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STRONGLY UPLIFTING CARDINALS AND THE
BOLDFACE RESURRECTION AXIOMS

JOEL DAVID HAMKINS AND THOMAS A. JOHNSTONE

ABSTRACT. We introduce the strongly uplifting cardinals, which
are equivalently characterized, we prove, as the superstrongly un-
foldable cardinals and also as the almost-hugely unfoldable cardi-
nals, and we show that their existence is equiconsistent over ZFC
with natural instances of the boldface resurrection axiom, such as
the boldface resurrection axiom for proper forcing.

1. INTRODUCTION

The strongly uplifting cardinals, which we shall introduce in this
article, are a boldface analogue of the uplifting cardinals of [HJ14],
and are equivalently characterized as the superstrongly unfoldable car-
dinals and also as the almost-hugely unfoldable cardinals. In consis-
tency strength, these new large cardinals lie strictly above the weakly
compact, totally indescribable and strongly unfoldable cardinals and
strictly below the subtle cardinals, which in turn are weaker in consis-
tency than the existence of 0°. The robust diversity of equivalent char-
acterizations of this new large cardinal concept enables constructions
and techniques from much larger large cardinal contexts, such as Laver
functions and forcing iterations with applications to forcing axioms.
Using such methods, we prove that the existence of a strongly uplifting
cardinal (and hence also a superstrongly unfoldable or almost-hugely
unfoldable cardinal) is equiconsistent over ZFC with natural instances
of the boldface resurrection axioms, including the boldface resurrection
axiom for proper forcing, for semi-proper forcing, for c.c.c. forcing and
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others. Thus, whereas in [HJ14] we proved that the existence of a mere
uplifting cardinal is equiconsistent with natural instances of the (light-
face) resurrection axioms, here we adapt both of these notions to the
boldface context.

These forcing arguments, we believe, evoke the essential nature of
Baumgartner’s seminal argument forcing PFA from a supercompact
cardinal, and so we are honored and pleased to be a part of this memo-
rial issue in honor of James Baumgartner.

2. STRONGLY UPLIFTING, SUPERSTRONGLY UNFOLDABLE AND
ALMOST-HUGELY UNFOLDABLE CARDINALS

Let us now introduce the strongly uplifting cardinals, which strengthen
the uplifting cardinal concept from [HJ14] by the involvement of the
predicate parameter A, allowing us to view the strong uplifting prop-
erty as a boldface form of upliftingness.

Definition 1. An inaccessible cardinal x is strongly uplifting if it is
strongly #-uplifting for every ordinal 6, which is to say that for every
A C 'V, there is an inaccessible cardinal v > 6 and a set A* C V,, such
that (V,;, €, A) < (V,, €, A*) is a proper elementary extension.

This definition generalizes the concept of x being uplifting, which
is simply the case where A is trivial or omitted [HJ14]. It would be
equivalent to require the property only for A C &, since any predicate
on V, can be easily coded with a subset of x, and we shall henceforth
often adopt this perspective. Further, we needn’t actually require here
that k is inaccessible at the outset, but only an ordinal, since the in-
accessibility of x and much more follows from the extension property
itself (using just subsets A C k), as we explain in the proof of theo-
rem 3. It is immediate from the definition that every strongly uplifting
cardinal is strongly unfoldable (and hence also weakly compact, to-
tally indescribable and so on), since by the extension characterization
of strong unfoldability (see [Vil98, VL99, Ham01]), an inaccessible car-
dinal k is strongly unfoldable just in case for every ordinal 6 and every
A C k there is A* and transitive set W with V, C W, such that
(Vi,€,A) < (W, €, A*). The strongly uplifting cardinals strengthen
this by insisting that W has the form V,, for some inaccessible cardinal
v. So strong unfoldability is a lower bound for strong upliftingness,
and more refined lower bounds are provided by theorem 6. For a crude
upper bound, it is clear that if s is super 1-extendible, which means that
there are arbitrarily large 6 for which there is an elementary embed-
ding j : Vi1 — Vi1, then k is also strongly uplifting, simply by letting
A* = j(A) for any particular A C V. An improved upper bound in
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consistency strength is provided by the observation (theorem 8) that
if 0% exists, then every Silver indiscernible is strongly uplifting in L;
a still lower upper bound is provided by the subtle cardinals in theo-
rem 7. Meanwhile, let’s show that the strongly uplifting cardinals are
downward absolute to the constructible universe L.

Theorem 2. Every strongly uplifting cardinal is strongly uplifting in L.
Indeed, every strongly 0-uplifting cardinal is strongly 0-uplifting in L.

Proof. Suppose that s is strongly 6-uplifting in V. Since x is inac-
cessible, it is also inaccessible in L. Consider any set A C L, = VRL
with A € L. Since A is constructible, it must be that A € Lg for
some 3 < (kT)L. Let E be a relation on « such that (k, E) & (Lg, €).
Since k is strongly #-uplifting in V', there is a proper elementary ex-
tension (Vj, €, E) < (V,, €, E*) for some inaccessible cardinal v > 6
and binary relation E* on 7. Since E is well-founded, there are no
infinite F-descending sequences in V,;. Since 7 is regular and V/ is con-
sequently closed under countable sequences, it follows by elementarity
that E* is also well-founded. Further, since (V,;, €, F) can verify that
(k, E) EV = L, it follows by elementarity that (v, E*) also satisfies
V' = L, and since it is well-founded it must be that (v, E*) = (Lg«, €)
for some ordinal 5*. Note that A is a class in (V,, €, F) that is defin-
able from parameters, since A is represented by some ordinal a < k
in the structure (k, E). If A* is the element of Lg« represented by
the same « with respect to E*, then it follows by elementarity that
(Lp,€,A) < (Ly,€,A"), and since A* € L, we have witnessed the
desired instance of strong f-uplifting. O

Recall from [HJ14] that an inaccessible cardinal & is pseudo uplifting
if for every ordinal 6 there is some ordinal v > 6, not necessarily
inaccessible, for which V,, < V,. Thus, the pseudo-uplifting property
simply drops the requirement that the extension height ~ is inaccessible,
and we observed in [HJ14, thm 11] that this change results in a strictly
weaker notion. In the boldface context, it is tempting to define similarly
that an ordinal x is strongly pseudo uplifting if for every ordinal 4 it
is strongly pseudo f-uplifting, meaning that for every A C k, there is
an ordinal v > 6, not necessarily inaccessible, and a set A* C ~ for
which (V,,€,A) < (V,, €, A*). Similarly, in the other direction, we
might want to define that s is strongly uplifting with weakly compact
targets, if the corresponding extensions (V,, €, 4) < (V,, €, A*) can
be found where v is weakly compact in V. In the boldface context,
however, these changes do not actually result in different large cardinal
concepts, for we shall presently show that it is equivalent to require
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nothing extra about the extension height =, or to require that it is
inaccessible, weakly compact, totally indescribable or much more.

Theorem 3 (Extension characterizations). A cardinal is strongly up-
lifting if and only if it is strongly pseudo uplifting, if and only if it is
strongly uplifting with weakly compact targets. Indeed, for any ordinals
k and 0, the following are equivalent.

(1) k is strongly pseudo (0 + 1)-uplifting. That is, k is an ordinal
and for every A C k there is an ordinal v > 0 and a set A* C ~
such that (Vy, €, A) < (V,, €, A*) is a proper elementary exten-
510M.

(2) K is strongly (6 4+ 1)-uplifting. That is, K is inaccessible and for
every A C k there is an inaccessible v > 6 and a set A* C v such
that (V,, €, A) < (V,, €, A*) is a proper elementary extension.

(3) K is strongly (04 1)-uplifting with weakly compact targets. That
is, Kk 1is inaccessible and for every A C k there is a weakly
compact v and A* C ~ such that (V,, €, A) < (V,,€,A%) is a
proper elementary extension.

(4) K is strongly (0 + 1)-uplifting with totally indescribable targets,
and indeed with targets having any property of k that is absolute
to all models V., with v > K, 0.

Proof. 1t is clear that (4) — (3) — (2) — (1). Conversely, suppose
that statement (1) holds. It is an easy exercise to see that k£ must be
an inaccessible cardinal. Namely, x must be regular, for otherwise we
may not have (Vj, €, A) < (V,, €, A*) when A C & is a short cofinal
subset of k—meaning that the order type is less than k—since this
order type would be definable in the former structure, but different
from the strictly larger corresponding order type of A* in the second
structure, violating elementarity. Similarly, x must be a strong limit
cardinal if there is any proper elementary extension V, <V, at all, or
indeed any transitive extension V, < W with x € W, since otherwise
we could find for some § < k a well-ordering of a subset of P() having
order-type exactly k, and this order would be an element of V, hav-
ing no isomorphism with an ordinal in Vj, but it would have such an
isomorphism to an ordinal in W. So xk must be inaccessible. Consider
now any set A C k. Let C C k be the club of ordinals § < k for
which (V5,€, ANd) < (V,, €, A). Now, consider any proper extension
(Vi,€,A,C) < (V,, e, A*,C*), where v > 6, but ~ is not necessarily in-
accessible. Because every element § € C has (Vj, €, ANG) < (V,, €, A),
it follows by elementarity that (V,,e,A* Nn) < (V,, €, A*) for ev-
ery n € C*. Since k € C* and k is inaccessible, it follows from
(Vi,€,C) < (V,,€,C*) that the inaccessible cardinals in C' cannot be
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bounded below k, and so by elementarity there must also be unbound-
edly many inaccessible n € C*. Fix some such inaccessible cardinal
n € C* above 6 and k. Combining the information, it follows that
(Vi €,A) < (V,, €, A* Nn), and so we've witnessed (2) using the inac-
cessible cardinal 1. Further, since s is weakly compact in V,, we also
could find weakly compact n € C* above 6 and thereby verify state-
ment (3). Similarly, since « is totally indescribable and much more
that is witnessed in V,,, strongly unfoldable up to v and so on, we may
find corresponding 1 in C* above 6 and thereby witness statement (4).
Namely, for any property of x in V., we may find n with this property in
V, for which (V,,, €, A) < (V,,, €, A*), since there will be unboundedly
many such 7 in the club C*. U

One may generally use H, instead of V, in the characterizations,
provided k is a cardinal. For example, k is strongly uplifting just
in case it is a cardinal and for all A C k there are arbitrarily large
cardinals v with sets A* C v such that (H,, €, A) < (H,, €, A*), and
one may freely assume or not that 7 is inaccessible, weakly compact,
totally indescribable and much more. Note that this boldface extension
property for H, implies that s is inaccessible: it is regular, as before,
by using a short cofinal set A C k; and it is a strong limit, since if
28 > k for some B < k, then we may divide x into x many interval
blocks of size § and let A C k have a different subset of  pattern
on each block; if (H,, €, A) < (H,, €, A*), then whichever subset of /3
appears in A* on the block [k, k + 3) will not appear on A at all, since
the patterns on A* do not repeat, but this pattern is in H,, and does
appear on A*, violating elementarity. Note also that the properties in
statement (4) include all ¥y properties of k that are realized in the
relevant corresponding extensions V.

We should like now to provide a number of embedding characteri-
zations of the strongly uplifting property. These characterizations will
continue the progression of embedding characterizations of the weakly
compact cardinals, the indescribable cardinals, the unfoldable cardi-
nals and the strongly unfoldable cardinals. Specifically, if « is any
inaccessible cardinal and 6 is any ordinal, then it is known that:

(1) k is weakly compact if and only if for each A € H,+ there is a
rk-model M | ZFC with A € M and a transitive set N with an
elementary embedding j : M — N with critical point k.

(2) K is f-unfoldable if and only if for each A € H,+ there is a
k-model M = ZFC with A € M and a transitive set N with
an elementary embedding j : M — N with critical point x and
j(k) > 0.
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(3) k is strongly f-unfoldable if and only if for each A € H,.+ there
is a k-model M | ZFC with A € M and a transitive set N
with an elementary embedding j : M — N with critical point
k and j(k) > 6 and V C N.

For further details, see [HJ10], and also [Vil98, VL99], [HamO01], [Joh07,
Joh08], [Ham|. A k-model is a transitive set M of size x with k €
M and M<® C M, and satisfying the theory ZFC™, meaning ZFC
without power set!, although the embedding characterizations above
use full ZFC. One often sees such embedding characterizations using
only M = ZFC™, but it is equivalent to require full ZFC as we have,
as in footnote 2, since if merely M = ZFC™, but j : M — N is
elementary, then M’ = V;J(\Q) would be a model of full ZFC containing
A, which could then be used with an embedding j; : M’ — N’. These
embedding characterizations are extremely robust, and they remain
equivalent characterizations of these large cardinal notions even after
diverse minor changes. For example, one may consider only A C &
rather than A € H,.+; one may add the requirement that V, < M
holds for the k-models M; there is no need to require M [ ZFC
or even M |= ZFC™, as any transitive set will do; one may drop the
M= C M requirement and replace it by 2<% = k ; one gets embeddings
7+ M — N for every transitive structure of size k; by composing
embeddings, one may insist that j(x) > 6 and so on.

Just as strong unfoldability is a strong-cardinal analogue of unfold-
ability, it is natural to consider the corresponding superstrong and
almost hugeness analogues of that notion.

Definition 4.

(1) An inaccessible cardinal  is superstrongly unfoldable, if for ev-
ery ordinal 6 it is superstrongly 6-unfoldable, which is to say
that for each A € H,+ there is a k-model M | ZFC with
A € M and a transitive set N with an elementary embedding
Jj M — N with critical point x and j(x) > 0 and Vj() C N.

(2) An inaccessible cardinal k is almost-hugely unfoldable, if for
every ordinal 6 it is almost-hugely 0-unfoldable, which is to say
that for each A € H,+ there is a xk-model M | ZFC with

IThe theory ZFC™ should be axiomatized with the collection axiom and not
merely the replacement axiom (and the axiom of choice should be taken as the
well-order principle), especially as here in the context of ultrapower and exten-
der embeddings, for reasons explored in detail in [GHJ], which shows that many
expected results, including the Lo$ theorem, do not hold under the naive axiomati-
zation, which is not equivalent to the correct formulation of ZFC™ axiomatization
when one lacks the power set axiom.
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A € M and a transitive set N with an elementary embedding
j: M — N with critical point x and j(x) > 6 and N<7*) C N.

We needn’t insist that x is inaccessible at the outset, since this follows
from the properties in question. A natural weakening of these notions
does not insist that one may find arbitrarily large such targets j(k),
but only one. Namely, a cardinal x is weakly superstrong, if for every
A € H,+ there is a k-model M = ZFC with A € M and an elementary
embedding j : M — N into a transitive set N with critical point x and
Vi) € N. And similarly, & is weakly almost huge, if for every A € H,+
there is such j : M — N with N</(*) C N.

Remarkably, the superstrongly unfoldable cardinals are precisely the
same as the almost-hugely unfoldable cardinals, which are precisely
the same as the strongly uplifting cardinals. This phenomenon can be
viewed as an extension of the fact pointed out by Hamkins and Dza-
monja [DHO06], that the strongly unfoldable cardinals are equivalently
characterized both in terms of strongness type embeddings j : M — N
with Vy C N, and also in terms of supercompactness type embeddings
j: M — N with N C N. Similarly, here, we have strong uplift-
ness characterized both in terms of superstrongness type embeddings
J: M — N with Vj,) € N and also equivalently in terms of almost
hugeness embeddings j : M — N, with N</(®) C N,

Theorem 5 (Embedding characterizations). A cardinal is strongly up-
lifting if and only if it is superstrongly unfoldable. Indeed, for any car-
dinal k and ordinal 0, the following are equivalent.

(1) k is strongly (0 + 1)-uplifting.

(2) K is superstrongly (60 + 1)-unfoldable.

(3) K is almost-hugely (6 + 1)-unfoldable.

(4) For every set A € H .+ there is a k-model M = ZFC with
Ae M andV, < M and a transitive set N with an elementary
embedding j : M — N having critical point k with j(k) > 6
and Vi < N, such that N<9") C N and j(k) is inaccessible,
weakly compact and more in V.

(5) k<% = K holds, and for every k-model M there is an elementary
embedding j : M — N having critical point k with j(k) > 6
and Vi € N, such that N<i®) C N and j(r) is inaccessible,
weakly compact and more in V.

Proof. (1 — 4) Suppose that & is strongly (#+1)-uplifting, and consider
any set A € H,+. Since k is weakly compact, there is a x-model
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M E 7ZFC with A € M and V,, < M.* Since this structure has
size k, we may find a well-founded relation £ on x and an isomorphism
m: (M, €) = (k, E). By our assumption on s, there is an inaccessible
cardinal v above 6 and some E* C v such that (V, €, E) < (V,, €, E*),
and by theorem 3 we may also assume that v is weakly compact, totally
indescribable and indeed much more. Since E is well-founded, it follows
by elementarity that £* has no infinite descending sequences in V,,
and since 7 is regular, this means that £E* is really well-founded. Let
7 (v, E*) — (N, €) be the transitive collapse of E* onto a transitive
set N, and let j = 7 o m be the composition map, so that j : M — N
is an elementary embedding with A € M. Note that j fixes ordinals
below x, because if « is coded by & with respect to E, then it is also
coded by ¢ with respect to E*, and so j(«a) = a. If K is represented
by a with respect to E, then ~ will be represented by « with respect
to E*, since this property is expressible in (Vj, €, E) < (V,, €, E*),
and so j(k) = 7(m(k)) = 7(a) = ~. Thus, the map j has critical
point x, with j(k) = 7 being an inaccessible cardinal above 6. Since
the structure (V,, €, E) sees that each of its elements is coded by an
ordinal via F, it follows by elementarity that each of the elements of
V, is coded by an ordinal via E*, and so V) = V, € N. Similarly,
since M= C M, it follows that (V,, €, E) believes that the structure
(k, E') is closed under <k-sequences (that is, for any 8 < k and any
B-sequence (z,, | a < () of ordinals below &, there is s < k such that
(k, E) thinks s is a sequence, whose o' member is precisely x,,), and so
by elementarity the corresponding fact is true of (V,, €, £*). Since V,
itself is correct about [y]<7, this implies N<¥ C N, or in other words,
N<i®) C N. Finally, since we chose M such that V,, = VM < M, it
follows by elementarity that Vj.) = (Vj@))Y < NV, as desired.

(4 — 5) The embedding property (4) asserts the existence of k-
models, which implies k<" = k, and it then follows that x is inaccessi-
ble. If M is a k-model, then by statement (4) there is another xk-model
M = ZFC with M € M and a transitive set N with an embedding
j : M — N with critical point x with j(x) > 6 and Vj(,) C N, such that
N<i®) C N and j(k) is weakly compact and more. Since M<* C M,
it follows that j(M)</®) C j(M) inside N, and since N</(*) C N we
know that N is correct about this. It follows that V), € N as well,

2Code the set A by a set A C k and find first a k-model M’ with A € M’; use
the weak compactness of « to find a transitive set IV with an elementary embedding
j: M' — N with critical point x, and by using the induced factor embedding, if
necessary, assume that N has size x and N<* C N. The set M = (Vj,))" is then
the desired x-model satisfying ZFC with V, < M and A € M.
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and so the restricted embedding j [ M : M — j(M) verifies statement
(5).

(5 — 3) This direction is immediate, since k<* = k implies that
every set A C k can be placed into some k-model.

(3 — 2) This is immediate, since N</(*) C N implies Vi € N, as
it is easy to see that j(x) must be inaccessible.

(2 — 1) Suppose that x is superstrongly (#+1)-unfoldable. It follows
easily that « is inaccessible. To see that x is strongly (6 4 1)-uplifting,
we verify the extension property of theorem 3 statement (1). For any
A C k, there is a k-model M with A € M and j : M — N with
critical point x, for which j(x) > 6 and Vj) € N, and consequently

J(Vie) = V. 1If A = j(A), then it follows by elementarity that
(Vi, €, A) < < i) ) witnessing this instance of k being strongly
(6 + 1)-uplifting. O

Note particularly that in the superstrongly unfoldable embedding
characterization, there is no stipulation that j(x) must be inaccessi-
ble; but nevertheless, by the other embedding characterizations, one
may always find alternative superstrong unfoldability embeddings still
above 6 for which j(k) is inaccessible, weakly compact and more, just
as in theorem 3. Theorem 5 was stated in terms of the successor ordinal
0 + 1, a case amounting to the requirement that j(x) > 6, and in this
case all the notions are locally equivalent, but similar arguments show
that some of the notions are locally equivalent for every ordinal 6, not
just successor ordinals. Namely, a cardinal x is strongly f-uplifting if
and only if it is almost-hugely #-unfoldable. As a result, one should
regard almost-hugely #-unfoldability as the right embedding charac-
terization of strong #-upliftingness. Meanwhile, when @ is a singular
limit cardinal, these notions are not in general equivalent to s being
superstrongly #-unfoldable, since it can happen that a cardinal  is su-
perstrongly f-unfoldable for such a singular €, but not even #-uplifting,
let alone strongly f-uplifting.

Next, we consider the difference in consistency strength between up-
lifting cardinals and strongly uplifting cardinals. In the case of unfold-
able cardinals, Villaveces [Vil98] showed that every unfoldable cardinal
is unfoldable in L, and every unfoldable cardinal in L is strongly unfold-
able there. Thus, unfoldability and strong unfoldability are equiconsis-
tent as large cardinal hypotheses. For the case of uplifting and strong
uplifting, in contrast, we shall show presently that there is a definite
step up in consistency strength. While uplifting cardinals are weaker
than Mahlo cardinals in consistency strength, theorems 6 and 7 show
that the consistency strength of the existence of a strongly uplifting
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cardinal, if consistent, lies strictly between the existence of a strongly
unfoldable cardinal and the existence of a subtle cardinal.

In analogy with the various large cardinal Mitchell rank concepts,
we defined in [HJ10] that a strongly unfoldable cardinal x is strongly
unfoldable of degree a, for an ordinal «, if for every ordinal 6 it is 6-
strongly unfoldable of degree o, meaning that for each A € H, .+ there is
a k-model M = ZFC with A € M and a transitive set N with a € N
and an elementary embedding j : M — N having critical point k with
j(k) > max{0,a} and V5 C N, such that k is strongly unfoldable of
every degree 3 < v in N.® An inaccessible cardinal x is ¥a-reflecting,
it V; <s, V, and it is easy to see that every strongly uplifting cardinal
and even merely every pseudo-uplifting cardinal is s-reflecting.

Theorem 6. If k is strongly uplifting, then k is strongly unfoldable,
and furthermore, strongly unfoldable of every ordinal degree o, and a
stationary limit of cardinals that are strongly unfoldable of every ordinal
degree and so on.

Proof. Suppose that k is strongly uplifting, and suppose inductively
that k is strongly unfoldable of every ordinal degree 8 below «. Since
Kk is strongly unfoldable by theorem 5, we may find (by collapsing a
suitable elementary substructure of some large V, when 7 is inaccessi-
ble) for any A C k a k-model M = ZFC with A € M such that M = &
is strongly unfoldable, and in particular, such that x is Ys-reflecting in
M. Since k is strongly uplifting, we may find by theorem 5 statement
(5) an elementary embedding j : M — N such that j(k) is inaccessible,
J(k) > a and Vj,) € N.

For every ordinal § < j(k), we claim that x is #-strongly unfoldable
in N of every degree 5 < a. The reason is simply that this holds in V
and is witnessed by extender embeddings of size max{Jy, v, K}, which
are therefore inside Vj(,) and hence in N. Since furthermore j(x) is
Yo-reflecting in N, this means that any counterexample to strong un-
foldability would reflect below j(x) and so & is fully strongly unfoldable
of every ordinal degree 3 below v in N. Thus, & is strongly unfoldable
in V' of degree «, and the proof is complete by induction on a.

For the second claim, consider any club C' C k and ensure also
that ' € M in the argument above. The argument shows that x is
<j(k)-strongly unfoldable of every ordinal degree o < j(k) in N, and
consequently it is strongly unfoldable of every ordinal degree in N.

?’Technicadly7 in [HJ10] we had only required that the domain M of the elementary
embedding j is a transitive set of size k with M = ZFC™ and k, A € M; however,
by restricting such j to a k-model M as in footnote 2 with V,, < M, if necessary,
we may assume without loss that the domain M is a xk-model satisfying all of ZFC.
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Since furthermore x € j(C), this means that x must be a stationary
limit of such cardinals in V', as there can be no club C' C k containing
no such cardinals. 0

Thus, the strongly uplifting cardinals subsume the entire hierarchy
of degrees of strong unfoldability.

Having now provided a strong lower bound, let us turn to the ques-
tion of an upper bound. Recall that a cardinal x is subtle if for any
closed unbounded set C' C k and any sequence (A, | a € C) with
A, C a, there is a pair of ordinals o < 8 in C' with A, = AgNa. It is
not difficult to see that every subtle cardinal is necessarily inaccessible.
Subtle cardinals need not themselves be unfoldable (see [Vil98, Prop
2.4]), and so they need not be strongly uplifting.

Theorem 7. If § is a subtle cardinal, then the set of cardinals k below
0 that are strongly uplifting in Vs is stationary.

Proof. The argument is essentially related to [Vil98, theorem 2.2] and
also [DH06, theorem 3]. Suppose that § is subtle and the set of cardi-
nals below 0 that are strongly uplifting in Vs is not stationary. Then
there is a closed unbounded set C' C § containing no such cardinals.
Since each cardinal in C'is not strongly uplifting in Vj, it follows from
statement (1) of theorem 3 applied in Vj that for each k € C, there
is some least # < § and some subset A, C k, such that (V,, €, A,)
has no proper elementary extension of the form (V,, €, A*) for any
v with § < v < ¢. By thinning the club C, we may assume that
0 is less than the next element of C' above k, and also that k is a
J-fixed point. Since V, has size k, let B, C k be a set that codes
the elementary diagram of the structure (V,, €, A,) in some uniform
canonical manner. Since ¢ is subtle, there is a pair k < n in C with
B, = B, N k. Since B, and B, code the corresponding elementary di-
agrams, it follows that those structures agree on their truths below x,
and so (V,, €, A,) < (V,), €, A,). This contradicts the assumption that
(Vi, €, Ax) has no proper elementary extension above @, which is less
than the next element of C' and therefore less than 7. So the conclusion
of the theorem must hold, as desired. O

Theorem 8. If 0% exists, then every Silver indiscernible is strongly
uplifting in L.

Proof. 1f k is any Silver indiscernible, then for any Silver indiscernible
d above k, there is an elementary embedding j : L — L with j(k) = d
and j [ k =id. If A C kis any set in L, then (L., €, A) < (Ls, €, j(A)),
witnessing the desired instance of strong uplifting. U
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So for example, if there is a Ramsey cardinal, then every uncountable
cardinal of V' is strongly uplifting in L.

Let us say that a cardinal x is unfoldable with cardinal targets, if
for every A € H,+ there is a k-model M with A € M, an ordinal 6, a
transitive set N and an elementary embedding j : M — N with critical
point &, such that j(k) is a cardinal (in V') and j(x) > 6.

Theorem 9. In the constructible universe L, k is strongly uplifting if
and only if it is unfoldable with cardinal targets.

Proof. The forward implication holds whether or not we are in L, since
if k is strongly uplifting, then by theorem 5 we get for any A € H .+ a
rk-model M with A € M and an embedding j : M — N with critical
point x and j(k) weakly compact and more, as large as desired; and so x
is unfoldable with the desired targets. Conversely, assume that V = L
and « is unfoldable with cardinal targets. For any A C x we may find
a k-model M with A € M, and an embedding j : M — N with j(k) a
cardinal in V' and as large as desired. Since j fixes everything of rank
below &, it follows by elementarity that (L., €, A) < (Lj«x), €, 7(A)).
We have L, = V, since k is inaccessible. Since j(k) is a cardinal, it
follows that L;(.) correctly computes all cardinals and 3, below j(x),
and so by elementarity L, < L it follows that j(x) is a J-fixed point
in L. Thus, Lj,) = V.%H), thereby witnessing the desired instance of

J
strong upliftingness for k, using theorem 3 statement (1). O

Let us now turn to the Menas and Laver function concepts for the
strongly uplifting cardinals. Define that f : kK — K is a Menas function
for a strongly uplifting cardinal k, if for every set A C k and every 6,
there is a proper elementary extension (V. €, A, f) < (V,, €, A%, f*),
where v > 6 is inaccessible and f*(k) > 6.

Theorem 10. Every strongly uplifting cardinal k has a strongly uplift-
ing Menas function.

Proof. As in [HJ14, thm 13|, we may simply use the failure-of-strong-
uplifting function, namely, the function defined by f(6) = 0, if ¢ is
not strongly f-uplifting, but it is strongly S-uplifting for every 5 < 6.
Suppose that x is strongly uplifting and consider any ordinal # and
any A C k. Let A be any ordinal above # such that V) = k is strongly
uplifting? , and let 1 be the smallest inaccessible cardinal above A for
which there is an elementary extension (V, €, A, f) < (V,, €, A*, f*).

4Note that the various characterizations of strongly uplifting cardinals as in
theorems 3 and 5 are all equivalent for such models V), even though V) need not
satisfy all of ZFC.
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(Note that we needn’t actually include f in the language, since it is
definable, and f* will be similarly defined in V;.) It follows by the
minimality of n that s is not strongly uplifting in V;,, but by the choice
of A\, we know that V,, |= s is strongly <A-uplifting. It follows that
f*(k) > A, which is at least #, and so we have fulfilled the desired
Menas property. O

The Menas function concept interacts well with the embedding char-
acterizations of theorem 5, with the result that one can find embeddings
j: M — N as in that theorem for which j(f)(k) > 6.

Although the Menas function concept suffices for many applications,
including especially the lottery-style forcing iterations we shall use for
the equiconsistency in theorem 19, nevertheless a more refined analysis
results in the Laver function concept. Namely, a function ¢: k — V is
a Laver function for a strongly uplifting cardinal &, if for every A C &,
every ordinal 6 and every set x, there is a proper elementary extension
(Vii,€,A,0) < (V,, €, A*, l*) where v > 6 in inaccessible and (* (k) = .
The function ¢ : k — V,, is merely an OD-anticipating Laver function,
if this property can be achieved at least for x € OD, and similarly a
function ¢:k — K is an ordinal-anticipating Laver function for a strongly
uplifting cardinal &, if for every A C xk and any two ordinals «, 6, there
is a proper elementary extension (V,, €, A, () < (V,, €, A*, *) where
v > 6 is inaccessible and (*(k) = a.

Theorem 11. Every strongly uplifting cardinal k has an ordinal-anticipating
Laver function { : k — K, and indeed, an OD-anticipating Laver func-
tion ¢ : k — V... Furthermore, there is such a Laver function that is

definable in (Vi €).

Proof. Let us first construct an ordinal-anticipating Laver function. For
any cardinal 0 < k, consider the set of ordinals v below s for which
V, = 0 is strongly uplifting. If this class of ordinals bounded in s and
has order type £ 4+ 1 for some &, and if furthermore ¢ = (a, 3) is the
Godel code of a pair of ordinals, then define ¢(§) = «; otherwise let
¢(0) be undefined. Thus, we have defined the function ¢: k — k.

We claim that this function is an ordinal-anticipating Laver function
for the strong upliftingness of k. To see this, consider any A C &k
and any two ordinals «, 6. Let £ = (o, #) be the Godel code, which we
assume is at least # (and we may assume this is at least k), and let A be
the (£ +1)™ ordinal such that V) = & is strongly uplifting, and let 5 be
the least inaccessible cardinal above A for which there is an extension
(Vi, €, A,0) < (V,, €, A*, (*). By the minimality of ), it follows that A
is the largest ordinal below 7 for which V) |= & is strongly uplifting, and
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so the set of ordinals v below 1 for which V., = « is strongly uplifting
has order type { + 1. This means that V; = ¢*(k) = «, precisely
because it will be using the ordinal £ = («, ) when the definition is
unraveled. Since £ > 6, we have thereby witnessed the desired instance
of the ordinal-anticipating Laver function property.

One may now produce from ¢ an OD-anticipating Laver function
lik — V., using the same idea as in [HJ14, thm 14]. Let f(é) =z,
if £(6) = (n,B) and z is the B ordinal-definable object in (V}, €).
Now, if 2 € OD, then € OD"" for some 7, and it is the * ordinal-
definable object in V. Since £ is an ordinal-anticipating Laver function,
we may find (V,,, €, A, () < (V,, €, A*, ¢*) for which ¢*(r) = (1, 8), and
in this case we will have £*(k) = x, since V, will be looking at the 5%
ordinal-definable object of V;,, which is . O

In particular, if V"= HOD, then every strongly uplifting cardinal has
a strongly uplifting Laver function. So every strongly uplifting cardinal
has a strongly uplifting Laver function in L. Following the terminology

of [Ham02], we say that the Laver diamond principle Bsf:uphft holds for
a strongly uplifting cardinal k, if there is such a Laver function. And so

we have proved that Bsf_uphft holds under V' = HOD for any strongly
uplifting cardinal k. Meanwhile, we are unsure whether every strongly
uplifting cardinal must have a full Laver function. Perhaps this can
fail; it is conceivable that one might generalize the proof of the main
theorem of [DHO6] to the superstrong unfoldable context, in order to
produce strongly uplifting cardinals lacking <, (REG), which would
prevent the existence of Laver functions. We shall leave that question
for another project.

Question 12. Is it relatively consistent that a strongly uplifting cardi-
nal has no strongly uplifting Laver function? Can <.(REG) fail when
K 1s strongly uplifting?

Finally, let us remark that the Laver functions interact well with the
embedding characterizations of theorem 5, with the effect that after
tracing through the equivalences, one finds the corresponding embed-
dings j : M — N, for which j(¢)(x) has the desired value.

3. THE BOLDFACE RESURRECTION AXIOMS

We shall aim in section 4 to prove that the existence of a strongly up-
lifting cardinal is equiconsistent with the boldface resurrection axioms,
which we shall now introduce. These axioms generalize and strengthen
many instances of the bounded forcing axioms that are currently a fo-
cus of investigation in the set-theoretic research community. The main
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idea is simply to generalize the resurrection axioms of [HJ14] by allow-
ing an arbitrary parameter A. We use the notation ¢ to denote the
continuum, that is, the cardinality ¢ = 2* = |R|, and H, denotes the
collection of sets of hereditary size less than c.

Definition 13. Suppose that I' is any definable class of forcing notions.
(1) The boldface resurrection axiom RA(I") asserts that for every

Q eI and A C ¢, there is R € TV" such that ifg*th*R
is V-generic, then there is A* in V[g % h] with

(He, €, Ay < (HYo*M ¢ A7),
(2) The weak boldface resurrection axiom wRA(I') drops the re-

quirement that R needs to be in T'V19).

These boldface resurrection axioms naturally strengthen the corre-
sponding lightface versions RA(I") and wRA(I"), which were the main
focus of [HJ14], as the lightface forms amount simply to the special
case of where A is trivial or simply omitted. One may easily observe
that RA(all) implies wRA(I") for any class I' of forcing notions, and
RA(T") implies wRA(I"). Moreover, if I'y C I'; are two classes of forcing
notions, then wRA(I';) implies wRA(I';), but in general RA(I's) need
not imply RA(I'1).> Many further observations about the resurrection
axioms made in [HJ14] relativize easily to the boldface case.

If T is a class of forcing notions and x and § are cardinals, then
the bounded forcing axiom BFA4(T', k), introduced by Goldstern and
Shelah [GS95], is the assertion that whenever Q € I' and B = r.0.(Q),
if A is a collection of at most £ many maximal antichains in B\ {0},
each antichain of size at most ¢, then there is a filter on B meeting
each antichain in A. This axiom therefore places limitations both on
the number of antichains to be considered, as well as on the sizes of
those antichains. To simplify notation, the bounded forcing axiom
BFA,(T', k) is denoted more simply as BFA,(T"); the 6-bounded proper
forcing axiom BFAjg(proper,w;) is denoted as PFAy; the d-bounded
semi-proper forcing axiom BFAj(semi-proper,w;) is denoted SPFAy;
the analogous d-bounded forcing axiom for axiom-A posets is denoted
AAFA;; and the d-bounded forcing axiom for forcing that preserves
stationary subsets of w; is denoted MMj.

Theorem 14. wRA(T") implies BFA(I', k) for any cardinal x < ¢.
5For example, theorem 19 shows that RA(all) is consistent relative to a strongly

uplifting cardinal, whilst corollary 18 shows RA(R;-preserving) is inconsistent, even
though N;-preserving C all.
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Proof. This argument extends the argument of [HJ14, thm 4] to an-
tichains of size ¢, the point being that the boldface hypothesis allows
us to handle such larger antichains by treating them as predicates on
H. rather than as elements of H.. Assume wRA(I') and fix any car-
dinal kK < ¢. Suppose that B = r.0.(Q) for some poset Q € I', and
A = {A, | @ < k} is a collection of at most x many maximal an-
tichains in B \ {0}, each antichain of size at most ¢. Let By be the
subalgebra of B generated by |J, An. This has size at most ¢, and so
by replacing B with an isomorphic copy we may assume that both A
and By are subsets of H, of size ¢. Let ¢ C B be a V-generic filter. It
follows that ¢ is also A-generic, and so g N By meets every A,. By the
wRA(T), there is some further forcing h C R after which we may find

an elementary extension (H, €, By, Aq)ack < (Hcv[g”h}, €, By, AX) s,
using the fact that we may code all this additional structure into a
single predicate on ¢. For each a < k, let p, € g N By N A,, and
let F' = {ps|a <k}, which is a set of size xk in V[g] and hence in

HY 9] [h], which has the finite-intersection property and meets every an-
tichain A,. By elementarity, therefore, there must be a such a set
already in HY, and the filter in B generated by this set will meet every
A,, thereby witnessing the desired instance of BFA (T, ). O

We have the following immediate corollary.

Corollary 15.

(1) wRA(proper) + ~CH implies PFA..
2) wRA(semi-proper) + ~CH implies SPFA..

(2) (
(3) wRA (aziom-A) + ~CH implies AAFA..
(4) (

4) wRA (preserving stationary subsets of w1) + —-CH implies MM,

~

The conclusion PFA, of (1) is equiconsistent with the existence of an
H,+-reflecting cardinal, by a result due to Miyamoto [Miy98], and H,+-
reflecting cardinals are exactly the same as strongly unfoldable cardi-
nals. The same is true for the conclusion SPFA, of (2). Miyamoto’s
argument [Miy98] shows in fact that AAFA,, is sufficient to conclude
that ws is strongly unfoldable in L and so the conclusion AAFA, of (3) is
also equiconsistent with the existence of a strongly unfoldable cardinal.
The failure of CH is of course a necessary hypothesis in statements (1)-
(4) of Corollary 15, because the conclusions imply —CH, while all the
weak boldface resurrection axioms are compatible with CH, in light
of the fact that they are all implied by RA(all), which implies CH
by [HJ14, thm 5].
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The boldface resurrection axioms admit the following useful embed-
ding characterization, which is analogous to that of the strongly uplift-
ing cardinals. The hypothesis |H | = ¢, a consequence of MA, will hold
in the principal cases in which we shall be interested.

Theorem 16 (Embedding characterization of boldface resurrection).
If |H| = ¢, then the following are equivalent for any class T.

(1) The boldface resurrection aziom RA(T).

(2) For every Q € T and every transitive set M = ZFC™ with
M| = ¢ € M and H. C M, there is R € TV®, such that in
any forcing extension V]g* h] by Q R, there is an elementary
embedding

j:M — N
with N transitive, j | H, = id, j(c) = ¢V9*" and H'¥*" C N.
Similarly, the weak boldface axiom wRA(T') is equivalent to the embed-

ding characterization obtained by omitting the requirement that R €
rve,

Proof. Suppose that RA(I") holds. Fix any Q € I' and any transitive
M = ZFC™ with |[M| = ¢ € M and H. C M. Find a relation E
on ¢ and an isomorphism 7 : (M, €) = (¢, E), and let A C ¢ code E
via a canonical pairing function. By RA(I"), there is R € I'V° such
that if gxh C Q * R is V-generic, then in V[g % h| there is a set
A* C Vol guch that (H,, €, A) < (Hcv[g*h], €, A*). The set A* codes a
relation £* on ¢V19*". Since (H,, €, A) knows that E is well founded, it
follows by elementarity that (H Vi *h}, €, A*) thinks E* is well founded.
Since ¢¥19*" has uncountable cofinality, this structure is closed under
countable sequences in V[g*h], and E* really is well founded in V[gxh].
Let 7 : (¢, E*) = (N, €) be the Mostowski collapse, and let j = 7o 7 :
M — N, which can be considered as the three-step composition

(M,e) = (,E) =< (V¥ E) = (Ng),
which is therefore elementary. Note that j is the identity on objects
in H.,, since if v = 771 () € H, then (H,, €, A) knows that x is repre-
sented by « with respect to E, and so (Hcv[g*h], €, A*) agrees that z is
represented by « with respect to E*. Similarly, if ¢ is represented by [
with respect to £, then this can be verified in (H, €, A), and so ¢"[9*"]

is represented by 8 with respect to E*. Thus, j(c) = ¢V19% as de-
sired. Finally, (H., €, A) knows that every object in H, is represented

in (¢, F), so <Hcv[g*h}, €, A*) can verify that gl N
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Conversely, suppose that (2) holds. Fix any Q € I and any A C «.
Since |H.| = ¢, we may find a transitive M < H+ with A,c € M
and H. C M and |M| = ¢. By (2), there is R € I'V" such that in the
corresponding forcing extension V' [g*h| we have an embedding j : M —
N with N transitive, j | H. = id and j(c) = ¢"9*"] and Hcv[g*h] C N.
Restricting j to (He, €, A), we see that (H,, €, A) < (H 9" e j(A)),
verifying this instance of the boldface resurrection axiom RA(T).

The same argument works in the case of the weak boldface axiom
wRA(I'), by omitting the requirement that ReT"". d

While [HJ14, thm 6] shows in the lightface context that the resurrec-
tion axioms RA(proper) and RA (semi-proper) and others are relatively
consistent with CH, this is no longer true in the boldface context.

Theorem 17. If some Q in I' adds a real and forcing in I' necessar-
ily preserves Wy, then the boldface resurrection aziom RA(L') implies
-CH. Consequently, the boldface resurrection axioms for proper forc-
ing, semi-proper forcing, and forcing that preserves stationary subsets
of Ny, respectively, each imply that the continuum is ¢ = wsy.

Proof. Suppose that RA(I') and CH hold. Let A C w; = ¢ code all
the reals of V| and let Q € I' be a forcing notion adding at least
one new real. By RA(T), there is a forcing notion R in ' such
that if g x h C Q % R is V-generic, then there is A* in Vg * h] with
(H. e, A < (H'"" ¢ A%). Since CH holds, H, = H,, and this
structure believes that every object is countable. By elementarity this

is also true in H “*" and so the CH holds in V[g*h]. Since we assumed
that forcing in I' preserves Ry, it follows that w; lo*h] — . From this,
it follows that A* = A, and so the new real does not appear on A*, a
contradiction.

It follows that the boldface resurrection axioms in the case of proper
forcing, semi-proper forcing, and so on each imply ¢ = ws, since the
argument just given shows they imply c¢ is at least wq, and it is at most

wy by [HJ14, thm 5]. O

Of course, to make the ¢ = ws conclusion, we didn’t use the full
power of the boldface axioms, with arbitrary predicates, but only a
single predicate A as above, a well-order of the reals.

Essentially the same arguments as in [HJ14, thm 8] show that several
instances of boldface resurrection axioms, including RA (countably closed),
RA (countably distributive), RA(does not add reals), and also the weak
forms wRA (does not add reals) and wRA (countably distributive), are
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each equivalent to the continuum hypothesis CH. And as in the case of
the lightface resurrection axioms, it follows more generally, for any reg-
ular uncountable cardinal d, that each of the boldface resurrection ax-
ioms RA (<é-closed), RA(<é-distributive), and RA(does not add bounded subsets of ¢)
is equivalent to the assertion that ¢ <.
Also, the inconsistencies mentioned in [HJ14, thm 9] extend to the
boldface context. In addition, we have the following.

Corollary 18. The boldface resurrection aziom RA(X;-preserving) is
inconsistent.

Proof. On the one hand, the axiom RA(X;-preserving) implies ~CH by
theorem 17. On the other hand, since N;-preserving forcing can destroy
a stationary subset of w;, we have that RA(N;-preserving) implies CH
by the remarks after [HJ14, thm 5]. O

4. STRONGLY UPLIFTING CARDINALS ARE EQUICONSISTENT WITH
BOLDFACE RESURRECTION

Let us now prove that the existence of a strongly uplifting cardinal
is equiconsistent with various natural instances of the boldface resur-
rection axiom.

Theorem 19. The following theories are equiconsistent over ZFC.

(1) There is a strongly uplifting cardinal.

2) There is a superstrongly unfoldable cardinal.

There is an almost-hugely unfoldable cardinal.

The boldface resurrection azxiom for all forcing.

The boldface resurrection axiom for proper forcing.

The boldface resurrection axiom for semi-proper forcing.

The boldface resurrection axiom for c.c.c. forcing.

The weak boldface resurrection axzioms for countably-closed forc-
ing, for axiom-A forcing, for proper forcing and for semi-proper
forcing, respectively, plus =CH.

NN N N N N
O J O U i W
N

Proof. On the one hand, we shall show that each of these boldface res-
urrection axioms implies that the continuum c¢ is strongly uplifting in
L; and conversely, if there is a strongly uplifting cardinal x, then we’ll
explain how to achieve the various boldface resurrection axioms in suit-
able forcing extensions. Meanwhile, the large cardinal properties of (1),
(2) and (3) are equivalent by theorem 5, and hence also equiconsistent.

To begin, suppose that the boldface resurrection axiom RA(all) holds.
This implies CH by [HJ14, thm 5]. We claim that x = ¢ = w; is strongly
uplifting in L. Fix any A C k in L, and choose any large ordinal 6. Let
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Q = Coll(w, #) be the forcing to collapse 0 to w. Since A € L, for some
a < kL) there is a transitive set M = ZFC™ having |[M| = ¢ € M
and H, C M with A € L™. By CH we know |H. = ¢, and so by
theorem 16, there is R such that if g« h C Q = R is V-generic, then in
Vg * h] there is a transitive set N and an embedding j : M — N with
critical point &, such that j(x) = ¢¥19*" and g/ C NIt follows
that (L, €, A) < (Ljx). €, j(A)), and since j(A) is in LV, this entire
extension is in L. Since j(x) is a cardinal in V[g* h], it is a cardinal in
L, and by the elementarity of L, < Lj(,), it will be a limit cardinal and
thus a strong limit cardinal in L. By [HJ14, thm 4], we know that MA
holds in V' and this is verified in H, and hence in M. Thus, MA holds
in N and hence in H' ") and hence in V(g * h]. So ¢V19*" = j(x) is
regular in V[g * h] and hence regular in L. It follows that j(k) is inac-
cessible in L, and so we have L, = (V,)¥ and Lj(,) = (Vj(x))*. Since 6
could have been made arbitrarily large, we have established that x is
strongly uplifting in L. So the consistency of (4) implies that of (1).

We can argue similarly if either (5) or (6) holds. In this case, we use
instead the poset Q = Coll(wy, @), but otherwise argue similarly that
K = ¢ = wy is strongly uplifting in L. If A C xis in L, there is M as
above with A € LM. By (5) or (6) we find R such that if gxh C Q*R
is V-generic, then in Vg * h] there is j : M — N with critical point
# and having j(k) = ¢V19*%. Once again, by MA considerations, j(x)
is regular in Vg * h] and hence in L, and (L, €, A) < (L;(x), €, 7(A)).
Since k and j(k) are inaccessible in L, again we have L, = (V,)F
and L) = (Vj())*. Since =CH holds in V' and this is transferred to
Vg * h], we know that j(x) = ¢"19"] is larger than 6. So & is strongly
uplifting in L. Thus, the consistency of either (5) or (6) implies that
of (1).

In the case of (7), we have the boldface resurrection axiom for c.c.c. forc-
ing RA(c.c.c.), and we use essentially the same argument, but with
Q = Add(w, #), where we add § many Cohen reals. Note that by [HJ14,
thm 7], the continuum ¢ is a weakly inaccessible cardinal, which is
therefore inaccessible in L. If A C k in L, there is M as above
with A € LM and by RA(c.c.c.) there is further c.c.c. forcing R,
such that if g * h € Q % R is V-generic, then in V[g][h] there is
j : M — N with critical point £ = ¢ having j(k) = ¢V and so
(Li,€, A) < (Lj), €,j(A)) is the desired extension, which is in L
because j(A) € LY.

Each of the axioms mentioned in (8) implies wRA (countably-closed),
and this axiom can be treated the same as RA(proper), since it implies
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the continuum is at most wy by [HJ14, thm 5] and hence equal to ws by
our =CH assumption, and so we may take Q = Coll(wy, ) and proceed
as in the case of (5) above, concluding that ¢ is strongly uplifting in L.

Conversely, suppose that x is strongly uplifting. We shall produce
the various boldface resurrection axioms in various suitable forcing ex-
tensions. For RA(all), let P = Coll(w, <x) be the Lévy collapse of x,
and suppose that G C P is V-generic. We argue as in [HJ14, thms
18,19], but with parameters. Fix any A C k in V[G]. There is a name
A € V such that A = Ag, and we may assume A has hereditary size &
and is coded by a set A’ C k in V. Now consider any poset Q € V[G].
Since r is strongly uplifting, there is a large inaccessible cardinal 7,
above x and |Q|, such that (V,, €, A") < (V,, €, A*) for some A* C ~.
Let P* = Coll(w, <) be the Lévy collapse of . The forcing PxQ is ab-
sorbed by this larger collapse, and so there is some quotient forcing R
such that P+ Q=R is forcing equivalent to P*. We may perform further
forcing g+ h C Q%R and rearrange this to G* C P*, agreeing with G on
P, such that V[G][g*h] = V[G*]. By [HJ14, lemma 17], we may lift the
elementary extension to (V,[G], €, A", G) < (V,[G*], €, A*, G*). Since
A’ codes A, this implies (Vi[G], €, A4,G) < (V,[G*], €, B, G*), where
B is the value of the name coded by A* using G*. Since k and ~ are

inaccessible in V| it follows after the Lévy collapse that V,.[G] = H o

and V,[G*] = !’ [G*}, so this extension witnesses the desired instance
of RA(all) in V[G]. So the consistency of (1) implies that of (4).
Similarly, from (1) we now force (5) using the PFA lottery prepara-
tion, introduced in [Joh07] (used independently in [NS08]) based on the
lottery iteration idea of [Ham00]. Suppose that & is strongly uplifting
and that G C P is V-generic for the PFA lottery preparation P, de-
fined with respect to the Menas function f constructed in theorem 10.
We show that V[G] = RA(proper). We know x = ¢"I¢ = xy €l
and V|G| satisfies the lightface RA(proper). Suppose that Q is any
proper forcing in V[G] and A C k. Since P is k-c.c., there is a
name A € H ;ﬂ with A = Ag. By the Menas property, and by cod-
ing this extra structure into a subset of x, we may find an inacces-
sible cardinal v and an extension (V,, €, P, A, f) < (V,, €,P*, A*, f*),
such that f*(k) is as large as desired, and in particular above |Q)|.
Since P* is the PFA lottery preparation of length ~ as defined in V,
from f*, it follows that Q appears in the stage x lottery, since Q is
proper in V,[G]. Below a condition opting for Q at stage x, we may
therefore factor P* as P x Q x B,;,. Suppose that g x G, C Q = P,
is V[G]-generic. By [HJ14, lemma 17|, we may lift the elementary
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extension to (Vi[G], €, P, A, f,G) < (V,[G*],€,P* A*, f*, G*), where
G* = G * g x G,,;;. Since A is definable from A and G, it follows
that (Vi[G], €, A) < (V,[G*], €, A*), where A* = A%,.. Since P* is the
countable support iteration of proper forcing, it follows that R="P,,is
proper in V[G][g], and since V,[G] = 1 and V,IG*] = g C1NGai]
we have established the desired instance of RA(proper) in V[G]. Thus,
the consistency of (1) implies that of (5).

A similar argument, using revised countable support and semi-proper
forcing via the SPFA lottery preparation, shows that the consistency
of (1) implies that of (6) as well.

Next, we explain how to force RA(c.c.c.) from a strongly uplifting
cardinal k. As we discuss in connection with [HJ14, thm 20], where we
consider the lightface resurrection axiom for c.c.c. forcing, the lottery-
style iterations do not work with c.c.c. forcing, since an uncountable
lottery sum of c.c.c. forcing is no longer c.c.c. But nevertheless, as in
the lightface context, one may proceed with the Laver/Baumgartner-
style iteration using the Laver function. By theorem 11, we may assume
without loss that there is a Laver function ¢: k — Vj; for the strongly
uplifting cardinal x. Let P be the finite support c.c.c. iteration of
length x, which forces at stage § with ¢(53), provided that this is a Pg-
name for c.c.c. forcing. Suppose that G C P is V-generic, and consider
V|G, where we claim that RA(c.c.c.) holds. To see this, note first that

k = ¢”I¢ because unboundedly often the Laver function will instruct
us to add another Cohen real. Suppose that A C x in V[G], that Q is
c.c.c. forcing there and consider any ordinal 0. Let A, Q be P-names
for A and Q, respectively. Since & is strongly uplifting and ¢ is a Laver
function, there is an extension (V,, €, 4, P, f) < (V,, €, A* P*, %), with
v > @ inaccessible and £*(k) = Q. Note that P is definable from ¢, so we
needn’t have included it in the structure, but P* is the corresponding
~-iteration defined from ¢*, and furthermore P* = P+ Q= R, where R is
the rest of the iteration after stage k up to 7, which is c.c.c. in V[G][g]
since it is a finite-support iteration of c.c.c. forcing. Let g x h C Q xR
be V[G]-generic, and by [HJ14, lemma 17] we may lift the extension to
(V.[G], €, AP, ,G) < (V,[G*], €, A*,IP* £*, G*), where G* = G % g % h.
Since A is definable from A and G, it follows that (V[G],, €, A) <
(V«,V[G*], €, A*), where A* = A%.. Since V[G], = HY and VWV[G*] =
gV and furthermore = ¢VICl
instance of RA(c.c.c.) in V[G].

Finally, to achieve models of the axioms mentioned in statement (8)
from a strongly uplifting cardinal, note that each of them is implied

Ih this witnesses the desired
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by RA(semi-proper), and we've already achieved that in statement (6).

O

Theorem 19 therefore illustrates how the equiconsistency established
in [HJ14] between the uplifting cardinals and the resurrection axioms
generalizes to the boldface context, with the strongly uplifting cardinals
and the boldface resurrection axioms.
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[ELJ10]
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