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A PARALLEL TO THE NULL IDEAL FOR INACCESSIBLE λ.

PART I

SAHARON SHELAH

Abstract. It is well known how to generalize the meagre ideal replacing ℵ0

by a (regular) cardinal λ > ℵ0 and requiring the ideal to be (< λ)-complete.
But can we generalize the null ideal? In terms of forcing, this means finding
a forcing notion similar to the random real forcing, replacing ℵ0 by λ. So
naturally, to call it a generalization we require it to be (< λ)-complete and λ+-
c.c. and more. Of course, we would welcome additional properties generalizing
the ones of the random real forcing. Returning to the ideal (instead of forcing)
we may look at the Boolean Algebra of λ-Borel sets modulo the ideal. Common
wisdom have said that there is no such thing because we have no parallel of
Lebesgue integral, but here surprisingly first we get a positive = existence
answer for a generalization of the null ideal for a “mild” large cardinal λ - a
weakly compact one. Second, we try to show that this together with the meagre
ideal (for λ) behaves as in the countable case. In particular, we consider the
classical Cichoń diagram, which compares several cardinal characterizations of
those ideals. We shall deal with other cardinals, and with more properties of
related forcing notions in subsequent papers [Sh:F1199, Sh:F1538, Sh:F1580,
Sh 1100, Sh:E82] and Cohen and Shelah [CnSh 1085] and a joint work with
Baumhauer and Goldstern.
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§ 0. Introduction

§ 0(A). Aims: for general audience.

The ideals of null sets and of meagre sets on the reals are certainly central in
mathematics. From the forcing point of view we speak of random real forcing and
Cohen forcing. The Cohen forcing has natural generalizations (and relatives) when
we replace P(N) by P(λ), or the set of the characteristic functions of subsets of λ,
for a regular uncountable cardinal λ, replacing finite by “of cardinality <λ”. But
we lack a generalization of random real forcing to higher cardinals λ, replacing reals
by λ-reals, e.g. members of λ2. It has seemed that this lack is due to nature; the
reason being that on the one hand the Baire category theorem generalizes naturally
(when we are allowed to approximate in λ-steps and information of size < λ instead
finite; all this for regular λ), but on the other hand we know nothing remotely like
Lebesgue measure.

Surprisingly, at least for me, there is a generalization: not of the Lebesgue
measure, but of the ideal of null sets, i.e., the ones of Lebesgue measure zero. This
is done here (i.e., in this part) for a mild large cardinal λ: weakly compact. The
solution for more cardinals will be dealt with in a continuation (at some price).
The present definition should be examined in two ways. First, we may list the
well known properties of the null ideal (and of random real forcing) and try to
prove (or disprove) them for our ideal. Second, random real forcing was used quite
extensively in independence results; in particular for related cardinal invariants, so
it is natural to try to generalize such applications.

The first issue is dealt with in §2 (assuming Definition 1.3 and intended for
wider audience) and then §3–§8 here. The second is treated in the continuation.
Whereas success in the second issue should be easy to judge, concerning the first
issue the reader may first list what are reasonable hopes and compare them with
the discussion and description in §3. This is not done in the present section in order
to help the reader to make a list of expectations independent of what we have done.

A set theoretically uninitiated reader may read the rest of §(0A) to see what are
those large cardinals, look casually at Definition 1.3, just enough to see that the
definition of Qκ, the parallel of the family of all closed subsets of [0, 1]R or ω2 which
are not Lebesgue null for κ strongly inaccessible, is natural and simple, then jump
to §2 to see what we hope for and what is done.

Let us describe for the non-set-theoretic reader, what are these “large cardinals”.
Note that ℵ1 is parallel in some respect to ℵ0, whereas ℵ0 is “the first infinite
cardinal”; the number of natural numbers; ℵ1 is the first uncountable cardinal, and
is the number of countable ordinals (that is, isomorphism types of countable linear
well orderings). Also both are so called regular: the union of less than ℵℓ sets each
of cardinality < ℵℓ is < ℵℓ. But ℵ0 is strong limit: κ < ℵ0 ⇒ 2κ < ℵ0 whereas
ℵ1 is not. We can prove that there are strong limit cardinals: let i0 = ℵ0,in+1 =
2in ,iω =

∑

n<ω

in, now iω is a strong limit cardinal but alas is not regular. We say

a cardinal λ is (strongly) inaccessible when λ is regular and strong limit, it is called
“large cardinal” because we cannot prove its existence in ZFC but, modulo this, it is
considered a very reasonable, small one. Similarly, the weakly compact ones which
we now introduce: an uncountable cardinal is weakly compact when it is strongly
inaccessible and satisfies the analog of the infinite Ramsey theorem: every graph
with λ nodes has a subgraph with λ nodes which is complete or empty (alternatively,
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it satisfies the generalization of König lemma). So weakly compact cardinals are
more similar to ℵ0 than other cardinals, so it is not unnatural assumption when
trying to generalize the null ideal.

§ 0(B). For Set Theorists.

In the present paper we prove that for a weakly compact cardinal λ there are
(naturally defined) forcing notions adding a new η ∈ λ2 which have not few parallels
(replacing “finite” by “of cardinality < λ”) of the properties associated with random
real forcing (and we define the relevant ideal). It seems natural to hope this will
enable us to understand better related problems, in particular cardinal invariants of
λ; on cardinal invariants for λ = ℵ0, i.e. the continuum see Blass [Bls10]; in higher
cases see Cummings and Shelah [CuSh 541]; in particular on strongly inaccessible
see Ros lanowski and Shelah [RoSh 777, RoSh 888, RoSh 889, RoSh:942] and also
[Sh:945].

In §1 we show for λ weakly compact that there is a (non-trivial) λ–bounding
λ+-c.c. (< λ)-strategically complete forcing notion and even a λ-complete one, see
0.4. We also generalize the construction for adding a member of

∏

ε<λ

θε.

In the second section we discuss desirable properties of the ideal. In Sections
3–8 we try to deal systematically with parallels of properties of the null ideal.

The ideal id(Qκ) (of subsets of κ2) determined by our forcing notion Qκ is
introduced in §3. There we also study the properties of κ–Borel subsets of κ2
related to this ideal.

Cardinal characteristics of the ideal id(Qκ) and their relations to bκ, dκ and
the characteristics of the κ–meagre ideal are investigated in Sections 4 and 5. We
present a parallel of Cichoń Diagram in Theorem 5.9.

In §6 we compare Qκ and Cohenκ. We note that forcing with one makes the set
of ground model κ–reals small in the dual sense. We also investigate the class Sawc

of all inaccessible cardinals κ for which Qκ adds a Cohen real.
In the next section we introduce a parallel to “amoeba forcing” — a forcing

notion Qam
κ adding a generic condition p

˜
κ ∈ Qκ. And then, in §8, we investigate

κ–Borel and κ–stationary–Borel sets and show that some relations associated with
Qκ are absolute.

We shall continue in successive papers, things delayed for various reasons. In
particular in Cohen and Shelah [CnSh 1085] we shall eliminate the assumption “λ
is weakly compact” and in [Sh:E82, §1] we will investigate non-inaccessible case.
A work with Baumhaver and Goldstern (see [Sh:F1580]) will deal with consistency
results complimentary to the ZFC implications (i.e., inequalities) here. In [Sh:E82,
§1] we investigate adding many “λ–randoms”. Further research concerning consis-
tency results using iteration of creature forcing will be presented in [Sh 1100]. We
will also consider there constructions starting not with Cohen but other nice forcing
notions and more.

§ 0(C). Preliminaries.

Definition 0.1. 0) We say η is a λ-real when η ∈ λ2.
1) We define when B ⊆ λ2 is a λ-Borel set naturally (see [Sh 630]), that is X ⊆ λ2
is a basic λ-Borel set if there exists ν ∈ λ>2 such that X = (λ2)[ν] = {η ∈ λ2 :
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ν ⊳ η}. The family of λ-Borel sets is the closure of the basic ones under unions and
intersections of at most λ members, hence also by complements.

Note: actually B is an absolute definition of a subset of λ2 so BV, “B as inter-
preted in the universe V”, is well defined for suitable V.
2) “F is a λ–Borel function” is defined similarly.
3) B ⊆ λ2 is a Σ1

1(λ)–set when B = {〈η(2α) : α < λ〉 : η ∈ B1} for some λ–Borel
set B1.
4) B ⊆ λ2 is a λ–stationary Borel set when for some λ–Borel function F : λ2 →
P(λ) we have η ∈ B ⇔ F (η) is stationary.
5) A set X ⊆ λH (λ) is λ–nowhere stationary Borel iff there is a λ–Borel function
B from λH (λ) to P(λ) such that for every η ∈ λH (λ) we have: η ∈ X iff F (η)
is a nowhere stationary subset of λ (see 0.6(2)). The complements of such X are
λ-somewhere stationary sets.
6) Similarly replacing λ>2 by other trees with λ levels and λ nodes.

Definition 0.2. 1) We say that a set B ⊆ λ2 is λ–closed when :

• η ∈ λ2 ∧ (∀α < λ)(∃ν ∈ B)(η↾α = ν↾α) ⇒ η ∈ B,

equivalently

• for some sub-tree T ⊆ λ>2 we have

B = limλ(T )
def
= {η : η a sequence of length λ such that α < λ ⇒ η↾α ∈ T }.

2) Let Q be a family of subtrees of λ>2 (or a quasi order with such set of elements).
We say that B ⊆ λ2 is a Q–basic set when B = limλ(p) for some p ∈ Q.
3) Similarly replacing λ>2 by other trees, as in 0.1(6).

Definition 0.3. 1) We say that a forcing notion P is α-strategically complete
when the player COM has a winning strategy in the following game aα(p,P) for
each p ∈ P.

The game aα(p,P) involves two players, COM and INC. A play lasts α moves;
in the β-th move, first the player COM chooses pβ ∈ P such that p ≤P pβ and
γ < β ⇒ qγ ≤P pβ and second the player INC chooses qβ ∈ P such that pβ ≤P qβ .

The player COM wins a play if it has a legal move for every β < α.
2) We say that a forcing notion P is (<λ)-strategically complete when it is α-
strategically complete for every α < λ.

Remark 0.4. The difference between “P is λ-strategically complete” and “λ-complete”
is not real, i.e., when we do not distinguish between equivalent forcing, those prop-
erties are very close (as in [Sh:f, Ch.XIV]), and here the difference does not matter,
see e.g. 1.5(2).

Definition 0.5. 1) The λ-Cohen forcing is (λ>2, ⊳).
2) A forcing notion Q is λ-bounding or λλ-bounding when Q “for every function
f from λ to λ there is g ∈ (λλ)V such that f ≤ g, i.e., α < λ ⇒ f(α) ≤ g(α)”.
3) We say that a Q–name η

˜
∈ αβ is a generic of Q when for some sequence

〈τp : p ∈ Q〉, τp an absolute function definable in V (or even a (|α|+ |β|)-Borel one)
from αβ into {0, 1} we have  “p ∈ G

˜
iff τp(η

˜
) = 1”.

Definition 0.6. (1) Let Sinac be the class of all (strongly) inaccessible cardi-
nals and let Sκ

inac = {∂ : ∂ < κ is inaccessible}.
(2) We say “S is nowhere stationary” when S is a set of ordinals, and for every

ordinal δ of uncountable cofinality, S ∩ δ is not a stationary subset of δ.
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(3) For a set p of sequences of ordinals and η let p[η] = {ν ∈ p : ν E η or η E ν}
and p[≥η] = {ν ∈ p : η E ν}.

Definition 0.7. For an ideal I of subsets of X , including all singletons for simplicity,
we define “the four basic cardinal invariants of the ideal”:

(a) cov(I), the covering number is min{θ: there are Ai ∈ I for i < θ whose
union is X},

(b) add(I), the additivity of I is min{θ: there are Ai ∈ I for i < θ whose union
is not in I},

(c) cf(I), the cofinality of I is min{θ: there are Ai ∈ I for i < θ such that
(∀A ∈ I)(∃i)(A ⊆ Ai)},

(d) non(I), the uniformity of I is min{|Y | : Y ⊆ X but Y /∈ I}.

Remark 0.8. We may use, e.g., cov(meagreλ) and cov(Cohenλ), they denote the
same number.

Observation 0.9. For any ideal I:

(a) add(I) ≤ cov(I) ≤ cf(I),
(b) add(I) ≤ non(I) ≤ cf(I)

§ 1. Like random real forcing for weakly compact κ

We consider the following question.

Question 1.1. (1) Is there a non-trivial forcing notion which is λ+–c.c., (<λ)–
strategically complete and which does not add a λ–Cohen sequence from
λ2 ?

(2) Moreover is λ-bounding ?

Recall that for λ = ℵ0, “random real forcing” is such forcing notion but we do
not know to generalize measure to λ with λ–completeness or so, whereas for Cohen
forcing and many other definable forcing notions which add a Cohen real we know
how to generalize.

We have wondered about this a long time, see [Sh:945] and some papers of
Ros lanowski and Shelah [RoSh 777, RoSh 860, RoSh 888, RoSh:942]. Up to re-
cently, we were sure that the answer was negative. Surprisingly for λ weakly com-
pact there is a positive answer, a posteriori a straightforward one.

We will define a forcing notion Qκ by induction on the inaccessible κ. Now, for κ
the first inaccessible Qκ is the κ-Cohen forcing. In fact, if κ is inaccessible but not
a limit of inaccessible cardinals, then Qκ is equivalent to the κ–Cohen forcing. If κ
is a limit of inaccessibles, the conditions are such that the generic η

˜
∈ κ2 satisfies

for many inaccessibles ∂ < κ, that η
˜
↾∂ is somewhat ∂–Cohen, e.g., if 〈I∂ : ∂ ∈ S〉

is a sequence such that I∂ is a dense open subset of ∂2 and S = {∂ < κ : ∂ is
the first strong inaccessible in (α, κ) for some α < κ}, then for every large enough
∂ ∈ S we have η

˜
↾∂ ∈ I∂ .

At first glance this may look ridiculous: η
˜

is made more Cohen–like, but still in
the end, i.e., for κ weakly compact, it has an antithetical character.
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§ 1(A). Adding an η ∈ κ2.

Notation 1.2. 1) Here ∂, κ will denote strongly inaccessible cardinals.
2) For T ⊆ α>2 and η ∈ α>2 let T [η] = {ν : ν E η or η E ν ∈ T }.
3) For T ⊆ δ>2 let limδ(T ) = {ν ∈ δ2 : (∀α < δ)(ν↾α ∈ T )}.

Definition 1.3. We define a forcing notion Qκ = Q2
κ by induction on inaccessible

κ:

(A) p ∈ Qκ iff there is a witness (̺, S, Λ̄) which means:
(a) p is a subtree of κ>2, i.e., a non-empty subset of κ>2 closed under

initial segments,
(b) (α) S ⊆ κ is not stationary, moreover

(β) for every strongly inaccessible ∂ ≤ κ the set S∩∂ is not station-
ary,

(γ) every member of S is (strongly) inaccessible,
(c) ̺ = tr(p) is the trunk of p which means:

(α) ̺ ∈ κ>2,
(β) α ≤ ℓg(̺) ⇒ p ∩ α2 = {̺↾α}, hence tr(p) ∈ p,
(γ) both ̺ˆ〈0〉 and ̺ˆ〈1〉 belongs to p,

(d) if ̺ E η ∈ p then ηˆ〈0〉, ηˆ〈1〉 ∈ p,
(e) [continuity] if δ ∈ κ\S is a limit ordinal > ℓg(̺) and η ∈ δ2 then

η ∈ p iff (∀α < δ)(η↾α ∈ p),

(f) (α) Λ̄ = 〈Λ∂ : ∂ ∈ S〉,
(β) Λ∂ is a set of ≤ ∂ dense open subsets of Q∂ ,

(g) if ∂ ∈ S and ∂ > ℓg(̺) and η ∈ ∂2, then
(α) p ∩ ∂>2 ∈ Q∂ ,
(β) η ∈ p iff (∀α < ∂)(η↾α ∈ p) and (∀I ∈ Λ∂)(∃q ∈ I )[η ∈

lim∂(q)].
(B) Qκ |= “p ≤ q” iff p ⊇ q.
(C) (a) Let Sp = {δ < κ : δ > ℓg(tr(p)), δ is a limit ordinal and ¬(∀η ∈ δ2)[η ∈

p ↔ (∀α < δ)(η↾α ∈ p)]}, so Sp ⊆ S when (tr(p), S, Λ̄) is a witness.
(b) We say (tr(p), S, Λ̄, E) is a full witness for p ∈ Qκ if (tr(p), S, Λ̄)

is a witness for p ∈ Qκ and E is a club of κ disjoint to S and to
[0, ℓg(tr(p))),

Claim 1.4. 1) For any κ and η ∈ κ>2 we have (κ>2)[η] is a member of Qκ with
tr((κ>2)[η]) = η.
2) If p ∈ Qκ and ℓg(tr(p)) < ∂ < κ then p ∩ ∂>2 belongs to Q∂.
3) If p ∈ Qκ and η ∈ p then p[η] ∈ Qκ and p ≤ p[η] and tr(p[η]) is η if ℓg(η) ≥
ℓg(tr(p)) and is tr(p) otherwise.
4) κ>2 is the minimal member of Qκ.
5) If (tr(p), S, Λ̄) is a witness for p ∈ Qκ and ℓg(tr(p)) ≥ sup(S) then p =
(κ>2)[tr(p)].
6) Any triple (̺, S, Λ̄) is a witness for at most one p.
7) If (̺, S, Λ̄) satisfies clauses (c)(α), (b)(α), (β), (γ), (f)(α), (β) of Definition 1.3(A)
then there is one and only one p ∈ Qκ which it witnesses.
8) If (̺, S, Λ̄) witnesses p ∈ Qκ, then also (̺, Sp, Λ̄↾Sp) witnesses it recalling Defi-
nition 1.3(C)(a).
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9) For every p ∈ Qκ there is a maximal antichain I to which p belongs and q1 6=
q2 ∈ I ⇒ limκ(q1)∩limκ(q2) = ∅ hence {q ∈ Qκ : p ≤Qκ

q or limκ(q)∩limκ(p) = ∅}
is dense open.

Proof. 1) Let S = ∅. Then (η, ∅, <>) is a witness.
2) If (tr(p), S, 〈Λθ : θ ∈ S〉) witnesses p ∈ Qκ, then (tr(p), S ∩ ∂, 〈Λθ : θ ∈ S ∩ ∂〉)
witnesses p ∩ ∂>2 ∈ Q∂ .
3) - 8) Easy, too.
9) Let I = {(κ>2)[ρ] : ρ ∈ κ>2\p and α < ℓg(ρ) ⇒ ρ↾α ∈ p} ∪ {p}. �1.4

Claim 1.5. 1) If p ∈ Qκ and ρ ∈ p, then there is η such that ρ E η ∈ limκ(p).
2) If p̄ = 〈pi : i < δ〉 is a sequence of members of Qκ, p̄ is increasing or at least
i < j < δ ⇒ tr(pj) ∈ pi, 〈tr(pi) : i < δ〉 is E–increasing and

(⊙) α < δ ⇒ min
(

Spα
\ sup{ℓg(tr(pi) + 1 : i < δ}

)

> δ,

then pδ =
⋂

{pi : i < δ} is a ≤Qκ
–lub of p̄.

3) If δ < κ, pi ∈ Qκ is ≤Qκ
–increasing with i < δ, (ηi, Si, Λ̄i, Ei) is a full witness

for pi satisfying i < j < δ ⇒ Ej ⊆ Ei ∧ min(Ei) < ℓg(tr(pj)), then the sequence
〈pi : i < δ〉 has a ≤Qκ

–upper bound.
4) If p ∈ Qκ and Ii is a dense subset of Qκ for i < i(∗) and i(∗) < κ+ and ρ ∈ p
then there is η such that ρ ⊳ η ∈ limκ(p) and (∀i < i(∗))(∃q ∈ Ii)(η ∈ limκ(q)).
5) In (2) we may replace the demand (⊙) with

(⊗) (a) sup{ℓg(tr(pi)) : i < δ} /∈ Spα
for α < δ,

(b) if 〈tr(pi) : i < δ〉 is eventually constant, say ρ, then min
(

Spα
\(ℓg(ρ)+

1)
)

> δ.

Proof. We prove by induction on the inaccessibles κ that the five parts of the claim
hold.

1) Let (tr(p), S, Λ̄) be a witness for p. By 1.4(3) without loss of generality ρ E tr(p).

Case 1: In S there is a last member ∂ and ∂ > ℓg(tr(p)) ≥ ℓg(ρ).
By 1.4(2), p1 = p ∩ ∂>2 belongs to Q∂ . Apply the induction hypothesis 1.5(4) for
∂ with p ∩ ∂>2,Λ∂ here standing for p, 〈Ii : i < i(∗)〉 there to find ̺ such that
ρ ⊳ ̺ ∈ p ∩ ∂2. Now p[̺] = (κ>2)[̺] by 1.4(5), so the rest should be clear.

Case 2: sup(S) ≤ ℓg(tr(p)).
By 1.4(5) we know that p = (κ>2)[tr(p)].

Case 3: Neither Case 1 nor Case 2, i.e., sup(S) > ℓg(tr(p)) and S has no last
element.
Let θ = cf(otp(S)) and let 〈αε : ε < θ〉 be increasing continuous with limit sup(S).
Without loss of generality α0 = ℓg(tr(p)) and ε < θ ⇒ αε+1 ∈ S and ωε < θ ⇒
αωε /∈ S; recalling that every member of S is strongly inaccessible and S is nowhere
stationary this is clear. Now we choose ηε ∈ p ∩ αε2 by induction on ε < θ such
that η0 = tr(p) and ζ < ε ⇒ ηζ E ηε.

If ε < θ is limit, then we let ηε =
⋃

{ηζ : ζ < ε} and we note that it belongs to
p by clause (A)(e) of Definition 1.3 (because αε /∈ S).

If ε = ζ + 1 < θ, then we use the induction hypothesis of part (4) for ∂ = αε,
because αε ∈ S, a set of inaccessibles.

After the inductive construction is carried out, if θ = κ, i.e., sup(S) = κ then
ηθ :=

⋃

{ηε : ε < κ} is as required. If θ < κ, i.e., sup(S) < κ then ηθ :=
⋃

{ηε :
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ε < θ} ∈ p ∩ sup(S)2 (remember Definition 1.3(A)(e)) and again by 1.4(5) we have
p[ηθ] = (κ>2)[ηθ] so we can easily finish.

2) Let (ηi, Si, Λ̄i) be a witness for pi ∈ Qκ for i < δ, without loss of generality
Si = Spi

, see clause (C) of Definition 1.3 or Claim 1.4(8). By our assumptions
the sequence 〈ηi : i < δ〉 is E–increasing and let ηδ =

⋃

{ηi : i < δ}. Now if
i, j < δ and i < j then ηj = tr(pj) ∈ pi and if j < i then ηj E ηi = tr(pi).
Hence ηi ∈

⋂

{pj : j < δ} = pδ for all i < δ. Consequently, recalling i < δ ⇒
min(Si\ sup{ℓg(tr(pj)) + 1 : j < δ}) > δ, we get ηδ ∈ pi for all i < δ and thus
ηδ ∈ pδ.

Let S :=
⋃

{Si : i < δ}\(ℓg(ηδ) + 1) and Λ̄i = 〈Λi,∂ : ∂ ∈ Si〉 and for ∂ ∈ S
let Λ∂ :=

⋃

{Λi,∂ : i < δ and ∂ ∈ Si}. So clearly Λ∂ is a set of ≤ |δ| · ∂ dense
subsets of Q∂ . Also ∂ ∈ S ⇒ ∂ > δ because if ∂ ∈ S then for some i < δ, ∂ ∈ Si

and by an assumption min(Si\ sup{ℓg(tr(pi) + 1 : i < δ}) > δ hence ∂ > δ. It
follows that |Λ∂ | ≤ ∂. Now one easily shows that ηδ, S, 〈Λ∂ : ∂ ∈ S〉 witness that
pδ =

⋂

{pi : i < δ} belongs to Qκ; being a ≤Qκ
-lub of p̄ is obvious by the definition

of ≤Qκ
.

3) Without loss of generality δ is a limit ordinal. The assumptions on pi, Ei imply
that ηi ⊳ ηj when i < j < δ and δ ≤ sup{ℓg(ηi) : i < δ} ∈

⋂

α<δ Eα. Consequently,

min
(

Spα
\ sup{ℓg(tr(pi)) : i < δ}

)

> sup{ℓg(tr(pi)) : i < δ} ≥ δ

and we may apply part (2).

4) Without loss of generality ρ E tr(p) (recalling 1.4(3)) and i(∗) = κ.
First, if κ > δ∗ := sup{∂ : ∂ < κ inaccessible} then by part (1) which, for κ, was

already proven there is η ∈ p such that ℓg(η) > δ∗, ℓg(tr(p)). Then p ≤Qκ
p[η] =

(κ>2)[η] and p[η] ≤Qκ
q ⇒ q =

(

κ>2
)[tr(q)]

. Consequently, the claim becomes a
case of the Baire category theorem for κ2.

So we assume that δ∗ = κ and by induction on i < κ we choose pi, ηi, Si, Λ̄i, Ei

such that:

(a) pi ∈ Qκ and (ηi, Si, Λ̄i, Ei) is a full witness for this,
(b) p ≤ p0, and i < j < κ ⇒ pi ≤Qκ

pj ,
(c) i < j < κ ⇒ Ej ⊆ Ei ∧ min(Ei) < ℓg(tr(pj)),
(d) for every i < κ, for some qi ∈ Ii we have qi ≤ pi.

Why can we carry out the induction? At stage δ of the construction we use part (3)
which we have already proved to find an upper bound q to {pi : i < δ}∪{p}. Then,
as Iδ is dense, we may pick qδ ∈ Iδ stronger than q. Let ∂ < κ be an inaccessible
cardinal larger than ℓg(tr(qδ)) and sup{min(Ei) + 1 : i < δ}. By part (1) which
we have already proved there exists ηδ ∈ qδ ∩ ∂2. Now it should be clear that we
may choose pδ, Sδ, Λ̄δ, Eδ such that (ηδ, Sδ, Λ̄δ, Eδ) is a full witness for pδ ∈ Qκ and
qδ ≤ pδ and Eδ ⊆

⋂

i<δ Ei.
Having carried out the induction, η :=

⋃

{tr(pi) : i < κ} is as required.

5) It can be easily reduced to part (2), but let us elaborate. Without loss of
generality δ = cf(δ) and let ν =

⋃

{tr(pi) : i < δ}. For each i < δ, we have
j ∈ (i, δ) ⇒ tr(pi) E tr(pj) ∈ pj and j < i ⇒ tr(pi) ∈ pj , so together we have
tr(pi) ∈

⋂

{pj : j < δ)}. Hence, remembering (⊗)(a), we have ν ∈
⋂

i<δ

pi. If
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〈tr(pi) : i < δ〉 is not eventually constant, then lg(ν) ≥ cf(δ), and hence (⊙) of part
(2) holds and we are done. If 〈tr(pi) : i < δ〉 is eventually constant then also (⊙) of
part (2) holds so we are done too. By the last two sentences we are done. �1.5

Claim 1.6. Assume

(a) α ≤ β < κ,
(b) η ∈ β2,
(c) (tr(pi), Si, Λ̄i) witness pi ∈ Qκ for i < α,
(d) tr(pi) E η ∈ pi,
(e) S =

⋃

{Si : i < α}\(ℓg(η) + 1),
(f) for ∂ ∈ S we let Λ∂ :=

⋃

{Λi,∂ : ∂ ∈ Si} (so it is a set of ≤ ∂ dense subsets
of Q∂).

Then
⋂

{p
[η]
i : i < α} ∈ Qκ is a ≤Qκ

–lub of {p
[η]
i : i < α} and has the witness

(η, S, 〈Λ∂ : ∂ ∈ S〉).

Proof. Should be clear. �1.6

Observation 1.7. (1) If p, q ∈ Qκ and Qκ |= “p � q” then for some r, we
have q ≤Qκ

r and r, p are incompatible (so limκ(p), limκ(r) are disjoint).
(2) If p1, p2 ∈ Qκ then the following conditions are equivalent:

(a) p1, p2 are compatible,
(b) the sets limκ(p1), limκ(p2) are not disjoint,
(c) tr(p1) ∈ p2 and tr(p2) ∈ p1,
(d) tr(p1) E tr(p2) ∈ p1 or tr(p2) E tr(p1) ∈ p2.

(3) If p ∈ Qκ, then there is a maximal antichain above p of cardinality κ.
(4) The Qκ–name η

˜
κ =

⋃

{tr(p) : p ∈ G
˜

Qκ
} is a name for a κ–real which is

generic for Qκ, i.e., G
˜

Qκ
is computable from η

˜
κ over V.

Proof. (1) As p � q, by the definition of ≤Qκ
we have q * p, so we can choose

ν ∈ q \ p. Let r = q[ν], so q ≤ r by 1.4(3). Since tr(r) = ν /∈ p, we are done by (2).

(2) First, (a) ⇒ (b) as letting r be a common upper bound of p1, p2 we have
limκ(r) ⊆ limκ(p1) ∩ limκ(p2) and recall r ∈ Qκ ⇒ limκ(r) 6= ∅ by 1.5(1).

Second, (b) ⇒ (c) as η ∈ limκ(pℓ) ⇒ tr(pℓ) E η ∧ {η↾α : α < κ} ⊆ pℓ.
Third, (c) ⇒ (d) trivially.
Fourth, (d) ⇒ (a) as without loss of generality tr(p1) E tr(p2) ∈ p1, hence

p
[tr(p2)]
1 , p2 are members of Qκ with the same trunk so are compatible by 1.6. As

Qκ |= “p1 ≤ p
[tr(p2)]
1 ”, we are done.

(3) Let η ∈ limκ(p) and for α ∈ [ℓg(tr(p)), κ) let να = (η↾α)ˆ〈1 − η(α)〉. Then
{p[να] : α ∈ [ℓg(tr(p)), κ)} is as required.

(4) Should be clear. �1.7

Claim 1.8. (1) Qκ is κ–strategically closed.
(2) Qκ satisfies the κ+–c.c.

Proof. (1) Immediate by 1.5(3).

(2) Obviously

(∗)1
κ>2 has cardinality κ (recall that κ is inaccessible), and

(∗)2 if p1, p2 ∈ Qκ have the same trunk then they are compatible.

Together we are clearly done. �1.8
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Claim 1.9. 1) If κ is weakly compact then Qκ is κ-bounding, i.e. for every f ∈
(κκ)V[Qκ] there is g ∈ (κκ)V such that f ≤ g, that is, α < κ ⇒ f(α) ≤ g(α).
2) Moreover, if p Qκ

“f
˜
∈ κκ” and β < κ then for some β̄ and q ∈ Qκ we have:

• p ≤ q,
• p ∩ β≥2 = q ∩ β≥2,
• β̄ = 〈β(i) : i < κ〉 is increasing continuous, β(0) ≥ β, β(i) < κ,
• if ν ∈ q ∩ β(i+1)2 then q[ν] forces a value to f

˜
(i).

Proof. 2) Let p  “f
˜
∈ κκ”. By induction on i < κ we choose pi, β(i), ̺i, Si, Λ̄i

and Ei such that

(i) pi ∈ Qκ,
(ii) 〈β(j) : j ≤ i〉 is an increasing continuous sequence of ordinals < κ,

(iii) p0 = p and β(0) = max
{

β, ℓg(tr(p)) + 1
}

,

(iv) (̺i, Si, Λ̄i, Ei) is a full witness for pi ∈ Qκ,
(v) if j < i then

(α) pj ≤Qi
pi,

(β) pj ∩ β(j)≥2 = pi ∩ β(j)≥2 (hence ̺i = ̺0), and Sj ∩
(

β(j) + 1
)

=

Si ∩
(

β(j) + 1
)

, Λ̄j↾
(

β(j) + 1
)

= Λ̄j↾
(

β(j) + 1
)

,
(γ) β(i) ∈ Ej ,
(δ) Ei ⊆ Ej and if i is limit then Ei =

⋂

α<iEα,

(vi) if i = j + 1 and ν ∈ pi ∩
β(i)2 then p

[ν]
i forces a value to f

˜
(j).

For i = 0 choose a full witness (̺0, S0, Λ̄0, E0) for p, and use clause (iii) to define
p0, β(0).

For a limit i < κ work as in the proof of 1.5(2).
For a successor i, say i = j + 1, we shall use the definition of “κ is weakly

compact”. Let 〈qj,β : β < β(∗)〉 be a maximal antichain of Qκ such that qj,β 

“f
˜

(j) = γ” for some γ = γj,β and qj,β is ≤Qκ
–above pj or limκ(qj,β)∩ limκ(pj) = ∅,

recalling 1.4(9). Since Qκ satisfies the κ+-c.c., see 1.8(2), we know that β(∗) ≤ κ,
so by 1.7(3) without loss of generality β(∗) = κ. Recalling each Sqj,β is nowhere
stationary, clearly there is a club E of κ such that

β < δ ∈ E ⇒ δ ∈ Ej \ Sqj,β and hence also δ /∈ Spj
.

By the weak compactness there is a strongly inaccessible cardinal ∂(j) > β(j)
belonging to E such that {qj,β ∩ ∂(j)>2 : β < ∂(j)} is a pre-dense subset of Q∂(j).
Let

I =
{

q ∈ Q∂(j) : for some β < ∂(j) we have (qj,β ∩ ∂(j)>2) ≤Q∂(j)
q
}

.

Clearly, I is a dense open subset of Q∂(j). Let

X =
{

η ∈ pj ∩
∂(j)2 :

(

∃β < ∂(j)
)(

η ∈ qj,β ∩ ∂(j)2
)}

.

For each ρ ∈ X there is rj,ρ ≥ pj such that tr(rj,ρ) = ρ and rj,ρ forces a value to

f
˜

(j). Indeed, there is β < ∂(j) such that ρ ∈ qj,β ∩ ∂(j)2, so by our assumptions on

the qj,β ’s necessarily pj ≤ qj,β , so q
[ρ]
j,β can serve as rj,ρ. Let (ρ, Sj,ρ, Λ̄j,ρ) witness

rj,ρ ∈ Qκ. Lastly, we let

(a) pi =
⋃

{rj,ρ : ρ ∈ X },
(b) β(i) = min

(

Ej \ (∂(j) + 1)
)

,
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(c) Si = S′
i ∪ S′′

i ∪ {∂(j)}, where

S′
i =

⋃

{

Srj,ρ : ρ ∈ (pi ∩
∂(j)2)

}

\(∂(j) + 1) and S′′
i = Sj ∩ ∂(j),

(d) Λ̄i = 〈Λi,∂ : ∂ ∈ Si〉, where
(α) Λi,∂ is Λj,∂ if ∂ ∈ S′′

i , and

(β) Λi,∂ is
⋃

{Λj,ρ,∂ : ρ ∈ pi ∩ ∂(j)2 and ∂ ∈ Srj,ρ} if ∂ ∈ S′
i,

(γ) Λi,∂(j) is {I },
(e) Ei is E \ (β(i) + 1) or just a club of κ which is ⊆ Ej\β(i) and is disjoint to

Srj,ρ for every ρ ∈ X .

It should be clear that the objects defined above have the desired properties.
So we can carry out the induction on i < κ. After it is completed we define

(∗)1 q =
⋂

{pi : i < κ},
(∗)2 S =

⋃

{Si : i < κ},
(∗)3 Λ̄ = 〈Λ∂ : ∂ ∈ S〉 where Λ∂ =

⋃

{Λi,∂ : i < κ satisfies ∂ ∈ Si} and
(∗)3 E = {δ < κ : δ = β(δ) is a limit ordinal such that i < δ ⇒ δ ∈ Ei}.

It easily follows from conditions (i)–(vi) that:

(⊕)1 q ∈ Qκ has trunk ̺0,
(⊕)2 (̺0, S, Λ̄, E) is a full witness for q ∈ Qδ,
(⊕)3 p ≤Qκ

q and p ∩ β≥2 = q ∩ β≥2,

(⊕)4 if ν ∈ q ∩ β(j+1)2, then q[ν] forces a value to f
˜

(j).

1) Follows from (2) proven above: (⊕)4, that is the last bullet in 1.9(2), suffices
for defining a function g ∈ V such that q forces that it bounds f

˜
, we are done. �1.9

Conclusion 1.10. (1) If κ is a weakly compact cardinal then there is a (<κ)–
strategically complete, κ+-c.c., κ–bounding forcing notion (hence not adding
a κ-Cohen), and of course, adding a new η ∈ κ2.

(2) In fact, the forcing is κ–Borel and is κ–strategically complete and it is
equivalent to a (<κ)–complete forcing notion (which necessarily is κ+–c.c.
κ–bounding adding a new subset to κ). Also, the forcing is definable even
without parameters.

Proof. (1) See above.

(2) Note that when κ is not weakly compact, Qκ is not κ–Borel because “nowhere
stationary” is not. However, if we replace the conditions by full witnesses of condi-
tions with the natural order, this becomes easy. �1.10

§ 1(B). Adding a dominating member of
∏

ε<λ

θε. Here we present a variant

of the forcing from §(1A), this time dealing with sequences from
∏

ε<λ

θε instead

of λ2 and we have an |ε|+-complete filter Dε on θε for ε < λ. The main case
is Dε = {a ⊆ θε : |θε \ a| < θε}, so we write only this case, but the changes
needed for the general case are minor. This is also true for 〈θη, Dη : η ∈ T 〉 and
T = {ν : ε < ℓg(ν) ⇒ ν(ε) < θν↾ε}. So our starting point, e.g. the forcing for the
first κ, is not the κ-Cohen forcing but Qθ of [Sh:945], which is the parallel for κ of
the forcing of [Sh 326] for λ = ℵ0.

Note that Definitions 1.13, 1.12 are used in [Sh:F1580], too. Also note that Qθ̄

is the “one step” forcing on which we shall build later.
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The reader may ignore the version with P̄, i.e., use the default Pκ = P(H (κ)).

Remark 1.11. For θ̄ = 〈θα : α < κ〉, Qθ̄ = Q1
κ was designed to make the old κ-reals

κ–meagre, we still have to expect it to behave like random real forcing and do this
indeed.

Definition 1.12. 1) Recall the weakly compact ideal on λ is Iwc
λ = {A ⊆ λ: for

some first order formula ϕ(X,Y ) and B ⊆ H (λ) we have (∀X ⊆ H (λ))(H (λ) |=
ϕ[X,B]) but for no strongly inaccessible κ ∈ A do we have (∀X ⊆ H (κ))(H (κ) |=
ϕ[X,B ∩ H (κ)]}.
2) ♦S∗,I

wc
λ

means that some Ā = 〈Aα : α ∈ S∗〉 is an Iwc
λ -diamond sequence, which

means: for every A ⊆ H (λ) the set {κ ∈ S∗ : A ∩ H (κ) = Aκ} is 6= ∅ mod Iwc
λ .

3) We say P̄ = 〈Pα : α ∈ S∗〉 is Iwc
λ -positive when S∗ ∈ (Iwc

λ )+ and (Pα, α,∈)
and (P(α), α,∈) have the same first order theory, and moreover (a) ⇒ (b) where

(a) ϕ(X,Y ) is first order, A ⊆ H (λ) satisfies X ⊆ H (λ) ⇒ (H (λ),∈) |=
ϕ[X,A],

(b) (∃I
wc
λ κ ∈ S∗)[A∩H (κ) ∈ Pκ and X ⊆ H (κ) ⇒ (H (κ),∈) |= ϕ[X,A∩κ]].

4) The default value of P̄ is 〈P(H (κ)) : κ ∈ Sx〉.

Definition 1.13. 1) We say x is a 1-ip when x consists of:

(A) a weakly compact cardinal λ,
(B) a sequence θ̄ = 〈θε : ε < λ〉, where

ε < λ ⇒ (2 ≤ θε < ℵ0) ∨ (ε < θε = cf(θε) < λ),

(C) a stationary set Sx ⊆ λ of strongly inaccessible cardinals satisfying

ζ < κ ∈ Sx ⇒
∏

ε<ζ

θε < κ,

(D) (a) ♦Sx,I
wc
λ

, i.e. diamond on Sx holds even modulo the weakly compact
ideal, or just

(b) P̄ = 〈Pκ ⊆ P(H (κ)) : κ ∈ Sx〉 is Iwc
λ –positive, see Definition

1.12(3) above, so necessarily Sx ∈ (Iwc
λ )+; the default value is Pκ =

P(H (κ)),
(E) S∗

x
:= {κ ≤ λ : κ weakly compact and Sx ∩ κ ∈ (Iwc

κ )+ moreover the

sequence P̄↾(Sx ∩ κ) is Iwc
κ –positive (see 1.12(3)) }.

2) If κ ∈ S∗
x

we may say “κ is x-weakly compact”.

3) Let θ̄ = 〈θε : ε < λ〉 be as in clause 1(B) (we will fix it for this sub-section).
Define Tα =

∏

ε<α

θε for α < λ and T<α =
⋃

{Tβ : β < α} for α ≤ λ.

Convention 1.14. For this subsection
0) x is as in Definition 1.13.
1) Let κ, ∂ denote members of Sx.
2) Always p is a subtree of T<κ, for some κ ≤ λ, typically it belongs to Q1

κ for
some κ ≤ λ and for η ∈ p let p[η] = {ν ∈ p : ν E η or η E ν}.

Definition 1.15. We define the forcing notion Q1
κ by induction on κ (so κ ∈ Sx)

as follows:

(A) p ∈ Q1
κ iff some S ⊆ κ ∩ Sx witnesses it, which means

(a) p is a subtree of T<κ,
(b) p has trunk tr(p) ∈ T<κ that is



14 SAHARON SHELAH

• β ≤ ℓg(tr(p)) ⇒ p ∩Tβ = {tr(p)↾β} but
• (∃≥2α)(tr(p)ˆ〈α〉 ∈ p),

(c) if η ∈ p ∧ ℓg(tr(p)) ≤ ℓg(η) < β < κ then (∃ν)(η ⊳ ν ∈ p ∩Tβ), follows
from the rest,

(d) if η ∈ p and ℓg(tr(p)) ≤ ℓg(η) < κ then1

• if θℓg(η) ≥ ℵ0 then (∀∞i < θℓg(η))[ηˆ〈i〉 ∈ p],
• if θℓg(η) < ℵ0 then (∀i < θℓg(η))(ηˆ〈i〉 ∈ p),

(e) if δ ∈ κ\S is a limit ordinal and η ∈ Tδ :=
∏

ε<δ

θε,

then η ∈ p ⇔ (∀β < δ)(η↾β ∈ p),
(f) if ∂ ∈ κ∩S hence ∂ ∈ Sx so is strongly inaccessible, then p∩T<∂ ∈ Q1

∂

and for some predense subsets Ii of Q1
∂ for i < i∗ ≤ ∂, [if we have P̄

also Ii ∈ Pκ] for every η ∈ T∂ we have:
• η ∈ p iff (∀β < ∂)(η↾β ∈ p) and (∀i < i∗)(∃q ∈ Ii)(∀β <
∂)(η↾β ∈ q),

(g) S ⊆ κ ∩ Sx is not stationary in any inaccessible ∂ ≤ κ, even if ∂ /∈ Sx

(yes also for ∂ = κ), equivalently for any limit δ ≤ κ as Sx is a set of
inaccessibles and S ⊆ Sx.

(B) ≤Q1
κ

is the inverse inclusion.

Claim 1.16. 1) T<κ belongs to Q1
κ and

• p ∈ Q1
κ ⇒ Q1

κ |= “T<κ ≤ p”, and
• η ∈ p ∈ Q1

κ ⇒ p ≤Q1
κ
p[η] ∈ Q1

κ.

2) For p ∈ Q1
κ and α < κ the set {p[η] : η ∈ p ∩Tα} is predense in Q1

κ above p.
3) If p ∈ Q1

κ and ℓg(tr(p)) < ∂ < κ then p ∩ T<∂ ∈ Q1
∂. Moreover, if pℓ ∈ Q1

κ,
ℓg(tr(pℓ)) < ∂ < κ for ℓ = 1, 2, then

p1 ≤Q1
κ
p2 ⇒ p1 ∩T<∂ ≤Q1

∂
p2 ∩T<∂ ,

and

p1 ⊥Q1
κ
p2 ⇒ p1 ∩T<∂ ⊥Q1

∂
p2 ∩T<∂ .

4) Q1
κ is a forcing notion and it satisfies the κ+-c.c. Moreover, it is κ+-centered as

if p, q ∈ Q1
κ have the same trunk then p, q are compatible, in fact, p ∩ q belongs to

Q1
κ and is a ≤Q1

κ
-lub with the same trunk.

5) Suppose that ν ∈ Tγ and pi ∈ Q1
κ, tr(pi) = ν for i < i(∗) and assume that

(⊡) either i(∗) ≤ γ, or

(∀ε)[ℓg(ν) ≤ ε < κ ∧ θε ≥ ℵ0 ⇒ i(∗) < θε] and i(∗) < min(Sx\(ℓg(ν) + 1)).

Then p =
⋂

{pi : i < i(∗)} belongs to Q1
κ, has the trunk ν and is a ≤Q1

κ
–lub of

{pi : i < i(∗)}.
6) p, q ∈ Q1

κ are incompatible iff tr(p) /∈ q ∨ tr(q) /∈ p.

7) If ν ∈ Tγ , pi ∈ Q1
κ, and tr(pi) E ν ∈ pi for i < i(∗) and (⊡) of part (5) holds,

then p =
⋂

{p
[ν]
i : i < i(∗)} is a lub of {p

[ν]
i : i < i(∗)} in Q1

κ and has trunk ν.
8) η

˜
=

⋃

{tr(p) : p ∈ G
˜

Q1
κ
} is a Q1

κ-name of a member of
∏

ε<κ

θε.

9) If ν ∈
∏

ε<κ

θε then Q1
κ
“for arbitrarily large ε < κ we have η

˜
(ε) 6= ν(ε) and for

every ε < κ large enough θε ≥ ℵ0 ⇒ η
˜

(ε) > ν(ε)”.

1Remember “∀∞i < θ” means “for all but boundedly many i < θ”.
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10) η
˜

is a new branch of T<κ and is generic for Q1
κ, i.e. G

˜
= {p ∈ Q1

κ : η
˜

is a
branch of p}.
11) Q1

κ is (< κ)-strategically complete.

Proof. 1), 2), 3) Straightforward (for the second sentence of (3) use part (6)).
Concerning parts (4), (5) and (6), see more in 1.18 and 1.19.

4) By (7) and the number of possible trunks of p ∈ Q1
κ is |T<κ| = κ.

5) By (7).
6) Clearly if tr(p) /∈ q then p, q are incompatible, and similarly if q /∈ tr(p) so the
implication “if” holds. For the other direction assume tr(p) ∈ q ∧ tr(q) ∈ p, and
we shall prove that p, q are compatible. By symmetry without loss of generality
ℓg(tr(p)) ≤ ℓg(tr(q)), let ν = tr(q). Now p[ν] and q = q[ν] have the same trunk, so
we are done by part (4).
7) Let Si be a witness for pi ∈ Q1

κ, and let S =
⋃

{Si : i < i(∗)}\(ℓg(ν) + 1). We

shall prove that S witnesses that p =
⋂

{p
[ν]
i : i < i(∗)} belongs to Q1

κ, then we are

done as obviously i < i(∗) ⇒ p ⊆ p
[ν]
i by the choice of p.

If ∂ ≤ ℓg(ν) then ∂ ∩ S = ∅ and if ℓg(ν) < ∂ < κ, then each Si ∩ ∂ is not a
stationary subset of ∂ for i < i(∗). Also i(∗) < ∂.
[Why? If i(∗) ≤ ℓg(ν) clear, if i(∗) > ℓg(ν), then S∩[ℓg(ν), i(∗)] = ∅ by assumption
as ∂ > ℓg(ν) clearly i(∗) < ∂.] Together also S =

⋃

{Si : i < i(∗)} is not stationary
in ∂; that is, clause (g) of 1.15(A) holds.

Now obviously p is a subtree of T<κ, i.e. (a) of 1.15(A) holds. Also obviously
α ≤ ℓg(ν) ⇒ p ∩ Tα = {ν↾α} and p ∩ Tℓg(ν)+1 ⊆ {νˆ〈ι〉 : ι < θℓg(ν)}. To prove
clauses (b), (d) assume that η ∈ p ∩ Tε and ν E η. If θε < ℵ0 then clearly
n < θε ∧ i < i(∗) ⇒ ηˆ〈n〉 ∈ pi hence {ηˆ〈ι〉 : ι < θε} ⊆ p ∩ Tℓg(η)+1 so equality
holds. Hence clause (d) holds in this case, and for ε = ℓg(ν) so η = ν then ν is
indeed the trunk of p and 1.15(A)(b) holds.

If θε ≥ ℵ0 then θℓg(η) = cf(θℓg(η)) > i(∗). Now, for each i < i(∗) there is ι(i) < θε
such that {ηˆ〈ι) : ι ∈ [ι(i), θε)} ⊆ pi and hence ι(∗) = sup{ι(i) : i < i(∗)} < θε.
Thus {ηˆ〈ι〉 : ι ∈ [ι(∗), θε)} ⊆ p and again clause (d) holds in this case, and for
ε = ℓg(ν) so η = ν, clearly tr(p) is well defined and equal to ν, so 1.15(b) holds.

The proof of clause 1.15(A)(c) follows from the rest.
The proofs of clauses (e), (f) are straightforward and clause (g) holds by the

choice of S.
8)–11) Left to the reader. �1.16

Observation 1.17. If p ≤Q1
κ
q and S is a witness for q and tr(p) = tr(q) then S

is a witness for p.

Definition 1.18. Let κ ∈ Sx.
1) For γ < κ let Sincr

κ,γ be the set of sequences 〈(pα, qα, Eα) : α < γ〉 satisfying2

(a) pα ∈ Q1
κ,

(b) qα ∈ Q1
κ.

(c) β < α ⇒ qβ ≤Q1
κ
pα,

(d) Eα is a club of κ disjoint to some witness for qβ ∈ Q1
κ for every β < α,

(e) pα ≤Q1
κ
qα,

(f) ℓg(tr(pα)) ≥ α,

2may add: (h) if δ < γ is a limit ordinal then pδ = ∩{pα : α < δ}, we do not use this
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(g) ℓg(tr(pα)) ∈
⋂

{Eβ : β < α}.

2) For γ ≤ κ let Sincr
κ,<γ =

⋃

{Sincr
κ,β : β < γ} and Sincr

κ = Sincr
κ,<κ.

3) For γ ≤ κ let Spr
κ,γ be the set of sequences 〈(pα, qα, Eα) : α < γ〉 such that

(a) pα, qα ∈ Q1
κ have trunks tr(p0),

(b) Eα is a club of κ disjoint to ℓg(tr(p0)) such that for every β < α, Eα is
disjoint to some witness of qβ ∈ Q1

κ,
(c) min(Eα) ≥ α is increasing (for transparency),
(d) pα ≤Q1

κ
qα,

(e) qβ ≤Q1
κ
pα when β < α,

(f) if β < α then qβ ∩Tmin(Eβ) ⊆ pα,
(g) if δ < γ is a limit ordinal then

pδ =
⋂

{

pα : α < δ
}

and pδ ∩Tmin(∩{Eα:α<δ}) ⊆ qβ for β ∈ [δ, γ).

4) Spr
κ,<γ =

⋃

{Spr
κ,β : β < γ} and Spr

κ =
⋃

{Spr
κ,γ : γ < κ}.

Claim 1.19. 1) For every p ∈ Q1
κ the sequence 〈(p, p, κ)〉 belongs to Sincr

κ .
2) Sincr

κ is closed under unions of ⊳–increasing chains of length < κ.
3) If x̄ = 〈(pα, qα, Eα) : α < β〉 ∈ Sincr

κ then for some pβ we have: α < β ⇒ qα ≤ pβ
and if pβ ≤ qβ and Eβ is a club of κ disjoint to some witness of qβ or just of pβ or
just of qγ for every γ < β then x̄ˆ〈(pβ , qβ , Eβ)〉 ∈ Sincr

κ .

Proof. 1) For γ = 1 we have 〈(p, p, κ)〉 ∈ Sincr
κ,γ (note that clause (d) of Definition

1.18(1) is trivially satisfied) and Sincr
κ,γ ⊆ Sincr

κ .

2) Obvious.

3) If β is a successor ordinal this is easier, so we assume β is a limit ordinal. Let
να = tr(qα) for α < β hence 〈να : α < β〉 is a E–increasing sequence of members
of T<κ and ℓg(να) ≥ α. Hence νβ := ∪{να < β} ∈ T≤κ has length ≥ β. As β < κ
and κ is regular, necessarily ℓg(νβ) < κ so νβ ∈ T<κ. Also recall α1 < α2 < β ⇒
ℓg(να2) ∈ Eα1 , but Eα1 is a club of κ hence α1 < β ⇒ ℓg(νβ) ∈ Eα1 . As α1 + 1 <
α2 < β ⇒ να2 ∈ qα1 and Eα1+1 is disjoint to a witness for qα1 and by the previous
sentence ℓg(νβ) ∈ Eα1+1 we can deduce νβ =

⋃

{να2 : α2 ∈ (α1 + 1, β)} ∈ qα1 . So

clearly νβ ∈
⋂

α<β

qα hence 〈q
[νβ ]
α : α < β〉 is an increasing sequence of members of Q1

κ

with fixed trunk νβ of length ≥ β as α < β ⇒ ℓg(νβ) ≥ ℓg(να) = ℓg(tr(qα)) ≥ α,

see 1.18(1)(f). So by 1.16(5) we have pβ :=
⋂

{q
[νβ ]
α : α < β} ∈ Q1

κ has trunk νβ

and is equal to
(
⋂

{qα : α < β}
)[νβ ]. Let Eβ =

⋂

{Eα : α < β} and clearly pβ, Eβ

are as required. �1.19

Claim 1.20. 1) For every p ∈ Q1
κ the sequence 〈(p, p, κ)〉 belongs to Spr

κ .
2) If γ < κ and x̄ = 〈(pα, qα, Eα) : α < γ〉 ∈ Spr

κ,γ then there are (pγ , E) with E a
club of κ and pγ =

⋂

{pα : α < γ} such that:
if pγ ≤ qγ , β < γ ⇒ qβ ∩T≤min(Eγ) ⊆ qγ and Eγ ⊆ E is a club of κ,
then x̄ˆ〈(pγ , qγ , Eγ)〉 ∈ Spr

κ .
3) The union of a ⊳–increasing sequence of members of Spr

κ of length < κ belongs
to Spr

κ .
3A) If 〈x̄β : β < δ〉 is E–increasing, x̄β = 〈(pα, qα, Eα) : α < γβ〉 ∈ Spr

κ and
〈γβ : β < δ〉 is ≤–increasing and γ :=

⋃

{γβ : β < δ} < κ then 〈(pα, qα, Eα) : α <
γ〉 ∈ Spr

κ,γ.
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3B) If in (3A), γ = κ then pκ =
⋂

{pα : α < κ} belongs to Q1
κ and is a ≤Q1

κ
-lub of

{pα, qα : α < κ}.

Proof. Straightforward. �1.20

Crucial Claim 1.21. If κ = λ or just κ ∈ S∗
x
(see 1.13), γ < κ, x̄ = 〈(pα, qα, Eα) :

α ≤ γ〉 ∈ Spr
κ,γ+1 and τ

˜
is a Q1

κ-name of a member of V then we can find

(pγ+1, qγ+1, Eγ+1) such that

(a) x̄ˆ〈(pγ+1, qγ+1, Eγ+1)〉 ∈ Spr
κ ,

(b) if η ∈ qγ+1 ∩Tmin(Eγ+1) then q
[η]
γ+1 forces a value to τ

˜
.

Proof. Let

(∗)1 Y = {tr(p) : p ∈ Q1
κ forces a value to τ

˜
and tr(p) has length > min(Eγ)}.

For η ∈ Y let p∗η exemplify η ∈ Y , i.e.

(∗)2 tr(p∗η) = η and p∗η forces a value to τ
˜

, necessarily ℓg(η) > min(Eγ).

Clearly

(∗)3 (a) Y ⊆ T<κ,
(b) if p ∈ Q1

κ then for some η ∈ Y we have tr(p) E η ∈ p.

By Convention 1.14, there is ∂ ∈ Sx ∩ κ ∩ Eγ but > min(Eγ) such that letting
Y∂ = Y ∩T<∂ we have

(∗)4 (a) ℓg(tr(pγ)) < ∂,
(b) if p ∈ Q1

∂ then {η : tr(p) E η ∈ p} ∩ Y∂ 6= ∅,
(c) recalling 1.13(D)(b), {(η, ν) : η ∈ Y ∩T<∂ and ν ∈ p∗η ∩T<∂} ∈ P∂ .

Define:

• pγ+1 = {η ∈ pγ : if ℓg(η) ≥ ∂ and {η↾ε : ε < ∂} ∩ Y 6= ∅ and ζ < ∂ is
minimal such that η↾ζ ∈ Y then η ∈ p∗η↾ζ},

• qγ+1 = pγ+1,
• Eγ+1 ⊆ Eγ\(∂ + 1) is a club of κ such that if η ∈ qγ+1 ∩T<∂ then Eγ+1 is

disjoint to some witness for p∗η.

Clearly (pγ+1, qγ+1, Eγ+1) is as required. �1.21

Claim 1.22. If κ ∈ Sx then Q1
κ is κ–bounding, i.e. Q1

κ
“(κκ)V is ≤Jbd

κ
-cofinal in

κκ”.

Proof. By 1.21 and Claim 1.20. �1.22

§ 2. What are the desired properties of the ideal

Our original aim was to disprove the existence of a forcing notion for λ having the
properties of random real forcing equivalently, finding for an uncountable cardinal
λ, a λ-complete ideal on P(λ2) parallel to the ideal on null sets on N2. Having
constructed one raises hopes for generalizing independence results about reals to
λ2, so deriving independence results on λ-cardinality invariants.

In this section we try systematically to go over basic properties of the null ideal
(and its relation with the meagre ideal). This results in a list of possible test
problems for our ideal. Some of these questions are addressed in the present work,
some are left for further research. The case of Qθ̄ = Q1

κ (of §1(B)) is similar and
we intend to comment on it in Part II, i.e. [Sh:F1199].
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On the meagre and null ideals (for λ = ℵ0) see Oxtoby [Oxt80]. On the measure
algebra and random reals see Fremlin’s treatise [Fr0x] or Bartoszyński and Judah
[BaJu95].

How do we measure success? The main properties of the null ideal which come
to my mind are:

⊞ (a) an ℵ1-complete ideal (with no atoms),
(b) the quotient Boolean Algebra satisfies the c.c.c., i.e. there is no un-

countable family of non-null pairwise disjoint Borel sets,
(c) the forcing is bounding: this means the quotient Boolean Algebra is

(ℵ0,∞)–distributive, that is if for each n, 〈Bn,k : k ∈ N〉 is a Borel
partition of a non-null Borel set B then for some function f : N → N,
the set

⋂

n

⋃

k<f(n)

Bn,k is not null.

A priori, for the set theoretic purposes, generalizing (a),(b),(c) was the aim. But
for the ideal itself, a prominent property of the null ideal, and a very nice one, is

(d) the Fubini theorem: for a Borel set A ⊆ [0, 1] × [0, 1] the following are
equivalent:

(i) for all but null many x, for all but null many y we have (x, y) ∈ A,
(ii) for all but null many y, for all but null many x we have (x, y) ∈ A.

But alas, this fails, see Claim 6.6.
Maybe it is helpful to stress, that

⊠ we are looking for λ+-complete, λ+-c.c., ideal with no atoms.

Below we make a list of statements generalizing the null ideal case, including the
natural analogs of the properties listed above, delaying a try on some further prop-
erties.

A reader who goes first to this section can note just that

⊕ (a) the forcing notion Qλ is a set of subtrees of λ>2 representing λ–closed
subsets limλ(p) of λ2, where limλ(p) = {η ∈ λ2 : (∀ζ < λ)(η↾ζ ∈ p)},
parallel to the closed subsets of [0, 1]R with positive Lebesgue measure,
partially ordered by inverse inclusion,

(b) λ2 is the set of functions from λ to 2 = {0, 1}.

Definition 2.1. Let λ be an inaccessible cardinal and let Qλ = Q2
λ be the forcing

notion introduced in § 1(A).

(1) For η ∈ λ2 and I ⊆ Qλ, saying η fulfills I means (∃q ∈ I )(η ∈ limλ(q)).
(2) For I ⊆ Qλ let set(I ) = {η ∈ λ2 : η fulfills I } and for a set Λ of subsets

of Qλ let set(Λ) =
⋂

{set(I ) : I ∈ Λ}.
(3) We define id(Qλ) = {A ⊆ λ2: there are i(∗) ≤ λ and dense open subsets

Ii of Qλ for i < i(∗) such that η ∈ A ∧ i < i(∗) ⇒ η does not fulfill Ii}.
(4) A λ–real is η ∈ λ2.

Convention 2.2. λ, ∂, κ vary on inaccessibles.

We have consulted several people on additional properties to be examined. For
instance T. Bartoszyński suggested (P),(S),(U) of the first list below.
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§ 2(A). Desirable Properties: First List. In this subsection we list various
desirable properties and questions and sometimes give a relevant reference (in this
paper) but we do not prove anything (whereas §3 on contain proofs).

(A) (α) The ideal id(Qλ) is λ+–complete, i.e. closed under union of ≤ λ sets.
(β) The forcing notion Qλ is λ–complete (or at least λ-strategically com-

plete, depending on the choice of the order).
(γ) The Boolean Algebra of λ–Borel subsets of λ2 modulo the ideal id(Qλ)

satisfies the λ+-c.c., see 3.9(2). Note that modulo id(Qλ), Qλ is dense
in this Boolean Algebra, this is (E) below.

(δ) The forcing notion Qλ is λ–bounding, see 0.5(2), §1, when λ is a weakly
compact cardinal.

(B) The definability of Qλ, i.e., Qλ is nicely definable (with no parameters), see
the definition by induction in §1; if λ is weakly compact then Qλ is λ–Borel,
the ideal is similarly definable, see 8.1; for other inaccessible cardinals λ the
“nowhere stationary” is Σ1

1(λ) but by a somewhat cumbersome definition
giving an equivalent forcing it is λ-Borel, see the proof of 1.10.

(C) Generalizing “adding (forcing) a Cohen real makes the set of old reals null”,
see 6.3.

(D) Generalizing “adding (i.e. forcing) a random real makes the old real mea-
gre”, see 6.1.

(E) Modulo the ideal id(Qλ), every λ–Borel set is equal to a union of at most
λ sets of the form limλ(p), p ∈ Qλ, see 3.9.

(F) Can we define integral? We do not know; may we replace [0, 1]R as a set
of values by some complete linear order, e.g. by “nice” ordered fields?
Are symmetrically complete real closed fields relevant (see [Sh 757])? If we
waive linearity does it help?

(G) Modulo the ideal, every λ–Borel function can be approximated by “steps
function of level α” for many (so unboundedly) many α < λ; where “step
function” is being interpreted as: f(η)↾α is determined by η↾α for η ∈ λ2,
see 3.10.

(H) The Lebesgue density theorem, see 3.13, (it means: if the λ–Borel set
B ⊆ λ2 is id(Qκ)-positive, then for some B1 ∈ id(Qλ) for every η ∈ B\B1

for some α < λ we have (λ2)[η↾α]\B ∈ id(Qλ)).
(I) The Fubini theorem, symmetry, unfortunately fails, see 6.6. However we

intend to present some weak versions of symmetry in a continuation.
(J) The translation invariance, see 3.7(1).
(K) The permutation invariance (i.e. for permutations of λ): this works only

for a variation on our forcing.
(L) Generalizing “if A is a Borel subset of [0, 1]R × [0, 1]R of positive measure

then A contains a perfect rectangle (even half square)”. But what is perfect?
Not a copy of λ2 but λ–closed set, e.g. the λ-limit of a λ–Kurepa tree,
actually one with “little pruning in limit levels”; specifically it is limλ(p)
for some p ∈ Qλ, so λ–closed.

(M) Generalize the random algebra on χ2 for χ possibly > λ. This will be
addressed in a continuation, see [Sh:E82, §1], [Sh 1100].

(N) Generalize “modulo the null ideal every Borel set is equal to a union of ≤ λ
sets, each λ–closed” see (E) above and see 3.9.
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(O) Generalize “the set of reals is a union of a null set and a meagre set”, see
3.8.

(P) Generalize Erdös–Sierpiński theorem: if 2λ = λ+ or suitable cardinal in-
variants are equal to λ+ then there is a permutation of λ2 interchanging
the null and meagre ideal.

In fact, this is not hard now:

(∗)1 Assume that for ℓ = 1, 2:
(a) Jℓ is an ideal of subsets of I,
(b) Jℓ is |I|–complete and generated by a family of ≤ |I| sets,
(c) if A1 ∈ Jℓ then for some A2 ∈ Jℓ we have |A2\A1| = |I|, and
(d) there is A ∈ J1 such that I\A ∈ J2.

Then there is a permutation of I interchanging J1 with J2.
(∗)2 If 2λ = λ+ and I = λ2 then the λ–meagre ideal and id(Qλ) satisfy (a)–(d)

of (∗)1.

[Why? Clause (d) here holds by 3.8.]

(Q) Generalize the Borel conjecture: though not connected to random. Now
consider:
(α) the equivalence of the “for every 〈εn : n〉 the set is covered by

⋃

n

In,

In is an interval of length ≤ εn” and “the set can be translated away
from any meagre set”,

(β) the εn’s version has an obvious generalization,
(γ) try shooting through a normal ultrafilter

(R) The dual Borel conjecture might be adressed in Part II. Now the question
is:
(∗) We are given an old set X of λ-reals of cardinality λ+, say X = {να :

α < λ+}. View Cohenλ as adding a λ–null set: e.g., for p̄ = 〈pη : η ∈
λ>2〉, pη ∈ Qλ, tr(pη) = η, and clearly pη is a nowhere-dense cone, but
we shall need more.

(S) (Selectors) Every Σ1
1–relation have a reasonably definable, e.g. λ–Borel,

choice function on a positive closed set even in any positive Borel set.
(T) The Hausdorff paradox and even Banach-Tarski paradox hold for R3. Do

they hold for λ2 × λ2 × λ2?
(U) We know that “for every meagre set A there is a meagre set B such that:

every ≤ λ translates of A can be covered by one translates of B”, but fail
for null, even for ωZ. Generalize to λ.

On raising further problems see [Sh:F1199], concerning characters, differentiability,
monotonicity (of functions) and going back to the case λ = ℵ0.

We have not looked at clauses (L),(Q), (S)–(U).

§ 2(B). Desirable Properties: Second List. Next we consider generalizing re-
sults more set theoretic in nature, related to forcing (maybe (B)(c),(d) from §(2A)
should be here; from the problems listed below, (A) is treated here, on the others
see part II, if at all)

(A) Cichoń’s Diagram.

This diagram sums up the provable inequalities between the basic cardinal invari-
ants of the null ideal, the meagre ideal, d (the dominating number) and b (the



NULL IDEAL FOR INACCESSIBLE λ 21

unbounding number). The basic cardinal invariants of an ideal are the covering
number, the additivity number, the cofinality and the non(= uniformity) of the
ideal, see 0.7.

The diagram gives the provable inequalities among any two invariants (and two
equalities each on three invariants). Moreover, under 2ℵ0 ≤ ℵ2 there are no more
connections. Here we generalize the ZFC part (for λ inaccessible limit of inacces-
sibles), but the situation is different, e.g., there are more inequalities connecting 3
of the cardinal invariants, see 5.9.

We will deal with the complementary consistency results (about inequalities of
any pair) in continuations, [Sh:F1580] and others.

(B) Generalizing the amoeba forcing

The amoeba forcing is the one adding a measure zero set including all the old ones;
the conditions are closed subsets of [0, 1]R of measure > 1

2 .
This is natural as the amoeba forcing has been important in set theory of the

reals and is closely related to measure, see Section 7.

(C) The consistency of “every A ∈ P(R)L[R] is Lebesgue measurable” (from
χ > λ inaccessible).

Solovay [So70] classical work proved for λ = ℵ0 that if we Levy collapse the first
inaccessible cardinal to being ℵ1, this holds.

The problem is: we have names η
˜

of λ–reals such that Levy(λ,<χ)/η
˜

is not
Levy(λ,<χ) when λ is uncountable. Another formulation of the problem: there
are Levy(λ,<χ)–names η

˜
1, η

˜
2 of λ–Cohen reals and no automorphisms of the com-

pletion of Levy(λ,<χ) mapping one to the other.
This certainly occurs for λ–Cohen reals and probably for any other; that is we

may add a λ–Cohen η
˜
∈ λ2 and compose it with a forcing shooting a club through

η
˜

−1{ℓ}.
A possible avenue is to consider only “nice Levy(λ,<χ)–names”, i.e. such that

the quotient is Levy(λ,< χ). In this case there is a “positive” set of λ–reals such
that for subsets of it our aim is achieved. We can even define this set of reals.
The question is whether we consider this is a “reasonable” or a “forced, artificial”
solution?

Alternatively we may replace λ–Cohen by another forcing (or ideal) and/or
change the collapse; in particular should check the failure for Qλ. We also may
change the notion of a λ–real, e.g. replace it by A/(the non-stationary ideal) or use
a filter generated by ≤ λ subsets of λ! All this is delayed for later parts. We should
also check what occurs to sweetness in our present case (see [RoSh 672, RoSh 856]).

We may consider {η ∈ λ2 : η is (Q, η
˜

)-generic over V0 such that every subset of
λ from V0[η] which is stationary in it, is also stationary in V}, or more. A related
question is the complexity of maximal antichains, see 8.4, maybe use measurable
cardinals.

What about P(λ) for λ singular strong limit of cofinality ℵ0?

(D) Can we characterize Cohenλ and Qλ among (nicely definable) λ–Borel
ideals? Recall Solecki-Kechris characterization of Cohen and random (for
the ideals). We have not looked at it; there are limitations even for λ = ℵ0,
see e.g., [RoSh 628].

(E) In [Sh 480] we showed that: for any Suslin c.c.c. forcing, if it adds an
undominated real, it adds a Cohen real.
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Subsequently some works show relatives (for other properties), on this see [Sh 711],
[Sh 723]. Related to this, by [Sh 630], the only “nice” c.c.c. forcing commuting
with Cohen is Cohen itself. Do we have a parallel?

For a broader generalization of the case of ℵ0 we may consider forcing, ultrafilters
and forcing notions definable from ultrafilters.

(F) We know much on ultrafilters on N. Also we have considerable knowledge
about λ–complete ultrafilters on λ or higher cardinals when λ is a mea-
surable cardinal. After the seventies there were set theoretic advances on
non-regular ultrafilters, but not much set theoretic work was done on reg-
ular ultrafilter. However, in recent years there were studies of reasonable
ultrafilters in [Sh 830], Ros lanowski and Shelah [RoSh 889, RoSh 890] and
recently on ultrafilters related to saturation of ultra-powers and Keisler
order, see Malliaris and Shelah [MiSh:996, MiSh:998] on cuts and p = t.

On characters of ultrafilters on N see Brendle and Shelah [BnSh 642] and later
[Sh 846], [Sh:915]; for an ultrafilter D on λ recall that χ(D) is the character =
minimal cardinality of a subset generating it, πχ(D) pseudo-character = minimal
cardinality of A ⊆ [λ]λ such that (∀B ∈ D)(∃A ∈ A )[A ⊆ B], note that A ∈ A
is not necessarily in D! As in [RoSh 889, RoSh 890] dealing with the so called
reasonable ultrafilters we may consider the Borel version (i.e. the minimal number
of Borel subsets of D which generate it) and λ-real version. Then as in “reasonable
ultrafilter”, can we show CON(for every uniform ultrafilter D on λ, πχλ−real(D) =
λ+ < 2λ)?

What about the ultrafilter forcing? Can reasonable ultrafilters on λ be generated
by < 2λ sets? We can force a creature condition diagonalizing a uniform ultrafilter
on λ.

(G) Related is Galvin-Prikry theorem which says that for any Borel (or even
Σ1

1) subset B of P(N) for some set A ∈ [N]ℵ0 , the set [A]ℵ0 is included in or
disjoint from B. Concerning a relative using a group from [Sh 273], gener-
alizations to λ are considered by the author in some later works: [Sh 664],
[ShVs 718], [ShVs 719], [Sh 724], see also [GrSh 302], [Sh 771], less related
[MShS 121], [MShS 144], [HkSh 662]

(H) The consistency of Moore conjecture; so we should consider a topological
space X which is λ–first countable (analog of first countable). Of course
we can prove it using Dow lemma which holds for adding many λ-Cohens,
so not clear how interesting.

(I) Preserving “η is Qλ–generic over N” parallel to [Sh:c, Ch.XVIII,§3], [Sh:c,
Ch.VI,§3].

(J) (a) Try to connect cf(Qλ) and Cichoń’s diagram and number of reasonable
generators of an ultrafilter, see [Sh 830].

(b) Note that for the number of generators of an ultrafilter we have the
following bounds.

Claim 2.3. (1) Letting η
˜
λ be the Qλ–name of the generic, for α < λ we have

that Qλ
“there is G′ ⊆ Qλ such that: G′ is a generic subset of Qλ over

V,V[G′] = V[G
˜

] and η
˜
λ[G′] = η

˜
λ,α[G

˜
]” where ηλ,α ∈ λ2 is defined by:

η
˜
λ,α(i) =

{

η
˜
λ(i) if i < α

1 − η
˜
λ(i) if i ∈ [α, λ).
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(2) Similarly when for some A ∈ P(λ)V

η
˜
λ,α(i) =

{

η
˜
λ(i) if i ∈ A

1 − η
˜
λ(i) if i ∈ λ \A.

(3) Qλ
“η
˜
λ↾A 6=Jbd

A
iA for i = 0, 1 for any A ∈ ([λ]λ)V”.

(4) χ(λ) := min{gen(D) : D a uniform ultrafilter on λ} is ≥ cov(Qλ), cov(Cohenλ).

But we can still hope to find a relative of Qλ such that adding λ++ such λ-reals
(e.g. as in [Sh:F1580]) we get a universe V1 with 2λ = λ+++ there is a uniform
ultrafilter D on λ with χ(D) = λ+.

(K) Here we start with λ-Cohen forcing (for χ inaccesible not limit of inacces-
sibles). We can start with Qθ̄↾λ or with other definable λ+-c.c. forcing; see
part II.

§ 3. On Qκ, κ–Borel sets and id(Qκ)

In this and the following sections we analyze the ideal id(Qκ). A general frame
including 2.1 is the following.

Definition 3.1. (1) Let id(Cohenκ) be the family of all κ–meagre subsets of
κ2, i.e., it is the collection of all A ⊆ κ2 such that A ⊆

⋃

{limκ(Ti) for
i < κ}, where each Ti is a nowhere dense subtree of κ>2, i.e., (κ>2, ⊳).

(2) We say i = (κ,Q, η
˜

) = (κi,Qi, η
˜
i) is an ideal case when :

(a) κ is a regular cardinal,
(b) Q is a forcing notion not adding bounded subsets of κ,
(c) η

˜
is a Q-name of a member of κ2,

(d) (α) each p ∈ Q is a subtree of (κ>2,E) and let Bp = Bi,p = limκ(p),
and p “η

˜
∈ Bi,p”, or at least

(β) we have a mapping p 7→ Bp = Bi,p such that
• Bi,p is a κ–Borel subset of κ2,
• p ≤ q ⇒ Bi,p ⊇ Bi,q, and
• p  “η

˜
∈ Bi,p”;

so really the function p 7→ Bp is part of i.
Below let i = (κ,Q, η

˜
) be an ideal case.

(3) We let id1
i = id1(i) be

{

A ⊆ κ2 : for some κ–Borel set B we have A ⊆ B and Q “η
˜
/∈ B”};

we may omit the 1.
(4) For a subset I of Qi, we say that η ∈ κ2 fulfills I when (∃p ∈ I )(η ∈ Bp).

(5) We define id2
i = id2(i) to be the collection of all sets A ⊆ κ2 such that there

are pre-dense subsets Ii of Qi for i < κ such that

A ⊆
{

η ∈ κ2 : for some i < κ, η does not fulfill Ii

}

.

Claim 3.2. Let i be an ideal case.

(1) Both id1(i) and id2(i) are κ+–complete ideals on κ2. Also κ2 /∈ id1(i) and
if i is κ–complete then3 κ2 /∈ id1(i).

(2) In Definition 3.1(5) we can replace “pre-dense” by “dense open” or by
“maximal antichain”.

3 Recall Prikry forcing
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(3) If Qi satisfies the κ+-c.c. then id2(i) ⊆ id1(i).
(4) A sufficient condition for id1(i) ⊆ id2(i) is:

(∗) (a) if p, q ∈ Qi are incompatible then Bi,p ∩Bi,q = ∅, and
(b) if B is a κ–Borel set then

{

p ∈ Qi : p Qi
“η
˜
∈ B” or Bp ∩B ∈ id2(i)

}

is a dense open subset of Qi.
(5) Let κ be strongly inaccessible and Qκ and η

˜
be as defined in 1.3 and 1.7(4),

respectively. Then the triple i = iκ = (κ,Qκ, η
˜

) is an ideal case and id1(i) =
id2(i).

(6) The triple i = iCohen
κ = (κ,Cohenκ, η

˜
) is an ideal case and we have id1(i) =

id2(i) and it is closed under translations (cf 3.7).

Remark 3.3. If in Definition 3.1(2)(d), Bp is just a Borel set, then 3.2 still holds.

Proof. (1), (2) Obvious by the definitions.

(3) Assume A ⊆ κ2 belongs to id2(i). Then by (2) we may find maximal antichains
Ii ⊆ Qi (for i < κ) such that

η ∈ A ⇒ for some i < κ, η does not fulfill Ii.

Since we are assuming that Qi satisfies the κ+-c.c., Ii has cardinality ≤ κ for every
i < κ. Let 〈pi,ε : ε < εi〉 list Ii, εi ≤ κ. Then

A ⊆ B :=
⋃

i<κ

(κ2\
⋃

{Bi,pi,ε
: ε < εi}).

Clearly B is a κ–Borel set. Also, since each Ii is a maximal antichain, for all i < κ
we have

Qi
“ Ii ∩G

˜
Qi

6= ∅ and hence η
˜
∈ Bi,pi,ε

for some ε < εi”,

and hence Qi
“η
˜

/∈ B”. Consequently B ∈ id1(i) but A ⊆ B hence A ∈ id1(i), so
we are done.

(4) Assume B is a κ–Borel set and it belongs to id1(i). We shall prove B ∈ id2(i),
clearly this suffices.

Let I = {p : p forces η
˜
∈ B or forces Bp ∩ B ∈ id2(i)}, so by the assumption

(∗)(b) the set I is an open dense subset of Qi. Let I ′ ⊆ I be a maximal antichain
and let I ′′ = {p ∈ I ′ : p 1Qi

“η
˜
∈ B”}. Since we assumed B ∈ id1(i), necessarily

I ′′ = I ′. So for each p ∈ I ′′, Bp∩B ∈ id2(i) and there is a sequence 〈Ip,i : i < κ〉
witnessing it. Without loss of generality if i < κ, p ∈ I ′′ then Ip,i is a maximal
antichain of Qi and for every q ∈ Ip,i we have (p ≤ q) ∨ (p, q are incompatible).
For i < κ let

I i =
{

q ∈ Qi : for some p ∈ I ′′ we have (p ≤ q) ∧ q ∈ Ip,i

}

.

Clearly, each I i is a maximal antichain. Easily {I i : i < κ} witnesses B is
included in some member of id2(i), so we are done.

(5) For being an ideal case, in Definition 3.1(2), clauses (a),(b),(c) are obvious
(remember Claim 1.8 and Observation 1.7(4)) and clause (d) is easy, too. It suffices
to prove that id2(i) ⊆ id1(i) and id1(i) ⊆ id2(i).

Concerning “id2(i) ⊆ id1(i)” note that Qκ satisfies the κ+-c.c., so by 3.2(3) we
deduce the inclusion.
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Let us argue that id1(i) ⊆ id2(i). Suppose that B is a κ–Borel subset of κ2 and
Qκ

“η
˜
/∈ B”. We may find T and B̄ such that

(⊛) (a) T is a subtree of ω>κ with no infinite branch,
(b) for every ρ ∈ T , either sucT (ρ) = ∅, or sucT (ρ) = {ρˆ〈0〉} or sucT (ρ)

is infinite,
(c) B̄ = 〈Bρ : ρ ∈ T 〉 is a system of κ–Borel subsets of κ2,
(d) B〈〉 = B,
(e) if ρ ∈ T and sucT (ρ) = ∅, then for some iρ < κ and cρ < 2 we have

Bρ = {ν ∈ κ2 : ν(iρ) = cρ},
(f) if ρ ∈ T and |sucT (ρ)| = 1, then Bρ = κ2 \Bρˆ〈0〉,
(g) if ρ ∈ T and sucT (ρ) is infinite, then Bρ =

⋂

{B̺ : ̺ ∈ sucT (ρ)}.

Then by induction on ℓg(ρ) for each ρ ∈ T we choose Iρ and t̄ρ so that for each
ρ ∈ T :

(⊗) (a) Iρ is a maximal antichain of Qκ and t̄ρ = 〈tρp : p ∈ Iρ〉, tρp < 2 for
each p ∈ Iρ,

(b) if tρp = 1, then p “η
˜
∈ Bρ” and if tρp = 0, then p “η

˜
/∈ Bρ”,

(c) if sucT (ρ) = ∅ and p ∈ Iρ, then ℓg(tr(p)) > iρ (see (⊛)(e) above),

(d) if |sucT (ρ)| = 1, then Iρ = Iρˆ〈0〉 and tρp = 1 − t
ρˆ〈0〉
p for p ∈ Iρ,

(e) if sucT (ρ) is infinite, p ∈ Iρ and tρp = 0, then p “η
˜

/∈ B̺” for some
̺ ∈ sucT (ρ),

(f) if ρ ⊳ ̺ ∈ T and q ∈ I̺, then there is unique p ∈ Iρ such that p ≤ q.

Now let Y =
⋂

ρ∈T

set(Iρ) (see 2.1(2)) and note that κ2 \ Y ∈ id2(i). By induction

on dp(ρ,T ) we are going to argue that for ρ ∈ T :

(♥)ρ for each ν ∈ Y we have

ν ∈ Bρ ⇐⇒ (∃p ∈ Iρ)(ν ∈ limκ(p) ∧ tρp = 1).

Case 1: sucT (ρ) = 0.
Since ν ∈ Y there is unique p ∈ Iρ such that ν ∈ limκ(p), recalling that for
p, q ∈ Qκ

(p, q are incompatible ) ⇒ (tr(p) /∈ q ∨ tr(q) /∈ p) ⇒ limκ(p) ∩ limκ(q) = ∅.

We know that Bρ = {ν ∈ κ2 : ν(iρ) = cρ} (see (⊛)(e)) and ℓg(tr(p)) > ip (see
(⊗)(c)), so

ν ∈ Bρ ⇐⇒ tr(p)(ip) = cp ⇐⇒ tρp = 1.

Case 2: |sucT (ρ)| = 1.
Let p be the unique element of Iρ = Iρˆ〈0〉 such that ν ∈ limκ(p). Then

ν ∈ Bρ ⇐⇒ ν /∈ Bρˆ〈0〉 ⇐⇒ tρˆ〈0〉p = 0 ⇐⇒ tρp = 1.

Case 3: sucT (ρ) is infinite.
Let p be the unique element of Iρ such that ν ∈ limκ(p).
First, assume tρp = 1. Thus p “η

˜
∈ Bρ =

⋂

{B̺ : ̺ ∈ sucT (ρ)}”. Suppose that
̺ ∈ sucT (ρ) and let q be the unique element of I̺ such that ν ∈ limκ(q). Then,
by (⊗)(f), p ≤ q and hence q “η

˜
∈ Bρ ⊆ B̺”, so t̺q = 1. By the inductive

hypothesis we get ν ∈ B̺. Since ̺ ∈ sucT (ρ) was arbitrary we conclude that
ν ∈

⋂

{B̺ : ̺ ∈ sucT (ρ)} = Bρ.
Second, assume tρp = 0. By (⊗)(e) we know that p “η

˜
/∈ B̺” for some ̺ ∈ sucT (ρ).
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Let q ∈ I̺ be the unique element such that ν ∈ limκ(q). Then p ≤ q and hence
t̺q = 0. By the inductive hypothesis we get ν /∈ B̺ and hence also ν /∈ Bρ.

Finally note that our assumption “ η
˜
/∈ B” implies that t

〈〉
p = 0 for all p ∈ I〈〉.

Therefore, (♥)〈〉 implies Y ∩B = ∅, so B ∈ id2(i).

(6) This is similar but easier. �3.2

Definition 3.4. 1) For i as in 3.1, we define cov(i), add(i), non(i), cf(i) as those
numbers for the ideal id(i), see 0.7.
2) If κi, η

˜
i are clear from Qi we may write Qi instead of i and write id(Qi) etc. In

particular we will be using this convention for Qκ from §1 and for Cohenκ.

Recalling Sκ
inac = {∂ : ∂ < κ is inaccessible}, note that for low inaccessible κ’s, Qκ

is like κ-Cohen, that is,

Claim 3.5. 1) If κ > sup(Sκ
inac) then for some open dense subsets I1,I2 of

Qκ,Cohenκ respectively, we have Qκ↾I1
∼= Cohenκ↾I2.

2) If S ⊆ Sκ
inac is bounded in κ then Qκ,S satisfies the conclusion of part (1), where

Qκ,S is naturally defined as Qκ↾{p : Sp ⊆ S}.

Proof. 1) Let µ = sup(Sκ
inac), so µ < κ.

Let I1 = {p ∈ Qκ : ℓg(tr(p)) ≥ µ}, let I2 = {η ∈ Cohenκ : ℓg(η) ≥ µ} and
F : I1 → I2 be F (p) = tr(p).
2) Similarly. �3.5

Claim 3.6. 1) id(Qκ) is a κ+–complete ideal on κ2 and also id(Cohenκ) is.
2) If κ is weakly compact and Iα ⊆ Qκ is pre-dense for α < α∗ < κ+ then the sets
J ∗

1 ,J
∗
2 are dense open subsets of Qκ where

J ∗
1 =

{

p ∈ Qκ : for every α < α∗ there is ∂ < κ such that
[η ∈ p ∩ ∂2 ⇒ p[η] is above some q ∈ Iα]

}

.

and
J ∗

2 =
{

p ∈ Qκ : limκ(p) ⊆
⋂

α<α∗

set(Iα)
}

(see 2.1(2)).

3) Assume κ is weakly compact. Suppose that p ∈ Qκ as witnessed by (tr(p), Sp, Λ̄p),
α < κ and let B ⊆ κ2 be a κ–Borel set. Then there is q ∈ Qκ such that:

(i) p ≤ q, tr(p) = tr(q),
(ii) Sp ∩ α = Sq ∩ α, Λ̄p↾α = Λ̄q↾α and

(iii) for some β ∈ (α, κ), if ν ∈ q ∩ β2 then
either q[ν]  “η

˜
∈ B” and limκ(q[ν]) ⊆ B,

or q[ν]  “η
˜
/∈ B” and limκ(q[ν]) ∩B = ∅.

Proof. 1) By 3.2(1).
2) By 1.9(2), pedantically by its proof.
3) We prove this by the induction on the depth γ of (the κ–Borel representation;
see the proof of 3.2(5)) of B.

Case 1: γ = 0 so B = {ν ∈ κ2 : ν(i) = c} for some i < κ, c < 2.
Obvious.

Case 2: B is the complement of a κ–Borel set B1 of depth < γ.
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Obvious by the phrasing of (3)(iii).

Case 3: B =
⋂

α<α(∗)

Bα, where α(∗) ≤ κ and Bα are κ–Borel sets of depth < γ.

Let I 1
α = {q ∈ Qκ : q satisfies (3)(iii) for Bα and α with β = βq,α < κ}. By the

induction hypothesis I 1
α is dense open in Qκ. Let

I2 =
{

q ∈ Qκ : either q  “η
˜
/∈ B

V[Qκ]
α ” for some α = α(q) < α∗

or q  “η
˜
∈ BV[Qκ]”

}

.

Clearly I2 is dense open. Let

I3,1 = {q ∈ I2 : q  “η
˜
/∈ Bα(q)” and q ∈ I 1

α(q)}.

Then for q ∈ I3,1 we have (∃β)(∀ν ∈ q ∩ β2)(limκ(q[ν]) ∩ Bα(q) = ∅) and hence
limκ(q) ∩Bα(q) = ∅ for q ∈ I3,1. We let

I3,2 = {q ∈ Qκ : q  “η
˜
∈ B” and limκ(q) ⊆ B}

and finally we set I3 = I3,1 ∪ I3,2.
Next consider:

(>) for every q0 ∈ Qκ there is q ∈ I3 above q0.

Why is (>) sufficient? First note that for every q ∈ I3 the demand (3)(iii) hold
for the pair (q,B). Indeed, by the definition of I3 we have to check the two
possibilities: q ∈ I3,1 and q ∈ I3,2. If q ∈ I3,1, then α(q) is well defined and
limκ(q) ∩ Bα(q) = ∅, so β = 0 is as required. If q ∈ I3,2 then also β = 0 is as
required. Now we may use (>) and 1.9(2) to get q ∈ Qκ satisfying (i)–(iii) of (3).

Why does (>) hold? Let q0 ∈ Qκ be given. We may find q1 above q0 such that
either q1  η

˜
∈ B or q1  η

˜
/∈ B. First assume that the latter is true. Then for

some α < α(∗) and q2 ≥ q1 we have q2  η
˜

/∈ Bα. By the inductive hypothesis
there is q3 ≥ q2 satisfying (3)(iii) for Bα and α. Since q3  η

˜
/∈ Bα, this implies

limκ(q3) ∩Bα = ∅ and therefore q3 ∈ I3,1 ⊆ I3.
Second, assume q1  η

˜
∈ B, i.e., q1 “η

˜
∈ Bα for every α < α(∗)”. Let

I3,2,α =
{

r ∈ Qκ : r is incompatible with q1 or q1 ≤ r and limκ(r) ⊆ Bα

}

;

by the inductive hypothesis it is an open dense set. By 3.6(2) we may find q4 ≥ q1
such that

(

∀α < α(∗)
)(

∃∂ < κ
)(

η ∈ q4 ∩
∂2 ⇒ (q4)[η] ∈ I3,2,α

)

.

Since (q4)[η] ∈ I3,2,α implies limκ((q4)[η]) ⊆ Bα (as q4 ≥ q1), we conclude limκ(q4) ⊆
Bα for all α < α(∗). Hence q4 ∈ I3,2 ⊆ I3. �3.6

Claim 3.7. Considering κ2 as an Abelian Group (with addition ⊕ modulo 2, coor-
dinatewise), the ideal id(Qκ) is closed under translation, i.e. if B ⊆ κ2 and η ∈ κ2
then B ∈ id(Qκ) ⇔ η ⊕B ∈ id(Qκ) where η ⊕B := {η ⊕ ν : ν ∈ B}.

Proof. Straightforward. �3.7

Claim 3.8. If κ is an inaccessible limit of inaccessibles, then κ2 can be partitioned
to two sets A0, A1 such that A0 is in id(Cohenκ) and A1 is in id(Qκ).
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Proof. Let 〈κi : i < κ〉 list the inaccessibles < κ in the increasing order and let

Iκi+1 =
{

q ∈ Qκi+1 : ℓg(tr(q)) > κi and tr(q)↾[κi, ℓg(tr(q)) is not constantly zero
}

.

Clearly, Iκi+1 is an open dense subset of Qκi+1 . Now, for η ∈ κ>2 let pη ∈ Qκ be
witnessed by (η, {κi+1 : κi > ℓg(η)}, 〈Λκi+1 : κi > ℓg(η)〉) where Λκi+1 = {Iκi+1}.
Then

(a) pη indeed belongs to Qκ,
(b) tr(pη) = η,
(c) pη is a nowhere-dense subtree of κ>2.

Let A0 =
⋃

{limκ(pη) : η ∈ κ>2}, A1 = κ2\A0. Let us argue that they are as
required.

First, why does A1 belong to id(Qκ)? Clearly A1 is κ–Borel and for p ∈ Qκ we
shall prove p 1 “η

˜
∈ A1”, this suffices. Let ν = tr(p), hence p, pν are compatible so

let q ∈ Qκ be a common upper bound. Then q  “η
˜
∈ limκ(q) ⊆ limκ(pν) ⊆ A0 =

κ2\A1”.
Second, why does A0 ∈ id(Cohenκ)? Because it is the union of |κ>2| = κ nowhere

dense sets (remember clause (c)). �3.8

Claim 3.9. 1) [κ weakly compact] Any κ–Borel set B is equal modulo id(Qκ) to
the union of ≤ κ sets, each is κ-closed and even Qκ–basic, see Definition 0.2(2).
2) Borelκ/id(Qκ) is a κ+–c.c. Boolean Algebra.

Proof. 1) We have id1(Qκ) = id2(Qκ) by 3.2(5). As Qκ satisfies the κ+-c.c. it is
enough to show that for a dense set of p ∈ Qκ, we have that limκ(p) ⊆ B or limκ(p)
is disjoint from B. But this easily holds by 3.6(3).
2) Should be clear. �3.9

Claim 3.10. [κ weakly compact] Assume F is a κ–Borel function from κ2 to κ2.
For a dense set of p ∈ Qκ, the function F can be read continuously on limκ(p), i.e.
for some club C of κ and h̄ = 〈hα : α ∈ C〉 we have:

(i) hα : p ∩ α2 −→ α2,
(ii) if η ∈ p ∩ α2, ν ∈ p ∩ β2, η ⊳ ν and {α, β} ⊆ C then hα(η) ⊳ hβ(ν),
(iii) if η ∈ limκ(p) then F (η) =

⋃

{hα(η↾α) : α ∈ C}.

Remark 3.11. This is parallel to “every Borel function F : [0, 1] −→ [0, 1] can be
approximated by step functions, that is functions such that for some finite partitions
of [0, 1] to intervals, it is constant on each interval”.

Proof. By 1.9(2), the set

I =
{

q ∈ Qκ : (∀α < κ)(∃β < κ)(∀ν ∈ q ∩ β2)(q[ν] forces a value to F (η
˜

)↾α)
}

is an open dense subset of Qκ.
Let us fix q ∈ I . Then by the definition of I there are an increasing sequence

〈β(q, α) : α < κ〉 of ordinals below κ and a sequence 〈g(q, α) : α < κ〉 of functions
such that for each α < κ we have

g(q, α) : β(q,α)2 −→ α2 and ν ∈ q ∩ β(q,α)2 ⇒ q[ν]  “F (η
˜

)↾α = g(q, α)(ν)”.

Let Eq = {δ < κ : δ is a limit ordinal and (∀α < δ)(β(q, α) < δ)}; clearly it is a
club of κ. For δ ∈ Eq we define a function hq,δ : q ∩ δ2 −→ q ∩ δ2 by:

hq,δ(ν) =
⋃

{

g(q, α)(ν↾β(q, α)) : α < δ
}

for ν ∈ q ∩ δ2.
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Clearly, for every δ ∈ Eq and ν ∈ δ2 we have

(⊠) q[ν]  “ F (η
˜

)↾δ =
⋃

α<δ

(F (η
˜

)↾α) =
⋃

α<δ

g(q, α)(η
˜
↾β(q, α)) = hq,δ(ν) ”.

For δ ∈ Eq and ν ∈ δ2 consider the set

Yδ,ν =
{

η ∈ limκ(q) : ν ⊳ η and F (η)↾δ 6= hq,δ(ν)
}

.

It is a κ–Borel set which (by (⊠)) belongs to id1(Qκ) = id2(Qκ). Hence

Y :=
⋃

{

Yδ,ν : δ ∈ Eq and ν ∈ δ2
}

∈ id(Qκ).

Let q∗ ≥ q be such that limκ(q∗) ∩ Y = ∅ (exists by the proof of 3.9(1)). Then
q∗, Eq, 〈hq,δ : δ ∈ Eq〉 have the properties required in (i)–(iii) and the Claim follows.

�3.10

Remark 3.12. For κ which is not weakly compact we may get a weaker result for
id1(Qκ) = id2(Qκ). For each α < κ let Iα be a maximal antichain of Qκ such that

q ∈ Iα ⇒ q forces a value to F (η
˜

)↾α.

Without loss of generality

(∗)0 α < β ∧ q ∈ Iβ ⇒ (∃p ∈ Iα)(p ≤ q)

Let 〈qα,i : i < i(α) ≤ κ〉 list Iα and let να,i be such that qα,i “F (η
˜

)↾α = να,i”.
Then clearly tr(qα,j) E tr(qα,i) ∈ qα,j ⇔ i = j. Let Yα =

⋃

i<i(α)

lim(qα,i) and note

that:

(∗)1 (a) Yα = κ2 mod id(Qκ) decreases with α, and
(b) 〈limκ(qα,i) : i < i(α)〉 is a partition of Yα.

Define Hα : Yα −→ α2 by Hα(η) = να,i if η ∈ limκ(qα,i). Then

(∗)3 (a) Hα is continuous on Yα in the sense that Hα(η) is the value of H ′
α(η↾j)

for every large enough j < κ, where
(b) we let H ′

α : κ>2 −→ κ>2 be

H ′
α(ν) =

{

να,i if tr(qα,i) E ν ∈ qα,i,
〈(0)α〉 if there is no such i.

Now consider

(∗)4 (a) Y =
⋂

α<κ

Yα and note Y = κ2 mod id(Qκ), and

(b) let H : Y −→ κ2 be defined by H(η) = lim〈Hα(η) : α < κ〉.

Concerning Lebesgue Density Theorem:

Conclusion 3.13. [κ weakly compact] If X ⊆ κ2 is κ-Borel, then for some Y ∈
id(Qκ) for every η ∈ X\Y for every α < κ large enough (2κ)[η↾α] ∩ X includes
limκ(p) for some p ∈ Qκ.

Remark 3.14. So this holds also for the complement of X .

Proof. By 3.6(3) there is a maximal antichain 〈pi : i < i∗〉 of members of Qκ and
S ⊆ i∗ such that i ∈ S ⇒ limκ(pi) ⊆ X and i ∈ i∗\S ⇒ limκ(pi) ∩ X = ∅. Then
i∗ < κ+ and let Y = κ2\

⋃

{limκ(pi) : i < i∗}, so clearly Y ∈ id(Qκ). If η ∈ X\Y ,
then by the choice of Y for some i < i∗, η ∈ limκ(pi) and necessarily i = i(η) is
unique and i ∈ S. Let α(η) be ℓg(tr(pi(η))). Clearly we are done. �3.13
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Claim 3.15. If I ⊆ Qκ is dense open and W ⊆ κ = sup(W ) then for some
p̄ = 〈pρ : ρ ∈ Ω〉 we have:

(a) Ω ⊆ κ>2, moreover Ω ⊆
⋃

{α2 : α ∈ W},
(b) pρ ∈ I ⊆ Qκ has trunk ρ for every ρ ∈ Ω,
(c) if ρ ⊳ ν ∈ pρ then ν /∈ Ω,
(d) {pρ : ρ ∈ Ω} is a predense subset of Qκ, moreover is a maximal antichain,
(e) letting (ρρ, Sρ, Λ̄ρ) witness pρ ∈ Qκ we have: if ρ1, ρ2 ∈ Ω and ℓg(ρ1) ≤

α = ℓg(ρ2) then Sρ2 = Sρ1\(α + 1), Λ̄ρ2 = Λ̄ρ1↾Sρ2 .

Proof. Let Ω1 = {tr(p) : p ∈ I } and for ρ ∈ Ω1 choose p1ρ ∈ I such that tr(p1ρ) = ρ

and let (ρ, S1
ρ , Λ̄

1
ρ) witness p1ρ ∈ Qκ with min(S1

ρ) > ℓg(ρ). Note that

ρ ∈ Ω1 ∧ ρ E ν ∈ p1ρ ⇒ ν ∈ Ω1

because I is open dense. Let S∗ =
⋃

{S1
ρ : ρ ∈ Ω1} and note that S∗ is a nowhere

stationary subset of κ. Let Λ̄ = 〈Λ∂ : ∂ ∈ S∗〉 where

Λ∂ =
⋃

{Λ1
ρ,∂ : ρ satisfies ρ ∈ Ω1 ∩

∂>2 and ∂ ∈ S1
ρ}.

Easily, if ∂ ∈ S∗ then Λ∂ is a set of ≤ ∂ dense subsets of Q∂ .
Next, for ρ ∈ Ω1 let p2ρ ∈ Qκ be witnessed by (ρ, S∗, Λ̄). Now we define Ω2,α by

induction on α ∈ W such that

Ω2,α =
{

ρ ∈ α2 : ρ ∈ Ω1 and if β ∈ W ∩ α ∧ ̺ ∈ Ω2,β ∧ ̺ ⊳ ρ then ρ /∈ p2̺
}

.

Lastly, let Ω =
⋃

α∈W

Ω2,α and pρ = p2ρ for ρ ∈ Ω. Now check. �3.15

Claim 3.16. Assume that κ is inaccessible limit of inaccessibles and Wε ⊆ κ =
sup(Wε) for ε < κ are pairwise disjoint. If A ∈ id(Qκ) then for some (S, Λ̄), p̄, Ī :

(a) p̄ = 〈pρ : ρ ∈ κ>2〉, pρ ∈ Qκ is defined by (ρ, S\(ℓg(ρ) + 1), Λ̄↾(S \ (ℓg(ρ) +
1))),

(b) Ī = 〈Iε : ε < κ〉,
(c) Iε ⊆ {pρ : ρ ∈ κ>2 ∧ ℓg(ρ) ∈ Wε} is a predense set and even a maximal

antichain of Qκ,
(d) A ⊆

⋃

{κ2\set(Iε) : ε < κ}.

Proof. Follows by the proof of 3.15 but we give details. Let A ∈ id(Qκ), hence
there are a maximal antichains Iε of Qκ such that A ⊆

⋃

ε<κ

(

κ2\set(Iε)
)

. As Qκ

satisfies the κ+–c.c. clearly |Iε| ≤ κ.
Recalling κ = sup(Sκ

inac) hence without loss of generality each p ∈ Iε is nowhere-
dense (see the proof of 3.8) and hence |Iε| = κ. Let Iε = {pε,i : i < κ} and
suppose that each pε,i is defined by (ηε,i, Sε,i, Λ̄ε,i). Without loss of generality
∂ ∈ Sε,i ⇒ ℓg(ηε,i) < ∂. Let

(∗)1 S = {∂ ∈ Sκ
inac: for some ε, i < ∂ we have ∂ ∈ Sε,i}.

Clearly,

(∗)2 S is a nowhere stationary subset of Sκ
inac.

Let

(∗)3 Λ̄ = 〈Λ∂ : ∂ ∈ S〉 where for ∂ ∈ S we let

Λ∂ =
⋃

{

Λε,i,∂ : ε < ∂, i < ∂ and ∂ ∈ Sε,i

}

.

Clearly,
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(∗)4 (〈〉, S, Λ̄) defines a condition p∗ ∈ Qκ, as S ⊆ κ is nowhere stationary and
if ∂ ∈ S then Λ∂ is a set of ≤ ∂ pre-dense subsets of Q∂ .

Lastly,

(∗)5 (a) for ρ ∈ κ>2 let pρ = (ρ, S\(ℓg(ρ) + 1), Λ̄↾(S\(ℓg(ρ) + 1))),
(b) for ε < κ let

I ′
ε =

{

pρ : for some i < κ we have i, ε < ℓg(ρ) ∈ Wε and ηε,i E ρ ∈ pε,i
}

.

Then

(∗)6 for each ε < κ
(a) I ′

ε is a predense subset of Qκ, and
(b) set(I ′

ε) ⊆ set(Iε).

[Why? For clause (a), if q ∈ Qκ then some p ∈ Iε is compatible with q and hence
there is r ≥ q, p. Let i < κ be such that p = pε,i and let ρ ∈ r be such that
ℓg(ρ) > ε, i, ℓg(tr(r)) and ℓg(ρ) ∈ Wε. Now, p = pε,i ≤ r implies ηε,i = tr(p) E

tr(r) E ρ ∈ r ⊆ pε,i. Hence pρ ∈ I ′
ε has trunk ρ and hence it is compatible with

r, so also with q. Concerning clause (b), assume η ∈ set(I ′
ε) ⊆ κ2. Then for some

ρ ∈ κ>2 we have pρ ∈ I ′
ε and η ∈ limκ(pρ). By the definition of I ′

ε , for some
i < ℓg(ρ) we have ηε,i E ρ ∈ pε,i. Hence tr(pρ) ∈ pε,i. By the choice of pρ, clearly

limκ(pρ) ⊆ limκ(p
[ρ]
ε,i) ⊆ limκ(pε,i) ⊆ set(Iε), so we are done.]

To get “Iε a maximal antichain” we choose Ωε,j ⊆ j2 by induction on j ∈
Wε \ (ε + 1) by:

(∗)7 Ωε,j =
{

ρ ∈ j2 : for some i ∈ Wε∩j\(ε+1), ηε,i E ρ ∈ pε,i but for no i1 ∈

Wε ∩ j \ (ε + 1) and ν ∈ Ωε,i1 do we have ρ ∈ pν
}

.

Then let

(∗)8 (a) Ωε =
⋃

{Ωε,j : j ∈ Wε \ (ε + 1)},
(b) I ′′

ε = {pρ : ρ ∈ Ωε}.

Now (S,Λ), 〈pρ : ρ ∈ Ωε〉 and 〈I ′′
ε : ε < κ〉 are as required. �3.16

§ 4. On add(Qκ) and cf(Qκ)

Definition 4.1. (1) For α < κ, ν ∈ α2, p ∈ Qκ, η ∈ p ∩ α2 we let

p[η,ν] =
{

ρ : ρ E ν or for some ̺ we have ηˆ̺ ∈ p ∧ ρ = νˆ̺
}

.

(2) For I ⊆ Qκ, α < κ and a permutation π of α2 let

I [α,π] =
{

p[η,ν] : p ∈ I , η ∈ p ∩ α2 and ν = π(η)
}

.

(3) Let Λ be a collection of subsets of Qκ and let α < κ. For a permutation π
of α2 we let

Λ[α,π] = {I [α,π] : I ∈ Λ}.

We also define

Λ[α] = {I [α,π] : π is a permutation of α2 and I ∈ Λ}

and Λ[<α] =
⋃

{Λ[β] : β < α}, here we allow α = κ.

Claim 4.2. (1) If α < κ and I ⊆ Qκ is open/dense/predense/maximal an-
tichain/of cardinality ≤ κ then so is I [α,π] in Qκ.

(2) If α < κ and Λ is a collection of subsets of Qκ, then

•
(

Λ[α]
)[α]

= Λ[α] and |Λ[α]| ≤ |Λ| + 22
|α|

+ ℵ0 ≤ |Λ| + κ,
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•
(

Λ[<α]
)[<α]

= Λ[<α] and |Λ[<α]| ≤ |Λ| + Σ{22
|β|

: β < α} ≤ |Λ| + κ.

Proof. Easy. �4.2

Definition 4.3. (1) For an inaccessible cardinal κ let Pr(κ) mean:
there are predense sets Iε ⊆ Qκ for ε < κ such that
if p ∈ Qκ then limκ(p) *

⋂

ε<κ

set(Iε).

(2) Let Sκ
pr = {∂ < κ : ∂ ∈ Sκ

inac ∧ Pr(∂)} and

nstprκ = nstκ,pr = {S ⊆ Sκ
inac : S is nowhere stationary and S ⊆ Sκ

pr}.

Observation 4.4. (1) If κ is inaccessible but it is not a Mahlo cardinal, then
Pr(κ).

(2) If κ is weakly compact, then ¬Pr(κ).
(3) If κ = sup(Sκ

inac), then κ = sup(Sκ
pr).

(4) If κ is Mahlo, i.e., Sκ
inac is a stationary subset of κ, then Sκ

pr is a stationary
subset of κ.

Proof. (1) First assume θ = sup(Sκ
inac) < κ. For ε < κ define

Iε =
{(

κ>2
)[νˆ〈0〉]

: ν ∈ κ>2 ∧ ℓg(ν) > ε
}

.

It should be clear that each Iε is a predense subset of Qκ and we claim that they
witness Pr(κ). So suppose that p ∈ Qκ and pick ν ∈ p of length greater than θ and
than ℓg(tr(p)); note that then p[ν] = (κ>2)[ν]. Let η ∈ κ2 be such that ν ⊳ η and
η(i) = 1 for i ∈ [ℓg(ν), κ). Clearly, η ∈ limκ(p) but η /∈ set(Iε) for ε > ℓg(ν).

Second, assume κ = sup(Sκ
inac) but it is not Mahlo. Let E be a club of κ disjoint

from Sκ
inac and let 〈αi : i < κ〉 be the increasing enumeration of E. For ε < κ let

Iε =
{(

κ>2
)[νˆ〈0〉]

: ν ∈ αi2 ∧ i > ε
}

.

Clearly, each Iε is a predense subset of Qκ. We will argue that they witness Pr(κ).
Let p ∈ Qκ and fix ε such that αε > ℓg(tr(p)). By induction on i ∈ [ε, κ) choose
νi ∈ αi2 ∩ p so that

• if ε ≤ j < i < κ then νjˆ〈1〉 E νi.

(It is clearly possible; at successor stages remember 1.5(1) and at limit stages
remember the choice of E.) Then η :=

⋃

{νi : ε ≤ i < κ} ∈ limκ(p) does not belong
to set(Iε).

(2) Remember Claim 3.6(2).

(3,4) Follow from part (1). �4.4

Question 4.5. For which inaccessible cardinals κ do we have Pr(κ)? See [Sh:F1580].

Claim 4.6. The following are equivalent for κ:

(a) ¬Pr(κ).
(b) If Λ is a set of ≤ κ maximal antichains of Qκ and α < κ, then there is

p ∈ Qκ such that tr(p) = 〈〉, Sp ∩ α = ∅ and limκ(p) ⊆ set(Λ).

Proof. (b) ⇒ (a) Straightforward by Definition 4.3(1).
(a) ⇒ (b) Suppose that Pr(κ) does not hold.

Assume Λ is a set of ≤ κ maximal antichains of Qκ. Let Λ1 = Λ[<κ] (see 4.1).
Then Λ1 = (Λ1)[<κ] and |Λ1| ≤ κ (remember 4.2). Since Pr(κ) fails, there is a
condition q ∈ Qκ such that lim(q) ⊆ set(Λ1) and ℓg(tr(q)) > α, Sq ∩ α = ∅.
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Let Sp = Sq and for ∂ ∈ Sp let Λ∂ = Λq,∂ . Put Λ̄ = 〈Λ∂ : ∂ ∈ Sp〉 and let p be
the condition determined by (〈〉, Sp, Λ̄).

Note that if η ∈ q ∩ β2, β < κ, then for every ν ∈ β2 also q[η,ν] satisfies
lim(q[η,ν]) ⊆ set(Λ1) by the choice of Λ1. Therefore we also get lim(p) ⊆ set(Λ1) ⊆
set(Λ), so p is as required. �4.6

Claim 4.7. Suppose that p ∈ Qκ, ℓg(tr(p)) < α∗ ≤ β∗ ≤ κ. Then there is q ∈ Qκ

such that

(a) p ≤ q, tr(q) = tr(p) and
(b) Sq \ (α∗, β∗) = Sp \ (α∗, β∗) and γ ∈ Sq \ (α∗, β∗) ⇒ Λq,γ = Λp,γ,
(c) Sq ∩ (α∗, β∗) ⊆ Sκ

pr.

Proof. We prove this by induction on β∗.

Case 0: α∗ = β∗ or α∗ + 1 = β∗

Trivial, as then (α∗, β∗) = ∅.

Case 1: β∗ = sup(β∗ ∩ Sp) + 1 but sup(β∗ ∩ Sp) /∈ Sp \ S
κ
pr.

Let γ∗ = sup(β∗ ∩ Sp). Use the inductive hypothesis for p and (α∗, γ∗) to get a
condition q. It will satisfy the demands for (α∗, β∗) as well as either γ∗ /∈ Sp or else
γ∗ ∈ Sκ

pr.

Case 2: β∗ > sup(β∗ ∩ Sp) + 1
Use the inductive hypothesis for γ∗ = sup(β∗ ∩ Sp) + 1, proceeding like in Case 1.

Case 3: β∗ = sup(β∗ ∩ Sp), so β∗ is limit
Pick an increasing continous sequence ᾱ = 〈αi : i ≤ cf(β∗)〉 such that α0 = α∗,
αcf(β∗) = β∗ and αi /∈ Sp for all 0 < i < cf(β∗). By induction on i ≤ cf(β∗) choose
qi such that

(a) q0 = p, tr(qi) = tr(p),
(b) Sqi \ (α0, αi) = Sp \ (α0, αi) and γ ∈ Sqi \ (α0, αi) ⇒ Λqi,γ = Λp,γ ,
(c) if j < i, then qj ≤ qi, Sqi \ (αj , αi) = Sqj \ (αj , αi) and γ ∈ Sqi \ (αj , αi) ⇒

Λqi,γ = Λqj ,γ ,
(d) if i = j + 1, then Sqi ∩ (αj , αi) ⊆ Sκ

pr.

There are no problems in carrying out the inductive construction. Then qcf(β∗) is
as required.

Case 4: β∗ = ∂ + 1, ∂ ∈ Sp \ Sκ
pr and ∂ > α∗

Here we use 4.6 for Q∂ , Λp,∂ and the ordinal α∗. So there is p∗ ∈ Q∂ such that

• tr(p∗) = 〈〉,
• Sp∗ ⊆ (α∗, ∂), and
• lim(p∗) ⊆ set(Λp,∂).

Now we define a condition q1 by letting:

• tr(q1) = tr(p),
• Sq1 = (Sp \ {∂}) ∪ Sp∗ ,
• Λq1,θ is

– Λp,θ if θ ∈ Sp \ Sp∗ ,
– Λp∗,θ if θ ∈ Sp∗ \ Sp,
– Λp,θ ∪ Λp∗,θ if θ ∈ Sp∗ ∩ Sp.

Then we continue as in Case 1 with q1, α∗, β∗ (as ∂ /∈ Sq1). �4.7

Conclusion 4.8. For any α < κ, the set {p ∈ Qκ : Sp ⊆ Sκ
pr \ α} is dense in Qκ.
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Note that if κ > sup(Sκ
inac), then id(Qκ) = id(Cohenκ). Therefore:

Hypothesis 4.9. For the rest of this section we assume that κ = sup(Sκ
inac) (so

also κ = sup(Sκ
pr), remember 4.4(3)).

Definition 4.10. (1) Let add(nstprκ ) be the minimal cardinal µ such that there
are Sζ ∈ nstprκ for ζ < µ with the property that there is no S ∈ nstprκ
satisfying

ζ < µ ⇒ Sζ ⊆ S mod bounded.

Dually, cf(nstprκ ) is the minimal cardinal µ such that there are Sζ ∈ nstprκ
for ζ < µ with the property that for every S ∈ nstprκ there is ζ < µ
satisfying S ⊆ Sζ mod bounded.

(2) For S ⊆ Sκ
inac we define:

(a) Q∗
κ,S is the subforcing of Qκ consisting of all conditions p ∈ Qκ satis-

fying Sp ⊆ S.
(b) id[Q∗

κ,S] is the collection of all A ⊆ κ2 such that for some J̄ = 〈Jζ :

ζ < κ〉 we have
(i) each Jζ is predense subset (or maximal antichain) of Qκ,

(ii) Jζ ⊆ Q∗
κ,S for each ζ < κ, and

(iii) A ⊆
⋃

ζ<κ

(

κ2 \ set(Jζ)
)

,

(c) add(id[Q∗
κ,S], id(Qκ)) = min{|A | : A ⊆ id[Q∗

κ,S] ∧
⋃

A /∈ id(Qκ)}.

(3) Add∗
pr,κ = min

{

add(id[Q∗
κ,S], id(Qκ)) : S ∈ nstprκ

}

.

Claim 4.11. (1) add(Qκ) = min
{

add(nstprκ ),Add∗
pr,κ

}

.
(2) cf(Qκ) ≥ cf(nstprκ ).

Proof. (1) (Step 1) add(Qκ) ≤ add(nstprκ ).

Let Sζ ∈ nstprκ for ζ < add(nstprκ ) be such that

S ∈ nstprκ ⇒
∨

ζ

κ = sup(Sζ \ S).

For ∂ ∈ Sκ
pr let Λ∗

∂ = {I ∂
ε : ε < ∂} witness ∂ ∈ Sκ

pr (see Definition 4.3(1)). For

ζ < add(nstprκ ) let4

Bζ = κ2 \
{

η ∈ κ2 :
(

∀∞∂ ∈ Sζ

)(

η↾∂ ∈ set(Λ∗
∂)
)}

.

Clearly Bζ ∈ id(Qκ). Now it suffices to prove that B :=
⋃
{

Bζ : ζ < add(nstprκ )
}

/∈
id(Qκ). So suppose towards a contradiction that B ∈ id(Qκ) and let (S, Λ̄, p̄, Ī )
be given by Claim 3.16 for B. Next,

(∗)1 if ε < κ, α < κ and η ∈ α2, then there are β, ν, ρ such that
(a) α < β < κ,
(b) η ⊳ ν ∈ β2,
(c) pρ ∈ Iε and ρ E ν and ν ∈ pρ,
(d) if ∂ ∈ S ∩ (α, β] then ν↾∂ ∈ set(Λ∂).

[Why? Consider the triple (η, S\(α + 1), 〈Λ∂ : ∂ ∈ S\(α + 1)〉). It defines the
condition pη ∈ Qκ and we know that Iε is a predense subset of Qκ. Hence for
some ρ ∈ κ>2, pρ ∈ Iε and the conditions pρ, pη are compatible in Qκ. Then there

4Recall that “∀∞∂ ∈ S” means “for all but boundedly many ∂ ∈ S”.
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is ν ∈ κ>2 such that tr(pρ) ⊳ ν ∈ pρ, tr(pη) ⊳ ν ∈ pη. By the definition of pη
above, ℓg(ν), ν, ρ satisfy all the requirements.]

Now,

(∗)2 For ε < κ let F ε
1 , F

ε
2 : κ>2 −→ κ>2 be such that for each η ∈ κ>2, the triple

(β, ν, ρ) given by β = ℓg(F ε
1 (η)), ν = F ε

1 (η) and ρ = F ε
2 (η), is as required

above in (∗)1 for ε and η.
(∗)3 Let E1 = {δ < κ : δ a limit ordinal and (ε < δ ∧ η ∈ δ>2) ⇒ F ε

1 (η) ∈ δ>2}.

By the choice of 〈Sζ : ζ < add(nstprκ )〉 there is ζ < add(nstprκ ) such that Sζ \ S is
unbounded in κ. Easily we may choose an unbounded set S′ ⊆ Sζ \ S such that

• the closure E of S′ is disjoint from S, and
• if γ0 ∈ E, γ1 = min(E \ (γ0 + 1)), then (γ0, γ1) ∩ E1 6= ∅.

Let 〈γi : i < κ〉 list E ∪ {0} in the increasing order (so γi+1 ∈ Sζ \ S and γi /∈ S;
remember γ0 = 0 /∈ S ⊆ Sκ

inac). By induction on i < κ we choose ηi ∈ γi2 such that

(a) j < i < κ ⇒ ηj ⊳ ηi,

(b) if i = j + 1 then ηi /∈ set(Λ∗
γi

) and F j
1 (ηj) E ηi,

(c) if ∂ ∈ S ∩ (γi + 1), i > 0, then ηi↾∂ ∈ set(Λ∂),

(d) if j < i then F j
2 (ηj) E ηi ∈ p

F
j
2 (ηj)

(follows from (b)+(c) and (∗)2).

If we succeed in carrying out the induction, then we may let η =
⋃

i<κ

ηi and note

that

• η belongs to Bζ because η↾γi /∈ set(Λ∗
γi

) for all successor i < κ by clause
(b),

• η does not belong to B by clauses (c)+(d).

Consequently, η witnesses Bζ * B, a contradiction.

Why can we carry out the induction?
For i = 0 it is trivial.
For a limit i < κ we let ηi =

⋃

j<i

ηj .

Let i = j + 1. First, F j
1 (ηj) satisfies the requirements on ηi except that ℓg(F j

1 (ηj))
is not γi (and so “ηi /∈ set(Λ∗

γi
)” from (b) is meaningless): it is < γi by the choices

of E1 and E.
Second, we use the definition of Sζ ⊆ Sκ

pr and γj+1 ∈ Sζ \ S for the condition

with trunk F j
1 (ηj) and 〈Λ∂ : ∂ ∈ (γj , γj+1) ∩ S〉 and the choice of Λ∗

γi
.

This completes the proof of “add(Qκ) ≤ add(nstprκ )”.

(Step 2) add(Qκ) ≤ Add∗
pr,κ.

It should be obvious that if S ⊆ Sκ
pr then add(Qκ) ≤ add(id[Q∗

κ,S], id(Qκ)).

(Step 3) min
{

add(nstprκ ),Add∗
pr,κ

}

≤ add(Qκ).

Why? Assume Ai ∈ id(Qκ) for i < i∗ < min
{

add(nstprκ ),Add∗
pr,κ

}

. For each i let

(Si, Λ̄i, Īi, p̄i) be given by Claim 3.16 for Ai. By Conclusion 4.8 (and the proof of
3.16) we may also require that Si ∈ nstprκ for all i < i∗. As i∗ < add(nstprκ ) there
is S ∈ nstprκ such that

i < i∗ ⇒ Si ⊆ S mod Jbd
κ .
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Then easily Ai ∈ id[Q∗
κ,S ] for every i < i∗. Since i∗ < Add∗

pr,κ we also have

i∗ < add(id[Q∗
κ,S ], id(Qκ)) and hence

⋃

i<i∗
Ai ∈ id(Qκ) and we are done.

(2) In order to show cf(Qκ) ≥ cf(nstprκ ) let us assume towards contradiction that
µ := cf(Qκ) < cf(nstprκ ). Let 〈Bζ : ζ < µ〉 witness µ = cf(Qκ) and let Sζ , Λ̄ζ,
p̄ζ = 〈pζ,ρ : ρ ∈ κ>2〉 and Īζ = {Iζ,i : i < κ} be given by 3.16 for Bζ . Let
S ∈ nstprκ be such that

ζ < µ ⇒ κ = sup(S\Sζ).

For each ∂ ∈ S let Λ∗
∂ = {I ∂

ε : ε < ∂} witness ∂ ∈ Sκ
pr (see Definition 4.3(1)) and

let

B := {η ∈ κ2 : (∃∞∂ ∈ S)(∃ε < ∂)(η↾∂ /∈ set(I ∂
ε ))}.

Clearly B ∈ id(Qκ), so for some ζ < µ we have B ⊆ Bζ . Let E ⊆ κ \ Sζ be a club
and let p ∈ Qκ be a condition determined by (〈〉, Sζ , Λ̄ζ). By induction on i < κ
we choose αi ∈ E and ηi ∈ αi2 ∩ p so that

(i) 〈αi : i < κ〉 ⊆ E is increasing continuous,
(ii) 〈ηi : i < κ〉 is ⊳–increasing continuous,

(iii) for each i < κ, for some ρ ∈ κ>2 we have ρ ⊳ ηi+1 and pζ,ρ ∈ Iζ,i,
(iv) for each i < κ there is ∂ ∈ (αi, αi+1) ∩ S such that ηi+1↾∂ /∈

⋂

ε<∂

set(I ∂
ε ).

It should be clear how to carry out the construction. At the end, the sequence
η :=

⋃

i<κ

ηi ∈ κ2 belongs to B (by (iv)) but it does not belong to Bζ (by (iii)),

contradicting the choice of ζ < µ. �4.11

Claim 4.12. If κ is Mahlo and there is a non-reflecting stationary set S ⊆ Sκ
pr,

then

(1) add(nstprκ ) ≤ bκ,
(2) above we actually have add(nstκ,S) = bκ,
(3) dκ ≤ cf(nstprκ ).

Proof. Straightforward, as for S′ ⊆ S we have:
S′ ∈ nstprκ if and only if S′ is non-stationary. �4.12

§ 5. The parallel of the Cichoń Diagram

As before, λ, ∂, κ vary on inaccessibles.

We have a characterization of κ–meagre sets similar to the one for the case of
κ = ℵ0. (Note: here κ inaccessible is used.)

Observation 5.1. 1) If X ⊆ κ2 is κ–meagre and A ⊆ κ is unbounded then there
is an increasing sequence ᾱ of members of A of length κ and η ∈ κ2 such that

X ⊆ Xη,ᾱ := {ν ∈ κ2 : for every i < κ large enough, η↾[αi, αi+1) * ν}.

Moreover, if A contains a club of κ then the sequence ᾱ above can be increasing
continuous.
2) If η ∈ κ2 and ᾱ is an increasing sequence of ordinals < κ of length κ then the
set Xη,ᾱ defined above is a κ-meagre subset of κ2.
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Proof. 1) Let X ⊆
⋃

{limκ(Ti) : i < κ} where Ti is a nowhere dense subtree of
κ>2. For every infinite α ∈ A let 〈(ηα,ε, iα,ε) : ε < 2|α|〉 list α2 × α, and then we

choose να,ε, βα,ε by induction on ε ≤ 2|α| such that:

(a) βα,ε = β(α, ε) < κ is increasing continuous with ε,

(b) να,ε ∈ β(α,ε)2,
(c) ζ < ε ⇒ να,ζ E να,ε,
(d) ηα,εˆνα,ε+1 /∈ Tiα,ε

.

Why we can? For ε = 0, let να,ε = 〈〉, for limit ε let να,ε =
⋃

{να,ζ : ζ < ε} recalling

(by 2.2) that cf(κ) = κ > 2|α| ≥ ε and for ε = ζ + 1 use “Tiα,ε
is nowhere dense

subtree of κ>2”.
Now by induction on i < κ we choose (αi, νi) such that:

(e) αi ∈ A is infinite increasing with i, αi minimal under these restrictions,
(f) νi ∈ αi2 is ⊳–increasing,
(g) if i = j + 1 and γ = 2|αj| then αi = min{α ∈ A : α > αj + ℓg(ναj,γ)} and

νi is a member of αi2 such that νjˆναj ,γ ⊳ νi.

There is no problem to carry out the induction and 〈αi : i < κ〉, η :=
⋃

{νi : i < κ}
are as required.

2) Should be clear. �5.1

Remark 5.2. The ideal id(Cohenκ) is an ideal of subsets of κ2. It has a natural
relative on κκ — the ideal of meagre subsets of κκ. The two ideals are isomorphic in
a suitable sense and they have the same cardinal coefficients, cf [MRSh 799, Section
4].

Claim 5.3. (1) add(Cohenκ) ≤ bκ ≤ non(Cohenκ).
(2) cov(Cohenκ) ≤ dκ ≤ cf(Cohenκ).
(3) cf(Cohenκ) = max{dκ, non(Cohenκ)}.
(4) add(Cohenκ) = min{bκ, cov(Cohenκ)}.

Proof. Our arguments are similar to those for κ = ℵ0.

(1) We will show that add(Cohenκ) ≤ bκ (the inequality bκ ≤ non(Cohenκ) should
be clear; remember 5.2). Let µ = bκ and let {gα : α < µ} ⊆ κκ exemplify this. For
each α < µ let

Eα =
{

δ < κ : δ is a limit ordinal and
(

∀i < δ
)(

gα(i) < δ
)}

.

Let β̄α = 〈βα,i : i < κ〉 list Eα in the increasing order and let ηι ∈ κ2 be constantly
ι for ι = 0, 1. Then {Xηι,β̄α

: ι < 2 and α < µ} is a collection of µ many κ–meagre
sets. Assume towards contradiction that their union A =

⋃

{Xηι,β̄α
: ι < 2 and α <

µ} is meagre. Hence, by 5.1, there are η ∈ κ2 and an increasing continous β̄ ∈ κκ
such that A ⊆ Xη,β̄. Let g ∈ κκ be defined by g(j) = βj+1. Then for some
α < µ we have ¬(gα ≤Jbd

κ
g). If βj < βα,i ≤ βj+1, then j ≤ βj < βα,i and hence

gα(j) < βα,i ≤ βj+1 = g(j), so the set

S = {j < κ : (βj , βj+1] ∩ {βα,i : i < κ} = ∅}

is of size κ. Choose a subset S0 ⊆ S of size κ such that j ∈ S0 ⇒ j + 1 /∈ S0. Let
ν ∈ κ2 be such that ν↾[βj , βj+1) = η↾[βj , βj+1) for j ∈ S0 and ν(i) = 1 whenever
i /∈

⋃

{[βj, βj+1) : j ∈ S0}. Then ν ∈ Xη0,β̄α
\Xη,β̄, contradicting A ⊆ Xη,β̄ .
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(2) We will show that dκ ≤ cf(Cohenκ). So let µ = cf(Cohenκ) and let 〈Aα : α <
µ〉 list a cofinal subset of id(Cohenκ). For each α < µ we can find (να, β̄α) as in 5.1
such that Aα ⊆ Xνα,β̄α

. Let

Eα =
{

δ < κ : δ is a limit ordinal such that (∀i)(βα,i < δ ⇔ i < δ)
}

,

it is a club of κ. Towards contradiction assume dκ > µ. Then there is a club E of
κ such that sup(Eα\E) = κ for all α < µ. Let ν ∈ κ2 and the sequence β̄ list E
in increasing order and consider the κ–meagre set Xν,β̄ . For some α < µ we have
Xν,β̄ ⊆ Aα ⊆ Xνα,β̄α

. Easy contradiction to κ = sup(Eα\E).

The inequality cov(Cohenκ) ≤ dκ should be clear (remember 5.2).

(3) Recall that non(Cohenκ) ≤ cf(Cohenκ) by 0.9 and dκ ≤ cf(Cohenκ) is proved
in (2) above. So we are left with:

cf(Cohenκ) ≤ dκ + non(Cohenκ).

Let µ = non(Cohenκ); now

(⊞) there is {̺β : β < µ} ⊆ κκ such that for every ν ∈ κκ for some β < µ we
have sup{i < κ : ̺β(i) = ν(i)} = κ.

[Why? For ρ ∈ κ2 let νρ ∈ κκ be such that for i < κ, νρ(i) is γρ,i when γρ,i < κ is
the minimal γ < κ such that, if possible, ρ(i+γ) = 1 (and if there is no such γ then
it is 0). Let η0 ∈ κκ be constantly 0. Now if Λ ⊆ κ2 is non-meagre of cardinality µ
then recalling 5.1 the set {νρ : ρ ∈ Λ} ∪ {η0} ⊆ κκ is as required.]

Let 〈Eγ : γ < dκ〉 be a sequence of clubs of κ such that for any club E of
κ, for some γ, Eγ ⊆ E, this is a variant of the definition of dκ. For γ < dκ let
ᾱγ = 〈αγ,i : i < κ〉 list Eγ ∪ {0} in increasing order.

Let 〈ρj : j < κ〉 list
⋃

{[i,j)2 : i < j < κ} and for (β, γ, ξ) ∈ µ × dκ × dκ let
Aβ,γ,ξ = X̺β,γ ,ᾱξ

from 5.1 where:

(⊚) for β < µ and γ < dκ let ̺β,γ ∈ κ2 be such that ̺β,γ↾[αγ,i, αγ,i+1) is equal

to ρ̺β(i) if ρ̺β(i) ∈
[αγ,i,αγ,i+1)2 and is constantly zero otherwise.

So A = {Aβ,γ1,γ2 : β < µ, γ1 < dκ, γ2 < dκ} is a subset of id(Cohenκ) and has
cardinality ≤ µ+ d+ d = max{µ, d}. Hence it suffices to prove that A is cofinal in
id(Cohenκ). To this end let A ∈ id(Cohenκ), and let η ∈ κ2 and increasing ᾱ ∈ κκ
be such that A ⊆ Xη,ᾱ (remember 5.1).

Now, E := {α < κ : α is limit and (∀i < α)(αi < α)} is a club of κ, hence
there is γ(1) < dκ such that E ⊇ Eγ(1). Then A ⊆ Xη,ᾱ ⊆ Xη,ᾱγ(1)

. Let ̺ ∈ κκ

be such that i < κ ⇒ η↾[αγ(1),i, αγ(1),i+1) = ρ̺(i) and let β < µ be such that
B = {i < κ : ̺(i) = ̺β(i)} is an unbounded subset of κ. Pick γ(2) < d such that

Eγ(2) ⊆
{

α ∈ Eγ(1) : α is limit and (∀i < α)(αγ(1),i < α)
}

and [αγ(2),i, αγ(2),i+1) ∩B 6= ∅ for every i. Now clearly it suffices to prove:

(∗) A ⊆ Aβ,γ(1),γ(2).

Why does (∗) hold? Fix ν ∈ A and we shall prove that ν ∈ Aβ,γ(1),γ(2). By the

choice of (η, ᾱ) we know ν ∈ Xη,ᾱ, so for i < κ large enough ν↾[αi, αi+1) * η. Let
i∗ < κ be such that ν↾[αi, αi+1) * η for all i ≥ i∗.

Let i ∈ [i∗, κ). By the choice of γ(2) we can fix i1 ∈ B such that αγ(2),i ≤ i1 <
αγ(2),i+1. Then, by the definition of B, we have ̺(i1) = ̺β(i1) and by the choice

of ̺ we have ρ̺(i1) = ρ̺β(i1) = η↾[αγ(1),i1 , αγ(1),i1+1) ∈ [αγ(1),i1
,αγ(1),i1+1)2. By the

choice of ̺β,γ(1) in (⊚) we have
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(⊡) ̺β,γ(1)↾[αγ(1),i1 , αγ(1),i1+1) = η↾[αγ(1),i1 , αγ(1),i1+1).

Since Eγ(1) ⊆ E, we may find i2 < κ such that [αi2 , αi2+1) ⊆ [αγ(1),i1 , αγ(1),i1+1).
Then necessarily i2 ≥ i1 ≥ i∗ and hence we have

ν↾[αi2 , αi2+1) 6= η↾[αi2 , αi2+1) = ̺β,γ(1)↾[αi2 , αi2+1),

and consequently ν↾[αγ(1),i1 , αγ(1),i1+1) 6= ̺β,γ(1)↾[αγ(1),i1 , αγ(1),i1+1). Since Eγ(2) ⊆
{

α < κ : α is limit and (∀j < α)(αγ(1),j < α)
}

, we know that

(⊠) [αγ(1),i1 , αγ(1),i1+1) ⊆ [αγ(2),i, αγ(2),i+1) and thus ν↾[αγ(2),i, αγ(2),i+1) 6=
̺β,γ(1)↾[αγ(2),i, αγ(2),i+1).

Now we easily finish concluding that ν ∈ X̺β,γ(1),ᾱγ(2)
= Aβ,γ(1),γ(2), as desired.

(4) It follows from 0.9 and 5.3(1) that µ := add(Cohenκ) ≤ min{bκ, cov(Cohenκ)}.
In order to show the converse inequality assume towards contradiction that µ <
min{bκ, cov(Cohenκ)}. Suppose that A = {Aγ : γ < µ} is a family of members of
id(Cohenκ) (and we will argue that

⋃

A ∈ id(Cohenκ)). For γ < µ let (ηγ , β̄γ) be
as in 5.1 and such that Aγ ⊆ Xηγ ,β̄γ

and let

Eγ = {α < κ : α is limit and (∀i < α)(βγ,i < α)}

(it is a club of κ). As µ < bκ we may find an increasing continuous sequence
β̄ = 〈βj : j < κ〉 of ordinals below κ such that for each γ and every sufficiently
large j we have βj ∈ Eγ . Then Xηγ ,β̄γ

⊆ Xηγ ,β̄
. Since µ < cov(Cohenκ), by an

easy dualization of (⊞) of (3), we have:

(⊞)∗⊥ there is ν ∈ κ2 such that for every γ < µ the set

Zγ :=
{

j < κ : ηγ↾[βj , βj+1) = ν↾[βj , βj+1)
}

is of size κ.

Using µ < bκ again, we may find an increasing sequence ᾱ such that

(∀γ < µ)(∃i0 < κ)(∀i > i0)(Zγ ∩ [αi, αi+1) 6= ∅).

Then letting δi = βαi
(for i < κ) we will have Xηγ ,β̄

⊆ Xν,δ̄ for each γ and the
desired conclusion easily follows. �5.3

Claim 5.4. (1) If κ = sup(Sκ
inac) then cov(Cohenκ) ≤ non(Qκ).

(2) If κ = sup(Sκ
inac) then cov(Qκ) ≤ non(Cohenκ).

Proof. Both follow by 3.7 and 3.8.

(1) Let A0 ∈ id(Cohenκ), A1 ∈ id(Qκ) be a partition of κ2 (see 3.8). There is X =
{ηε : ε < µ} ⊆ κ2 where µ = non(Qκ) such that X /∈ id(Qκ). Now, κ2 with addition
⊕ modulo 2, coordinatewise, is an Abelian Group and both ideals id(Cohenκ) and
id(Qκ) are closed under translations (see 3.7). Thus {ηε⊕A0 : ε < µ} is a family of
≤ µ members of id(Cohenκ) and it suffices to prove that

⋃

{ηε ⊕A0 : ε < µ} = κ2.
So let ν ∈ κ2. Since {ηε : ε < µ} /∈ id(Qκ), also {ηε ⊕ ν : ε < µ} /∈ id(Qκ) and
hence it is not included in A1. Thus for some ε < µ, ηε⊕ν ∈ A0, hence ν ∈ ηε⊕A0

as required.
2) Same proof, just interchanging A0 and A1. �5.4

Claim 5.5. If bκ > cov(Cohenκ), then cov(Qκ) ≤ cov(Cohenκ).
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Proof. If κ > sup(Sκ
inac), then cov(Qκ) = cov(Cohenκ).

So suppose κ is an inaccessible limit of inaccessibles and bκ > cov(Cohenκ).
Assume towards contradiction that cov(Qκ) > cov(Cohenκ) := µ.

Using the assumption bκ > µ = cov(Cohenκ) and Observation 5.1 we can easily
find an increasing sequence θ̄ = 〈θε : ε < κ〉 and a family Υ ⊆

∏

ε<κ

θε such that

(∗)1 0 < θε < κ for each ε < κ, |Υ| = µ and
(∗)2 (∀ν ∈

∏

ε<κ

θε)(∃ρ ∈ Υ)(∀∞ε < κ)(ρ(ε) 6= ν(ε)).

Next, by induction on ε < κ, we choose inaccessible cardinals ∂ε such that:

(∗)3 ∂ε > θε +
∑

ζ<ε

∂ζ and ∂ε > sup(∂ε ∩ Sκ
inac).

For each ε < κ fix a partition 〈Sε,i : i < θε〉 of ∂ε into stationary sets and

• for 0 < i < θε define Aε,i =
{

η ∈ ∂ε2 : the set {α ∈ Sε,i : η(α) = 1}
is stationary but for each j < i the set {α ∈ Sε,j : η(α) = 1} is not
stationary

}

, and

• let Aε,0 = ∂ε2 \
⋃

i∈[1,θε)

Aε,i.

Note that 〈Aε,i : i < θε〉 is a partition of ∂ε2 such that

(∗)4 ν ∈ ∂ε>2 ⇒ {η ∈ Aε,i : ν ⊳ η} /∈ id(Cohen∂ε
).

Now, for ρ ∈ Υ and α < κ let

Iρ,α =
{

p ∈ Qκ : ℓg(tr(p)) > α and for some ε < κ
α < ∂ε < ℓg(tr(p)) ∧ tr(p)↾∂ε ∈ Aε,ρ(ε)

}

.

It should be clear that each Iρ,α is an open dense subset of Qκ (remember that
∂ε > sup(∂ε ∩ Sκ

inac) and use (∗)4).
As we are assuming towards contradiction that cov(Qκ) > µ, the set

⋂

ρ∈Υ

⋂

α<κ

set(Iρ,α)

is not empty. Let η ∈
⋂

ρ∈Υ

⋂

α<κ

set(Iρ,α) and let ν ∈
∏

ε<κ

θε be such that

ε < κ ⇒ η↾∂ε ∈ Aε,ν(ε).

By the choice of η, for every ρ ∈ Υ we have sup({ε < κ : η↾∂ε ∈ Aε,ρ(ε)}) = κ.
Hence

(∀ρ ∈ Υ)(∃∞ε < κ)(ν(ε) = ρ(ε)),

a clear contradiction with (∗)2. �5.5

Conclusion 5.6. Assume that either

(a) κ > sup(Sκ
inac), or

(b) bκ > cov(Cohenκ), or
(c) there is a stationary non-reflecting set S ⊆ Sκ

pr.

Then add(Qκ) ≤ add(Cohenκ).

Proof. If κ > sup(κ∩Sκ
inac) then Qκ is equivalent to Cohenκ, and moreover id(Qκ) =

id(Cohenκ) (see 3.5(1)) and so add(Qκ) = add(Cohenκ).
Let us assume bκ > cov(Cohenκ). Then, by 5.3(4),

(•)1 add(Cohenκ) = cov(Cohenκ)

and by the Claim 5.5

(•)2 cov(Qκ) ≤ cov(Cohenκ).
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Hence (first inequality trivial, holds for any ideal, e.g. see 0.9, the other two by
(•)2 and (•)1)

(•) add(Qκ) ≤ cov(Qκ) ≤ cov(Cohenκ) = add(Cohenκ).

Finally, if bκ ≤ cov(Cohenκ) but there is a stationary non-reflecting set S ⊆ Sκ
pr,

then by 5.3(4) we have add(Cohenκ) = bκ and by 4.12(1)+4.11(1) we get

add(Qκ) ≤ add(nstprκ ) ≤ bκ = add(Cohenκ).

So we are done. �5.6

The following result is dual to 5.5.

Claim 5.7. If dκ < non(Cohenκ), then non(Cohenκ) ≤ non(Qκ).

Proof. If κ > sup(Sκ
inac ∩ κ) this holds trivially as in the proof of 5.6, so from now

on assume κ = sup(Sκ
inac∩κ). For every θ̄ = 〈θε : ε < κ〉 with 1 < θε < κ we choose

∂̄θ̄ = 〈∂θ̄,ε : ε < κ〉, S̄θ̄,ε = 〈Sθ̄,ε,i : i < θε〉, Āθ̄,ε = 〈Aθ̄,ε,i : i < θε〉 as in the proof of

Claim 5.5. That is, ∂̄θ̄, S̄θ̄,ε, Āθ̄,ε satisfy for ε < κ:

(⊕)1 ∂θ̄,ε < κ is an inaccessible cardinal such that ∂θ̄,ε > θε +
∑

ζ<ε

∂θ̄,ζ and

∂θ̄,ε > sup(∂θ̄,ε ∩ Sκ
inac),

(⊕)2 〈Sθ̄,ε,i : i < θε〉 is a partition of ∂ε into stationary sets, and

(⊕)3 for 0 < i < θε, Aθ̄,ε,i =
{

η ∈ ∂ε2 : the set {α ∈ Sθ̄,ε,i : η(α) = 1}
is stationary but for each j < i the set {α ∈ Sθ̄,ε,j : η(α) = 1} is not

stationary
}

, and

(⊕)4 Aθ̄,ε,0 = ∂ε2 \
⋃

i∈[1,θε)

Aθ̄,ε,i.

A mapping κ2 ∋ η 7→ νθ̄,η ∈
∏

ε<κ

θε is defined by the condition η↾∂θ̄,ε ∈ Aθ̄,ε,νθ̄,η(ε)

for each ε < κ.
Choose Υ ⊆ κ2, Υ /∈ id(Qκ), of cardinality non(Qκ). For any θ̄ as above let

Υθ̄ = {νθ̄,η : η ∈ Υ}. Then clearly

(⊕)5 Υθ̄ ⊆
∏

ε<κ

θε and Υθ̄ has cardinality ≤ non(Qκ).

Dually to arguments in 5.5 we will argue now that

(⊕)6 for every ρ ∈
∏

ε<κ

θε, there is ν ∈ Υθ̄ such that (∃∞ε < κ)(ρ(ε) = ν(ε)).

Why? Suppose ρ ∈
∏

ε<κ

θε. For α < κ let

Iα =
{

p ∈ Qκ : ℓg(tr(p)) > α and for some ε < κ
α < ∂θ̄,ε < ℓg(tr(p)) ∧ tr(p)↾∂θ̄,ε ∈ Aθ̄,ε,ρ(ε)

}

.

Clearly, each Iα is an open dense subset of Qκ (remember ∂θ̄,ε > sup(∂θ̄,ε∩Sκ
inac)).

Since Υ /∈ id(Qκ) we know that Υ ∩
⋂

α<κ

set(Iα) 6= ∅. Let η ∈ Υ ∩
⋂

α<κ

set(Iα).

Then (∃∞ε < κ)(νθ̄,η(ε) = ρ(ε)). Thus (⊕)6 is justified.

Easily by definition of dκ we may choose a family {ᾱξ : ξ < dκ} such that

(⊕)7 (a) ᾱξ = 〈αξ,ε : ε < κ〉 is an increasing continuous sequence in κ (for each
ξ < dκ), and

(b) if 〈αi : i < κ〉 is an increasing sequence of ordinals below κ, then for
some ξ < dκ we have

(∀∞ε < κ)(∃i < κ)(αξ,ε < αi < αi+1 < αξ,ε+1).
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Now, for each ξ < dκ let θ̄ξ = 〈θξ,ε : ε < κ〉, where θξ,ε = |[αξ,ε,αξ,ε+1)2|. Also, for

each ξ, ε fix a bijection πξ,ε : θξ,ε −→ [αξ,ε,αξ,ε+1)2 and for ν ∈
∏

ε<κ

θξ,ε (for ξ < dκ)

set xξ,ν =
⋃

ε<κ

πξ,ε(ν(ε)) ∈ κ2. Consider the set

X =
{

xξ,ν : ξ < dκ ∧ ν ∈ Υθ̄ξ

}

.

We claim that

(⊕)8 X /∈ id(Cohenκ).

If not, then for some η ∈ κ2 and an increasing continuous sequence ᾱ = 〈αi :
i < κ〉 ⊆ κ we have X ⊆ Xη,ᾱ. Let ξ < dκ be given by (⊕)7(b) for ᾱ and let
ρ∗ ∈

∏

ε<κ

θξ,ε be such that πξ,ε(ρ
∗(ε)) = η↾[αξ,ε, αξ,ε+1) for each ε < κ. It follows

from (⊕)6 that for some ν ∈ Υθ̄ξ
we have (∃∞ε < κ)(ρ∗(ε) = ν(ε)). This implies

that
(

∃∞ε < κ
)(

xξ,ν↾[αξ,ε, αξ,ε+1) = η↾[αξ,ε, αξ,ε+1)
)

and hence (remembering

the choice of ξ) we get
(

∃∞i < κ
)(

xξ,ν↾[αi, αi+1) = η↾[αi, αi+1)
)

. Consequently
xξ,ν /∈ Xη,ᾱ, a contradiction.

It follows from (⊕)8 that dκ < non(Cohenκ) ≤ |X | ≤ non(Qκ)+dκ and therefore
non(Cohenκ) ≤ non(Qκ). �5.7

Conclusion 5.8. Assume that either

(a) κ > sup(Sκ
inac), or

(b) dκ < non(Cohenκ), or
(c) there is a stationary non-reflecting set S ⊆ Sκ

pr.

Then cf(Cohenκ) ≤ cf(Qκ).

Proof. The proof is similar to the proof of 5.6.

If κ > sup(Sκ
inac) then id(Qκ) = id(Cohenκ) and cf(Qκ) = cf(Cohenκ).

If dκ < non(Cohenκ), then it follows from 5.3(3) that cf(Cohenκ) = non(Cohenκ).
Also, by 5.7 and 0.9(b), we have non(Cohenκ) ≤ non(Qκ) ≤ cf(Qκ). Together
cf(Cohenκ) ≤ cf(Qκ) (under present assumptions).

If dκ ≥ non(Cohenκ), but there is a non-reflecting stationary subset of Sκ
pr, then

we use 4.12(3) to get cf(nstprκ ) ≥ dκ. Now. 5.3(3) implies cf(Cohenκ) = dκ and
4.11(2) gives cf(Qκ) ≥ cf(nstpr

nst
). Together we conclude cf(Qκ) ≥ cf(Cohenκ), as

desired. �5.8

Now we may summarize the results of this section in the form of diagrams.

Theorem 5.9. Assume that κ is an inaccessible cardinal and κ = sup(Sκ
inac). Then

the inequalities represented by arrows in the following diagram hold true:

cov(Qκ) → non(Cohenκ) → cf(Cohenκ) cf(Qκ) → 2κ
x









↑ ↑

x









∣

∣ bκ → dκ
∣

∣

∣

∣

∣

∣

∣

↑ ↑

∣

∣

∣

∣

∣

κ+ → add(Qκ) add(Cohenκ) → cov(Cohenκ) → non(Qκ)

plus the dependencies
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• add(Cohenκ) = min{cov(Cohenκ), bκ},
• cf(Cohenκ) = max{non(Cohenκ), dκ},
• cov(Qκ) ≤ non(Qκ) (see 6.6(3)).

Moreover, we may add that one of the following four diagrams holds (where each
arrow → represents the inequality ≤ and ↑ 6= represents the strict inequality <).

Case 1:

cf(Qκ) → 2κ
x





non(Cohenκ) = cf(Cohenκ) → non(Qκ)
↑ ↑ 6=
bκ → dκ
↑ 6= ↑

cov(Qκ) → add(Cohenκ) = cov(Cohenκ)
x





κ+ → add(Qκ)

Case 2:

cf(Qκ) → 2κ
x





cov(Qκ) → non(Cohenκ) = cf(Cohenκ) → non(Qκ)
x

 ↑ ↑ 6=
∣

∣ bκ → dκ
∣

∣ ‖ ↑
κ+ → add(Qκ) add(Cohenκ) → cov(Cohenκ)

Case 3:

non(Cohenκ) → cf(Cohenκ) cf(Qκ) → 2κ

↑ ‖
x



bκ → dκ
∣

∣

↑ 6= ↑
∣

∣

cov(Qκ) → add(Cohenκ) = cov(Cohenκ) → non(Qκ)
x





κ+ → add(Qκ)

Case 4:

cov(Qκ) → non(Cohenκ) → cf(Cohenκ) cf(Qκ) → 2κ
x

 ↑ ‖
x



∣

∣ bκ → dκ
∣

∣

∣

∣ ‖ ↑
∣

∣

κ+ → add(Qκ) add(Cohenκ) → cov(Cohenκ) → non(Qκ)
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Remark 5.10. (1) In a later work we prove that add(nstprκ ) ≤ dκ and bκ ≤
cf(nstprκ ). Consequently, by 4.11, add(Qκ) ≤ dκ and cf(Qκ) ≥ bκ.

(2) Remember that by 5.6 and 5.8, if κ > sup(Sκ
inac) or there is a stationary

non-reflecting set S ⊆ Sκ
pr, then add(Qκ) ≤ add(Cohenκ) and cf(Qκ) ≥

cf(Cohenκ).

§ 6. Qκ vs Cohenκ

§ 6(A). Effect on the ground model.

Claim 6.1. If κ is an inaccessible limit of inaccessibles, then in VQκ the set (κ2)V

is κ–meagre.

Remark 6.2. 1) The dual is 6.3.
2) The assumption is necessary by 3.5.

Proof. Let 〈∂i : i < κ〉 list in increasing order the (strongly) inaccessible cardinals
below κ. We claim that

Qκ
“if ν ∈ (κ2)V then for every i < κ large enough η

˜
↾(∂i + 1, ∂i+1) * ν,

moreover α < ∂i+1 ⇒ η
˜
↾(α, ∂i+1) * ν”.

This clearly suffices by 5.1(2). Let p ∈ Qκ and we shall fix ν ∈ (κ2)V and we shall
find q and i∗ < κ such that p ≤Qκ

q and q  “if i > i∗ then η
˜
↾(∂i + 1, ∂i+1) * ν”.

Let i∗ be such that ℓg(tr(p)) < ∂i∗ and let (̺, S1, Λ̄) be a witness for p ∈ Qκ.
Now let S2 = {∂i+1 : i > i∗} and if ∂ = ∂i+1 ∈ S2 and α ∈ (∂i, ∂i+1) then we let

I∂,α =
{

r ∈ Q∂ : ℓg(tr(r)) > α and tr(r)↾[α, ℓg(tr(r)) * ν
}

.

Clearly, I∂,α is a dense open subset of Q∂ . Now let S′ = S1 ∪ S2 and note that S2

is nowhere stationary, so S′ is too. Next, for ∂ ∈ S′ put

Λ′
∂ =







Λ∂ if ∂ ∈ S1\S2,
Λ∂ ∪ {I∂,α : α ∈ (∂i, ∂i+1)} if ∂ = ∂i+1 ∈ S1 ∩ S2,
{I∂,α : α ∈ (∂i, ∂i+1)} if ∂ = ∂i+1 ∈ S2\S1,

and let Λ̄′ = 〈Λ′
∂ : ∂ ∈ S′〉. Easily the triple (tr(p), S′, Λ̄′) is a witness for some

q ∈ Qκ and this q is as required. �6.1

Claim 6.3. If κ is inaccessible limit of inaccessibles and V1 is an extension of V
(e.g. a forcing extension) then V1 |= “(κ2)V ∈ id(Qκ)” provided that at least one
of the following holds (each implying κ is still an inaccessible limit of inaccessibles
in V1):

(a) V1 = VCohen(κ), see Definition 0.5(2).
(b) In V1, κ is still inaccessible and there are sequences η̄ = 〈η∂ : ∂ ∈ S〉,

ᾱ = 〈α∂ : ∂ ∈ S〉 such that
(α) S ⊆ κ is unbounded in κ,
(β) ∂ ∈ S ⇒ α∂ = sup(S ∩ ∂) < ∂,
(γ) S is a set of inaccessibles (in V1 hence in V),
(δ) η∂ ∈ ∂2, really just η∂↾(α∂ , ∂) matter,
(ε) if η ∈ (κ2)V then for unboundedly many ∂ ∈ S we have η↾(α∂ , ∂) ⊆ η∂.

(c) In V1, κ is still inaccessible limit of inaccessibles but H (κ)V 6= H (κ)V1 .
(d) Like clause (b) but

(β)′ S is unbounded nowhere stationary in κ,
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(δ)′ Λ̄ = 〈Λ∂ : ∂ ∈ S〉, Λ∂ a set ≤ ∂ dense subset of Q∂,
(ε)′ if η ∈ (κ2)V then for unboundedly many ∂ ∈ S, η↾∂ does not fulfill

Λ∂.

Remark 6.4. Of course, if κ is inaccessible not limit of inaccessibles then the con-
clusion of 6.3 fails because Qκ is equivalent to Cohenκ, see 3.5.

Proof. Clause (a): It suffices to prove that the assumptions of (b) holds.

Clearly the forcing preserves inaccessibility. Let η
˜
∈ κ2 be the name of the κ-Cohen

real and let:

• S1 = {∂ < κ : ∂ inaccessible in V1 or V, those are equivalent},
• S = {∂ ∈ S1 : ∂ > sup(S1 ∩ ∂)},
• η

˜
∂ = η

˜
↾∂,

• α∂ = sup(S1 ∩ ∂) for ∂ ∈ S.

Clearly clauses (α), (γ) of (b) are satisfied by S1 and by S and clause (β) is satisfied
by the α∂ ’s and S. Also recalling η

˜
∈ κ2, it is the κ–Cohen real, the derived sequence

〈η
˜
∂ : ∂ ∈ S〉 satisfies clause (δ) by our choice above. Lastly, clause (ε) holds as

Cohenκ = (κ>2,⊳), so all the assumptions of clause (b) hold indeed.

Clause (b): We work in V1.

For α < ∂ ∈ S let

I ∗
∂,α =

{

p ∈ Q∂ : for some β we have α < β < ∂, β < ℓg(tr(p)) and tr(p)↾(α, β) * η∂
}

.

Easily I ∗
∂,α is a dense open subset of Q∂ and let

I =
{

p ∈ Qκ : for some γ < κ we have S\γ ⊆ Sp and ∂ ∈ S\γ ⇒ I ∗
∂,α∂

∈ Λp,∂

}

.

Clearly I is a dense open subset of Qκ and p ∈ I ⇒ limκ(p) ∩ (κ2)V = ∅, so
V ∩ κ2 ∈ id2(Qκ) and we are done (remember 3.2(5)).

Clause (c): Let S1 be the set of inaccessibles in V1 which are < κ. Let α < κ

and ν be such that ν ∈ (α2)V1 but ν /∈ (α2)V.
Now let

• S = {∂ ∈ S1 : ∂ > α and ∂ > sup(S1 ∩ ∂)},
• I∂ = {p ∈ Q∂ : for some β we have β + α ≤ ℓg(tr(p)) and 〈tr(p)(β + i) :
i < α〉 = ν} for ∂ ∈ S,

• Λ∂ = {I∂} for ∂ ∈ S.

Why is I∂ a dense subset of Q∂ for every ∂ ∈ S? Let p1 ∈ Q∂ and we shall
find p2 such that p1 ≤Q∂

p2 ∈ I∂ . Let p2 ∈ Q∂ be such that p1 ≤Q∂
p2 and

ℓg(tr(p2)) ≥ α + sup{θ : θ < ∂ is inaccessible}. (Why such p2 exists? As ∂ ∈ S
implies that ∂ is (strictly) above the ordinal on the right). But this implies Sp2 = ∅
hence there is p3 such that p2 ≤Q∂

p3 and (tr(p3))(α+ℓg(tr(p2)+i) = ν(i) for i < α
hence p3 ∈ I∂ . Hence the assumptions of clause (d) hold, so the result follows.

Clause (d): Like the proof of clause (b). �6.3

Remark 6.5. If κ is inaccessible not limit of inaccessibles and V1 extends V and
H (κ)V1 6= H (κ)V then (κ2)V ∈ id(Cohenκ)V1 and (κ2)V ∈ id(Qκ)V1 .

Claim 6.6. Assume κ is inaccessible limit of inaccessibles. Then

(1) Qκ
V ∩ κ2 ∈ id(Qκ).

(2) Qκ is asymmetric; that is, if V1 ⊆ V2 ⊆ V3, ηℓ ∈ (κ2)Vℓ+1 is (Qκ, η
˜
κ)–

generic over Vℓ, for ℓ = 1, 2, then η1 is not (Qκ, η
˜
κ)–generic over V1[η2].
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(3) cov(Qκ) ≤ non(Qκ).

Proof. (1) Let 〈∂ε : ε < κ〉 list Sκ
inac in increasing order and let S = {∂ε+1 : ε < κ}.

For η ∈ κ2 and ∂ ∈ S let Λη,∂ be a family of ≤ ∂ dense subsets of Q∂ such that

set(Λη,∂) =
{

ρ ∈ ∂2 : for arbitrarily large ζ < ∂ we have ρ(ζ) 6= η(∂ + ζ)
}

.

Define

Aη =
{

ν ∈ κ2 : (∀∞∂ ∈ S)(ν↾∂ ∈ set(Λη,∂))
}

.

Clearly, the set Aη is κ–Borel. Note that

{

p ∈ Qκ : (S \ ℓg(tr(p))) ⊆ Sp ∧ (∀∂ ∈ S)(ℓg(tr(p) < ∂ ⇒ Λη,∂ ⊆ Λp,∂)
}

is an open dense subset of Qκ. Hence,

(∗)1 for every η ∈ κ2 we have κ2 \Aη ∈ id(Qκ).

We are going to argue that

(∗)2 Qκ
V ∩ Aη

˜
= ∅.

So let ν ∈ κ2. Suppose that p ∈ Qκ and ξ < κ. Choose ∂ ∈ S such that ∂ >
ξ, ℓg(tr(p)) and then pick ρ ∈ p ∩ ∂2. Now ̺ = ρˆ(ν↾∂) ∈ p and

p[̺] Qκ
ν↾∂ /∈ set(Λη

˜
,∂).

By standard density arguments we conclude that

Qκ

(

∃∞∂ ∈ S
)(

ν↾∂ /∈ set(Λη
˜
,∂)

)

and thus Qκ
ν /∈ Aη

˜
.

(2) Assume that η1 is (Qκ, η
˜

)–generic over V and η
˜
2 is (Qκ, η

˜
)–generic over V[η1].

It follows from (∗)2 of part (1) that

(∗)3 V[η1, η2] |= η1 /∈ Aη2 .

Therefore, by (∗)1, η1 is not (Qκ, η
˜

)–generic over V[η2].

(3) Let S,Λη,∂ and Aη for ∂ ∈ S, η ∈ κ2 be defined as in 6.6(1). Then κ2 \Aη ∈
id(Qκ). For ν ∈ κ2 let Aν = {η ∈ κ2 : ν ∈ Aη}. The argument in the end of part
(1) shows that for each ξ < κ the set

{

p ∈ Qκ :
(

∃∂ ∈ S \ ξ
)(

∀η ∈ limκ(p)
)(

ν↾∂ /∈ set(Λη,∂)
)}

is open dense in Qκ. Hence Aν ∈ id(Qκ).
Now suppose that X ⊆ κ2 is such that X /∈ id(Qκ). We claim that then

⋃

{κ2 \Aη : η ∈ X} = κ2.

So suppose ν ∈ κ2. Let η ∈ X \Aν 6= ∅. By the definition this implies ν /∈ Aη and
we are done.

In [Sh:F1580] we note that generally for a nice enough i asymmetry implies
cov(i) ≤ non(i). �6.6
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§ 6(B). When does Qκ add a Cohen real?

Definition 6.7. Let Sawc be the class of inaccessible κ such that (awc stands for
“anti weakly compact”) in VQκ there is a Cohen κ–real over V; equivalently:

(∗) there is a sequence 〈Iα : α < κ〉, Iα ⊆ Qκ such that5 for every p ∈ Qκ

there is α < κ such that:
for every β ∈ (α, κ) and ̺ ∈ [α,β)2 there is q such that

• p ≤Qκ
q,

• if γ ∈ [α, β) and ̺(γ) = 1 then q is above some member of Iγ ,
• if γ ∈ [α, β) and ̺(γ) = 0 then q is incompatible with every member

of Iγ .

Claim 6.8. If κ is (strongly inaccessible but) not Mahlo then κ ∈ Sawc.

Proof. It is similar to 4.12(2), but let us elaborate. Choose a closed unbounded
subset E of κ disjoint to Sκ

inac. Let A be E or any unbounded subset of κ such that
∂ ∈ Sκ

inac ⇒ ∂ > sup(A ∩ ∂).
Define functions F0 : κ>2 −→ κ>2 and F1 : Qκ −→ Qκ and F2 : Qκ −→ Cohenκ

by

• F0(η) is the ν ∈ κ>2 of length otp(ℓg(η) ∩A) and

α < ℓg(η) ∧ α ∈ A ⇒ ν(otp(α ∩ A)) = η(α)

(for η ∈ κ>2),
• F1(p) = {F0(η) : η ∈ p} (for p ∈ Qκ),
• F2(p) = F0(tr(p)) = tr(F1(p)) (for p ∈ Qκ).

Now,

(∗)1 if p ∈ Qκ and Cohenκ |= “F2(p) E ν” then for some q ∈ Qκ we have
Qκ |= “p ≤ q” and F2(q) = ν.

[Why? By the choice of A and we prove this by induction on ℓg(ν) as in §1.]

(∗)2 If p ∈ Qκ then F1(p) = {ρ : ρ E F0(tr(p)) or F0(tr(p)) ⊳ ρ ∈ κ>2}.

[Why? As in §1 or the proof of 6.9.]

(∗)3 if Qκ |= “p ≤ q” then Cohenκ |= “F2(p) E F2(q)”.

[Why? Obvious.]
Together we are done �6.8

Claim 6.9. (1) Assume that W ⊆ Sκ
pr (see 4.3) is stationary but not reflecting.

Then forcing with Qκ adds a Cohen κ–real.
(2) Above also Pr(κ) holds.

Remark 6.10. We can replace the assumption of 6.9(1) by

(∗) there is a sequence Ī = 〈Ii : i < κ〉 of dense open sets such that for no
∂ ∈ Sκ

inac and p ∈ Q∂ do we have Ii↾∂ is predense in Q∂ above p for every
i ∈ [ℓg(tr(p)), ∂) where Ii↾∂ = {p ∩ ∂>2 : p ∈ Ii satisfies ℓg(tr(p)) < ∂}.

That is, if (∗) holds true, then Qκ adds a κ–Cohen real. We intend to return to it
in [Sh:F1199].

Proof. (1) Let W ⊆ Sκ
pr be a non-reflecting stationary set. Choose a sequence

ρ̄ = 〈ρ∂ : ∂ ∈ W 〉 such that:

5so Iα is not necessarily dense and not necessarily open; without loss of generality Iα is an
antichain (but not necessarily maximal). Of course the ̺ later is not necessarily constant.
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(•)1 ∂ ∈ W ⇒ ρ∂ ∈ κ>2
(•)2 for each ρ ∈ κ>2 the set {∂ ∈ W : ρ∂ = ρ} is stationary.

For every ∂ ∈ W we fix open dense sets I ∂
ε ⊆ Q∂ (for ε < ∂) such that:

(•)3 if p ∈ Q∂ then lim∂(p) *
⋂

ε<∂

set(I ∂
ε ).

Then for ∂ ∈ W we define

(•)4 A∂ := ∂2 \
⋂

ε<∂

set(I ∂
ε ).

Clearly,

(•)5 A∂ ∈ id(Q∂) but lim∂(p) ∩ A∂ 6= ∅ for every p ∈ Q∂.

Now,

(•)6 for ∂ ∈ W we can find a partition (A1
∂ , A

2
∂) of A∂ such that: for every p ∈ Q∂

we have lim∂(p) ∩ Aℓ
∂ 6= ∅ for ℓ = 1, 2, equivalently for every X ∈ id(Q∂)

and p ∈ Q∂ , lim∂(p) ∩ Aℓ
∂ 6= ∅ for ℓ = 1, 2.

[Why? Since Q∂ has cardinality 2∂ and id(Q∂) is generated by 2∂ sets, it is enough
to prove that for every p ∈ Q∂ and X = ∂2 \ set(Ī ) ∈ id(Q∂), where Ī is a
sequence of ∂ maximal antichains of Q∂ , the set X ∩ lim∂(p) ∩ A∂ has cardinality
2∂. Without loss of generality (S∂ , Λ̄∂ , p̄∂ , Ī∂) is as in 3.16. Given p and X , i.e.
(S∂ , Λ̄∂ , p̄∂ , Ī∂) we let E be a club of ∂ disjoint to Sp, S∂ and W and to [0, ℓg(tr(p)).
So consider the tree T = (

⋃

α∈E

α2)∪ κ2. Recall p∩T is a really closed subtree and

for each ε < ∂, 〈p∩T∂ : p ∈ I∂,ε〉 is a sequence of closed subtrees with no maximal
nodes such that lim∂(p) = lim(p ∩ Tγ) are pairwise disjoint. The rest should be
clear.]

We let ℓ
˜
∂ be a Qκ–name for an element of {0, 1, 2} such that

(•)7 Qκ
“ℓ
˜
∂ = ι iff η

˜
↾∂ ∈ Aι

∂” for ι = 1, 2 and Qκ
“ℓ
˜
∂ = 0 iff η

˜
↾∂ /∈ A∂”.

Lastly, let ν
˜

be (the Qκ–name for) the concatenation of 〈ρ∂ : ∂ ∈ W and ℓ
˜
∂ = 2〉.

We will argue that Qκ
“ν
˜

is Cohen over V”. To this end we will prove that:

(⊞) if p ∈ Qκ, ∂ ∈ W , ∂ > ℓg(tr(p)) then there is τ ∈ p ∩ ∂2 such that:
(a) τ ∈ A2

∂ , equivalently p[τ ]  “ℓ
˜
∂ = 2”,

(b) if θ ∈ W ∩ ∂, θ > ℓg(tr(p)) then τ↾θ /∈ A2
θ, equivalently p[τ ] “ ℓ

˜
θ is 0

or is 1”.

Why is (⊞) enough? Recalling 5.1, let (η, ᾱ) be as there, and we shall show that

Qκ
“ν
˜

/∈ Xη,ᾱ”. Let p ∈ Qκ, j < κ and let ν∗ be the concatenation of
{

ρ∂ : ∂ ∈ W, ∂ ≤ ℓg(tr(p)) and tr(p)↾∂ ∈ A2
∂

}

.

Let ρ∗ ∈ κ>2 be such that for some i ∈ [j, κ) we have

(•)8 ν∗ˆρ∗ has length ≥ αi+1 and it does include η↾[αi, αi+1)”.

Clearly it suffices to prove that for some q:

(•)9 p ≤Qκ
q and q  “ν∗ˆρ∗ E ν

˜
”.

By the choice of ρ̄, the set W ′ = {∂ ∈ W : ∂ /∈ Sp, ∂ > ℓg(tr(p)) and ρ∂ = ρ∗} is
a stationary subset of κ. Pick ∂∗ ∈ W ′ and then choose τ ∈ p ∩ ∂∗2 as in (a),(b) of
(⊞). Let q = p[τ ].

So the conclusion of 6.9 follows and (⊞) is indeed enough, but we still owe:

Why (⊞) is true? Let p ∈ Qκ as witnessed by (tr(p), Sp, Λ̄p), and let ∂ ∈ W ,

∂ > ℓg(tr(p)). Put



NULL IDEAL FOR INACCESSIBLE λ 49

• tr(q) = tr(p),
• Sq = Sp ∪ (W ∩ ∂), and
• if θ ∈ Sq \ Sp, then Λq,θ = {I θ

ε : ε < θ}, and
• if θ ∈ Sp ∩ (W ∩ ∂), then Λq,θ = Λp,θ ∪ {I θ

ε : ε < θ}.

This determines a condition q ∈ Qκ stronger than p. It follows from the definition
of Λ̄q and Sq that

(•)10 if ℓg(tr(q)) < θ ∈ W ∩ ∂, then q ∩ θ2 ⊆ set(Λq,θ) ⊆ θ2 \Aθ.

Anyhow by (•)6 we are done.

(2) Let Aι
∂ for ∂ ∈ W be as in (1) above such that

(•)11 η ∈ A2
∂ implies that {α < ∂ : η(α) = 1} is stationary.

For α < κ define

Iα = {p ∈ Qκ : ℓg(tr(p)) > α and for some ∂ ∈ (α, ℓg(tr(p)))∩W we have tr(p)↾∂ ∈ A2
∂}.

Clearly each Iα is a dense open subset of Qκ. We will argue that 〈Iα : α <
κ〉 witnesses Pr(κ), that is we show that for each p ∈ Qκ we have limκ(p) *
⋂

α<κ

set(Iα).

Let p ∈ Qκ be witnessed by (η, S, Λ̄) and let α = ℓg(η). We will show that
limκ(p) * set(Iα+1). Towards this let E be a club of κ disjoint from S with
min(E) = α = ℓg(tr(p)) and

min(E) < α ∈ E ∧ α > sup(α ∩ E) ⇒ α is singular.

Let 〈αi : i < κ〉 be an increasing enumeration of E. By induction on i < κ we
choose ηi so that

(∗)i (a) ηi ∈ p ∩ (αi)2,
(b) j < i ⇒ ηj ⊳ ηi ∧ ηi(αi) = 0,
(c) if ∂ ∈ W ∩ (α0, αi], then ηi↾∂ /∈ A2

∂ .

This is enough as letting η =
⋃

i<κ

ηi we will have η ∈ limκ(p) \ set(Iα+1).

Why can we carry out the induction?

For i = 0 we put η0 = tr(p),
for a limit i we put ηi =

⋃

i<j ηj noting that if αi ∈ W then ηi is not in A2
αi

by

(•)11,
for a successor i = j + 1 we proceed as in the proof of (⊞) of the first part

recalling αi /∈ W . �6.9

Claim 6.11. (1) The assumption of 6.9(1) holds when V = L and κ is Mahlo
not weakly compact.

(2) When the assumption of 6.11(1) or of 6.9(1) hold for κ, then

cov(Qκ) ≤ cov(Cohenκ) and cov(Qκ) ≤ non(Cohenκ) ≤ non(Qκ).

Remark 6.12. (1) So when 6.11(1) applies, the Cichoń diagram for id(Cohenκ)
and id(Qκ) is very different than the κ = ℵ0 case, i.e., we have additional
inequalities.

(2) In 6.11(1), note that if κ is inaccessible not Mahlo then the conclusion of
6.9(1) holds by 6.8.
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Proof. 1) Since κ is Mahlo not weakly compact, by a result of Jensen we know
that every stationary subset of κ contains a non-reflecting stationary subset. So we
may use Observation 4.4(4) and argue that again we are in the case of 6.9(1).

2) It follows from 6.9, that there is a Qκ–name ̺
˜

such that for some Borel function
B : κ2 −→ κκ we have

(∗)1 Qκ
“̺
˜

is a κ–Cohen real over V and ̺
˜

= B(η
˜

)”.

Hence

(∗)2 cov(Qκ) ≤ cov(Cohenκ)

Why? Let µ = cov(Cohenκ) and let 〈Xζ : ζ < µ〉 be a sequence of κ–meagre
κ–Borel sets with union κ2. Let Bζ ∈ id(Qκ) be such that

η ∈ κ2 \Bζ ⇒ B(η) /∈ Xζ .

We claim that then
⋃

ζ<µ

Bζ = κ2. If not, then we may pick η ∈ κ2 \
⋃

ζ<µ

Bζ . But

now, for every ζ < µ, B(η) /∈ Xζ , so
⋃

ζ<µ

Xζ 6= κ2 — a contradiction.

Similarly,

(∗)3 non(Cohenκ) ≤ non(Qκ).

Why? Let {ηζ : ζ < µ} ⊆ κ2 be a set not belonging to id(Qκ). Then {B(ηζ) : ζ < µ}
exemplifies non(Cohenκ) ≤ µ.

Also,

(∗)4 cov(Qκ) ≤ non(Cohenκ).

Why? By 5.4(1), noting that its assumption “κ = sup(Sκ
inac)” follows by our present

assumptions. �6.11

Claim 6.13. If V = L, then an inaccessible κ satisfies Pr(κ) iff κ is not weakly
compact iff Qκ adds a κ-Cohen.

Proof. We prove this by considering possible cases.

Case 1: κ is not Mahlo.
Then

(a) κ is not weakly compact,
(b) Qκ add a κ–Cohen real by 6.8,
(c) Pr(κ) holds by 4.4(1).

Case 2: κ is Mahlo not weakly compact.
By 4.4(4), Sκ

pr is a stationary subset of κ. By a result of Jensen there is a stationary
W ⊆ Sκ

pr which does not reflect. Hence by 6.9 the forcing notion Qκ adds a κ–Cohen
real and Pr(κ) holds true.

Case 3: κ is weakly compact.
Then Qκ is κ–bounding hence does not add a κ-Cohen by 1.9 and Pr(κ) fails by
4.4(2), i.e., 3.6(2). �6.13
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§ 7. What about the parallel to “amoeba forcing”?

Definition 7.1. (1) We say that J ⊆ Q is nice if J [α,π] ⊆ J for every
α < κ and a permutation π : α2 −→ α2 (remember 4.1(2)).

(2) We say that a family Λ of subsets of Qκ is nice when : Λ[α] ⊆ Λ for every
α < κ (remember 4.1(3)).

(Equivalently, if I1 ∈ Λ, I2 ⊆ Qκ, α < κ and I
[α,π]
1 = I2 then I2 ∈ Λ).

(3) For p ∈ Qκ let nb(p) = {p[η,ν] : η ∈ p ∩ α2, ν ∈ α2 for some α < κ}.

Claim 7.2. If Λ ⊆ {I : I ⊆ Qκ is predense} has cardinality ≤ κ then so is Λ[<κ]

and it is nice.

Proof. It follows from 4.2. �7.2

Claim 7.3. (1) If p ∈ Qκ then nb(p) is a predense subset of Qκ.
(2) If p ∈ Qκ then nb(p) is nice and

set(nb(p)) =
{

η ∈ κ2 : there is ν ∈ limκ(p) such that (∀∞α < κ)(η(α) = ν(α))
}

.

(3) [κ weakly compact] If X ∈ id(Qκ) then for a dense set of p ∈ Qκ we have
set(nb(p)) ⊆ κ2\X.

Proof. (1) Clearly for every p, q ∈ Qκ we can choose α ≥ max{ℓg(tr(p), ℓg(tr(q))}
such that α < κ and then choose η ∈ p∩ α2, ν ∈ q ∩ α2 and π ∈ Sym(α2) such that
π(η) = ν, so q1 = p[η,ν] ∈ nb(p) and q1, q have a common member ν which is of
length ≥ ℓg(tr(q1)), ℓg(tr(q)), hence q1, q are compatible.

(2) Should be clear.

(3) There is a family Λ of ≤ κ maximal antichains of Qκ such that X∩set(Λ) = ∅.
Without loss of generality Λ = Λ[<κ] and hence the set Y = κ2\set(Λ) ∈ id(Qκ)
satisfies:

• if η1, η2 ∈ κ2 and κ > sup{α < κ : η1(α) 6= η2(α)}, then η1 ∈ Y ⇔ η2 ∈ Y .

Now, as Y ∈ id(Qκ) by 3.6(2) for a dense set of p ∈ Qκ, limκ(p) is disjoint to Y ,
but by the choice of Y this holds for any p′ ∈ nb(p), so we are done. �7.3

Definition 7.4. Let Qam
κ be the following forcing notion:

(A) a member of Qam
κ has the form (α, p, E) with α < κ, p ∈ Qκ, E a club of κ

disjoint to Sp and tr(p) = 〈〉,
(B) the order on Qam

κ is: (α1, p1, E1) ≤ (α2, p2, E2) iff
(a) α1 ≤ α2,
(b) p1 ≤Qκ

p2,

(c) p1 ∩ (α1)2 = p2 ∩ (α1)2,
(d) E1 ⊇ E2 and E1 ∩ α1 = E2 ∩ α1.

(C) The generic of Qam
κ is p

˜
κ =

⋃

{p ∩ α≥2 : (α, p, E) ∈ G
˜

Qam
κ
}.

Claim 7.5. (1) Qam
κ is a κ–strategically complete κ+–cc (nicely definable) forc-

ing notion and p
˜
κ is indeed a generic for Qam

κ .
(2) Qam

κ
“p
˜
κ ∈ Qκ”.

(3) Assume κ is weakly compact. If I is a predense subset of Qκ (in V) then
Qam

κ
“set(I ) ⊇ set(nb(p

˜
κ))”.

(4) Assume κ is weakly compact. Then Qam
κ

“κ2\set(nb(p
˜
κ)) ⊆ κ2 is a member

of id(Qκ) including all the old κ–Borel sets from id(Qκ)”.
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Proof. (1) Easy.

(2) Recall that for every p ∈ Qκ there is a canonical witness (tr(p), Sp, Λ̄p) (see
1.3(C)(a)). Let us define some Qam

κ –names:

(∗)1 (a) E
˜

=
⋂

{Ep : p ∈ G
˜
},

(b) S
˜

=
⋃

{S
˜
p : p ∈ G

˜
},

(c) for every ∂ ∈ S
˜

, Λ
˜
∂ =

⋃

{Λp,∂ : p ∈ G
˜

satisfies ∂ ∈ Sp},
(d) Λ̄

˜
= 〈Λ

˜
∂ : ∂ ∈ S

˜
〉,

(e) ̺
˜

is 〈〉.

Now,

(∗)2 for every β < κ, the set

Iβ :=
{

(α, p, E) ∈ Qam
κ : α ≥ β

}

is a dense open subset of Qam
κ .

[Why? If β < κ and (α1, p1, E1) ∈ Qam
κ then (α1 + β, p1, E1) ∈ Qam

κ is above
(α1, p1, E1) and belongs to Iβ .]

(∗)3  “E
˜

is a club of λ”.

[Why? Unbounded as for every β < κ and (α0, p0, E0) ∈ Qam
κ , let α1 = min{δ ∈

E0 : δ > α0, δ > β} so (α1 + 1, p0, E0) is above (α0, p0, E0) and forces δ ∈ E
˜

. Being
closed is easy, too.]

(∗)4  “S
˜

is a nowhere stationary subset of Sκ
inac”.

[Why? First, for every β < κ, by (∗)2 for a dense set of (α, p, E) ∈ Qam
κ we have

α > β. Since (α, p, E)  “S
˜
∩α = Sp ∩α”, we get that S

˜
∩α is nowhere stationary

and hence S
˜
∩ β is nowhere stationary. Second,  “S

˜
is not stationary” because

 “E
˜

is a club of κ disjoint to S
˜

” by the definition of Qam
κ . Together we are done.]

(∗)5  “Λ
˜
∂ is a set of ≤ ∂ predense subsets of Q∂ for ∂ ∈ S

˜
”.

[Why? Given (α0, p0, E0) ∈ Qam
κ , without loss of generality α0 > ∂ and hence it

forces Λ
˜
∂ is Λp0,∂ if ∂ ∈ Sp0 , not defined (or ∅) otherwise; the rest is clear.]

(∗)6  “(̺
˜
, S
˜
, Λ̄
˜

) witnesses p
˜
κ ∈ Qκ.

[Why? Read 7.4(C) and (∗)3–(∗)5.]

(3) It suffices to prove the following:

(∗)1 if α < κ and η ∈ α2, ν ∈ α2 then

Qam
κ

“ if η ∈ p
˜
κ ∩ α2 then lim(p

˜

[η,ν]) ⊆ set(I ) ”.

Now,

(∗)2 fixing α, without loss of generality for every π ∈ Sym(α2) we have I [α,π] =
I .

[Why? Let I1 = {p ∈ Qκ: for every π ∈ Sym(α2), p is above some member of
I [α,π] }. Clearly:

• I1 ⊆ Qκ is predense,

• I
[α,π]
1 = I1 for every π ∈ Sym(α2),

• set(I1) ⊆ set(I ).

Hence we can replace I by I1 so finishing the proof of (∗)2.]
So

(∗)3 in (∗)1 + (∗)2, without loss of generality ν = η so p
˜

[ν,n]
κ = p

˜
κ.
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Let

(∗)4 (α0, p0, E0) ∈ Qam
κ and η ∈ α2.

We shall find (α1, p1, E1) ∈ Qam
κ above (α0, p0, E0) and forcing that η /∈ p

˜
κ or

forcing the statement in (∗)1. First, by (∗)2 of the proof of part (2), without loss
of generality ℓg(η) < α0; so if η /∈ p0 then (α0, p0, E0)  “η /∈ p

˜
κ” and we are done.

So we can assume η ∈ p0.
As κ is weakly compact for some ∂ ∈ Sκ

inac which is > α0 we have:

(∗)5 the set

I∂ =
{

q ∩ ∂>2 : q ∈ I and ℓg(tr(q)) < ∂
}

is predense in Q∂.

Next,

(∗)6 for every ν ∈ set(I∂) ∩ p0 choose qν ∈ I such that ℓg(tr(qν)) < ∂ and
ν ∈ lim∂(qν ∩ ∂>2) equivalently ν ∈ qν ∩ ∂2.

Let

(∗)7 (a) S′ =
⋃

{Sqν\∂ : ν ∈ set(I∂) ∩ p0} ∪ Sp0 ∪ {∂},
(b) for θ ∈ S′ let Λ′

θ be:
(α)

⋃
{

Λ : Λ = Λqν,θ and ν ∈ set(I∂) ∩ p0 and θ ∈ Sqν\∂
+ or

Λ = Λp0,θ and θ ∈ Sp0

}

if θ ∈ S′\∂+,
(β) Λp0,θ ∪ {I∂} if θ = ∂ ∧ ∂ ∈ Sp0 ,
(γ) {I∂} if θ ∈ ∂ ∧ ∂ /∈ Sp0 ,
(δ) Λp0,θ if θ ∈ Sp0 ∩ ∂.

Let p1 ∈ Qκ be defined by

(∗)8 (〈〉, S′, Λ̄′) will witness p1, where
• S′ is from (∗)7,
• Λ̄′ = 〈Λ′

θ : θ ∈ S′〉, see (∗)7,

and let α1 = α0 and E1 ⊆ E0 be a club disjoint from S′ and such that E1 ∩ ∂ =
E0 ∩∂. Now one easily verifies that (α1, p1, E1) ∈ Qam

κ is a condition stronger than
(α0, p0, E0) and it forces that

η ⊳ ν ∈ p
˜
κ ∩ ∂2 ⇒ (∃q ∈ I )(tr(q) ⊳ ν ∈ q ∧ p

˜

[ν]
κ ⊆ q).

(4) Follows by part (3). �7.5

§ 8. Generics and Absoluteness

Recall from Definition 0.1 that we say that a set B ⊆ κH (κ) is

• a κ–stationary Borel if for some κ–Borel function F : κH (κ) −→ P(κ) we
have η ∈ B ⇔ F (η) is stationary,

• κ–nowhere stationary Borel if there is a κ–Borel function F : κH (κ) −→
P(κ) such that for every η ∈ κH (κ) we have: η ∈ B iff F (η) is a nowhere
stationary subset of κ.

Claim 8.1. (1) “p ∈ Qκ” is6 a κ–nowhere stationary Borel relation (see 0.1(5)),
also it is Σ1

1(κ).

6Using coding it does not matter whether we use κ2 or P(κ) or κH (κ) or P(H (κ)), etc.
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(2) Both “p ≤Qκ
q” and “p, q ∈ Qκ are compatible” are κ-Borel relations (but

pedantically there are κ–Borel relations whose restrictions to Qκ are the
above relations).

(3) If κ is weakly compact, then “being κ–nowhere stationary Borel” is equiv-
alent to “being κ–Borel”.

(4) If κ is weakly compact then “{pi : i < κ} ⊆ Qκ is predense” is κ–stationary
Borel.

(5) Changing the definition of Qκ, we may get that the relations “p ∈ Qκ”,
“p ≤Qκ

q” as well as “p, q ∈ Qκ are compatible” are κ–Borel and for
every limit δ < κ there is an δ–place κ–Borel function giving an increasing
sequence of length δ an upper bound.

The change does not affect the generic and the derived ideal.

Proof. (1,2) Straightforward. Note that for “p ∈ Qκ” the main point is “there
is a club E of κ disjoint to Sp”, as for S ⊆ κ statement “(∀α < κ)(S ∩ α is not
stationary)” is κ–Borel.

(3) Let F : κH (κ) −→ P(κ) be κ–Borel and let X = {A ⊆ H (κ) : F (A) is
nowhere stationary}. To show that X is κ–Borel it is enough to note that

A ⊆ κ is nowhere stationary if and only if A does not reflect.

So the assertion should be clear.

(4) We define F : κ(Qκ) −→ P(κ) as follows. For p̄ ∈ κ(Qκ) let

F (p̄) =
{

∂ ∈ Sκ
inac : {pi ∩

∂>2 : i < ∂ and tr(p) ∈ ∂>2} is predense in Q∂

}

.

Clearly, F is a κ-Borel function (well, replacing κ2 by κ(Qκ)) and we have:

(∗) {pi : i < κ} ⊆ Qκ is predense iff F (p̄) is stationary in κ.

Why? First, if {pi : i < κ} is not predense let q ∈ Qκ be incompatible with every pi
which means (tr(q) /∈ pi) ∨ (tr(pi) /∈ q), so easily for every ∂ ∈ (ℓg(tr(q), κ), q ∩ ∂2
witnesses ∂ /∈ F (p̄). Second, if {pi : i < κ} is predense, use the proof of “Qκ is
κ-bounding”. So we are done (replacing κ(Qκ) by κ2 via coding).

(5) We define Q′
κ as the set of all quadruples q = (̺q, Sq, Λ̄q, Eq) such that

(̺q, Sq, Λ̄p) is as in Definition 1.3(A), for a unique Tq = T [q] a subtree of κ>2
and Eq is a club of κ disjoint to Sp\(ℓg(̺q) + 1)) such that ℓg(̺q) ∈ Eq. We let
q1 ≤ q2 iff :

(a) ̺q1 E ̺q2 , Sq2 ⊇ Sq1\(ℓg(̺2) + 1),
(b) ∂ ∈ Sq1\(ℓg(̺2) + 1) ⇒ Λq1,∂ ⊆ Λq2,∂ ,
(c) Qκ |= T [q1] ≤ T [q2],
(d) Eq1 ⊇ Eq2 ,
(e) if q1 6= q2 then ̺q1 6= ̺q2 .

[Why the choice of (e)? The motivation is that otherwise an increasing sequence
p̄ = 〈pα : α < δ < κ〉 with tr(pα) constant may have no upper bound because
⋃

α<δ

Spα
may reflect in some ∂ > ℓg(tr(pα)). But by the present definition: if p̄

is eventually constant this is trivial; if not then ρ =
⋃

i<δ

tr(pα) has length which

belongs to
⋂

α<δ

Epα
and we can finish easily.] �8.1
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Observation 8.2. Assume κ is weakly compact. For a set X ⊆ κκ we have (a) ⇔
(c) and (b) ⇔ (d), where

(a) X is κ–stationary Borel,
(b) κκ \X is κ–stationary Borel,
(c) X is Σ1

1(κ),
(d) X is Π1

1(κ).

Remark 8.3. Note that the family
{

X ⊆ κκ : X is Σ1
1(κ)

}

is closed under (∃Y ⊆ κ)
and unions/intersections of ≤ κ elements.

Proof. Clause (a) implies clause (c):

Let F1 be a κ-Borel function from κκ to P(κ) such that X = {η ∈ κκ : B(η) is
stationary}. Without loss of generality

(∗)1 F1 is defined by the sequence B̄1 = 〈B1,α : α < λ〉, B1,α a Borel subset of
κκ such that F1(η) = {α : η ∈ B1,α}.

Let Mκ ≺ (H (2κ)+,∈) of cardinality κ be such that [Mκ]<κ ⊆ Mκ, F1 ∈ Mκ

(necessarily κ+1 ⊆ Mκ). Let 〈Mα : α < κ〉 be ≺–increasing continuous with union
Mκ such that ‖Mα‖ ≤ |α| + ℵ0 and F1 ∈ M0 (necessarily κ ∈ M0).

Let E = {µ : µ < κ is strong limit cardinal such that Mµ ∩ κ = µ hence
Mµ ∩ H (κ) = H (µ) and α < µ ⇒ ‖Mα‖ < µ}. Clearly E is a club of κ. For
µ ∈ E let Nµ be the Mostowski collapse of Mµ and let πµ be the isomorphism from
Mµ onto Nµ. Let F 1

µ = πµ(F1) and B̄µ = 〈Bµ,α : α < µ〉 = πµ(B̄1). Now,

(∗)2 for µ ∈ E (only inaccessible interests us) we have F 1
µ : µµ → P(µ),

(∗)3 for η ∈ κκ the following conditions are equivalent:
(α) η ∈ X ,
(β) Uη := {∂ < κ : η↾∂ ∈ ∂∂ and F 1

∂ (η↾∂) is a stationary subset of ∂} is
stationary in κ,

(γ) the tree Tη has no κ-branch, where Tη =
⋃

α<κ

Tη,α where Tη,α is the

set of ρ ∈ ακ such that:
•1 ρ is an increasing continuous sequence of cardinals from E,
•2 η↾ρ(B) ∈ ρ(β)ρ(β),
•3 〈F 1

ρ(β)(η↾β) : β < ℓg(α)〉 is increasing, i.e., if β1 < β2 = ℓg(ρ)

then F 1
ρ(β1)

(η↾β1) = F 1
ρ(β2)

(η↾β2) ∩ β1,

•4 F 1
ρ(β)(η↾β) is a non-stationary subset of ρ(β),

(δ) for a stationary set of ∂ < κ, the tree Tη ∩ ∂>∂ has no ∂-branch.

This suffices because by (α) ⇔ (γ) in (∗)3, clearly X is defined by (γ) and this can
be expressed by a Π1

1-formula.

Why does (∗)3 hold?

(α) ⇒ (β):

Let M ′
λ be like Mλ but {Mλ, M̄ , η} ∈ M ′

λ and let M̄ ′ = 〈M ′
α : α < κ〉 be like M̄

for M ′
λ and {M̄γ, M̄ , η} ∈ M ′

0 and E′ ⊆ E is like E for M̄ ′ and also N ′
α, πα(α ∈ E′).

Easily ∂ ∈ E′ ⇒ π∂(B̄↾∂) = π′
∂(B̄1↾γ), etc. So for a club of ∂ < κ, F1(η)∩ ∂ =

F 1
∂ (η↾∂) and we are easily done.

(β) ⇔ (γ):
Easy, too.

(γ) ⇔ (δ):
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Because κ is weakly compact.

Clause (c) implies (a):
Similarly.

Clause (b) iff clause (d):
Similarly. �8.2

Claim 8.4. Assume κ is weakly compact.

(1) “{pi : i < κ} ⊆ Qκ is predense” is Π1
1(κ); this means {(i, η) : η ∈ pi, i < κ}

is Π1
1(κ)–set recalling 0.1(3).

(2) “X = κ2\
⋃

{limκ(Tα) : α < κ} belongs to id(Qκ) each Tα a subtree of
κ>2” is a κ-stationary-Borel realtion.

Proof. (1) By 8.1(4) and 8.2

(2) As κ is weakly compact, X ∈ id(Qκ)+ iff there is p ∈ Qκ such that limκ(p) ⊆
X iff there are α < κ and q as in 8.1(5) above p such that T [q] ⊆ Tα. So X ∈
id(Qκ)+ is a Σ1

1(κ) condition hence “X ∈ id(Qκ)” is a Π1
1(κ) condition and we

finish by 8.2. �8.4

Claim 8.5. 1) Assume P is (<κ)–complete or just strategically κ-complete (i.e. for
games with κ moves, COM winning if a play takes κ-moves).

(a) Satisfying a κ-stationary-Borel is absolute between V and VP.
(b) Satisfying a Σ1

1(κ) relation is absolute between V and VP.

2) If P is strategically θ-complete for every θ < κ, then “p ∈ Qκ” is upward absolute
from V to VP.

Proof. Should be clear. �8.5

Observation 8.6. Being κ-stationary Borel is not equivalent to being κ-Borel.

Proof. Consider A1 = {S ⊆ κ : S is stationary} and A0 = P(κ)\A1. Clearly A1 is
κ–stationary Borel and A0 is κ–non-stationary Borel (defined naturally). Assume
towards contradiction that A1 is equal to a κ–Borel set B. Let Cohenκ = (κ>2, ⊳),
and let η

˜
be the κ-generic real. Then for some truth value t and ν ∈ κ>2 we have

ν Cohenκ
“ η

˜

−1{1} ∈ B iff t = 1 ”. Let ι < 2, M ≺ (H (κ+),∈) be of cardinality

κ, [M ]<κ ⊆ M and B, κ ∈ M . Now we can find νι ∈ κ2 such that ν ⊳ νι and
{νι↾α : α < κ} is a subset of Cohenκ generic over M and νι(α) = ι for a club of
α < κ. By easy absoluteness we get νι ∈ B iff t = 1, easy contradiction. �8.6

Claim 8.7. (1) Consistently, κ is weakly compact but being predense in Qκ is
not absolute under κ–complete forcing and hence it is not κ-Borel.

(2) Assume κ is weakly compact and moreover (can be gotten by preliminary
forcing) this is preserved by adding κ+, κ-Cohen. Then adding a κ+, κ-
Cohens (i.e. forcing with Cohenκ,κ+) we get the above.

(3) In part (2) also {S ⊆ κ : S stationary in κ} (is κ-stationary Borel but) its
complement is not κ-stationary Borel.

Proof. The counterexample will be gotten by forcing by Cohenκ,κ+ , e.g., when
κ is Laver indestructible supercompact but similarly for κ weakly compact by a
preliminary forcing and the set S2 below being {∂ < κ : ∂ not Mahlo}.
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Assume κ is Mahlo and let S1 ⊆ Sκ
inac be nowhere stationary but unbounded.

Let S2 ⊆ Sκ
inac be a stationary subset of acc(S1). We define a representation Q1 of

Cohenκ as follows:

(∗)1 (A) p ∈ Q1 iff:
(a) p = 〈η∂ : ∂ ∈ S2∩α〉 = 〈ηp,∂ : ∂ ∈ S2∩αp〉 for some α = αp < κ,
(b) for each ∂ ∈ S2 ∩ αp, η∂ ∈ ∂2.

(B) Q1 is ordered by E.
(C) The generic of Q1 is η̄

˜
=

⋃

{p : p ∈ G
˜

Q} and let Y
˜

= {η
˜
∂ : ∂ ∈ S2},

where p “ η
˜
∂ = ν” if ∂ ∈ S2 ∩ αp ∧ ηp,∂ = ν.

(D) The length ℓg(p) of p is the minimal α < κ such that dom(p) = S2∩α.

Next we let pη = {ρ ∈ κ>2 : ρ E η ∨ η E ρ} ∈ Qκ for η ∈ κ>2. Now

(∗)2 Q1 “{pη : η ∈ Y
˜
} is a predense subset of Qκ”.

[Why? If not, let q ∈ Q1, q Q1 “p
˜

= (ν, S
˜
, 〈Λ

˜
∂ : ∂ ∈ S

˜
〉) ∈ Qκ is incompatible with

every pη for η ∈ Y
˜

and E
˜

1 is a club of κ disjoint to S
˜

”.
Let 〈qi : i < κ〉 be increasing continuous in Q1, q0 = q and qi+1 forces a value to

S
˜
∩ i, 〈Λ

˜
∂ : ∂ ∈ S

˜
∩ i〉 and to min(E

˜
1\i) called γi. Let

E =
{

δ < κ : δ is a limit ordinal and i < δ ⇒ ℓg(qi) < δ ∧ γi < δ
}

.

Clearly E is a club of κ, so we can choose ∂ ∈ S2 ∩E. Then q∂ ∈ Q1 is well defined
and of length ∂ and it forces a value (S′, 〈Λ′

θ : θ ∈ S′〉) to (S
˜
∩ ∂, 〈Λ

˜
θ : θ ∈ S

˜
∩ ∂〉)

and this value represents a condition r ∈ Q∂ . Moreover, q∂ forces that ∂ = sup{γi :
i < ∂} = sup(E

˜
1 ∩ ∂) ∈ E

˜
1 and hence it forces ∂ /∈ S

˜
. Choose ν ∈ lim∂(r) ∈ ∂2

and let q′∂+1 be above q∂ such that q′∂+1(∂) = ν, i.e. q′δ+1  “ν ∈ Y
˜

” and we arrive
to an easy contradiction.]

Next, in VQ1 we define Q2 = Q2[η
˜

1
κ], η

˜

1
κ the generic for Q1, by

(∗)3 (A) p ∈ Q2 iff
(a) p = (α, Λ̄) = (αp, Λ̄p),
(b) αp < κ, Λ̄p = 〈Λp,∂ : ∂ ∈ S1 ∩ αp〉,
(c) each Λp,∂ is a family of ≤ ∂ dense subsets of Q∂ (for ∂ ∈ S1∩αp),
(d) if θ ∈ S2 ∩ (α + 1), then θ = sup{∂ ∈ S1 ∩ θ : ηθ↾∂ /∈ set(Λp,∂)}

(recall S2 ⊆ acc(S1));
(B) the order is being an initial segment.
(C) The generic is Λ̄

˜
= 〈Λ

˜
∂ : ∂ ∈ S1〉.

Now in VQ1 the forcing notion Q2 is not (< κ)-complete and even not strate-
gically κ-complete but it is strategically (<κ)-complete. (It is not strategically
κ-complete because given st, let M ≺ (H (χ),∈), χ = (2κ)+, M ∩ κ = ∂ ∈ S2,
‖M‖ = ∂, [M ]<∂ ⊆ M , st ∈ M , Y

˜
∈ M).

Now in VQ1∗Q
˜

2 easily p = (〈〉, S1, Λ̄
˜

) belongs to Qκ and it exemplifies that
〈pη : η ∈ Y

˜
〉 is not predense. Also Q1 ∗Q

˜
2 has a dense set closed subset equivalent

to κ-Cohen and similarly Q1, hence Q1∗Q
˜

2“κ is weakly compact” and Q1“κ is

weakly compact”. So there are κ–Borel functions B1,B2 with domain κ2 and such
that

Cohenκ
“ B1(η

˜
κ) is generic over V for Q1 and

B2(η
˜
κ) is generic over V[B1(η

˜
κ)] for Q2[B1(η

˜
κ)] ”.

Assume that in VQ1 , B is a (definition of a) κ–Borel subset of [H (κ)]κ which is

the set of predense subsets of Qκ, so in VQ1∗Q
˜

2 , B no longer satisfies this. This is
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somewhat weaker than the desired conclusion, but if η̄ = 〈η
˜
γ : γ < κ+〉 is generic for

Cohenκ,κ+ and B ∈ V[η̄] is a (definition of a) κ-Borel subset of [H (κ)]κ, for some
α < κ, B ∈ V[η̄↾α] and interpret η

˜
α as the generic Q1 ∗Q

˜
2. Consider p̄ = B1(η

˜
α).

Now we can compute B1(p̄) in V[η
˜
↾α, p̄] and in V[η

˜
↾α, η

˜
α]. As B is κ–Borel, we

should get the same result, but they are not the same. A contradiction. �8.7

Definition 8.8. 1) We say M is a κ-model when :

(a) M ⊆ (H (κ+),∈) is transitive of cardinality κ, [M ]<κ ⊆ M and M is a
model of ZFC− (i.e. power set axiom omitted);

(b) similarly for (H<κ+(U),∈), U a set of ure-elements.

2) We say η is a (M,Q, η
˜

)–generic κ–real when (as in [Sh 630]):

(a) Q is a forcing notion definable in M , (absolutely enough in the interesting
cases),

(b) η
˜
∈ M a Q–name of κ–real, defined by a Borel function from a sequence of

κ truth values of the form “p ∈ G
˜

Q”,
(c) there is G ⊆ QM generic over M such that η

˜
[G] = η.

Observation 8.9. 1) A κ–Borel set B belongs to id(Qκ) iff for some κ–real
c = cB for every κ–model M to which c belongs we have:

• if ν is (M,Qκ, η
˜

)-generic real then ν /∈ B.

2) If M is a κ-model, M |= “Q is (<κ)–strategically complete forcing notion (set
or class in M sense) (or a definition of Q)” and G ⊆ QM is generic over M then
M [G] is a κ-model.

Definition 8.10. (1) We say a set X ⊆ κH (κ) is κ− idκ-Borel when :
(a) idκ is an ideal on P(κ),
(b) for some κ-Borel function F : κH (κ) −→ P(κ) for every η ∈ κH (κ)

we have: η ∈ X iff F (η) ∈ id.
Here (in (2),(3)) we may omit κ when clear from the context.

(2) Similarly for id+
κ .

(3) Let idwc(κ) be the weakly compact ideal on κ.

So

Observation 8.11. Letting idnst(κ) be the non-stationary ideal on κ, κ–id+
nst

(κ)-
Borel means κ-stationary Borel.
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[ShVs 719] Saharon Shelah and Pauli Väisänen. On equivalence relations second order definable
over H(κ). Fundamenta Mathematicae, 174:1–21, 2002. arxiv:math.LO/9911231.
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