Skip to main content
Log in

Reverse mathematics and order theoretic fixed point theorems

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The theory of countable partially ordered sets (posets) is developed within a weak subsystem of second order arithmetic. We within \(\mathsf {RCA_0}\) give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over \(\mathsf {RCA_0}\). Then we within \(\mathsf {RCA_0}\) give proofs of Knaster–Tarski fixed point theorem, Tarski–Kantorovitch fixed point theorem, Bourbaki–Witt fixed point theorem, and Abian–Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian–Brown least fixed point theorem, Davis’ converse for countable lattices, Markowski’s converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over \(\mathsf {RCA_0}\). Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abian, S., Brown, A.: A theorem on partially ordered sets, with applications to fixed point theorems. Can. J. Math. 13(1961), 78–82 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Providence, Rhode Island (1940)

  3. Bourbaki, N.: Sur le théorème de Zorns. Arch. Math. 2(6), 434–437 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  5. Davis, A.: A characterization of complete lattices. Pacific J. Math. 5(1955), 311–319 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frittaion, E., Marcone, A.: Linear extensions of partial orders and reverse mathematics. Math. Logic Q. 58, 417–423 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Granas, A., Dugundji, J.: Fixed Point Theory. PWN-Polish Scientific Publishers, Warzawa (1982)

  8. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  9. Kantorovitch, L.: The method of successive approximations for functional equations. Acta. Math. 71(1939), 63–97 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  10. Knaster, B.: Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6(1927), 133–134 (1927)

    MATH  Google Scholar 

  11. Markowsky, G.: Chain-complete posets and directed sets with applications. Algebra Univ. 6(1976), 53–68 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roman, S.: Lattices and Ordered Sets. Springer, New York (2008)

    MATH  Google Scholar 

  13. Schröder, B.: Ordered Sets: An Introduction. Birkhäuser, Boston (2002)

  14. Shioji, N., Tanaka, K.: Fixed point theory in weak second-order arithmetic. Ann. Pure Appl. Log. 47, 167–188 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  16. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  17. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(1955), 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Witt, E.: Beweisstudien zum Satz von M. Z. Math. Nachr. 4, 434–438 (1951)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sato.

Additional information

Supported by JSPS and the National University of Singapore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Yamazaki, T. Reverse mathematics and order theoretic fixed point theorems. Arch. Math. Logic 56, 385–396 (2017). https://doi.org/10.1007/s00153-017-0526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0526-y

Keywords

Mathematics Subject Classification

Navigation