approximated by “steps
function of level «” for many (so unboundedly) many « < \; where “step
function” is being interpreted as: f(n)[a is determined by nla for n € *2,
see

The Lebesgue density theorem, see B3 (it means: if the A-Borel set
B C *2 is id(Qy)-positive, then for some B; € id(Q,) for every n € B\B;
for some a < A we have (*2)"*\B € id(Q,)).

The Fubini theorem, symmetry, unfortunately fails, see However we
intend to present some weak versions of symmetry in a continuation.

The translation invariance, see B.7(1).

The permutation invariance (i.e. for permutations of \): this works only
for a variation on our forcing.

Generalizing “if A is a Borel subset of [0, 1]g x [0, 1]g of positive measure
then A contains a perfect rectangle (even half square)”. But what is perfect?
Not a copy of *2 but A-closed set, e.g. the A-limit of a AKurepa tree,
actually one with “little pruning in limit levels”; specifically it is limy(p)
for some p € Q), so A—closed.

Generalize the random algebra on X2 for x possibly > A. This will be
addressed in a continuation, see [Sh:E82] §1], [Sh_1100].

Generalize “modulo the null ideal every Borel set is equal to a union of < A
sets, each A—closed” see (E) above and see
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(O) Generalize “the set of reals is a union of a null set and a meagre set”, see
3.8

(P) Generalize Erdés-Sierpinski theorem: if 2* = At or suitable cardinal in-
variants are equal to AT then there is a permutation of *2 interchanging
the null and meagre ideal.

In fact, this is not hard now:

(¥); Assume that for £ =1, 2:

(a) Jy is an ideal of subsets of I,

(b) J¢ is |I|-complete and generated by a family of < |I| sets,

(c) if Ay € J; then for some Ay € Jp we have |A2\A1| = ||, and

(d) there is A € J; such that I\ A € J,.

Then there is a permutation of I interchanging J; with Js.
(¥)2 If 22 = At and I = *2 then the A-meagre ideal and id(Q)) satisfy (a)-(d)

of (%)1.

[Why? Clause (d) here holds by B.8l]

(Q) Generalize the Borel conjecture: though not connected to random. Now
consider:
(o) the equivalence of the “for every (e, : n) the set is covered by I,

)

I, is an interval of length < g,,” and “the set can be translated gway
from any meagre set”,
(B) the e,’s version has an obvious generalization,
(7) try shooting through a normal ultrafilter
(R) The dual Borel conjecture might be adressed in Part II. Now the question
is:
(x) We are given an old set X of A-reals of cardinality AT, say X = {v, :
a < AT}, View Cohen, as adding a A-null set: e.g., for p = (p, : n €
2>2), py € Qy, tr(p,) = 1, and clearly p,, is a nowhere-dense cone, but
we shall need more.
(S) (Selectors) Every Yi-relation have a reasonably definable, e.g. A\-Borel,
choice function on a positive closed set even in any positive Borel set.
(T) The Hausdorff paradox and even Banach-Tarski paradox hold for R3. Do
they hold for 22 x 2 x 227
(U) We know that “for every meagre set A there is a meagre set B such that:
every < A translates of A can be covered by one translates of B”, but fail
for null, even for “Z. Generalize to .

On raising further problems see [Sh:F1199], concerning characters, differentiability,
monotonicity (of functions) and going back to the case A = V.

We have not looked at clauses (L),(Q), (S)—(U).

§ 2(B). Desirable Properties: Second List. Next we consider generalizing re-
sults more set theoretic in nature, related to forcing (maybe (B)(c),(d) from §(2A)
should be here; from the problems listed below, (A) is treated here, on the others
see part II, if at all)

(A) Cichont’s Diagram.
This diagram sums up the provable inequalities between the basic cardinal invari-
ants of the null ideal, the meagre ideal, ? (the dominating number) and b (the
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unbounding number). The basic cardinal invariants of an ideal are the covering
number, the additivity number, the cofinality and the non(= uniformity) of the
ideal, see L7

The diagram gives the provable inequalities among any two invariants (and two
equalities each on three invariants). Moreover, under 280 < N, there are no more
connections. Here we generalize the ZFC part (for X inaccessible limit of inacces-
sibles), but the situation is different, e.g., there are more inequalities connecting 3
of the cardinal invariants, see

We will deal with the complementary consistency results (about inequalities of
any pair) in continuations, [Sh:F1580] and others.

(B) Generalizing the amoeba forcing

The amoeba forcing is the one adding a measure zero set including all the old ones;
the conditions are closed subsets of [0, 1]z of measure > 3.

This is natural as the amoeba forcing has been important in set theory of the
reals and is closely related to measure, see Section 7.

(C) The consistency of “every A € Z2(R)MEl is Lebesgue measurable” (from
X > A inaccessible).

Solovay [So70] classical work proved for A = Ng that if we Levy collapse the first
inaccessible cardinal to being Ny, this holds.

The problem is: we have names 1 of A-reals such that Levy(\, <x)/n is not
Levy(\, <x) when X is uncountable.  Another formulation of the problem: there
are Levy(\, <y)—names 77,73 of A-Cohen reals and no automorphisms of the com-
pletion of Levy (A, <x) rflapi)ing one to the other.

This certainly occurs for A-Cohen reals and probably for any other; that is we
may add a A-Cohen 7 € A2 and compose it with a forcing shooting a club through
n ).

A possible avenue is to consider only “nice Levy(\, <x)-names”, i.e. such that
the quotient is Levy (A, < x). In this case there is a “positive” set of A-reals such
that for subsets of it our aim is achieved. We can even define this set of reals.
The question is whether we consider this is a “reasonable” or a “forced, artificial”
solution?

Alternatively we may replace A-Cohen by another forcing (or ideal) and/or
change the collapse; in particular should check the failure for Q. We also may
change the notion of a A-real, e.g. replace it by A/(the non-stationary ideal) or use
a filter generated by < A subsets of A\! All this is delayed for later parts. We should
also check what occurs to sweetness in our present case (see [RoSh 672, [RoSh 856]).

We may consider {n € *2: 7 is (Q,n)-generic over Vg such that every subset of
A from V[n] which is stationary in it, is also stationary in V}, or more. A related
question is the complexity of maximal antichains, see B4, maybe use measurable
cardinals.

What about &2(\) for A singular strong limit of cofinality R¢?

(D) Can we characterize Coheny and Q) among (nicely definable) A-Borel
ideals? Recall Solecki-Kechris characterization of Cohen and random (for
the ideals). We have not looked at it; there are limitations even for A = Ny,
see e.g., [RoSh 62§].

(E) In [Sh 480] we showed that: for any Suslin c.c.c. forcing, if it adds an
undominated real, it adds a Cohen real.
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Subsequently some works show relatives (for other properties), on this see [Sh 711],
[Sh 723]. Related to this, by [Sh 630], the only “nice” c.c.c. forcing commuting
with Cohen is Cohen itself. Do we have a parallel?

For a broader generalization of the case of Xy we may consider forcing, ultrafilters
and forcing notions definable from ultrafilters.

(F) We know much on ultrafilters on N. Also we have considerable knowledge
about A—complete ultrafilters on A or higher cardinals when X is a mea-
surable cardinal. After the seventies there were set theoretic advances on
non-regular ultrafilters, but not much set theoretic work was done on reg-
ular ultrafilter. However, in recent years there were studies of reasonable
ultrafilters in [Sh 830], Rostanowski and Shelah [RoSh 889, [RoSh 890] and
recently on ultrafilters related to saturation of ultra-powers and Keisler
order, see Malliaris and Shelah [MiSh:996| [MiSh:998] on cuts and p = t.

On characters of ultrafilters on N see Brendle and Shelah [BnSh 642] and later
[Sh 846], [Sh:915]; for an ultrafilter D on A recall that x(D) is the character =
minimal cardinality of a subset generating it, wx (D) pseudo-character = minimal
cardinality of &/ C [A]* such that (VB € D)(3A € «/)[A C B], note that A € o/
is not necessarily in D! As in [RoSh 889 [RoSh 890| dealing with the so called
reasonable ultrafilters we may consider the Borel version (i.e. the minimal number
of Borel subsets of D which generate it) and A-real version. Then as in “reasonable
ultrafilter”, can we show CON(for every uniform ultrafilter D on A, mxA—real (D) =
A< 2M)?

What about the ultrafilter forcing? Can reasonable ultrafilters on A be generated
by < 2* sets? We can force a creature condition diagonalizing a uniform ultrafilter
on .

(G) Related is Galvin-Prikry theorem which says that for any Borel (or even
¥1) subset B of Z(N) for some set A € [N]*0, the set [A]™° is included in or
disjoint from B. Concerning a relative using a group from [Sh 273|, gener-
alizations to A are considered by the author in some later works: [Sh 664],
[ShVs 718], [ShVs 719], [Sh 724], see also [GrSh 302|, [Sh 771], less related
[MShS 121], [MShS 144], [HkSh 662]

(H) The consistency of Moore conjecture; so we should consider a topological
space X which is A first countable (analog of first countable). Of course
we can prove it using Dow lemma which holds for adding many A-Cohens,
so not clear how interesting.

(I) Preserving “n is Qx—generic over N” parallel to [Sh:d, Ch.XVIII,§3], [Sh:d,
Ch.VI,§3)].
(J) (a) Try to connect c¢f(Q,) and Cichoit’s diagram and number of reasonable
generators of an ultrafilter, see [Sh_830].
(b) Note that for the number of generators of an ultrafilter we have the
following bounds.

Claim 2.3. (1) Letting nx be the Qx-name of the generic, for o < A we have
that IFg, “there is G’ C Qx such that: G’ is a generic subset of Qx over
V,V[G'] = V[G] and nx[G'] = r,a[G]” where nx o € *2 is defined by:

0 7])\(1) if i<«
Mx,a(i) {1_1“@) if i€ [a,\).
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(2) Similarly when for some A € 2(\)V

L) if 1€A
"*“(’)_{1_1”(@-) if ie\ A

(3) IFqy “nATA #paia fori=0,1 for any A € (AMV7.
(4) x(A) := min{gen(D) : D a uniform ultrafilter on \} is > cov(Qy ), cov(Coheny).

But we can still hope to find a relative of Q, such that adding AT+ such A-reals
(e.g. as in [Sh:F1580]) we get a universe Vi with 2* = A**+ there is a uniform
ultrafilter D on A with x(D) = AT,

(K) Here we start with A-Cohen forcing (for x inaccesible not limit of inacces-

sibles). We can start with Qg;, or with other definable A*-c.c. forcing; see
part II.

§ 3. ON Q,, k—BOREL SETs AND id(Q,)

In this and the following sections we analyze the ideal id(Q,). A general frame
including 211 is the following.

Definition 3.1. (1) Let id(Cohen,) be the family of all k—meagre subsets of
©2, i.e., it is the collection of all A C ©2 such that A C (J{lim, (%) for
i < k}, where each .J; is a nowhere dense subtree of "2, i.e., (*~2,).
(2) We say i = (k,Q,n) = (i, Qi,m:) is an ideal case when :
(a) & is a regular cardinal,
(b) Q is a forcing notion not adding bounded subsets of &,
(¢) nis a Q-name of a member of *2,
(d) (@) eachp € Qs a subtree of (*>2, <) and let B, = By, = lim,(p),
and p I-“n € B; ", or at least
(8) we have a mapping p — B, = Bj , such that
e B;, is a kBorel subset of "2,
o p<q = Biﬁp B Biﬁq, and
o pl-“neB;,”;
so really the function p — B, is part of i.
Below let i = (k,Q, 7~7) be an ideal case.
(3) We let id{ = id, (i) be
{AC"2: for some - Borel set B we have A C B and kg ‘ng B}

we may omit the 1.
(4) For asubset & of Qj, we say that n € 2 fulfills .# when (Ip € #)(n € B,).
(5) We define id? = ida (i) to be the collection of all sets A C #2 such that there
are pre-dense subsets .#; of Q; for ¢ < k such that

AC {n € ®2: for some i < k, 1 does not fulfill fl}

Claim 3.2. Let i be an ideal case.
(1) Both idi(i) and id2(i) are T —complete ideals on *2. Also %2 ¢ idy(i) and
if i is k—complete therf] %2 ¢ id, (i).
(2) In Definition [Z1l(5) we can replace “pre-dense” by “dense open” or by
“mazimal antichain”.

3 Recall Prikry forcing
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(3) If Q; satisfies the kt-c.c. then ida(i) Cidy(i).
(4) A sufficient condition for idi(i) C id2(i) is:
(x) (a) if p,q € Qi are incompatible then B; , N B; 4 =0, and
(b) if B is a k—Borel set then
{peQi: plrg “neB” or B,NB €idy(i)}
s a dense open subset of Q;.

(5) Let k be strongly inaccessible and Q,, and n be as defined in[L3 and[T.7(4),
respectively. Then the triple i =i, = (k,Qg,n) is an ideal case and id; (i) =
ida(i). )

(6) The triple i = i$°he® = (k, Cohen,,n) is an ideal case and we have id; (i) =

ido(i) and it is closed under translations (cf[37).
Remark 3.3. If in Definition B1(2)(d), B, is just a Borel set, then still holds.
Proof. (1), (2) Obvious by the definitions.

(3) Assume A C "2 belongs to id2(i). Then by (2) we may find maximal antichains
Z; C Qy (for i < k) such that

neA = forsome i< k, n does not fulfill .#.

Since we are assuming that Q; satisfies the x*-c.c., .%; has cardinality < & for every
i < k. Let (piec:e <egg)list &, e; < k. Then

ACB =2\ J{Bip.. e <ei}).
1<K
Clearly B is a k—Borel set. Also, since each .#; is a maximal antichain, for all i < &
we have

kg, “ 7 N Gg, # 0 and hence 1) € B, . for some € < &;7,

and hence kg, “n ¢ B”. Consequently B € id; (i) but A C B hence A € id; (i), so
we are done.

(4) Assume B is a k—Borel set and it belongs to id; (i). We shall prove B € idz(i),
clearly this suffices.

Let .# = {p : p forces n € B or forces B, N B € ids(i)}, so by the assumption
(%)(b) the set .# is an open dense subset of Q;. Let .#’ C .# be a maximal antichain
and let /" ={p e 9" : pW¥q, “n € B”}. Since we assumed B € id; (i), necessarily
J" = 7' So for each p € .#", B,NB € idy(i) and there is a sequence (.7, ; : i < k)
witnessing it. Without loss of generality if ¢ < x, p € .#” then .#,; is a maximal
antichain of Q; and for every ¢ € £, ; we have (p < ¢) V (p, ¢ are incompatible).
For i < k let

It = {q€Q;: for somep e " we have (p < q) Aq € Fp;}.

Clearly, each .#% is a maximal antichain. Easily {#® : i < k} witnesses B is
included in some member of ids(i), so we are done.

(5) For being an ideal case, in Definition BI(2), clauses (a),(b),(c) are obvious
(remember Claim [[.8 and Observation[[7(4)) and clause (d) is easy, too. It suffices
to prove that ida(i) C idy (i) and idy (i) C ida(i).

Concerning “ida(i) C id; (i)” note that Q, satisfies the x-c.c., so by B.2(3) we
deduce the inclusion.
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Let us argue that id; (i) C id2(i). Suppose that B is a k—Borel subset of *2 and
IFq, “n ¢ B”. We may find .7 and B such that

(®) (a) J is a subtree of “”k with no infinite branch,

(b) for every p € 7, either sucz (p) = 0, or sucz (p) = {p"(0)} or sucz (p)
is infinite,

(c) B=(B,:p€ ) is a system of k—Borel subsets of *2,

(d) By =B,

(e) if p € J and sucy(p) = 0, then for some i, < k and ¢, < 2 we have

B, = {v € "2: uiy) = c,.
(f) if p € J and [sucg (p)| = 1, then B, = "2\ B, (),
(g) if p € F and sucz(p) is 1nﬁn1te then B, = ﬂ{BQ co€sucz(p)}.

Then by induction on £g(p) for each p € 7 we choose .#, and ¢ so that for each
pET:
(®) (a) #, is a maximal antichain of Q, and t* = (t/ : p € .#,), t/ < 2 for
eachp € .7,
(b) if t5 =1, then pI-“n € B,” and if tf = 0, then p I-“n ¢ B’
(c) if SUCy( ) =0 and p € .Z,, then Kg(tr( ) > i, (see (®)(e ) above)
(d) if [suca(p)| = 1, then .7, = .7~ o) and th=1- © forpefp,
(e) if suco(p) is infinite, p € .7, and th = O then p IF“Z] ¢ B,” for some
o0 €sucz(p),
(f) if p < o € J and q € #,, then there is unique p € #, such that p <g.

Now let Y = [ set(#,) (see 2I)(2)) and note that *2\ Y € id(i). By induction
peET
on dp(p, ) we are going to argue that for p € 7

(V), for each v € Y we have
veB, <+= (Ipeg,)(velim(p) A th=1).
CASE 1: sucg(p) =0.

Since v € Y there is unique p € .#, such that v € lim,(p), recalling that for
p.q € Qs

(p, ¢ are incompatible ) = (tr(p) ¢ ¢V tr(q) ¢ p) = lim,(p) Nlim,(g) = 0.

We know that B, = {v € "2 : v(i,) = ¢,} (see (®)(e)) and Lg(tr(p)) > i, (see
(®)(c)), so
veB, & tr(p)(ip) = ¢, &= th) =1
CASE 2: [sucy(p)| = 1.
Let p be the unique element of .7, = .7~ (o) such that v € lim,(p). Then

veEB, <> v¢B, = t0 V=0 = t/=1.

CASE 3: sucgz(p) is infinite.

Let p be the unique element of .#, such that v € lim,(p).

First, assume ¢ = 1. Thus p IF“n € B, = [|{B, : ¢ € sucz(p)}”. Suppose that
0 € sucz(p) and let ¢ be the unique element of .#, such that v € lim,(¢q). Then,
by (®)(f), p < q and hence ¢ IF*p € B, C B,”, so t£ = 1. By the inductive
hypothesis we get v € B,,. S1nce 0 € sucg(p) was arbltrary we conclude that
ve(|{By:o€suca(p)} =

Second, assume t§ = 0. By (®) (e) we know that p I-“n ¢ B,” for some ¢ € sucz(p).
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Let g € #, be the unique element such that v € lim,(g). Then p < g and hence
t¢ = 0. By the inductive hypothesis we get v ¢ B, and hence also v ¢ B,,.

Finally note that our assumption “I- 7 ¢ B” implies that té) =0 for all p € F.
Therefore, (©) ¢ implies Y N B = (), so B € ida(i).

(6) This is similar but easier. O

Definition 3.4. 1) For i as in Bl we define cov(i), add(i), non(i), cf(i) as those
numbers for the ideal id(i), see [I77

2) If ks, m; are clear from Q; we may write Q; instead of i and write id(Qj;) etc. In
particular we will be using this convention for Q, from §1 and for Cohen,.

Recalling S} .. = {0 : 0 < & is inaccessible}, note that for low inaccessible x’s, Q,

is like k-Cohen, that is,
Claim 3.5. 1) If k > sup(Sf,.) then for some open dense subsets 91, %5 of

mac
Qx, Coheny, respectively, we have Q%1 = Coheny [ %.
2) If S C St is bounded in k then Q. s satisfies the conclusion of part (1), where

Qx,s is naturally defined as Q. [{p: S, C S}.
Proof. 1) Let p = sup(Sf,.), s0 p < K.

mac

Let % = {p € Qx : Lg(tr(p)) > pu}, let H2 = {n € Cohen, : €g(n) > p} and
F: 9 — 95 be F(p) = tr(p).

2) Similarly. 037

Claim 3.6. 1) id(Qy) is a k™ —complete ideal on 2 and also id(Cohen,,) is.
2) If k is weakly compact and F, C Q, is pre-dense for a < . < K+ then the sets
H, P25 are dense open subsets of Q. where

I = {p € Q:  for every a < au there is O < k such that
[n€pn?2=pl" is above some q € Tal}
and

5 ={p€Qu:limg(p) C [ set(Sa)}

(seeZ10(2)). *

3) Assume k is weakly compact. Suppose thatp € Q,; as witnessed by (tr(p), Sp, A,),
a < Kk and let B C %2 be a k—Borel set. Then there is q € Q. such that:

(i) p<gq, tr(p) = tr(q), )
(i) SpNa=S,Na, Apjla=Agla and
(iii) for some B € (a, k), if v € ¢NP2 then
either ¢ I- “n € B” and lim,(¢") C B,

or ¢ IF “27 ¢ B” and lim, (¢ N B = 0.
Proof. 1) By B2(1).
2) By [L9(2), pedantically by its proof.

3) We prove this by the induction on the depth 7 of (the xk—Borel representation;
see the proof of B.2(5)) of B.

CASE 1: y=0s0oB={ve”2:v(i) =c} for some i < K, ¢ < 2.
Obvious.

CASE 2: B is the complement of a k—Borel set By of depth < ~.
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Obvious by the phrasing of (3)(iii).

Case 3: B= [\ B,, where a(x) < k and B, are x—Borel sets of depth < ~.
a<a(x)

Let £} = {q € Q, : ¢ satisfies (3)(iii) for B, and a with 8 = 8,, < k}. By the

induction hypothesis .#! is dense open in Q,. Let

Iy ={qeQ.: _either gl “n¢ BY ) for some o = algq) < ax
or g I “Z] c BV[QK]u}'

Clearly .#, is dense open. Let
Js1={q€ S :qlF“n¢ By and g€ jo}(a)}'

Then for ¢ € #31 we have (38)(Vv € g N P2)(lim,(¢") N B, = 0) and hence
lim, (q) NBeag) =0 for ¢ € F31. We let

32 =1{q€ Qs :ql-“n€B” and lim,(¢q) C B}

and finally we set 5 = 731 U F3 5.
Next consider:

(¢) for every qp € Qy there is ¢ € 3 above qq.

Why is (%) sufficient? First note that for every ¢ € .#3 the demand (3)(iii) hold
for the pair (¢,B). Indeed, by the definition of .#5 we have to check the two
possibilities: ¢ € S5 and ¢ € F35. If ¢ € H3 1, then a(q) is well defined and
limx(q) N Bagg) = 0, so B = 0 is as required. If ¢ € #35 then also 8 = 0 is as
required. Now we may use (%) and [L9(2) to get ¢ € Q, satisfying (i)—(iii) of (3).

Why does (%) hold? Let qo € Q,;, be given. We may find ¢; above go such that
either ¢; IF n € B or ¢; IF n ¢ B. First assume that the latter is true. Then for
some a < a(*) and ga > ¢ we have ¢» IF n ¢ B,. By the inductive hypothesis
there is g3 > go satisfying (3)(iii) for B, and a. Since g3 |- n ¢ By, this implies
lim, (g3) N B, = 0 and therefore g3 € F31 C Ss. )

Second, assume ¢ IF 1 € B, i.e., g1 IF“n € B, for every o < «(*)”. Let

I3 9.0 = {r € Qy; : r is incompatible with ¢; or ¢ < r and lim,(r) C Ba};

by the inductive hypothesis it is an open dense set. By B.6l(2) we may find ¢4 > ¢1
such that

(Va < a(%) (30 <rk)(neqn 92 = ()" e I32.0)-

Since (qq)" € I3 2, Implies lim, ((q4)!") € By, (as g4 > q1), we conclude lim, (q4) €
B, for all o < a(x). Hence ¢4 € S35 C Is. (BH

Claim 3.7. Considering "2 as an Abelian Group (with addition ® modulo 2, coor-
dinatewise), the ideal id(Q,) is closed under translation, i.e. if B C %2 and n € "2
then B € id(Q,) © n® B €id(Q,) where n® B :={n@v:v € B}.

Proof. Straightforward. Ugm

Claim 3.8. If k is an inaccessible limit of inaccessibles, then "2 can be partitioned
to two sets Ao, A1 such that Ag is in id(Coheny) and A; is in id(Q,).
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Proof. Let (k; : i < k) list the inaccessibles < k in the increasing order and let

Iir = {0 € Quyy,  Ly(tr(q)) > k; and tr(q) [k, Lg(tr(q)) is not constantly zero }.
Clearly, .7, , is an open dense subset of Q,,,. Now, for n € “~2 let p, € Q, be

witnessed by (777 {Ki-l-l PR > 59(77)}7 <AM‘+1 PRy > 69(77») where Am+1 = {']NH»I}'
Then

(a) py indeed belongs to Q,

(b) tr(py) =,

(c) py is a nowhere-dense subtree of #~2.
Let Ag = U{limx(py) : n € "~2}, A1 = "2\ Ap. Let us argue that they are as
required.

First, why does A; belong to id(Q,)? Clearly A; is k—Borel and for p € Q, we

shall prove p ¥ “n € A,”, this suffices. Let v = tr(p), hence p, p, are compatible so
let ¢ € Q.. be a common upper bound. Then ¢ I- “n € lim,(q) C lim,(p,) C Ag =

KQ\Aln ]
Second, why does Ay € id(Cohen,)? Because it is the union of |*~2| = k nowhere
dense sets (remember clause (c)). 3R

Claim 3.9. 1) [k weakly compact] Any k-Borel set B is equal modulo id(Qy) to
the union of < k sets, each is k-closed and even Qy—basic, see Definition[0.2(2).
2) Borel,, /id(Q,) is a 5T —c.c. Boolean Algebra.

Proof. 1) We have id; (Q,) = id2(Q,) by B2(5). As Q, satisfies the xT-c.c. it is
enough to show that for a dense set of p € Q,;, we have that lim, (p) C B or lim,(p)
is disjoint from B. But this easily holds by B.6(3).

2) Should be clear. U39

Claim 3.10. [k weakly compact] Assume F is a k—Borel function from "2 to *2.
For a dense set of p € Q, the function F' can be read continuously on lim(p), i.e.
for some club C of k and h = (h, : a € C) we have:
(i) hq :pNo2 — @2,
(ii) ifn€pn2, vepnP2, n<av and {a, B} C C then ha(n) < hs(v),
(iii) if n € lim,(p) then F(n) = J{ha(nla) : o € C}.

Remark 3.11. This is parallel to “every Borel function F : [0,1] — [0,1] can be
approximated by step functions, that is functions such that for some finite partitions
of [0, 1] to intervals, it is constant on each interval”.

Proof. By [[L9(2), the set
I ={q€Qu: (Va<r)(3IB<r)(VWeEqN #2) (g™ forces a value to F(n)la)}

is an open dense subset of Q.

Let us fix ¢ € .. Then by the definition of .# there are an increasing sequence
(B(gq, ) : @ < k) of ordinals below k and a sequence (g(q,«) : @ < k) of functions
such that for each o < k we have

g9(g,a) : Blae)g 5 a9 and veqnfled = M- “Fn)la=g(ga)(v)".

Let B, = {0 < k : § is a limit ordinal and (Vo < §)(8(g, ) < §)}; clearly it is a
club of k. For § € E,; we define a function hy s : ¢N°2 — ¢ N %2 by:

hgs(v) = U {9(q,0)(vIB(q,0)) v < 6} forvegn 22,
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Clearly, for every 6§ € E, and v € °2 we have
&) g IF <« F(n)é = Ué(F(y) la) = Uég(qva)(mﬁ(qva)) = hgs(v) "
a< a<
For 6 € E, and v € 92 consider the set

Y5, ={n€lime(q): v <n and F(n)]d # hqs(v)}.
It is a xk—Borel set which (by (X)) belongs to id; (Q,) = id2(Q,;). Hence

Y = U {Y&V 0 € Eyjand v € 62} € id(Qy).

Let ¢* > g be such that lim,(¢*) NY = () (exists by the proof of B:9(1)). Then
q*, Eyq, (hgs : 6 € Ey) have the properties required in (i)—(iii) and the Claim follows.

310

Remark 3.12. For x which is not weakly compact we may get a weaker result for
id1(Qx) = id2(Qy). For each a < k let £, be a maximal antichain of Q, such that

q€ Iy = g forces a value to F(n)la.

Without loss of generality
(x)o a <BANge€ Ig=(Tpe F,)(p<q)
Let (gai @ ¢ < i(a) < k) list .Z, and let v,,; be such that g, ; IF“F(y) [a = vy,
Then clearly tr(¢a,;) < tr(¢a,i) € go; < i =j. Let Yo = |J lim(¢a,:) and note
that: e
(¥)1 (a) Yo ="2 mod id(Qy) decreases with «, and
(b) (limy(ga,i) : % < i(e)) is a partition of Y.
Define Hy, : Yy, — *2 by Ho(n) = v4,; if n € lim,;(ga ;). Then
(¥)3 (a) H, is continuous on Y, in the sense that H,(n) is the value of H/ (n]j)
for every large enough j < k, where
(b) we let H, : %72 — ®>2 be

vy Vai if tr(ga,i) AV € Gay,
H,(v) = { ((0)a)  if there is no such i.

Now consider
(¥x)a (a) Y= ) Y, and note Y = "2 mod id(Q,), and

a<k

(b) let H:Y — "2 be defined by H(n) = lim(H,(n) : a < k).

Concerning Lebesgue Density Theorem:

Conclusion 3.13. [k weakly compact] If X C ®2 is k-Borel, then for someY €
id(Qy) for every n € X\Y for every o < r large enough (2%)"°1 N X includes
lim,(p) for some p € Q.

Remark 3.14. So this holds also for the complement of X.

Proof. By B.6l(3) there is a maximal antichain (p; : i < i,) of members of Q, and
S C i, such that i € S = lim,(p;) C X and i € 4,\S = lim,(p;) N X = 0. Then
ix <kt and let Y = "2\ | J{limx (p;) : @ < i.}, so clearly Y € 1d(Q,). If n € X\Y,
then by the choice of Y for some i < 4., n € lim,(p;) and necessarily ¢ = i(n) is
unique and i € S. Let a(n) be Lg(tr(p;cy)). Clearly we are done. 0313
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Claim 3.15. If & C Q, is dense open and W C k = sup(W) then for some

D= (pp: p € Q) we have:

a) Q C "2, moreover Q C | J{“2: a € W},

) pp € I C Qy has trunk p for every p € Q,

) if p<v € p, thenv ¢ Q,

) {pp: p € Q} is a predense subset of Q.,, moreover is a mazimal antichain,

(e) letting (pp,Sp, A,) witness p, € Q,, we have: if p1,p2 € Q and Lg(p1) <
a=1Lg(p2) then S,, = S, \(+1),A,, = Ay, Sy,

Proof. Let Q1 = {tr(p) : p € £} and for p € Oy choose pz € . such that tr(pz) =p

and let (p, S}, A}) witness p! € Q. with min(S}) > £g(p). Note that

(
(b
(@

peE A pﬂuép}) = vey

because .# is open dense. Let S, = (J{S} : p € Q1} and note that S, is a nowhere
stationary subset of k. Let A = (Ap : 0 € S,) where

Ay = U{A,l))a . p satisfies p € 9, N 9”2 and 9 € S;}.

Easily, if 9 € S, then Ap is a set of < 0 dense subsets of Q.
Next, for p € 4 let pi € Q. be witnessed by (p, S«, A). Now we define Q3 o by
induction on a@ € W such that

QQ)QZ{[)EOQZ[)EQl andifﬁ6Wﬁa/\gngﬁ/\gdpthenpgépz}.

Lastly, let Q = gw Qa4 and p, = p2 for p € Q. Now check. Os1m
Claim 3.16. Assume that k is inaccessible limit of inaccessibles and W, C r =
sup(We) for e < k are pairwise disjoint. If A € id(Q,;) then for some (S,A),p, .7 :

(a) D= (py:p€"2), p, € Qu is defined by (p, S\(Lg(p) + 1), AI(S\ (Lg(p) +
1)),

(b) JF = (I e < k),

(c) F C{pp:p €2 Nlg(p) € We} is a predense set and even a mazimal
antichain of Q,

(d) A CU{"2\set(F£) : € < Kk}.

Proof. Follows by the proof of BI5 but we give details. Let A € id(Qy), hence
there are a maximal antichains .7, of Q, such that A C [J (*2\set(.%2)). As Qx

e<k

satisfies the k*—c.c. clearly |.Z;| < k.

Recalling x = sup(S%., ) hence without loss of generality each p € % is nowhere-

dense (see the proof of B8) and hence || = k. Let 4. = {p.; : i < Kk} and
suppose that each p.; is defined by (7e,, Se,i, Ae,i). Without loss of generality
0€ S =Llg(ne;) <. Let

(¥)1 S={0€ 8, for some €,i < 9 we have 0 € S, ;}.
Clearly,

(x)2 S is a nowhere stationary subset of Sf, .
Let

(¥)3 A= (Ap:0 € S) where for 9 € S we let
Ay = U {Acip:e<d, i<dandde S.;}.
Clearly,
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(*)4 ({),S,A) defines a condition p, € Q,, as S C & is nowhere stationary and
if 0 € S then Ay is a set of < 9 pre-dense subsets of Qg.

Lastly,

()5 (a) for p € "2 let p, = (p, S\(Lg(p) + 1), AI(S\(Lg(p) + 1)),
(b) for e < k let

I = {pp : for some ¢ < k we have i,e < lg(p) € W and n.; <p € pw-}.
Then

() for each e < K
(a) #! is a predense subset of Qy, and
(b) set(.#]) C set(.7,).
[Why? For clause (a), if ¢ € Q, then some p € .#, is compatible with ¢ and hence
there is r > ¢,p. Let i < Kk be such that p = p.; and let p € r be such that
tg(p) > €,i,Lg(tr(r)) and Lg(p) € W.. Now, p = p.; < r implies n.; = tr(p) <
tr(r) < p € r C p. ;. Hence p, € #/ has trunk p and hence it is compatible with
r, so also with ¢. Concerning clause (b), assume 7 € set(.#/) C #2. Then for some
p € "2 we have p, € # and n € lim,(p,). By the definition of .#/, for some
i < Lg(p) we have n.; < p € p.;. Hence tr(p,) € p-;. By the choice of p,, clearly
lim, (p,) C lim, (pg.p]l) C limy (pe i) C set(£), so we are done.]
To get “.#. a maximal antichain” we choose Q. ; C 72 by induction on j €
W\ (e +1) by:
(x)7 Qo ={p€2: for some i € WeNj\(e+1), nei < p € pei but for no iy €
W-nj\(e+1)and v € Q.;, do we have p € p, }.
Then let
(0)s (a) Qe =U{Qej:j €W\ (e+ 1)},
(b) AL =A{py:p e}
Now (S, A), (p, : p € Q) and (I : € < k) are as required. U319

§ 4. ON add(Q,) AND cf(Qy)
Definition 4.1. (1) Fora <k, v €2, p€Q,,n € pN2 we let
plmvl = {p : p v or for some p we have n"p € pAp = I/Q}.
(2) For # C Qy, a < k and a permutation 7 of *2 let
glooml — {p[”’”] pe L nepn®?2and v = 7r(77)}.
(3) Let A be a collection of subsets of Q, and let o < k. For a permutation
of “2 we let
Al = {gloml . 7 e A},
We also define
Al = {717l 7 is a permutation of “2 and .# € A}
and Al<el = J{A]: B < a}, here we allow a = k.
Claim 4.2. (1) If @« < k and I C Q4 is open/dense/predense/mazimal an-
tichain/of cardinality < k then so is .17 in Q,.
(2) If o < k and A is a collection of subsets of Qy, then
o (Al = Al] gnd |Al)] < A+ 22" £ R0 < A+ 5,
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o (Al<el)IST = Al<al gpg |Al<el) < A+ 2{227: B < a} < A+ 5.
Proof. Easy. By )

Definition 4.3. (1) For an inaccessible cardinal £ let Pr(x) mean:
there are predense sets . C Q. for e < k such that

if p € Qy then lim.(p) € () set(S).
e<k
(2) Let Sj, ={0<k:0¢€Sf,. N Pr(d)} and

mac

nst’ = nst, ,, = {S C S, : S is nowhere stationary and S C S, }.

Observation 4.4. (1) If k is inaccessible but it is not a Mahlo cardinal, then
Pr(k).
(2) If k is weakly compact, then = Pr(x).
(3) If k = sup(Sh.), then k = sup(Sy,).
(4) If K is Mahlo, i.e., Sfy, . is a stationary subset of k, then Si;, is a stationary

mac
subset of k.
Proof. (1) First assume 0 = sup(Sf,..) < k. For € < k define
S = {(”>2)[UA<O>] tvERT2 A lg(v) > €}
It should be clear that each .# is a predense subset of Q, and we claim that they
witness Pr(k). So suppose that p € Q, and pick v € p of length greater than 6 and
than £g(tr(p)); note that then pi! = (*>2)[]. Let n € *2 be such that v < 7 and
n(i) =1 for i € [lg(v), k). Clearly, n € lim,(p) but n & set(%) for € > Lg(v).
Second, assume k = sup(S}: ) but it is not Mahlo. Let E be a club of & disjoint

inac
from Sf,. and let (o; : i < k) be the increasing enumeration of E. For ¢ < & let

I ={(=2)" v e A is el
Clearly, each .7, is a predense subset of Q,,. We will argue that they witness Pr(k).
Let p € Q, and fix € such that a. > fg(tr(p)). By induction on i € [g, k) choose
v; € 2N p so that
o if e <j<i<kthenv;"(1) <.
(It is clearly possible; at successor stages remember [[E(1) and at limit stages

remember the choice of E.) Then n:= (J{v; : € <i < k} € lim,(p) does not belong
to set(.2).

(2) Remember Claim [B6(2).
(3,4) Follow from part (1). O
Question 4.5. For which inaccessible cardinals k do we have Pr(x)? See [Sh:F1580)].

Claim 4.6. The following are equivalent for k:
(a) - Pr(k).
(b) If A is a set of < k mazimal antichains of Q. and a < kK, then there is
p € Q. such that tr(p) = (), Sp Na =0 and lim,(p) C set(A).

Proof. (b) = (a) Straightforward by Definition [3|1).
(a) = (b) Suppose that Pr(x) does not hold.

Assume A is a set of < x maximal antichains of Q. Let A; = Al<#l (see EI).
Then A; = (Ay)[<*] and |A;| < & (remember £2). Since Pr(x) fails, there is a
condition g € Q such that lim(g) C set(A1) and £g(tr(q)) > a, Sy Na = 0.
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Let S, = S, and for 9 € S, let Ag = Agp. Put A = (Ag: 9 € S,) and let p be
the condition determined by ((), S,, A).

Note that if n € ¢ NP2, B < k, then for every v € P2 also ¢! satisfies
lim(¢l"¥]) C set(A1) by the choice of A;. Therefore we also get lim(p) C set(A;) €
set(A), so p is as required. Urg

Claim 4.7. Suppose that p € Q,, Lg(tr(p)) < au < By < k. Then there is g € Qy
such that

(a) p <gq, tr(q) = tr(p) and
(b) Sg\ (ax, Be) = Sp \ (e, Bx) and v € Sy \ (ax, Be) = Mgy = Ap v,
(c) SgN (o, Bs) € Sp.

Proof. We prove this by induction on f,.

Case 0: ay,=pfso0ra,+1=7,
Trivial, as then (o, 8.) = 0.

Case 1: [, =sup(B« NSp) + 1 but sup(B. NSp) ¢ Sp \ S

Let v, = sup(Bs NSy). Use the inductive hypothesis for p and (a.,7«) to get a
condition ¢. It will satisfy the demands for (o, 8+) as well as either v, ¢ S, or else
Vs € Sy

Case 2: [, >sup(f«NSy) +1
Use the inductive hypothesis for v, = sup(8« NSp) + 1, proceeding like in Case 1.

Case 3: [, =sup(B.NSy), so By is limit
Pick an increasing continous sequence & = («; : i < cf(B,)) such that ag = o,
Qef(p,) = B« and a; ¢ S, for all 0 < i < cf(B,). By induction on i < cf(8,) choose
¢; such that

(a) qo =p; tr(q;) = tr(p),

(b) Sq; \ (aOval) Sp \ (040,041) dvy€eS qz \ (a07ai) = Athﬁ = APKY’

(c) if j <4, then ¢; < g;, S, \ (a],al) =8¢, \ (@, ;) and v € Sy, \ (0, 5) =

Agi v = Ag;

(d) if i = j + 1, then Sy, N (a;, ;) C S},
There are no problems in carrying out the inductive construction. Then g.(g,) is
as required.

Case4d: B, =0+1,0€5,\S; and 9 > a.

Here we use for Qa, Ap,p and the ordinal a,. So there is p, € Qg such that
e tr(p.) = (),
e S,. C(ay,0), and
o lim(p,) C set(A, 0).

Now we define a condition ¢; by letting:

e tr(q1) = tr(p),

o Su = (S \ {0} US,.,
(] Aqhe is
—NppifbeS,\5S,,,
— Ny pif0e S, \Sy,
— A pUA, pif0e S, NS,
Then we continue as in Case 1 with ¢1, ., B« (as O ¢ Sy, ). O

Conclusion 4.8. For any a < K, the set {p € Q, : S, C S}, \ a} is dense in Q.
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Note that if K > sup(Sf,.), then id(Q,) = id(Cohen, ). Therefore:

Hypothesis 4.9. For the rest of this section we assume that x = sup(Sf,.) (so
also k = sup(S},), remember E.4(3)).

Definition 4.10. (1) Let add(nstP") be the minimal cardinal p such that there
are S¢ € nstP’ for ¢ < p with the property that there is no S € nstk’
satisfying

(<p = S:CS mod bounded.
Dually, cf(nst") is the minimal cardinal p such that there are S¢ € nst?
for ¢ < p with the property that for every S € nstP’ there is ( < p

satisfying S C S¢ mod bounded.
(2) For S C Sf .. we define:

mac

(a) Qg is the subforcing of @, consisting of all conditions p € Q, satis-
fying S, C S.
(b) id[Q}, 5] is the collection of all A C "2 such that for some I ={(Jc:
¢ < k) we have
(i) each g, is predense subset (or maximal antichain) of Q,
(i) ¢ € Qf g for each ¢ <k, and

(iii) A C <L<J (72 \ set(_2¢)),
(c) add(id[Q}, ¢, 1d(Qx)) = min{|</| : & Cid[Q} o] A U ¢1d(Qx)}-
(3) Addj, , = min {add(id[Q}; §],id(Qx)) : S € nstP'}.

Claim 4.11. (1) add(Qx) = min {add(nst?"), Adds;, . }.
(2) cf(Q)) > cf(nstPr).

Proof. (1) (Step 1) add(Qx) < add(nstP").

Let S; € nstP" for ¢ < add(nstE") be such that

S enstd = \/ k = sup(S¢ \ S).
¢
For 0 € S5 let Ay = {72 : ¢ < 0} witness d € S5, (see Definition EL3(1)). For
(< add(nstpr letﬂ

B ="2\ {ne"2: (V0 e S:)(nd € set(A}))}.

Clearly B € id(Q,). Now it suffices to prove that B := |J {B¢ : ( < add(nst®")} ¢
id(Q,). So suppose towards a contradiction that B € id(Q,) and let (S, A,p,.#)
be given by Claim for B. Next,

(x)1 if e < Kk, @ < k and ) € “2, then there are 3, v, p such that

(a) a < B <k,

(b) n<veh2,

(c) pp € F- and p Qv and v € p,,

(d) if 9 € SN (a, f] then v]0 € set(Ag).
[Why? Consider the triple (1, S\(a + 1),(As : 0 € S\(a + 1)}). It defines the
condition p, € Q. and we know that .7; is a predense subset of Q.. Hence for
some p € "~2, p, € . and the conditions p,, p, are compatible in Q,. Then there

4Recall that “v>°d € $” means “for all but boundedly many & € S”.
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is v € "72 such that tr(p,) < v € p,, tr(p,) < v € p,. By the definition of p,
above, £g(v), v, p satisfy all the requirements.]
Now,

(x)2 Fore < klet FE, F5 : "2 — %~ 2 be such that for each n € ®~2, the triple
(B,v,p) given by 8 = Lg(Ff(n)), v = Ff(n) and p = F5(n), is as required
above in (x); for € and 7.
(¥)3 Let By = {6 < £ : § alimit ordinal and (¢ < § A n € °>2) = Ff(n) € °>2}.
By the choice of (S¢ : ¢ < add(nstE")) there is ¢ < add(nst") such that S\ S is
unbounded in k. Easily we may choose an unbounded set S’ C S¢ \ S such that

e the closure E of S’ is disjoint from S, and
e if 0 € E, 71 = min(E \ (y0 + 1)), then (y0,71) N E1 # 0.
Let (y; : i < k) list EU {0} in the increasing order (so v;+1 € S¢c \ S and v; ¢ S;
remember vo =0 ¢ S C Sf,.). By induction on i < k we choose 1; € 72 such that
(a) j<i<k = n; <, ‘
(b) if i = j + 1 then n; ¢ set(AZ,) and Fy (n;) < n;,
(c) if 0 € SN (yi+1),i>0,then n;]0 € set(Ag),
(d) if j < i then FY(n;) In; € Pri(ny) (follows from (b)+(c) and (*)2).
If we succeed in carrying out the induction, then we may let n = |J n; and note
<K
that

e 1) belongs to B¢ because n[v; ¢ set(Ai; ) for all successor i < k by clause

(b), 1'

e 1) does not belong to B by clauses (c)+(d).

Consequently, ) witnesses B¢ ¢ B, a contradiction.

Why can we carry out the induction?
For ¢ = 0 it is trivial.
For a limit i < k we let n; = J 0.
§<i

Let i = j + 1. First, F/(n;) satisfies the requirements on 7; except that £g(FY(n;))
is not ; (and so “n; ¢ set(AZ,)” from (b) is meaningless): it is < ; by the choices
of F1 and E.

Second, we use the definition of S; C Sf, and ;11 € S¢ \ S for the condition

with trunk FY (n;) and (Ap : & € (v4,7;+1) NS) and the choice of AL

This completes the proof of “add(Q,) < add(nst")”.
(Step 2) add(Q,) < Add”

pr,R°

It should be obvious that if S C ST, then add(Q,) < add(id[Q}, s],id(Qx)).

(Step 3) min {add(nstE"), Add}, .} < add(Qx).

Why? Assume A; € id(Qy) for i < i, < min {add(nstP"), Add;, . }. For each i let
(Si, A, .7, bi) be given by Claim for A;. By Conclusion [£.§] (and the proof of
[B16) we may also require that S; € nst2" for all i < i,. As i. < add(nstP") there
is S € nstP" such that

i<i, = S8CS modJ
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Then easily A; € id[@;s] for every i < i,. Since i, < Add’. . we also have

pr,k
i. < add(id[Q}, 5],id(Qsx)) and hence |J A; € id(Q,) and we are done.
i<
(2) 1In order to show cf(Q,) > cf(nst}") let us assume towards contradiction that
poi= cf(Qx) < cf(nstl’). Let (B¢ : ¢ < p) witness u = cf(Qs) and let S¢, A,
Pe = (pcp : p € "72) and S = {I; : i < Kk} be given by BI0 for B¢. Let
S € nst?" be such that

(<p = r=sup(S\S¢).

For each d € S let Ay = {57 : & < O} witness 0 € Sf;, (see Definition L3(1)) and
let

B:={nc"2:(3%°0 € S)(F < )(n]0 ¢ set(I2))}.
Clearly B € id(Q,,), so for some ¢ < u we have B C B¢. Let EC \ S¢ be a club
and let p € Q, be a condition determined by ({), S¢, A¢). By induction on i < &
we choose o; € F and n; € 2N p so that
(i) (o :i < k) C E is increasing continuous,
(ii) (n; : 7 < k) is <-increasing continuous,
(iii) for each i < k, for some p € *2 we have p < n;41 and pc , € Fc .,
)

(iv) for each i < k there is 0 € (a;, ;1) N S such that n41]0 ¢ () set(£2).
e<d

It should be clear how to carry out the construction. At the end, the sequence

n:= |J m € "2 belongs to B (by (iv)) but it does not belong to B, (by (iii)),
1<K

contradicting the choice of ¢ < p. Ua1n

Claim 4.12. If k is Mahlo and there is a non-reflecting stationary set S C S§.,
then

(1) add(nstP") < b,,
(2) above we actually have add(nst, s) = by,
(3) 9, < cf(nstPh).

Proof. Straightforward, as for S’ C S we have:
S’ € nstl" if and only if S’ is non-stationary. Oz
¢ 5. THE PARALLEL OF THE CICHON DIAGRAM
As before, A, 9, k vary on inaccessibles.

We have a characterization of k—meagre sets similar to the one for the case of
k = V. (Note: here k inaccessible is used.)

Observation 5.1. 1) If X C "2 is k—meagre and A C k is unbounded then there
is an increasing sequence & of members of A of length k and n € "2 such that

X CX,a:={ver2: foreveryi<k large enough, nla;,a;+1) ¢ v}.

Moreover, if A contains a club of k then the sequence & above can be increasing
continuous.

2) Ifn €2 and & is an increasing sequence of ordinals < K of length k then the
set X, & defined above is a k-meagre subset of "2.
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Proof. 1) Let X C |J{lim,(7;) : i < k} where .7 is a nowhere dense subtree of
%>2. For every infinite o € A let ((a.c,ine) : € < 2/1) list “2 x , and then we
choose V4 ¢, Ba,c by induction on € < 22l guch that:

(a) Bae = B(a,e) < K is increasing continuous with ¢,

(b) Va,e € B2,

() (<e = vac Qg

(d) Nae Vaer1 ¢ Thie-
Why we can? For ¢ = 0, let vy, = (), for limit € let vy . = (J{Va,c : ¢ < £} recalling
(by 22) that cf(k) = k > 2% > ¢ and for ¢ = ( + 1 use “.%,_ . is nowhere dense
subtree of #~27.

Now by induction on i < x we choose (o, ;) such that:

(e) a; € A is infinite increasing with ¢, a; minimal under these restrictions,

(f) v; € “2 is <—increasing,

(g) ifi = j+1 and v = 2/%! then o; = min{a € A: a > o + £g(va, )} and

v; is a member of 2 such that v; vy, 4, < v;.

There is no problem to carry out the induction and (o : 4 < k), n:= J{v; : i < K}
are as required.

2) Should be clear. UsT

Remark 5.2. The ideal id(Cohen,) is an ideal of subsets of #2. It has a natural
relative on “x — the ideal of meagre subsets of “x. The two ideals are isomorphic in
a suitable sense and they have the same cardinal coefficients, cf [MRSh 799, Section

4].

Claim 5.3. (1) add(Cohen,) < b, < non(Cohen,,).
(2) cov(Coheny) <, < cf(Coheny).
(3) cf(Coheny,) = max{d,, non(Coheny)}.
(4) add(Cohen,) = min{b,, cov(Cohen,)}.

Proof. Our arguments are similar to those for K = Ry.

(1) We will show that add(Coheny) < b, (the inequality b, < non(Cohen,) should
be clear; remember (5.2)). Let u = b, and let {g, : @ < pu} C "k exemplify this. For
each a < p let

E, = {6 < k: 0 is a limit ordinal and (Vi < 6)(ga(i) < 4)}.

Let B = (Ba,i 1 1 < k) list E, in the increasing order and let n, € #2 be constantly
¢t for . = 0,1. Then {Xm,Ba i1 < 2and a < p} is a collection of p many k—meagre
sets. Assume towards contradiction that their union A = (J{X, 5 :¢<2and a <
p} is meagre. Hence, by [ there are n € ®2 and an increasing continous 8 € &
such that A C X, 5. Let g € "k be defined by 9(3) = Bj+1- Then for some
a < pu we have —(gq <Jba g). If Bj < Ba,i < Bjt1, then j < B; < B, and hence
ga(j) < Ba,i < Bj—i—l = g(j)7 so the set

Sz{j<ﬁl(ﬁj,ﬁj+1]m{ﬁa7iZi<l€}:®}

is of size k. Choose a subset Sy C S of size x such that j € Sy = j+1¢ Sp. Let
v € "2 be such that v[[5;, 8;+1) = nlB;, Bj+1) for j € So and v(i) = 1 whenever
i ¢ U{[B),Bj+1) - j € So}. Thenv € X, 5 \ X, 5, contradicting A C X, 3.
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(2) We will show that d,, < cf(Coheny). So let p = cf(Cohen,) and let (A, : a <
w) list a cofinal subset of id(Coheny). For each oo < p we can find (vq, So) as in[B1]
such that A, C Xua,Ba' Let

E, = {6 < k: 0 is a limit ordinal such that (Vi)(Ba,; < 8§ < i < §)},

it is a club of k. Towards contradiction assume 9,, > p. Then there is a club E of
k such that sup(E,\E) = & for all @ < p. Let v € 2 and the sequence j list E
in increasing order and consider the r-meagre set X, 3. For some o < p we have
X, 5 C Ay € X, 5. Easy contradiction to x = sup(E,\E).

The inequality cov(Cohen,) < d, should be clear (remember [5.2)).

(3) Recall that non(Cohen,) < cf(Cohen,) by 0.9 and ?,, < cf(Cohen,,) is proved
in (2) above. So we are left with:

cf(Cohen,,) < 9,, + non(Cohen,;).

Let p = non(Cohen,); now
(H) there is {gs : 8 < p} C "k such that for every v € "k for some 8 < p we
have sup{i < k : pg(i) = v(i)} = k.
[Why? For p € "2 let v, € "k be such that for i < &, v,(i) is 7,; when ~,; < & is
the minimal v < & such that, if possible, p(i+v) = 1 (and if there is no such ~ then
it is 0). Let 79 € "k be constantly 0. Now if A C #2 is non-meagre of cardinality u
then recalling [5.1] the set {v, : p € A} U {no} C "k is as required.]

Let (Ey : v < 0,) be a sequence of clubs of x such that for any club E of
&, for some v, B, C E, this is a variant of the definition of 9,,. For v < 0, let
ay = (0, 11 < k) list E;, U {0} in increasing order.

Let (p; : j < w) list U{I")2 : i < j < k} and for (8,7,€) € p x 0, x 0y, let
Ag e = X, .ac from b1l where:

(@) for < pand v <0y let pg4 € "2 be such that g [[cy,i, ay,i41) is equal

to o,y if Pos(i) € lov.6:¢5,i41)2 and is constantly zero otherwise.
So o ={Ag~yv 1 B < p, 71 <V, Y2 <0y} is a subset of id(Cohen,) and has
cardinality < g+ 0+ 0 = max{u, 0}. Hence it suffices to prove that & is cofinal in
id(Coheny). To this end let A € id(Coheny), and let n € #2 and increasing & € "k
be such that A C X, 5 (remember [.T]).

Now, E := {a < £ : ais limit and (Vi < a)(ay < «)} is a club of k, hence
there is (1) < 0, such that £ 2 E, ;). Then A C X, 5 C Xn,ayqy- Let 0 € "k
be such that i < kK = n[[a,y(l)yi,a,y(l)ﬁiﬂ) = po(i) and let B < p be such that
B ={i<k:0(i) = ps(i)} is an unbounded subset of x. Pick v(2) < ? such that

E,2) € {a € E 1) : ais limit and (Vi < a)(ay1); < )}
and [y (2),i5 Qy(2),i41) N B # 0 for every i. Now clearly it suffices to prove:
(*) A S Agy)1(2)-
Why does () hold? Fix v € A and we shall prove that v € Ag (1)(2). By the
choice of (1, @) we know v € X, 5, so for ¢ < k large enough v|[a;, a;p1) € 1. Let
i* < k be such that v[[a;, a;41) € n for all i > *.

Let i € [i*, k). By the choice of 7(2) we can fix i; € B such that o (9); < i1 <
y(2),i+1- Then, by the definition of B, we have o(i1) = gs(i1) and by the choice
of o we have pyi,) = Pos(i) = n[[a,y(l)’il,a,y(l)ﬁilﬂ) € 1,0 +1)Q, By the
choice of gg (1) in (®) we have
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(B) 08.~1) Moy 1),ins Oy(1),in4+1) = NI (1),015 Ay(1),i141)-
Since E, 1) € E, we may find iz < & such that [ay,, @i, 11) € [y (1),6,5 Qy(1),i141)-
Then necessarily i > i; > ¢* and hence we have

vy, qiyy1) 7 0lty, @iy 1) = 08,41 [y, @iy r1),

and Consequentlyyr[a'y(l),ilaa'y(l),i1+1) # 08,~(1) Ha'y(l),ilua'y(l),ilJrl)' Since E2) C
{a <k :ais limit and (Vj < &)(ay),; < @)}, we know that

(X) [057(1),1'1;057(1),1'1-',-1) C [O‘v(2),iao"y(2),i+1) and thus V[[av(2),ia05'y(2),i+l) #
08,~(1) [y(2),is Oy (2),i41)-

Now we easily finish concluding that v € X AB ~(1),4(2); as desired.

08,4(1):Qy(2)

(4) Tt follows from[@and[(E3(1) that 4 := add(Cohen,;) < min{b,;, cov(Coheny)}.
In order to show the converse inequality assume towards contradiction that p <
min{b,, cov(Cohen,)}. Suppose that &/ = {A, : v < p} is a family of members of
id(Cohen,;) (and we will argue that |J &7 € id(Coheny)). For v < p let (1, 3,) be
as in [5.J] and such that A, C X, 3, and let

E, ={a<k:aislimit and (Vi < a)(B,,; < )}

(it is a club of k). As p < b, we may find an increasing continuous sequence
B8 = (8; : j < k) of ordinals below x such that for each v and every sufficiently
large j we have 3; € E,. Then X, 3 C X, 3. Since u < cov(Coheny), by an

easy dualization of (H) of (3), we have:
(B)% there is v € “2 such that for every v < u the set

Zy = {] < K: ’I]ryr[ﬁj,ﬁj—i-l) = V”ﬁjvﬁj-i-l)}
is of size k.

Using p < b, again, we may find an increasing sequence & such that

(Vy < p)(Jio < K)(Vi > i0)(Zy N v, aiy1) # ).
Then letting J; = Ba, (for i < k) we will have X, 3 C X5 for each v and the
desired conclusion easily follows. Us3
Claim 5.4. (1) If k = sup(Sf,.) then cov(Cohen,) < non(Qy).

1mna

(2) If k = sup(Sf,.) then cov(Qy) < non(Coheny).
Proof. Both follow by 3.7 and [3.8

(1) Let Ag € id(Cohen,), 4; € id(Q,,) be a partition of #2 (see[BR)). There is X =
{ne : € < u} C "2 where p = non(Q,;) such that X ¢ id(Q,;). Now, *2 with addition
@ modulo 2, coordinatewise, is an Abelian Group and both ideals id(Cohen,;) and
id(Qy) are closed under translations (seeB.7). Thus {n. ® Ao : € < u} is a family of
< w members of id(Cohen,) and it suffices to prove that [J{n. ® Ao : ¢ < pu} = ~2.
So let v € ®2. Since {n. : ¢ < p} ¢ 1d(Qy), also {n: ®v : e < u} ¢ id(Qx) and
hence it is not included in A;. Thus for some ¢ < p, n. v € Ag, hence v € n.  Ag
as required.

2) Same proof, just interchanging Ay and A;. Usa

Claim 5.5. If b, > cov(Coheny), then cov(Qy) < cov(Coheny).
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Proof. If k > sup(Sf,..), then cov(Q,) = cov(Cohen,).
So suppose k is an inaccessible limit of inaccessibles and b, > cov(Coheny).
Assume towards contradiction that cov(Q,) > cov(Cohen,,) := p.
Using the assumption b,; > p = cov(Cohen,) and Observation [i.1] we can easily

find an increasing sequence 6 = (0, : £ < k) and a family T C [] 6. such that

(¥)1 0 < 6. <k for each € < K, | Y| = p and -
()2 (Vv € I] 0:)(3p € T)(Ve < k)(p(e) # v(€))-

e<k
Next, by induction on € < k, we choose inaccessible cardinals 0. such that:

(¥)3 0 >0-+ > 0c and O; > sup(9: N Sf,e)-

C mac
<e
For each € < k fix a partition (Se; : i < 6.) of O into stationary sets and
o for 0 < i < . define A.; = {n € %2 : the set {a € S.; : n(a) = 1}
is stationary but for each j < i the set {a € S.; : n(a) = 1} is not
stationary}, and

e let A510 = 852\ U As,i-
i€[1,0.)

Note that (A.; : i < 6.) is a partition of 929 such that
(¥)s v€9%>2 = {ne€ A.;: v <n} ¢id(Coheny,).
Now, for p € T and a < & let

Ipa={p€Qn: (ly(tr(p)) > o and for some € < x
o < 9. < Lg(tr(p)) A tr(p)[0: € Ac pe) }-

It should be clear that each .7, , is an open dense subset of Q, (remember that
0 > sup(9: N SfE,.) and use (x)4).
As we are assuming towards contradiction that cov(Q,) > p, theset (| [ set(Fpa)
peY a<k

is not empty. Let n € [\ [ set(#,o) and let v € [] 0. be such that
peEY a<k e<kK

e<k = nl0e€ Asﬁy(s).

By the choice of 7, for every p € T we have sup({e < & : 9[0: € A, po)}) = k.
Hence

(Vp € 1)(3%= < m)(() = p(e)).
a clear contradiction with ()s. 057

Conclusion 5.6. Assume that either
(a) k> sup(Sf,.), or

(b) b, > cov(Cohen,), or
(c) there is a stationary non-reflecting set S C S,

Then add(Qy) < add(Cohen,).

Proof. If k > sup(kNSE ) then Qy, is equivalent to Cohen,, and moreover id(Q,;) =

mac

id(Cohen,;) (see[B.H(1)) and so add(Q,) = add(Cohen,,).
Let us assume b, > cov(Cohen,). Then, by (53(4),

(e); add(Cohen,) = cov(Cohen,)
and by the Claim
()2 cov(Qy) < cov(Cohen,,).
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Hence (first inequality trivial, holds for any ideal, e.g. see [, the other two by
()2 and (e))
(o) add(Q,) < cov(Qy) < cov(Cohen,) = add(Cohen,,).
Finally, if b, < cov(Cohen,) but there is a stationary non-reflecting set .S C Sf;,
then by £:3[(4) we have add(Cohen,,) = b, and by ELT2(1)HLTII(1) we get

add(Qy) < add(nstk’) < b, = add(Coheny,).
So we are done. Em

The following result is dual to
Claim 5.7. Ifd, < non(Coheny), then non(Cohen,) < non(Qy).
Proof. If k > sup(Sf, . N k) this holds trivially as in the proof of 5.0 so from now

inac -
on assume x = sup(SE,..Nk). For every 0 = (0. : ¢ < k) with 1 < . < k we choose

~inac

O =(05..:6<K),Sg.=(Sgos:1<b:), Ag. = (Ag.;:i<0c) as in the proof of

Claim 55l That is, 5, S, Ag . satisfy for £ < k:

(®)1 95. < k is an inaccessible cardinal such that d5 . > 0. + > 0 and
(<e

6§,€ > Sup(aé,a N Si?nac)’

D)o 7.1 <0:)1s a partition of J; into stationary sets, an
Sgeiti<Oc)i ition of O i i d

(®)s for 0 < i < 0., Ag.; = {n € %2 : the set {a € S5 ,; : n(a) = 1}
is stationary but for each j < i the set {a € S5, : n(a) = 1} is not
stationary}, and

(69)4 Aé,a,o = 852\ U Aé,&,i'

i€[1,0:)
A mapping "2 3 1 — v, € ][ 0 is defined by the condition 7[05. € Ag. ., (o)

e<k
for each ¢ < k.

Choose Y C *2, T ¢ id(Q,), of cardinality non(Q,). For any 6 as above let
Yy =1{vg, :n €T} Then clearly
(®)s T3 C ][ 0 and Yy has cardinality < non(Q,).
e<k
Dually to arguments in we will argue now that

(®)s for every p € [] 6., there is v € Ty such that (I < k)(p(e) = v(¢g)).
e<k

Why? Suppose p € ] 6.. For a < & let
e<k
Io={p€Q.: Lg(tr(p)) > o and for some & <
a < a@,a < fg(tl“(p)) A tr(p) raé,a € A@,a,p(a)}'

Clearly, each .7, is an open dense subset of Q,; (remember J5 . > sup(9y . NS} .. ))-

Since T ¢ id(Qx) we know that T N [ set(F) # 0. Let n € TN () set(Fy).

a<k a<k
Then (3*°¢ < k)(vg,(¢) = p(e)). Thus (©)e is justified.
Easily by definition of d,, we may choose a family {ag : £ < 0.} such that
(®)7 (a) a@g = (ag : € < k) is an increasing continuous sequence in x (for each
£ <0,), and
(b) if {ay : i < k) is an increasing sequence of ordinals below x, then for
some ¢ < 0, we have

(Ve < k)(Fi < k) (age < 0 < Qig1 < Qg eq1).
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Now, for each ¢ < 0, let 0 = (0¢ . : € < k), where f¢ . = |[®¢<@c<+1)2|. Also, for
each ¢, e fix a bijection m¢ . : 0 o — [@¢22¢=+1)2 and for v € [] b (for £ <,)

e<K
set ze, = |J me(v(g)) € #2. Consider the set
e<k

e9£f={,fg7,,:§<0,.i N ueng}.
We claim that
(®)s 2 ¢ id(Cohen,,).
If not, then for some n € #2 and an increasing continuous sequence & = (q; :

i < k) € k we have 27 C X, 5. Let £ < 0, be given by (®)7(b) for & and let
p* € ][ 0¢ be such that ¢ (p*(¢)) = nl{ag,e, age41) for each ¢ < k. It follows

e<K

from (@) that for some v € Ty, we have (3¢ < £)(p*(¢) = v(€)). This implies
that (3% < &) (zewl[ae,e g er1) = nlloee, aeeq1)) and hence (remembering
the choice of &) we get (3"01’ < /q) (3:5,,,[[041-,04”1) = 77[[0&i,0&i+1)). Consequently
ze ¢ Xy 4, a contradiction.

It follows from (@®)g that 9,; < non(Cohen,) < | 2’| < non(Q,)+0, and therefore
non(Cohen,,) < non(Qy). Os7

Conclusion 5.8. Assume that either
(a) k> sup(SE,.), or

mac

(b) 9, < non(Cohen,), or
(c) there is a stationary non-reflecting set S C Sy,

Then cf(Coheny) < cf(Qy).
Proof. The proof is similar to the proof of 5.6
If kK > sup(S}:,.) then id(Q,) = id(Coheny) and cf(Q,) = cf(Cohen,).
If o, < non(Coheny), then it follows from[(.3(3) that cf(Cohen, ) = non(Cohen,).

Also, by B and [09(b), we have non(Cohen,) < non(Q,) < cf(Qx). Together
cf(Cohen,;) < cf(Qy) (under present assumptions).

If 9,; > non(Cohen,), but there is a non-reflecting stationary subset of SJ,, then
we use LI2(3) to get cf(nstP") > v,. Now. BE3(3) implies cf(Cohen,) = 0, and

ET1T1(2) gives cf(Qy) > cf(nstly;). Together we conclude cf(Qy) > cf(Cohen,), as

desired. Em

Now we may summarize the results of this section in the form of diagrams.

Theorem 5.9. Assume that k is an inaccessible cardinal and . = sup(SE ..). Then

the inequalities represented by arrows in the following diagram hold true:

cov(Q,) — mnon(Cohen,) —  cf(Coheny) cf(Q,) — 27
T T
br - 0y
T T
kT —  add(Qy) add(Cohen,) — cov(Cohen,) — non(Qy)

plus the dependencies
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e add(Cohen,) = min{cov(Coheny), b, },
e cf(Cohen,) = max{non(Cohen,),d,},

e cov(Q,) <non(Q,) (seelcd(3)).

Moreover, we may add that one of the following four diagrams holds (where each
arrow — represents the inequality < and 1 # represents the strict inequality <).

Case 1:

cov(Qy)

kT = add(Qy)

Case 2:

cov(Qy)

kT —  add(Qy)

Case 3:

cov(Qy)

kT —  add(Qg)
Case 4:

cov(Qy)

kT = add(Qy)

non(Cohen,)

/I\
b

+#

— add(Coheny)

non(Cohen,,)
/I\
by
I
add(Cohen,,)

non(Cohen,,)

/I\
by
t#
add(Cohen,,)

non(Cohen,)
/I\
by

I
add(Coheny,)

_>

%

Q) — 2F

cf(Cohen,) — non(Qy)

1#
[U"

/]\

cov(Coheny,)

cf(Q,) — 27

cf(Cohen,) — non(Q,)

t#
Ok

T

cov(Coheny,)

cf(Cohen,,) Q) — 2F
I

0
T

cov(Cohen,) — non(Qy)

cf(Cohen,,) cf(Q,) — 2°
I

Ok
/]\

cov(Cohen,) — non(Q,)
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Remark 5.10. (1) In a later work we prove that add(nstP") < 9, and b,, <
cf(nstP"). Consequently, by 11l add(Q,) < 0, and cf(Qy) > by.
(2) Remember that by and 0.8 if £ > sup(Sf,.) or there is a stationary

non-reflecting set S C Sf5, then add(Q.) < add(Cohen,) and cf(Qx) >
cf(Cohen,,).

§ 6. Qx vs Cohen,
§ 6(A). Effect on the ground model.

Claim 6.1. If k is an inaccessible limit of inaccessibles, then in V@ the set (%2)V
1S K—meagre.

Remark 6.2. 1) The dual is
2) The assumption is necessary by

Proof. Let (9; : ¢ < k) list in increasing order the (strongly) inaccessible cardinals
below k. We claim that

kg, “if v € (¥2)V then for every i < k large enough N0 +1,0i41) € v,
moreover  a < 941 = nf(a, diy1) g,

This clearly suffices by 5.1(2). Let p € Q,, and we shall fix v € (*2)V and we shall
find ¢ and i, < x such that p <g, g and ¢ I- “if i > i, then n[(9; +1,0;41) v

Let i, be such that £g(tr(p)) < 0;, and let (g, S1,A) be a witness for p € Q,.
Now let So = {0;41 : 4 > ix} and if d = 9,41 € S and « € (9;,0;4+1) then we let

Fo.a ={r € Qq: Lyg(tr(r)) > o and tr(r) [, Lg(tr(r)) € v}.

Clearly, # o is a dense open subset of Qp. Now let S' = 57 U S3 and note that Sy
is nowhere stationary, so S’ is too. Next, for 9 € S’ put

Aa if 0 € 81\82,
A/B = Aa U {ﬂa,a RS (81-,8”1)} if 0= 8¢+1 S Sl N SQ,
{ja,a RS (81-,8”1)} if 0= 8¢+1 S SQ\Sl,
and let A’ = (A}, : 9 € S’). Easily the triple (tr(p),S’,A’) is a witness for some
q € Q, and this q is as required. Ut

Claim 6.3. If k is inaccessible limit of inaccessibles and V1 is an extension of V
(e.g. a forcing extension) then V1 = “(*2)V € id(Qy)” provided that at least one
of the following holds (each implying k is still an inaccessible limit of inaccessibles
(a) Vi = VCohen(s) " see Definition [0H(2).
(b) In V1, k is still inaccessible and there are sequences 77 = (ng : & € S,
a = (ap: 0 € 8) such that
(o) S C K is unbounded in K,
(B) 0eS = ayp=sup(SNI) <9I,
(v) S is a set of inaccessibles (in Vi hence in V),
(8) mo € 92, really just nal(as,d) matter,
() ifn € ("2)V then for unboundedly many 8 € S we have n|(ag,d) C np.
(¢) In Vi, k is still inaccessible limit of inaccessibles but (k)Y # (k)V1.
(d) Like clause (b) but

(B)" S is unbounded nowhere stationary in k,
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(8) A=(Ay:0€8), Ay a set <09 dense subset of Qg,
(e)" if n € ("2)V then for unboundedly many O € S, 0|0 does not fulfill
As.

Remark 6.4. Of course, if x is inaccessible not limit of inaccessibles then the con-
clusion of [6.3] fails because Qy is equivalent to Cohen,, see

Proof. Clause (a): It suffices to prove that the assumptions of (b) holds.
Clearly the forcing preserves inaccessibility. Let 17 € #2 be the name of the x-Cohen
real and let: )

e S1 ={0 < Kk : 0 inaccessible in V; or V, those are equivalent},
S={0€851:9>sup(S1Na9)},
ne =10,
ag =sup(S1Nao) for 0 € S.
Clearly clauses (), () of (b) are satisfied by S; and by S and clause (3) is satisfied
by the ap’s and S. Also recalling n € #2, it is the k—Cohen real, the derived sequence
(no : D € S) satisfies clause (§) by our choice above. Lastly, clause (¢) holds as
Cohen,, = (%>2, <), so all the assumptions of clause (b) hold indeed.

Clause (b): We work in Vj.
Fora < de S let

I3 =1{p€Qy:for some § we have oo < 3 < 9, B < Lg(tr(p)) and tr(p)[(a,8) € na}.
Easily ﬂgﬂ is a dense open subset of Qp and let

 ={p € Qy : for some v < k we have S\y C S, and d € S\y = I3, €Apo}.

Clearly .# is a dense open subset of Q. and p € & = lim,(p) N (%2)YV =0, so
V N~r2 €ids(Q,) and we are done (remember B.2(5)).

Clause (c): Let 57 be the set of inaccessibles in V; which are < k. Let a < k
and v be such that v € (*2)V! but v ¢ (“2)V.
Now let

e S={0€5;:0>aand 9 >sup(S;NaI)},
o 5 = {p € Qp: for some § we have 8+ a < Lg(tr(p)) and (tr(p)(8 + 1) :
i<a)=v}fordes,

e Ay = {f@} for 9 € S.
Why is .#5 a dense subset of Qg for every 9 € S? Let p; € Qs and we shall
find ps such that p; <g, p2 € #5. Let po € Qa be such that p; <g, p2 and
Lg(tr(p2)) > o+ sup{f : 6 < O is inaccessible}. (Why such ps exists? As 9 € S
implies that 9 is (strictly) above the ordinal on the right). But this implies Sy, = 0
hence there is ps such that p <g, ps and (tr(ps3))(a+~Lg(tr(p2)+i) = v(i) for i < «
hence ps € 5. Hence the assumptions of clause (d) hold, so the result follows.

Clause (d): Like the proof of clause (b). Og3

Remark 6.5. If x is inaccessible not limit of inaccessibles and V7 extends V and
H(k)V1 £ H# (k)Y then (©2)V € id(Cohen, )V and (%2)V € id(Q,)V!.
Claim 6.6. Assume k is inaccessible limit of inaccessibles. Then
(1) kg, VNr2 €id(Qy).
(2) Qs is asymmetric; that is, if V1 € Vo C V3, np € (52)Vert s (Qp, mk)—
generic over Vy, for £ = 1,2, then 1 is not (me,{)fgeneric over V{[ng].
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(3) cov(Q) < non(Qy).

Proof. (1) Let (0. : € < k) list Sf¢, . in increasing order and let S = {0,411 : € < K}.

mac

For n € "2 and 0 € S let A, o be a family of < 0 dense subsets of Qg such that
set(Ap9) = {p € 92 : for arbitrarily large ¢ < 9 we have p(¢) # 7(d + 0}
Define
Ay ={ver2: (V0 € S)(r10 € set(Ay0))}.
Clearly, the set A, is k—Borel. Note that

{p€Qu: (S\lg(tx(p))) C S, A (%0 € S)(lg(tr(p) < = Ayo € Apo))

is an open dense subset of Q. Hence,

(%)1 for every n € "2 we have "2\ A, € id(Qx).
We are going to argue that

()2 Ik, VN Ay = 0.
So let v € ©2. Suppose that p € Q. and £ < k. Choose 9 € S such that 9 >
¢,0g(tr(p)) and then pick p € pN?2. Now g = p"(v]d) € p and

P kg, V10 ¢ set(Ay.0).
By standard density arguments we conclude that
Ik, (30 € S’) (vi0 ¢ set(Az,)a))

and thus IFg, v ¢ A,.

(2) Assume that 7 is (Qx,7)-generic over V and 72 is (Qx, 7)-generic over V[n].
It follows from (x)q of part (1) that

(*)3 V[7717772] ': m ¢ Aﬁz'
Therefore, by ()1, 11 is not (Qx,7)-generic over V[n].

(3) Let S,A,p and A, for 0 € S, n € *2 be defined as in[6.6(1). Then "2\ 4, €
id(Qy). For v € "2 let A¥ = {n € "2 : v € A,}. The argument in the end of part
(1) shows that for each & <  the set

{p € Q,: (38 €S\ §) (Vn € lim,.;(p)) (1/[8 ¢ set(An,a))}

is open dense in Q,. Hence A" € id(Qy).
Now suppose that X C 2 is such that X ¢ id(Q,). We claim that then

{2\ 4y ine X} ="2.

So suppose v € 2. Let n € X \ A” # (). By the definition this implies v ¢ A,, and
we are done.
In [Sh:F1580] we note that generally for a nice enough i asymmetry implies

cov(i) < non(i). X
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§ 6(B). When does Q,, add a Cohen real?

Definition 6.7. Let S,y be the class of inaccessible x such that (awc stands for
“anti weakly compact”) in V@ there is a Cohen x-real over V; equivalently:
(%) there is a sequence (7, : a < k), Jo C Q, such thaffl for every p € Q,
there is a < & such that:
for every 8 € (a, k) and g € [*#)2 there is ¢ such that
® p=q. 4
o if v € [a, B) and p(7y) = 1 then ¢ is above some member of .Z,,
e if v € [a, B) and p(y) = 0 then ¢ is incompatible with every member
of Z,.

Claim 6.8. If  is (strongly inaccessible but) not Mahlo then K € Sawe.

Proof. It is similar to E12(2), but let us elaborate. Choose a closed unbounded
subset E of x disjoint to S}} .. Let A be E or any unbounded subset of x such that
0e Sk, = 0>sup(ANI).
Define functions Fy : #22 — *>2 and F; : Q. — Q.. and F5 : Q, — Cohen,
by
e Fy(n) is the v € #~2 of length otp(¢g(n) N A) and
a<lgmhacA = viotp(anA))=n(x)
(for n € ©~2),
o I(p) = {Fo(n) : n € p} (for p € Qy),
o Ih(p) = Fy(tr(p)) = tr(Fi1(p)) (for p € Q).
Now,
(x)1 if p € Q4 and Cohen,, = “Fa(p) < v” then for some ¢ € Q. we have
Qx| p<q" and Fy(q) = v.
[Why? By the choice of A and we prove this by induction on £g(v) as in §1.]
(x)2 If p € Q4 then Fi(p) = {p: p < Fy(tr(p)) or Fy(tr(p)) < p € ©~2}.
[Why? As in §1 or the proof of [6.9]]
()3 if Qx = “p < ¢” then Cohen, = “Fy(p) < Fa(q)”.

[Why? Obvious.]
Together we are done Usg

Claim 6.9. (1) Assume that W C Sp, (see[{.3)) is stationary but not reflecting.
Then forcing with Q. adds a Cohen k—real.
(2) Above also Pr(k) holds.

Remark 6.10. We can replace the assumption of [6.9(1) by

() there is a sequence .% = (. : i < k) of dense open sets such that for no
0 € S, and p € Qs do we have .#; [0 is predense in Qp above p for every
i € [lg(tr(p)),0) where ;10 = {pN?9>2:p € 7 satisfies Lg(tr(p)) < }.
That is, if (%) holds true, then Q, adds a k—Cohen real. We intend to return to it

in [Sh:FI199).
Proof. (1) Let W C S}, be a non-reflecting stationary set. Choose a sequence
p = {ps : 0 € W) such that:

550 7, is not necessarily dense and not necessarily open; without loss of generality .#, is an

antichain (but not necessarily maximal). Of course the g later is not necessarily constant.
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(6)1 Q€W = py € "2
(e)2 for each p € #~2 the set {0 € W : pg = p} is stationary.

For every 0 € W we fix open dense sets 7 C Qp (for £ < 9) such that:
(0)3 if p € Qp then limy(p) € ) set(.£2).
e<d

Then for 0 € W we define
(o)1 Ap =72\ N set(F£2).

e<d
Clearly,
(o) Ap €id(Qp) but limp(p) N Ap # O for every p € Qp.
Now,

(8)g for & € W we can find a partition (4}, A3) of Ay such that: for every p € Qg
we have limg(p) N A% # 0 for £ = 1,2, equivalently for every 2~ € id(Qy)
and p € Qg, limp(p) N A4 # 0 for £ =1,2.

[Why? Since Qp has cardinality 22 and id(Qp) is generated by 29 sets, it is enough
to prove that for every p € Qp and 2" = 92\ set(.#) € id(Qp), where .¥ is a
sequence of 0 maximal antichains of Qp, the set 2 N hma( ) N Ay has cardinality
29, Without loss of generality (Sa,As, s, %) is as in Given p and 2, i.e.
(S, Mo, Pa, Fo) we let E be a club of 9 disjoint to S, Sa and W and to [0, Kg(tr( ).

So consider the tree 7 = ( |J *2)U"2. Recall pN .7 is a really closed subtree and
ack
for each e < 9, (pNTp : p € Fy ) is a sequence of closed subtrees with no maximal

nodes such that lims(p) = lim(p N ;) are pairwise disjoint. The rest should be
clear.]
We let {5 be a Q,—name for an element of {0, 1,2} such that

(o)7 kg, “lo = iff n[0 € Ay for 1 =1,2 and Irq, “fo =0 iff n0 ¢ As”.
Lastly, let v be (the Q,—name for) the concatenation of (py : @ € W and £y = 2).
We will argue that IFg, “v is Cohen over V”. To this end we will prove that:

(B) if p€ Qu, d € W, 0 > Lg(tr(p)) then there is 7 € p N 92 such that:

(a) T € A2, equivalently pl™l I “f5 = 27,
(b) if 6 € WN3, 0> Lg(tr(p)) then 716 ¢ A2 equivalently pl™ I ¢4 is 0
oris 17.
Why is (H) enough? Recalling 511 let (n, @) be as there, and we shall show that
Ik, “v ¢ X,a”. Let p € Qx, j < k and let v, be the concatenation of
{po:0 €W, 0<lg(tr(p)) and tr(p)|0 € A3}.

Let p. € "~2 be such that for some i € [j, k) we have
(e)s vi " ps has length > a;41 and it does include [y, air1)”.

Clearly it suffices to prove that for some g:

() p <q, qand ¢l “v,"p. A"
By the choice of p, the set W/ = {0 € W :0 ¢ S,, 0> lg(tr(p)) and pg = p.} is
a stationary subset of k. Pick 0, € W' and then choose 7 € pN %2 as in (a),(b) of
(B). Let ¢ = pl™.

So the conclusion of [6.9 follows and (H) is indeed enough, but we still owe:
Why (8) is true? Let p € Q, as witnessed by (tr(p), Sp,A,), and let 9 € W,
0 > Lg(tr(p)). Put
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tr(q) = tr(p),
Sq =S, U(WNJ), and
if 0 € S, \ Sp, then Ay g = {7 : e <0}, and
if 0 €S,N(WnNA),then Ayg=A,pU{S <0}
This determines a condition g € Q, stronger than p. It follows from the definition
of Ay and S, that
(8)10 if Lg(tr(q)) <0 € W N O, then ¢N 92 Cset(Ay ) C 92\ Ap.

Anyhow by (e)g we are done.

(2) Let A% for 9 € W be as in (1) above such that
(8)11 n € A% implies that {a < 8 : n(a) = 1} is stationary.
For o < k define

I ={p € Q, : Lg(tr(p)) > a and for some d € (a, £g(tr(p)))NW we have tr(p)[d € A3}

Clearly each ., is a dense open subset of Q.. We will argue that (., : a <
k) witnesses Pr(x), that is we show that for each p € Q, we have lim,(p) €

N set(A).

a<k

Let p € Q. be witnessed by (1,5,A) and let a = £g(n). We will show that
lim,(p) ¢ set(Fot1). Towards this let E be a club of x disjoint from S with
min(EF) = a = £g(tr(p)) and

min(EF) <a € EAa>sup(anNE) = «is singular.

Let (o : © < k) be an increasing enumeration of E. By induction on i < k we
choose 7; so that

()i (a) m € pn (@2,
(b) j <i = n; < Aniai) =0,
(c) if & € W N (o, o], then n;10 ¢ A%.
This is enough as letting n = |J 7; we will have n € lim,(p) \ set(F11).

1<K
Why can we carry out the induction?

For i = 0 we put ng = tr(p),

for a limit ¢ we put n; = UKj n; noting that if a; € W then 7; is not in Agi by
(.)117

for a successor i = j + 1 we proceed as in the proof of () of the first part

recalling o; ¢ W. i)
Claim 6.11. (1) The assumption of [629(1) holds when V =L and  is Mahlo

not weakly compact.

(2) When the assumption of [611l(1) or of [6.9(1) hold for k, then

cov(Qy) < cov(Coheny) and cov(Q,) < non(Cohen,) < non(Qy).

Remark 6.12. (1) So when[6IT(1) applies, the Cichoni diagram for id(Coheny,)
and 1d(Qy) is very different than the k = Xg case, i.e., we have additional
inequalities.

(2) In[B.T1(1), note that if x is inaccessible not Mahlo then the conclusion of
[69(1) holds by
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Proof. 1) Since k is Mahlo not weakly compact, by a result of Jensen we know
that every stationary subset of k contains a non-reflecting stationary subset. So we
may use Observation L4(4) and argue that again we are in the case of [6.9(1).

2) It follows from[6.9} that there is a Q,—name g such that for some Borel function
B: "2 — "k we have

(*)1 IFq, “ois a k-Cohen real over V and ¢ = B(n)”.
Hence
()2 cov(Q,) < cov(Cohen,,)

Why? Let p = cov(Cohen,) and let (X : ¢ < p) be a sequence of k-meagre
k—Borel sets with union ®2. Let B¢ € id(Qx) be such that

n€"2\Be = B ¢ Xc.

We claim that then |J B¢ = #2. If not, then we may pick n € 2\ |J B;. But
(<p ¢<p
now, for every ¢ < u, B(n) ¢ X¢, so | X¢ # %2 — a contradiction.
(<p

Similarly,
()3 non(Cohen,) < non(Qy).

Why? Let {n¢ : ¢ < p} € "2 be aset not belonging to id(Qy). Then {B(n¢) : ¢ < u}
exemplifies non(Coheny) < p.
Also,

(¥)4 cov(Qx) < non(Coheny).

Why? By[BE4(1), noting that its assumption “k = sup(S%,.)” follows by our present

mac

assumptions. Us1m

Claim 6.13. If V = L, then an inaccessible k satisfies Pr(k) iff k is not weakly
compact iff Q. adds a k-Cohen.

Proof. We prove this by considering possible cases.

CASE 1: k is not Mahlo.
Then

(a) k is not weakly compact,
(b) Qx add a k—Cohen real by [6.8]

(¢) Pr(k) holds by EL4(1).

CASE 2: k is Mahlo not weakly compact.
ByB.4(4), Sp, is a stationary subset of x. By a result of Jensen there is a stationary
W C S5, which does not reflect. Hence by[6.9the forcing notion Q,; adds a k—Cohen

T

real and Pr(x) holds true.

CASE 3: k is weakly compact.
Then Q is k—bounding hence does not add a x-Cohen by and Pr(k) fails by

EA2), i.e., BH(2). Oe13
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§ 7. WHAT ABOUT THE PARALLEL TO “AMOEBA FORCING”?

Definition 7.1. (1) We say that # C Q is nice if gZl®™ C ¢ for every
a < k and a permutation 7 : *2 — *2 (remember [L.1)(2)).
(2) We say that a family A of subsets of Q, is nice when: Al*l C A for every
a < K (remember [113)).
(Equivalently, if % € A, # C Qy, a < k and fl[a’ﬂ] = % then % € A).
(3) For p € Q, let nb(p) = {p"*:n € pN2,v € *2 for some a < x}.
Claim 7.2. If A C {7 : .# CQ, is predense} has cardinality < x then so is Al<H]
and it is nice.

Proof. 1t follows from Uy

Claim 7.3. (1) If p € Q, then nb(p) is a predense subset of Q.
(2) If p € Q4 then nb(p) is nice and

set(nb(p)) = {n € "2 : there is v € lim,(p) such that (V a < rk)(n(a) = v(a))}.

(3) [k weakly compact] If X € 1d(Qy) then for a dense set of p € Q, we have
set(nb(p)) C "2\ X.

Proof. (1) Clearly for every p,q € Q,, we can choose a > max{lg(tr(p), £g(tr(q))}
such that a < k and then choose n € pN*2,v € ¢N*2 and 7 € Sym(*2) such that
m(n) =v, soq = plnvl e nb(p) and ¢1,q have a common member v which is of
length > £g(tr(q1)), ¢g(tr(q)), hence g1, q are compatible.

(2) Should be clear.

(3) There is a family A of < k maximal antichains of Q, such that X Nset(A) = 0.
Without loss of generality A = Al<®) and hence the set Y = #2\set(A) € id(Qy)
satisfies:

e if n1,m2 € "2 and k > sup{a < k: N1 () # n2(a)}, then iy €Y & €Y.

Now, as Y € id(Qy) by B.6(2) for a dense set of p € Q,, lim,(p) is disjoint to Y,
but by the choice of Y this holds for any p’ € nb(p), so we are done. Ur3

Definition 7.4. Let Q%™ be the following forcing notion:

(A) a member of Q2™ has the form («,p, F) with a < k,p € Q,, E a club of

disjoint to S, and tr(p) = (),
(B) the order on Q2™ is: (a1,p1, E1) < (ag,pe, E2) iff

(a) a1 < as,

(b) p1 <q, P2,

(c) prN V2 =py iz,

(d) Fi1 D FEsand By Na; = EsNa;.

(C) The generic of Q™ is p, = U{pN 22 (o, p, E) € Ggam }.

Claim 7.5. (1) Q™ is a k—strategically complete k+—cc (nicely definable) forc-
ing notion and p, s indeed a generic for Q™.
(2) IFgum “pr € Qu”.
(3) Assume K is weakly compact. If Z is a predense subset of Q. (in V) then
IFgam “set(.#) D set(nb(px))”.
(4) Assume k is weakly compact. Then IFgam “*2\set(nb(p,)) € 2 is a member
of id(Qy) including all the old k-Borel sets from id(Q,)”.
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Proof. (1) Easy.

(2) Recall that for every p € Q, there is a canonical witness (tr(p), Sp, Ap) (see

[C3(C)(a)). Let us define some Q2™-names:
(¥ (a) BE={Ep:peG},
(b) S=U{Sp:pe G},
(c) for every 0 € S, Ao = U{Ap,0 : p € G satisfies 0 € Sp},
(@) A=(ho: D€ S),
) s ().

“Q 1>\

(e
Now,
(%)2 for every 8 < k, the set

fg—{ap, EQam'a>[3}

is a dense open subset of Qa™.

[Why? If 8 < k and (aq,p1,E1) € Q2™ then (a1 + B, p1, E1) € Q2™ is above
(v, p1, E1) and belongs to #3.]

(¥)3 IF “E is a club of A”.

[Why? Unbounded as for every 8 < & and (ao,po, Eo) € Q2™, let a3 = min{d €
Ep: 6> ap, 6>} so (a1 +1,po, Ep) is above (g, po, Eg) and forces § € E. Being
closed is easy, t00.]

()4 IF “S is a nowhere stationary subset of Sf_.".

[Why? First, for every 8 < &, by (%)2 for a dense set of (a,p, E) € Q3™ we have
a > (. Since (o, p, E) IF “SNa = S,Na”, we get that S N« is nowhere stationary
and hence S N B is nowhere stationary. Second, |- “S is not stationary” because
Ik “E is a club of k disjoint to S” by the definition of Q™. Together we are done.]

()5 IF “Ap is a set of < 9 predense subsets of Qg for 9 € §7.

[Why? Given (ag,po, Eo) € Q2™ without loss of generality ag > @ and hence it
forces Ag is Ap, 0 if O € Sp,, not defined (or @) otherwise; the rest is clear.]

(x)e - (o, S, A) witnesses Pr € Q.
[Why? Read [[A(C) and (*)3—(*)s.]
(3) It suffices to prove the following:

(#)1 if « < Kk and n € *2, v € *2 then

lFgam “if 7 € psy N “2 then lim(p["”’]) Cset(#)”

Now,

()2 fixing v, without loss of generality for every = € Sym(®2) we have .#[*7 =

g

[Why? Let %1 = {p € Q,: for every m € Sym(®2), p is above some member of
gl 1 Clearly:
e 71 C Qy is predense,
. ﬂl[a’ﬂ] = 4 for every m € Sym(*2),
o set(S) Cset(S).
Hence we can replace .# by .#; so finishing the proof of (x)s.]
So
()3 in (x)1 + (*)2, without loss of generality v =7 so pLU’n] = Ps-
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Let
(*)a (@0, po, Eo) € Qi and n € 2.
We shall find («q1,p1,E1) € Q2™ above (ag,po, Ep) and forcing that n ¢ p. or
forcing the statement in (x);. First, by (x)2 of the proof of part (2), without loss
of generality £g(n) < ap; so if n ¢ po then (ao, po, Eo) IF “n ¢ p.” and we are done.
So we can assume 1 € po. B
As k is weakly compact for some 0 € S}y . which is > ag we have:
(%)5 the set
Ty ={qnN 9>9: q e . and lg(tr(q)) < o}
is predense in Qg.
Next,
(%) for every v € set(#p) N po choose q, € # such that Lg(tr(g,)) < O and
v € limp (g, N 2>2) equivalently v € ¢, N 92.
Let
(x)7 (a) 8" =U{Sq.\0: v €set(Fy) Npo} U S, U{d},
(b) for 6 € S" let A}, be:
(@) U{A : A=Ay, and v € set(Fy) Npo and 6 € S, \OT or
A=Ay pand 0 €Sy} iffeS\0T,
(B) ApyoU{Is} if0=0N0€ Sy,
() (T3} £0€ONDE S,
(0) Apyo if 0 € S,,NO.
Let p1 € Q4 be defined by
(*)g ((), 8", A") will witness p;, where
e 5 is from (x)7,
e N = (A, :0€ 5, see (x)r,
and let a3 = ag and E; C Ej be a club disjoint from S’ and such that F; N9 =

Epnd. Now one easily verifies that (aq,p1, E1) € Q2™ is a condition stronger than
(a0, po, Ep) and it forces that

n<v Ep,{ﬁa? = (Jge F)(tr(q) Qv e q/\pk”] Cq).
(4) Follows by part (3). Ul

§ 8. GENERICS AND ABSOLUTENESS

Recall from Definition [l that we say that a set B C “J# (k) is
e a k-stationary Borel if for some x-Borel function F' : *. (k) — P (k) we
have n € B < F(n) is stationary,
e r-—nowhere stationary Borel if there is a k-Borel function F : "¢ (k) —
(k) such that for every n € (k) we have: n € B iff F(n) is a nowhere
stationary subset of .

Claim 8.1. (1) peQy” ifl a k-nowhere stationary Borel relation (seeld1l(5)),
also it is X1(k).

6Using coding it does not matter whether we use #2 or (k) or *.#(x) or P(H (k)), etc.
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(2) Both “p <q, q” and “p,q € Q, are compatible” are k-Borel relations (but
pedantically there are k—Borel relations whose restrictions to Q, are the
above relations).

(3) If k is weakly compact, then “being k—nowhere stationary Borel” is equiv-
alent to “being k—Borel”.

(4) If k is weakly compact then “{p; :i < K} C Qy is predense” is k—stationary
Borel.

(5) Changing the definition of Q., we may get that the relations “p € Q”,
“p <q. q” as well as “p,q € Q, are compatible” are k—Borel and for
every limit 6 < k there is an d—place k—Borel function giving an increasing
sequence of length § an upper bound.

The change does not affect the generic and the derived ideal.

Proof. (1,2) Straightforward. Note that for “p € Q,” the main point is “there
is a club E of x disjoint to S,”, as for S C & statement “(Vao < x)(S N« is not
stationary)” is k—Borel.

(3) Let F : " (k) — (k) be k-Borel and let X = {A C (k) : F(A) is
nowhere stationary}. To show that X is k—Borel it is enough to note that

A C k is nowhere stationary if and only if A does not reflect.

So the assertion should be clear.
(4) We define F : *(Q,) — (k) as follows. For p € *(Q,) let
F(p) = {8 e St

mac

{piN?9>2:i < dand tr(p) € 972} is predense in Qa}.

Clearly, F' is a k-Borel function (well, replacing “2 by "(Q,;)) and we have:

(%) {pi :i < K} C Q is predense iff F(p) is stationary in .
Why? First, if {p; : ¢ < x} is not predense let ¢ € Q,; be incompatible with every p;
which means (tr(q) & p;) V (tr(p;) ¢ q), so easily for every 9 € (£g(tr(q),x), ¢ N 92
witnesses 0 ¢ F(p). Second, if {p; : i < k} is predense, use the proof of “Q, is
k-bounding”. So we are done (replacing *(Q,) by "2 via coding).

(5) We define Q) as the set of all quadruples ¢ = (04554, Ay, E;) such that
(04S¢, Ap) is as in Definition [[3[(A), for a unique T, = T[q] a subtree of ®>2
and E; is a club of  disjoint to S,\(€g(0q) + 1)) such that lg(g,) € E,. We let
q1 < gz iff:

(a) 0q1 I 0gys Sth 2 Sth\(ég(QQ) + 1)7

(b) de€ Sth\(ég(QQ) + 1) = A(ILB - AZI2787
(c) Qx E Tlq1] < Tgo],

(d) Eq 2 Eq,,

(e) if g1 # qo then gq, # 0g,-

[Why the choice of (e)? The motivation is that otherwise an increasing sequence
D= (Pa : @ < § < k) with tr(p,) constant may have no upper bound because
U Sp., may reflect in some 9 > lg(tr(ps)). But by the present definition: if p
a<d

is eventually constant this is trivial; if not then p = |J tr(p,) has length which

<8
belongs to () E,, and we can finish easily.] 0=
a<d
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Observation 8.2. Assume k is weakly compact. For a set X C "k we have (a) <
(¢) and (b) & (d), where

(a) X is k—stationary Borel,

(b) ®k\ X is k—stationary Borel,

(c) X is Xi(k),

(d) X is I} (k).

Remark 8.3. Note that the family {X C "x : X is ¥{(x)} is closed under (3Y C k)
and unions/intersections of < k elements.

Proof. Clause (a) implies clause (c):

Let Fy be a x-Borel function from *x to &(k) such that X = {n € "x : B(n) is
stationary}. Without loss of generality

(¥)1 F} is defined by the sequence By = (By 4 : @ < A), By, a Borel subset of

®k such that F1(n) ={a:n € B1y}.
Let M, < (#(2%)",€) of cardinality x be such that [M.]<" C My, F; € M,
(necessarily k+1 C M,,). Let (M, : a < k) be <—increasing continuous with union
M, such that | M, < |a| + No and F1 € My (necessarily k € Mp).

Let E = {p : p < & is strong limit cardinal such that M, N x = p hence
M,NH (k) = A (p) and o < p = [[My]| < p}. Clearly E is a club of x. For
i € Elet N, be the Mostowski collapse of M,, and let 7, be the isomorphism from
M,, onto N,,. Let F} = 7,(F1) and B, = (B0 : @ < 1) = m,(B1). Now,

()2 for p € E (only inaccessible interests us) we have F; : #u — 2 (n),

(x)3 for n € "k the following conditions are equivalent:

(@) neX,

(B) %, = {0 <k :n0 € 99 and F3(n|0) is a stationary subset of 0} is
stationary in &,

(7) the tree 7, has no k-branch, where 7, = |J T),o where T}, , is the

a<k

set of p € “k such that:
e; p is an increasing continuous sequence of cardinals from F,

o2 1[p(B) € "Dp(B),
o3 (Ff}(ﬁ)(nfﬁ) : B < Lg(e)) is increasing, i.e., if f1 < B2 = lg(p)
then F,,l(gl)(nwl) = F,}(Bz)(nfﬁz) N pi,
o Fpl(ﬂ)(nfﬁ) is a non-stationary subset of p(3),
(6) for a stationary set of d < k, the tree .7, N 9> has no d-branch.
This suffices because by (@) < () in ()3, clearly X is defined by () and this can
be expressed by a II}-formula.
Why does ()3 hold?
(@) = (8): ] ] ]
Let Mj be like My but { My, M,n} € M} and let M' = (M, : a < k) be like M
for My and {M,, M,n} € Mgand E' C E is like E for M and also Ny, 7o (o € E').
Easily 0 € E' = 7w5(B[0) = 75(B1]7), etc. So for a club of 0 < &, Fi(n)No =
F3(n19) and we are easily done.

(8) = ()
Easy, too.

(1) & (9):
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Because k is weakly compact.

Clause (c) implies (a):
Similarly.

Clause (b) iff clause (d):
Similarly. LR

Claim 8.4. Assume k is weakly compact.
(1) “4pi:i <k} CQy is predense” is 111 (k); this means {(i,n) : n € pi,i < K}
is 11} (k) —set recalling [01(3).
(2) “X = "2\ Y{limx(To) : @ < K} belongs to id(Qyx) each T, a subtree of
®>27 is a k-stationary-Borel realtion.

Proof. (1) By[RIl4) and 82

(2) As k is weakly compact, X € id(Q,)" iff there is p € Q4 such that lim,(p) C
X iff there are o < k and ¢ as in BI|(5) above p such that T[¢q] C Z,. So X €
id(Q,)* is a $1(k) condition hence “X € id(Qy)” is a IIi (k) condition and we
finish by UR7

Claim 8.5. 1) Assume P is (<r)—complete or just strategically k-complete (i.e. for
games with k moves, COM winning if a play takes k-moves).

(a) Satisfying a k-stationary-Borel is absolute between V and VF.
(b) Satisfying a X1(k) relation is absolute between V and VF.

2) If P is strategically 0-complete for every 0 < k, then “p € Q,” is upward absolute
from V to V.

Proof. Should be clear. URT

Observation 8.6. Being k-stationary Borel is not equivalent to being k-Borel.

Proof. Consider A; = {S C k: S isstationary} and Ag = #(k)\A;. Clearly A; is
k—stationary Borel and Ay is k—non-stationary Borel (defined naturally). Assume
towards contradiction that A is equal to a k—Borel set B. Let Cohen,, = (©~2,<),
and let n be the r-generic real. Then for some truth value t and v € %>2 we have
Vlrconen, “n {1} € Biff t =17, Let ¢ <2, M < (#(k"), €) be of cardinality
K, [M]<" € M and B,k € M. Now we can find v, € "2 such that v <, and
{v,Ja : @ < K} is a subset of Cohen, generic over M and v,(a) = ¢ for a club of
a < k. By easy absoluteness we get v, € B iff t = 1, easy contradiction. LREl

Claim 8.7. (1) Consistently, r is weakly compact but being predense in Qy is
not absolute under k—complete forcing and hence it is not k-Borel.

(2) Assume k is weakly compact and moreover (can be gotten by preliminary
forcing) this is preserved by adding kT, k-Cohen. Then adding a k™, k-
Cohens (i.e. forcing with Cohen,, .+ ) we get the above.

(3) In part (2) also {S C k : S stationary in K} (is k-stationary Borel but) its
complement is not k-stationary Borel.

Proof. The counterexample will be gotten by forcing by Cohen,, ,+, e.g., when
k is Laver indestructible supercompact but similarly for x weakly compact by a
preliminary forcing and the set Sz below being {0 < & : J not Mahlo}.
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Assume k is Mahlo and let S; C S% .. be nowhere stationary but unbounded.
Let Sp C Sfi,. be a stationary subset of acc(S1). We define a representation Qq of
Cohen,, as follows:
()1 (A) peQ iff:
(a) p=(mg: 0 € SaNa) = (npo: 0 € SaNay) for some o = o, < K,
(b) for each 9 € Sz Ny, Ny € 2.
(B) Q; is ordered by <.
(C) The generic of Q1 is 7 = U{p : p € G} and let Y = {5y : 0 € Sz},
where p |- g =17 if 0 € So Nay Ay = v.
(D) The length £g(p) of p is the minimal & < & such that dom(p) = SaNa.
Next we let p, = {p € "“2:p<InVvn<Dp}eQ, for n € *>2. Now
(x)2 ko, “{py :m €Y} is a predense subset of Q,”.
[Why? If not, let ¢ € Q1, g IFg, “p= (1, 5,(As: 0 € §)) € Qx is incompatible with
every py, for n € Y and E; is a club of s disjoint to S”.
Let {(g; : i < k) be increasing continuous in Q1, go = q and ¢;41 forces a value to
SNi, (Ap:0 € SNi) and to min(E1\7) called ;. Let

E= {5<f<a:515alimit ordinal and ¢ < § = Lg(q;) <6 Ay <(5}.

Clearly F is a club of x, so we can choose 0 € SN E. Then gy € Q; is well defined
and of length 0 and it forces a value (S, (A : 8 € S")) to (SNO,(Ag: 60 € SNI))
and this value represents a condition r» € Qg. Moreover, gy forces that 9 = sup{~; :
i < 0} =sup(E1N3J) € E1 and hence it forces 9 ¢ S. Choose v € limy(r) € 92
and let q;, ; be above gp such that g3, ,(9) = v, i.e. g5, IF “v € Y” and we arrive
to an easy contradiction.

Next, in V@ we define Q; = Qa[nL], 7 the generic for Qy, by

(¥)3 (A) peQiff B

(a) p= (o, A) (ap, Ap),
(b) ap <k, Ap=(Aps:0€ S Nay),
(c) each A, 5 is a family of < 0 dense subsets of Qp (for @ € S1Nay,),
(d) 1f965’20(a—|—1) then 6 =sup{0 € S1N6O:19[0 & set(Apo)}
(recall So C acc(S1));
(B) the order is being an initial segment.
(C) The genericis A = (Ay: 0 € Sy).

Now in V@ the forcing notion Qs is not (< &)-complete and even not strate-
gically k-complete but it is strategically (<k)-complete. (It is not strategically
k-complete because given st, let M < (J(x),€), x = (2°)", M Nk =9 € Sy,
| M| =0, [M]<° C M,st € M,Y € M).

Now in V&*@ easily p = ((),S1,A) belongs to Q. and it exemplifies that
(py :m €Y) is not predense. Also Q; * Q2 has a dense set closed subset equivalent
to k-Cohen and similarly Q;, hence |FQ1*Q2 k is weakly compact” and IFg, “x is

weakly compact”. So there are s Borel functions By, By with domain %2 and such
that

lFconen, Bl(yn) is generic over V for Q; and
Ba(7s) is generic over V[Bi(n,)] for Q2[B1(nx)] ”

Assume that in V@ B is a (definition of a) x-Borel subset of [/ (k)]* which is
the set of predense subsets of Q,, so in V@*@2 B no longer satisfies this. This is
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somewhat weaker than the desired conclusion, but if 7 = (n, : v < k™) is generic for
Cohen,, .+ and B € V[7j] is a (definition of a) x-Borel subset of [#(k)]", for some
a < k, B € VI[ijla] and interpret 7, as the generic Q; * Q2. Consider p = B1(74)-

Now we can compute By (p) in V[n]a, p] and in V[, na]. As B is xBorel, we
should get the same result, but they are not the same. A contradiction. Ug

Definition 8.8. 1) We say M is a x-model when :

(a) M C (A (kT),€) is transitive of cardinality x,[M]|<" C M and M is a
model of ZFC~ (i.e. power set axiom omitted);
(b) similarly for (. .+(U), €), U a set of ure-elements.

2) We say n is a (M, Q, n)-generic x-real when (as in [Sh 630]):

(a) Q is a forcing notion definable in M, (absolutely enough in the interesting
cases),

(b) n € M a Q-name of k—real, defined by a Borel function from a sequence of
% truth values of the form “p € Gq”,

(c) there is G € QM generic over M such that 5[G] = 7.

Observation 8.9. 1) A x-Borel set B belongs to id(Qx) iff for some r-real
c = cg for every k—model M to which c belongs we have:

e if v is (M,Qy,n)-generic real then v ¢ B.

2) If M is a k-model, M |= “Q is (<r)-strategically complete forcing notion (set
or class in M sense) (or a definition of Q)” and G C QM is generic over M then
M[G] is a k-model.

Definition 8.10. (1) We say a set X C "J#(k) is k — id,-Borel when:
(a) idy is an ideal on Z(k),
(b) for some k-Borel function F : "¢ (k) — (k) for every n € "I (k)
we have: n € X iff F(n) € id.
Here (in (2),(3)) we may omit x when clear from the context.
(2) Similarly for id;.
(3) Let idywc(k) be the weakly compact ideal on k.

So

Observation 8.11. Letting idnst (k) be the non-stationary ideal on k, rk-id} (k)-
Borel means k-stationary Borel.

Acknowledgements The author thanks Alice Leonhardt for the beautiful typ-
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