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A PREDICATE EXTENSION OF REAL VALUED LOGIC

STEFANO BARATELLA

Abstract. We study a predicate extension of an unbounded real val-
ued propositional logic that has been recently introduced. The latter,
in turn, can be regarded as an extension of both the abelian logic and
of the propositional continuous logic. Among other results, we prove
that our predicate extension satisfies the property of weak completeness
(the equivalence between satisfiability and consistency) and, under an
additional assumption on the set of premisses, the property of strong
completeness (the equivalence between logical consequence and prov-
ability). Eventually we discuss some topological properties of the space
of types in our logic.

1. Introduction

In [2] the authors introduced a propositional real valued logic with pos-
itive and negative unbounded truth values (hereafter to be referred to as
propositional R-logic). Propositional R-logic can be regarded as an exten-
sion of the propositional abelian logic of [10], in the sense that the latter
is the logic of lattice ordered abelian groups and the former is the logic of
lattice ordered real vector spaces, or Riesz spaces. More precisely, in [10]
the authors provide a sound and strongly complete axiomatization of abelian
logic with respect to the class of lattice-ordered abelian groups (equivalently:
with respect to the the lattice-ordered group of the reals). In [2] the authors
provide a sound and strongly complete axiomatization of propositional R-
logic with respect to the class of Riesz spaces (equivalently: with respect
to the Riesz space of the reals), under the additional assumption that the
set of premisses of a derivation is Archimedean. See Definition 19 and [2,
Theorem 6.8].

Actually, for propositional R-logic, the equivalence of satisfiability and
consistency (in the following to be referred to as weak completeness) does
not imply the equivalence of provability and logical consequence (previously
and in the following referred to as strong completeness). In this regard,
propositional R-logic is similar to the continuous logic introduced in [6]. In-
deed propositional R-logic faithfully interprets the propositional continuous
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2 STEFANO BARATELLA

logic, which, in turn, is an extension of the [0, 1]-valued !Lukasiewicz’s propo-
sitional logic. Hence one may say that propositional R-logic embeds both
abelian and propositional continuos logic. The reader is referred to [2, §5]
for the details.

In this paper we suitably extend propositional R-logic to a predicate set-
ting and we investigate the issues of weak and strong completeness of the
proposed predicate extension, that we shall simply call R-logic. We point
out that a predicate version of continuous logic has been introduced in [6]
and weak completeness and an approximated strong completeness theorem
(the best possible) have been proved therein. To the best of our knowledge,
no predicate extension of the propositional abelian logic has been introduced
so far. In [10] the authors openly admit their conflicting ideas about the
treatment of quantifiers, but do not go any further.

Here is an outline of the paper: in Section 2 we introduce the formulas and
the semantics of R-logic. In Section 3 we introduce the logical axioms and
the deduction rules and we prove a number of preliminary results showing
that the inf-quantifier of R-logic has the same features as the universal
quantifier in first order logic. In this section we also prove a suitable version
of a Deduction Theorem. In Section 4 we use a Henkin-style construction
to prove the weak completeness of R-logic. More precisely, we show that
every consistent set of formulas is satisfiable in a structure that assigns to
each formula a real number as its truth value (Corollary 25). The proof
extends that of [2, Theorem 6.7]. Compactness and an approximated strong
completeness theorem follows easily from weak completeness. Further we
recall the notion of Archimedean set of formulas and we prove that, as shown
in [2] for the propositional R-logic, strong completeness characterizes, among
the consistent set of formulas, those that are Archimedean (Theorem 28).
Another straightforward corollary of weak completeness is a Pavelka-style
completeness theorem.

In Section 5, after some preliminary considerations we introduce the no-
tion of type and a topology on the space of types. We prove some properties
of such topology and we point out that, when the language is countable, the
resulting space is metrizable. We also make a brief comparison with similar
results from the existing literature.

2. The framework

In this section we introduce the formulas and the semantics of a predicate
extension of the propositional R-logic of [2]. As already mentioned in the
introduction we call such extension R-logic. Our presentation will be mostly
self-contained, but familiarity with [2] might be helpful. We will remain
fairly informal. The reader can easily provide the missing details.

We work with predicate languages whose set of logical symbols contains
the connectives in {+,∧} ∪Q. Each rational number is a unary connective;
+ and ∧ are binary connectives. Among the logical symbols there are two
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 3

logical constants: 0 and 1 (not to be confused with the unary connectives
0 and 1) and a quantifier infx, for each variable x from a fixed, countably
infinite set V of variables. Notice the absence of equality among the logical
symbols. We also point out that we could choose to have all the reals among
the connectives. However, for sake of compatibility, we stick to [2].

As is customary, we identify a language L with the set of its extralogical
symbols, which are predicate and function symbols, each in some positive,
finite number of arguments, or constant symbols. If s is an L-extralogical
symbol, we denote its arity by ns. Unless otherwise specified, from this point
on we assume to work with a fixed language L.

Terms and atomic formulas are defined as in first order logic (without
equality). In particular the logical constants 0,1 are atomic formulas. The
set of formulas is the least set S that contains the atomic formulas, is closed
under application of the connectives and satisfies the property that, for
each ϕ ∈ S and each variable x, infx ϕ is in S. Notions like free or bound
occurrence of a variable in a formula are defined as in classical first order
logic, with infx playing the role of a quantifier.

We follow [2] and we write −φ for (−1)φ and φ − ψ for φ + (−ψ). We
write φ ∨ ψ for −(−φ ∧ −ψ). As customary in the theory of lattice ordered
structures, φ+ and φ− are abbreviations for 0∨φ and 0∨ (−φ) respectively.
We write |φ| for φ ∨ (−φ). We introduce supx ϕ as an abbreviation for
− infx−ϕ.

Next we define the class of structures for R-logic. An R-structure (for
short: structure) is a pair M = (M, M ) (notice the minor notational abuse),
where M is a nonempty set and M is a function that maps

(1) each predicate symbol P to a function

PM : MnP → [−1, 1];

(2) each function symbol f to a function fM : Mnf → M ;
(3) each constant symbol c to some element cM of M ;

As usual, the cardinality of a structure M is the cardinality |M | of its
supporting set.

Notice that, differently from continuous logic, we do not assume that M is
endowed with a metric space structure. Consequently, there is no continuity
requirement on the interpretations of predicate symbols.

Let M be a structure and let a : V → M be an assignment of values to
the variables. If x ∈ V and m ∈ M we denote by a(x/m) the assignment a′

such that a′(x) = m and is defined as a elsewhere. We let Ma = (M,a). The
interpretation tMa ∈ M of a term t in M under a is defined as in first order
logic. We recursively define the truth value ϕMa of a formula ϕ as follows:

0. 0Ma = 0;
1. 1Ma = 1;
2. P (t1, . . . , tnP )

Ma = PM (tMa
1 , . . . , tMa

nP
);

3. (qψ)Ma = q(ψMa).
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4 STEFANO BARATELLA

4. (ψ + ξ)Ma = ψMa + ξMa;
5. (ψ ∧ ξ)Ma = min(ψMa , ξMa);
6. (infx ψ)Ma = inf{ψMa(x/m) : m ∈ M}.

In order to ensure correctness of clause 6, we must prove that the set
{ψMa(x/m) : m ∈ M} is bounded from below. Actually, an easy induction on
formulas establishes the stronger result that for every formula ϕ there exists
n ∈ N such that, for all a : V → M, −n ≤ ϕMa ≤ n. (See Proposition 5
below.)

We say that a formula ϕ is satisfiable in M under a if 0 ≤ ϕMa . In this
case we use the standard notation Ma |= ϕ. The meaning of Ma |= Γ, where
Γ is a set of formulas, and the logical consequence relation are defined (and
denoted) accordingly. Useful notations are Ma |= ϕ = ψ for ϕMa = ψMa

and Ma |= ϕ < ψ for ϕMa < ψMa .
One can easily prove that the truth value of a formula in a structure only

depends on the assignment of values to the free variables occurring in that
formula. One can also prove most of the standard results that hold for the
semantics of first order logic. For this reason we feel free to use standard
model theoretic notation and terminology, without further notice.

Remark 1. The previous framework and most of the results to be proved in
the following can be generalized by replacing the reals with some nontrivial
(i.e. different from {0}) Dedekind complete Riesz space with order unit (see
[1])

R = (R,+R, ·,∧R,∨R, <R, 0R, 1R),

where · : R × R → R is scalar multiplication; the operators ∧R and ∨R are
the binary infimum and supremum respectively; 0R is the null vector and
1R is a designated (strong) order unit in R. Recall that an element 0 ≤R e
in R is an order unit if for each r ∈ R there exists n ∈ N such that |r| ≤ ne,
where, as usual, |r| = r ∨R (−r).

The Dedekind completeness property states the existence of the infimum
of each nonempty bounded from below subsets of R. This suffices for the
existence of the supremum of each nonempty bounded from above subset of
R. Furthermore, denoting by

∧

R and by
∨

R the infimum and the supremum
operators on subsets respectively, then

∨

R X = −
∧

R(−X), whenever one
of the two members is defined.

A notion related to Dedekind completeness is the Archimedean property.
A Riesz space R is Archimedean if, for every positive element r ∈ R, the
infimum of the set { 1

nr : n ∈ N+} exists and is equal to 0R. It can be easily
shown that the Archimedean property is equivalent to the following: for
all 0R ≤R r ≤R s in R, if nr ≤R s for all n ∈ N, then r = 0. Dedekind
completeness implies the Archimedean property.

We recall that every Archimedean Riesz space has a Dedekind completion
that is uniquely determined up to lattice isomorphism (see [9, p. 191]).

As above, an R-structure is a pair. The function M is R-valued. The
rest is as in the real case, with the obvious changes. We just point out that
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 5

R-valued formulas may take incomparable truth values in an arbitrary Riesz
space R.

3. Logical axioms and derivations

In the following, Q+ denotes the set of nonnegative rationals.
A generalization of a formula ϕ is a formula of the form infx1 . . . infxn ϕ,

where x1, . . . , xn are any variables, not necessarily distinct.
Same as with first order logic, we denote by ϕ[t/x] the formula obtained

by substituting a term t for a variable x in a formula ϕ. We say that t is free
for x in ϕ if no variable y in t is captured by an infy or a supy quantifier in
ϕ[t/x]. In such case we say that the substitution ϕ[t/x] is correct. One can
easily give a recursive definition of term free for a variable in a formula.

From now on, when we write a substitution, this is implicitly assumed to
be correct.

Remark 2. As in first order logic, the following holds: for every structure
M, every a : V → M, every term t, variable x and formula ϕ with t free for
x in ϕ, if m = tMa then

ϕ[t/x]Ma = ϕMa(x/m) .

The proof of the equality above is by straightforward induction on ϕ, using
a recursive definition of “t free for x in ϕ”.

We are now ready to introduce the logical axioms. For better under-
standing and for sake of pointing out that R-logic is an extension of of the
propositional R-logic, we write the axioms in form of equalities or inequal-
ities. The inequality ϕ ≤ ψ stands for the formula ψ − ϕ (see the remark
preceding [2, Theorem 3.2]). The equality ϕ = ψ stands for the formula
(ϕ−ψ)∧ (ψ−ϕ). We freely use abbreviations like ϕ ≤ ψ ≤ η, whose mean-
ing is self-explanatory. Equalities and inequalities will be used whenever
convenient. This is certainly the case with the formulation of the axioms
and the rules below.

Convention. Whenever no confusion arises, from now on we will denote
the logical constants 0 and 1 by 0 and 1 respectively and we will abbreviate
r1 with r.

The R-logic has four axiom groups. The first two groups are just the
corresponding group axioms of [2].

The axioms from the first group are chosen having in mind the theory of
vector spaces over Q. They are the following:

a1. φ+ ψ = ψ + φ
a2. (φ+ ψ) + ξ = ψ + (φ+ ξ)
a3. φ+ 0 = φ
a4. 1φ = φ

a5. 0φ = 0
a6. r φ+ sφ = (s+ r)φ
a7. r φ+ rψ = r (φ+ ψ)
a8. r (sφ) = (rs)φ
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6 STEFANO BARATELLA

The axioms from the second group are inspired by the theory of Riesz
spaces. They are the following:

a9. φ ∧ φ = φ
a10. φ ∧ ψ = ψ ∧ φ
a11. (φ ∧ ψ) ∧ ξ = φ ∧ (ψ ∧ ξ)

a12. (φ+ ξ) ∧ (ψ + ξ) = φ ∧ ψ + ξ
a13. r(φ∧ψ) = (rφ)∧(rψ), r ∈ Q+

a14. φ ∧ ψ ≤ ψ

The axioms from the third group ensure that Proposition 5 below holds.
Axioms a15 and a16 below are the predicate versions of axiom a15 in [2].

For every predicate symbol P we have the following axioms:
a15. −1 ≤ P (x1, . . . , xnP )
a17. 0 ≤ 1

a16. P (x1, . . . , xnP ) ≤ 1

The last group of axioms deals with the quantifiers and with their be-
havior with respect to the connectives. The axioms from this group are the
following, where x is any variable:

a18. infx ϕ ≤ ϕ[t/x], whenever the substitution is correct.
a19. ϕ ≤ infx ϕ if x does not occur free in ϕ.
a20. infx(ϕ+ ψ) = (infx ϕ) + ψ if x does not occur free in ψ.
a21. infx rϕ = r infx ϕ, for all r ∈ Q+.

The inference rules are listed below. The non-replaceability of rules r2,
r3 below with logical axioms is discussed in [2].

r1. (Modus Ponens)
ϕ ϕ ≤ ψ

ψ
r2. (Positive Homogeneity)

ϕ

rϕ
for r ∈ Q+

r3. (Restriction)
ϕ ≤ ψ

ϕ ∧ 0 ≤ ψ ∧ 0
r4. (Generalization)

ϕ

infx ϕ
if x does not occur free in any of the
premises, different from axioms, on
which the derivation of ϕ depends

The notion of derivation is the standard one in natural deduction systems
with axioms. Equivalently, R-logic can be formulated in Hilbert style. Our
choice is just a matter of slight convenience.

As usual, we write Γ ⊢ ϕ if there exists a derivation of ϕ whose set
of assumptions is included in Γ. When speaking of the assumptions in a
derivation, we always mean the extralogical ones.

Let ϕ be a formula. A generalization of ϕ is a formula of the form
infx1 . . . infxn ϕ, for some variables x1, . . . , xn.

Remark 3. Rule r4 implies that if ψ is a generalization of some axiom then
ψ is a logical theorem, namely ⊢ ψ.
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 7

Notice that the deduction rules in [2] can be easily shown to be equivalent
to r1 – r3 above. In particular, concerning the rule of Positive Linearity from
[2], for each positive rational r we can produce the following sketch of a
derivation (as is customary, a double line stands for a bit of derivation that
is not fully detailed):

ϕ ≤ ψ
===================
ϕ+ r−1η ≤ ψ + r−1η
================

rϕ+ η ≤ rψ + η

The proof sketch above can be easily expanded to a fully detailed deriva-
tion from the vector space axioms, by using rules r1 and r2. It follows that,
for all r ∈ Q+,

ϕ ≤ ψ

rϕ+ η ≤ rψ + η

is a derived rule. Conversely, one can easily derive r2 from the latter.

Since R-logic extends the propositional R-logic of [2], we will freely use
[2, Theorem 5.3] to establish whether two formulas are provably equivalent.

Remark 4. Rule r4 is replaceable by axioms. Actually, let R′-logic be
R-logic without rule r4 and with the additional axioms

a22. ϕ ∧ 0 + ψ ∧ 0 ≤ (ϕ+ ψ) ∧ 0
a23. infx ϕ+ infx ψ ≤ infx(ϕ+ ψ)
a24. infx(ϕ ∧ 0) = (infx ϕ) ∧ 0, where x is any variable.
a25. all generalizations of the axioms a1 – a24.

Let ⊢′ the provability relation in R′-logic. We claim that, for every set
Γ ∪ {ϕ} of formulas,

Γ ⊢ ϕ ⇔ Γ ⊢′ ϕ.

To get the right-to-left implication, we prove that each instance of a22 – a25
is a theorem of R-logic. As for a22, this follows from an application of [2,
Proposition 5.2]. Provability of a23 – a25 is a matter of routine, with the
help of [2, Proposition 3.1].

Concerning the converse implication, it suffices to show that, for every set
Γ∪{ϕ} of formulas and every variable x not occurring free in Γ, if Γ ⊢′ ϕ then
Γ ⊢′ infx ϕ. The proof is by induction on a derivation of ϕ from Γ in R′-logic.
The only nontrivial case is when the last rule applied is r3. It is convenient
to deal with formulas. By inductive assumption we get Γ ⊢′ infx(ψ − ϕ).
It follows by a24 that Γ ⊢′ infx((ψ − ϕ) ∧ 0). By a22, a25 and a23 we get
Γ ⊢′ infx((ψ − ϕ) ∧ 0) ≤ infx(ψ ∧ 0 − ϕ ∧ 0) and the conclusion follows by
applying Modus Ponens.

Proposition 5. For every formula ϕ there exists some natural number n
such that ⊢ −n ≤ ϕ ≤ n.
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8 STEFANO BARATELLA

Proof. By induction on formulas. The atomic cases are taken care by the
axioms from the third group. Here we only show that

⊢ −1 ≤ P (t1, . . . , tnP ) ≤ 1,

where P is a predicate symbol and t1, . . . , tnP are terms. By a15, recalling
Remark 3, we have ⊢ infx1 . . . infxnP

(P (x1, x2, . . . , xnP ) + 1). From a18 and
the vector space axioms, by applying r1 we get:

inf
x1

. . . inf
xnP

(P (x1, x2, . . . , xnP ) + 1)

==========================
inf
x2

. . . inf
xnP

(P (t1, x2, . . . , xnP ) + 1)

============================
−1 ≤ P (t1, . . . , tnP )

Applying the same argument, we get the other inequality. Finally, by [2,
Proposition 3.1] we get the conclusion.

All nonatomic cases are straightforward. In particular, if ϕ is of the form
infx ψ and, for some n ∈ N, ⊢ −n ≤ ψ ≤ n, then we get ⊢ −n ≤ infx ψ from
⊢ −n ≤ ψ by r4 and a20. Moreover, from ψ ≤ n we get ⊢ infx ψ ≤ n by
a18, the Riesz space axioms and r1.

!

In the following we will provide only sketches of the formal derivations
that are required in some of the proofs. The reader can easily figure out the
missing details.

Corollary 6. For every formula ϕ, −1 ⊢ ϕ.

Proof. By Proposition 5, let n ∈ N be such that ⊢ −n ≤ ϕ. Then

−1
====
−n −n ≤ ϕ

ϕ

!

The content of the previous corollary is that −1 plays the role of a con-
tradiction.

From this point on, Γ denotes some set of formulas and ϕ,ψ, η denote
formulas.

Theorem 7. (Soundness Theorem) If Γ ⊢ ϕ then Γ |= ϕ.

Proof. First of all notice that all the axioms are valid and that all the rules
do preserve validity. Then argue by induction on a derivation of ϕ from
Γ. !

Our aim is to prove, under suitable assumptions, the converse of the
Soundness Theorem. In order to do that we need to establish a series of
preliminary results. So doing, we will freely refer to the results in [2], when-
ever applicable.
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 9

Theorem 8. (Deduction Theorem.) The following are equivalent:

(1) Γ, ϕ ⊢ ψ;
(2) there exists r ∈ Q+ such that Γ ⊢ ψ + rϕ−.

Proof. (2) ⇒ (1) follows easily from ϕ ⊢ ϕ− = 0 (see [2, Proposition 3.5]).
To show (1) ⇒ (2) we argue by induction on a derivation D of ψ whose

set of assumptions is included in Γ ∪ {ϕ}. If D is atomic or the last rule
applied in D is one of r1–r3, basically the proof is that of [2, Theorem 3.6].
The only remaining case is when the last rule applied in D is r4. Hence ψ
is of the form infx η, for some formula η, and D is as follows:

Γ,ϕ
··· D1

η

inf
x
η

By the inductive assumption applied to the subderivation D1, there exists
some r ∈ Q+ such that Γ ⊢ η + rϕ−.

If the assumption ϕ is not used in in D1, then Γ ⊢ infx η. Since ⊢ ϕ−, it
follows that Γ ⊢ infx η + rϕ−.

If ϕ is used in D1 then, by the side condition of r4, the variable x does not
occur free neither in ϕ− nor in any of the formulas from Γ that are effectively
used in D1. Therefore from Γ ⊢ η+rϕ− we get that Γ ⊢ infx(η+rϕ−). Then,
by a20, Γ ⊢ (infx η) + rϕ−.

!

We can now state the following:

Proposition 9. The following are equivalent:

(1) Γ ⊢ ψ;
(2) Γ, ϕ ⊢ ψ and Γ,−ϕ ⊢ ψ.

Proof. Same as the proof of [2, Proposition 3.7].
!

The following is a series of syntactic results that will be useful later on.

Lemma 10. For all x, y ∈ V

⊢ inf
x
inf
y
ϕ = inf

y
inf
x
ϕ.

Proof. ⊢ infx infy ϕ ≤ infy ϕ and ⊢ infy ϕ ≤ ϕ are instances of a18. There-
fore ⊢ infx infy ϕ ≤ ϕ, by r1. A double application of r4 and a20 yields
⊢ infx infy ϕ ≤ infy infx ϕ. By swapping x and y we are done. !

Remark 11. If ⊢ ψ = η then ⊢ infx ψ = infx η, for each variable x. We just
show one inequality, the other can be symmetrically proved:

⊢ η ≤ ψ ⇒ ⊢ inf
x
η ≤ ψ ⇒ ⊢ inf

x
η ≤ inf

x
ψ
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10 STEFANO BARATELLA

When saying that some symbol S does not occur in a formula ϕ, we mean
that there is no occurrence at all of S in ϕ. In such case we often write
S /∈ ϕ. If there is some free occurrence of the variable x in ϕ we write
x ∈ FV(ϕ). We extend the notation above to a set of formulas, with the
obvious meaning.

We write ϕ ≡ ψ to say that ϕ and ψ are syntactically the same formula.
We write ϕ{x/c} for the formula obtained by replacing each occurrence

of the constant symbol c with the variable x in the formula ϕ.

Lemma 12. Let x, y /∈ ϕ and let c be a constant symbol. Then

⊢ inf
x
ϕ{x/c} = inf

y
ϕ{y/c}.

Proof. To get ⊢ infx ϕ{x/c} ≤ infy ϕ{y/c}, notice that y is free for x in
ϕ{x/c} and that ϕ{x/c}[y/x] ≡ ϕ{y/c}. Then use a18, r4 and a20. !

Lemma 13. Let y /∈ ϕ. Then

⊢ inf
x
ϕ = inf

y
ϕ[y/x].

Proof. We only prove ⊢ infy ϕ[y/x] ≤ infx ϕ.
Since x is free for y in ϕ[y/x] then ⊢ infy ϕ[y/x] ≤ ϕ[y/x][x/y]. Notice that

ϕ[y/x][x/y] ≡ ϕ, by the assumption that y does not occur in ϕ. Therefore
⊢ infy ϕ[y/x] ≤ ϕ. The conclusion follows from application of r4 and from
a20. !

Remark 14. An immediate consequence of Lemma 13 is that for any for-
mula ϕ and any finite set X of variables there exists a formula ϕ′ such
that:

(1) ϕ and ϕ′ differ only for the names of some bound variables;
(2) ⊢ ϕ = ϕ′;
(3) the set of bound variables of ϕ′ is disjoint from X.

Any ϕ′ satisfying (1) and (2) above will be called an alphabetic variant of
ϕ.

Theorem 15. If Γ ⊢ ϕ, x /∈ FV(Γ), x /∈ ϕ and c /∈ Γ then

Γ ⊢ inf
x
ϕ{x/c}.

Proof. By induction on a derivation D of ϕ from Γ.

(1) D is atomic. We examine two subcases. Subcase 1: ϕ ∈ Γ. Then
c /∈ ϕ and so ϕ{x/c} ≡ ϕ. Since x /∈ FV(Γ) then Γ ⊢ infx ϕ. Subcase
2: ϕ is an axiom. Then ϕ{x/c} is an axiom, since x /∈ ϕ. Therefore
⊢ infx ϕ{x/c}.

(2) D ends with an application of r1. Then D is of the form

Γ
··· D1

ψ

Γ
··· D2

ψ ≤ ϕ

ϕ
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 11

for some formula ψ. Let y be a variable such that y /∈ FV(Γ) and
y /∈ (ψ ≤ ϕ). By inductive assumption applied to D1 and D2 we get
Γ ⊢ infy ψ{y/c} and Γ ⊢ infy(ϕ{y/c} − ψ{y/c}) respectively. Hence
Γ ⊢ ψ{y/c} and Γ ⊢ ψ{y/c} ≤ ϕ{y/c}. By r1, Γ ⊢ ϕ{y/c}. Since
y /∈ FV(Γ) then Γ ⊢ infy ϕ{y/c}. By Lemma 12, Γ ⊢ infx ϕ{x/c}.

(3) D ends with an application of r2. Then ϕ ≡ rψ, for some r ∈ Q+

and D is of the form

Γ
··· D1

ψ

rψ

By inductive assumption applied toD1, we get Γ ⊢ infx ψ{x/c}. Rule
r2, axiom a21 and (rψ){x/c} ≡ r(ψ{x/c}) yield the conclusion.

(4) D ends with an application of r3. Then ϕ ≡ η ∧ 0 ≤ ψ ∧ 0, for some
formulas ψ, η and x /∈ (η ≤ ψ) and D is of the form

Γ
··· D1

η ≤ ψ

η ∧ 0 ≤ ψ ∧ 0

By inductive assumption applied to D1, we get Γ ⊢ infx (ψ{x/c} −
η{x/c}). Therefore Γ ⊢ ψ{x/c} − η{x/c}. By r3 and r4 we get Γ ⊢
infx (ψ{x/c} ∧ 0 − η{x/c} ∧ 0). Moreover (ψ ∧ 0 − η ∧ 0){x/c} ≡
ψ{x/c} ∧ 0− η{x/c} ∧ 0, hence the conclusion.

(5) D ends with an application of r4. Then ϕ ≡ infy ψ, for some variable
y and some formula ψ, and D is of the form

Γ
··· D1

ψ

inf
y
ψ

Notice that x ̸≡ y. Since x /∈ ψ we can apply the inductive as-
sumption to Γ,ψ and D1 to get Γ ⊢ infx ψ{x/c}. Since y does not
occur free in Γ, then Γ ⊢ infy infx ψ{x/c}. By Lemma 10 and by
infy ψ{x/c} ≡ (infy ψ){x/c} we are done.

!

4. Completeness

From now on, Γ denotes a set of formulas. We recall some notions and
related results from [2].

As usual, we say that Γ is satisfiable if there exist a structure M and an
assignment a : V → M such that Ma |= Γ.
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12 STEFANO BARATELLA

We say that Γ is consistent if Γ ̸⊢ ϕ, for some formula ϕ. By Corollary 6,
Γ is consistent if and only if Γ ̸⊢ −1.

We say that Γ is total if it is consistent and, for every formula ϕ, Γ ⊢ ϕ
or Γ ⊢ −ϕ, possibly both. Notice that the deductive closure of a total set Γ
induces a preorder on the set of formulas.

Proposition 16. Every consistent set Γ has a maximal consistent exten-
sion. Moreover every maximal consistent extension of Γ is closed under
provability and total.

Proof. The existence of some maximal consistent extension Γ′ of Γ follows
from a routine application of Zorn’s Lemma. Clearly, if Γ′ ⊢ ϕ then ϕ ∈ Γ′.

If, for some formula ϕ, none of ϕ,−ϕ is in Γ′ then, by maximal consistency,
Γ′,ϕ ⊢ −1 and Γ′,−ϕ ⊢ −1. Hence, by Proposition 9, Γ′ ⊢ −1. It follows
that at least one of ϕ,−ϕ is in Γ′. Hence Γ′ is total.

!

Remark 17. If Γ ̸⊢ ϕ then, by Proposition 9, Γ,−ϕ is consistent. In
the following we shall repeatedly use this this fact, often without further
mention.

We write Q+ϕ for the set {rϕ : r ∈ Q+}.

Proposition 18. If Γ is consistent and Γ ⊢ Q+ϕ ≤ ψ then Γ,−ϕ is con-
sistent.

Proof. Same as the proof of [2, Proposition 6.4]. !

A formula ξ is a unit for Γ if, for every ϕ, there is some r ∈ Q+ such
that Γ ⊢ ϕ ≤ rξ. Notice that the logical constant 1 is a unit for every set of
formulas, as a consequence of Proposition 5.

Definition 19. A set Γ of formulas is Archimedean if for every ϕ,ψ such
that Γ ⊢ Q+ϕ ≤ ψ then Γ ⊢ −ϕ.

Clearly, for every R-structure M and every assignment a : V → M, the
set {ϕ : Ma |= ϕ} is Archimedean.

We let Γ+ = {ϕ : Γ ⊢ ϕ} and Γ− = {ϕ : Γ ⊢ −ϕ}.
For sake of completeness, we provide a detailed proof of the following

result from [2].

Proposition 20. The following are equivalent:

(1) Γ is maximal consistent;
(2) Γ is closed under deduction, total and Archimedean;
(3) Γ is closed under deduction, total and every ξ ∈ Γ+ \ Γ− is a unit

for T .

Proof. (1) ⇒ (2). By Proposition 16, it suffices to show that Γ is Archimedean.
This follows at once from Proposition 18 by maximal consistency.
(2) ⇒ (3). Assume (2) and, for sake of contradiction, let ξ ∈ Γ+ \ Γ− which
is not a unit. Then there is some formula ϕ such that, for all r ∈ Q+,
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 13

Γ ̸⊢ ϕ ≤ rξ. Being total, Γ ⊢ Q+ξ ≤ ϕ. Since Γ is Archimedean, Γ ⊢ −ξ: a
contradiction.
(3) ⇒ (1). Assume (3). Let ξ /∈ Γ. Totality and closure under deduction
imply that −ξ ∈ Γ. Hence, by assumption, −ξ is a unit for Γ. Therefore for
every ϕ there exists r ∈ Q+ such that Γ ⊢ rξ ≤ −ϕ. From Γ, ξ ⊢ rξ we get
Γ, ξ ⊢ ϕ for every ϕ. Hence Γ ∪ {ξ} is inconsistent. !

Our next aim is to prove that every consistent set of formulas is satisfiable.
We use a Henkin style construction.

Definition 21. Let Γ be a set of L-formulas. We say that Γ has the Henkin
property in L if, for every formula ϕ and every variable x, there exists some
L-constant symbol c such that (ϕ[c/x] ≤ infx ϕ) ∈ Γ.

As is customary, the cardinality of a language L (denoted by |L|) is the
maximum between the cardinality of the L-extralogical symbols and ℵ0.

Proposition 22. Let Γ be a set of L-formulas. Then there exist a language
L′ extending L and a set Γ′ of L′-formulas extending Γ with the properties
that:

(1) |L| = |L′|;
(2) Γ′ has the Henkin property in L′;
(3) if Γ is consistent then Γ′ is consistent.

Proof. We recursively define an increasing sequence (Ln)n∈ω of languages
and an increasing sequence (Γn)n∈ω, where each Γn is a set of Ln-formulas,
as follows:

L0 = L
Ln+1 = Ln ∪ {cϕ,x : ϕ is an Ln-formula and x ∈ V },

where each cϕ,x is a constant symbol not occurring in Ln.

Γ0 = Γ
Γn+1 = Γn ∪ {ϕ[cϕ,x/x] ≤ infx ϕ : ϕ is an Ln-formula and x ∈ V }.

Finally, we let L′ =
⋃

n∈ω Ln and Γ′ =
⋃

n∈ω Γn.
Properties (1) and (2) are clearly satisfied, so we deal with (3). It suffices

to show that if Γn is consistent, then Γn+1 is consistent, for all n ∈ ω. With-
out loss of generality, we assume n = 0. Let m be the smallest cardinality
of a set ∆ ⊂ Γ1 \ Γ such that Γ ∪ ∆ is inconsistent. Let ∆ of cardinality m
be as above, say

∆ = {ϕ[cϕi,xi/xi] ≤ inf
xi
ϕi : 1 ≤ i ≤ m}

Let ψi be ϕ[cϕi,xi/xi] ≤ infxi ϕi, for 2 ≤ i ≤ m. For notational simplicity
let us write ϕ[c/x] ≤ infx ϕ for ψ1 and let us call it ψ.

Therefore Γ,ψ,ψ2, . . . ,ψm,⊢ −1. By the Deduction Theorem, there exists
r ∈ Q+ such that Γ,ψ2, . . . ,ψm ⊢ 1 ≤ rψ−, where ψ− is (ϕ[c/x]− infx ϕ)∨0.
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14 STEFANO BARATELLA

By axiom a18 and [2, Proposition 3.1] we get

⊢ (ϕ[c/x] − inf
x
ϕ) ∨ 0 = ϕ[c/x] − inf

x
ϕ.

Therefore Γ,ψ2, . . . ,ψm ⊢ 1 ≤ r(ϕ[c/x] − infx ϕ). Let y be a variable
such that y /∈ FV(Γ ∪ {ψ2, . . . ,ψm}) and y /∈ (ϕ[c/x] − infx ϕ). Since c
does not occur in Γ,ψ2, . . . ,ψm,ϕ, by Theorem 15 and by axioms, we get
Γ,ψ2, . . . ,ψm ⊢ 1 ≤ r(infy ϕ[c/x]{y/c} − infx ϕ). Moreover ϕ[c/x]{y/c} ≡
ϕ[y/x] (recall that c /∈ ϕ and notice that y is free for x in ϕ). By Lemma 13
and by axioms we get Γ,ψ2, . . . ,ψm ⊢ −1, contradicting the minimality of
m.

!

Corollary 23. Let Γ be a consistent set of L-formulas. Then there exist a
language L′ extending L, of the same cardinality as L, and a set Γ′ of L′-
formulas with the property that Γ′ is maximal consistent and has the Henkin
property in L′.

Proof. Apply Proposition 22 and notice that the Henkin property is pre-
served by extension to a maximal consistent superset. !

The next result is crucial to get completeness results.

Theorem 24. Let Γ be maximal consistent and with the Henkin property in
L. Then there exist an R-structure M and an assignment a : V → M such
that Ma |= Γ. Furthermore M can be chosen such that |M | ≤ |L|.

Proof. We proceed as in the proof of [2, Theorem 6.7]. Notice that, by
Proposition 20, Γ is total and Archimedean.

If ϕ is a formula we let
Γϕ =

{

r ∈ Q : Γ ⊢ ϕ ≤ r
}

and Γϕ =
{

r ∈ Q : Γ ⊢ r ≤ ϕ
}

.
Totality and the Archimedean property of Γ imply that, for every formula

ϕ,

(1) ∅ ≠ Γϕ ≤ Γϕ ̸= ∅;
(2) Γϕ is bounded from below and Γϕ is bounded from above;
(3) inf Γϕ = supΓϕ.

Let M be the set of L-terms and let a : V → M be the inclusion
map. For every function symbol f we define fM : Mnf → M as follows:
fM(t1, . . . , tnf ) = f(t1, . . . , tnf ) and, for every constant symbol c, we let

cM = c. An easy induction on terms shows that, for every term t, tMa = t.

For every atomic formula ϕ, we let

(4) ϕM = inf Γϕ = supΓϕ

So doing, we actually define the interpretation PM , for each predicate
symbol P. Moreover inf Γ0 = 0 and inf Γ1 = 1, in accordance with the
semantics of the logical constants 0, 1 respectively.

We prove by induction that (4) extends to all formulas. The propositional
cases are as in [2, Theorem 6.7].
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 15

We are left with the case when ϕ is of the form infx ψ.

For each term t, let ψt be an alphabetic variant of ψ such that t is free
for x in ψt. By Remark 14, Remark 2 and by the Soundness Theorem, we

get ψMa(x/t) = ψ
Ma(x/t)

t = (ψt[t/x])Ma , for all t ∈ M. Therefore

(infx ψ)Ma = inf{ψMa(x/t) : t ∈ M}
= inf{(ψt[t/x])Ma : t ∈ M}
= inf{inf{r ∈ Q : Γ ⊢ ψt[t/x] ≤ r} : t ∈ M}
= inf(

⋃

t∈M{r ∈ Q : Γ ⊢ ψt[t/x] ≤ r})
≥ inf{r ∈ Q : Γ ⊢ infx ψ ≤ r)

where the third equality from top follows from the inductive assumption
and the inequality follows from a18 and from ⊢ infx ψ = infx ψt (recall that
⊢ ψ = ψt and Remark 11), for all t ∈ M.

Next we prove the reverse inequality. By the Henkin property there exists
some constant symbol c such that (ψ[c/x] ≤ infx ψ) ∈ Γ. It follows by a18
that Γ ⊢ ψ[c/x] = infx ψ. Therefore, by inductive assumption,

ψ[c/x]Ma = inf{r ∈ Q : Γ ⊢ inf
x
ψ ≤ r}.

Since (infx ψ)Ma ≤ ψMa(x/c) = ψ[c/x]Ma , we are done.

Finally, it is easy to check that Ma |= Γ. !

In the literature, the equivalence of consistency and satisfiability is often
referred to as weak completeness.

Corollary 25. (Weak Completeness Theorem) The following are equivalent
for a set Γ of L-formulas:

(1) Γ is consistent;
(2) there exist an R-structure M with the property that |M | ≤ |L| and

an assignment a : V → M such that Ma |= Γ.

A straightforward consequence of Corollary 25 is an approximated strong
completeness theorem, in the vein of that proved in [6] for continuous logic.

Theorem 26. (Approximated Strong Completeness Theorem) The following
are equivalent for every set Γ ∪ {ϕ} of formulas:

1. Γ ⊢ r ≤ ϕ for all 0 > r ∈ Q;
2. Γ |= ϕ.

Proof. (1) ⇒ (2) follows from soundness and from the Archimedean prop-
erty. As for (2) ⇒ (1), assume that Γ ̸⊢ r ≤ ϕ, for some negative rational r.
Hence Γ ∪ {ϕ ≤ r} is consistent. Let M |= Γ ∪ {ϕ ≤ r}. Then Γ ̸|= ϕ. !

Of course, another straightforward consequence of the Weak Complete-
ness Theorem is the following:

Corollary 27. (Compactness Theorem) A set of formulas is satisfiable if
and only if it is finitely satisfiable.
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16 STEFANO BARATELLA

As in [2], Archimedean set of formulas are those for which a strong com-
pleteness theorem holds.

Theorem 28. (Completeness Theorem for Archimedean sets.) For each Γ
the following are equivalent:

(1) Γ is Archimedean;
(2) for every formula ϕ, if Γ |= ϕ then Γ ⊢ ϕ.

Proof. (1) ⇒ (2). Suppose Γ is Archimedean. Let ϕ be such that Γ ̸⊢ −ϕ.
Let 0 < r ∈ Q+ be such that Γ ̸⊢ rϕ ≤ 1. Then Γ ∪ {1 ≤ rϕ} is consistent
(see Remark 17). By Corollary 25, let M and a : V → M be such that
Ma |= Γ ∪ {1 ≤ rϕ}. It follows that Γ ̸|= −ϕ.
(2) ⇒ (1). Suppose that Γ ̸⊢ −ϕ, for some formula ϕ and let ψ be any
formula. By (2) there exist a structure M and an assignment a such that
Ma |= Γ and ϕMa > 0. By soundness, we get immediately Γ ̸⊢ Q+ϕ ≤ ψ. !

The content of Theorem 28 is that, for Archimedean sets of formulas,
R-logic is strongly complete with respect to the class of structures.

5. The space of types

In this section we define the set of types and we endow it with a compact
Hausdorff topology. Such topology has similarities with the logic topology
defined in [5, §8] and shares many of the properties of the latter. More-
over, when the language is countable, it is metrizable. Hence a metric can
be defined directly from R-logic. At this point, it is worth recalling the
framework of compact abstract theories introduced in [3] and the result by
the same author that every countable Hausdorff compact abstract theory
admits a metric [4]. A consequence of the latter is that, under reasonable
assumptions, a classical structure admits a metric which is type-definable.
In the following, we get an analogous result with respect to R-logic. Ours
is not a by-product of a general theory, but is a specific result to R-logic, in
the vein of those in [5, §8] for continuous logic. Similarities with the results
in [5, §8] will be pointed out in the following.

We begin with a definition that is inspired by [11]. Some language L is
fixed throughout.

Definition 29. Let Γ be a consistent set of L-formulas and let ϕ be an
L-formula.

(1) The degree of truth of ϕ with respect to Γ (notation: ϕT
Γ) is defined

as follows:

ϕT
Γ = inf{ϕMa : M is some structure, a : V → M and Ma |= Γ}.

(2) The degree of provability of ϕ with respect to Γ (notation: ϕP
Γ ) is

defined as follows:

ϕP
Γ = sup{r ∈ Q : Γ ⊢ r ≤ ϕ}.

When Γ is the empty set we omit the subscript.
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 17

Regarding the previous definition, note that the consistency of Γ, Propo-
sition 5 and the Soundness Theorem imply that the set

{ϕMa : M is a structure, a : V → M and Ma |= Γ}

is nonempty and bounded from below, hence ϕT
Γ exists and is finite. Simi-

larly, the set {r ∈ Q : Γ ⊢ r ≤ ϕ} is nonempty and bounded from above.

The following instance of a so-called Pavelka-style completeness theorem
(see [11]) is actually a corollary of the Weak Completeness Theorem.

Corollary 30. Let Γ be a consistent set of L-formulas and ϕ be an L-
formula. Then ϕT

Γ = ϕP
Γ .

Proof. In order to prove ϕT
Γ ≤ ϕP

Γ it suffices to show that, for all r ∈ Q, if
r > ϕP

Γ then r ≥ ϕT
Γ . Let r ∈ Q be such that r > ϕP

Γ . Then Γ ̸⊢ r ≤ ϕ. By
Remark 17, Γ,ϕ ≤ r is consistent. By the Weak Completeness Theorem,
there exist a structure M and an assignment a : V → M such that r ≥ ϕMa .
Therefore r ≥ ϕT

Γ .
The inequality ϕP

Γ ≤ ϕT
Γ follows from the Soundness Theorem: let r ∈ Q

be such that Γ ⊢ r ≤ ϕ. From Γ |= r ≤ ϕ we get at once r ≤ ϕT
Γ .

!

Let Ln be the set of L-formulas whose free variables are among x1, . . . , xn.
In the current setting we can formulate the notion of logical distance

introduced in [5]: if ϕ,ψ ∈ Ln we let

d(ϕ,ψ) = sup{|ϕ − ψ|Ma : M is some structure and a : V → M}.

The logical distance is a pseudo metric. It is related to the notion of
logical equivalence as follows: first of all let us say that ϕ,ψ are logically
equivalent if, for all M and a as above, ϕMa = ψMa . Then ϕ,ψ are logically
equivalent if and only if d(ϕ,ψ) = 0.

Clearly, the logical distance can be defined in terms of the degree of truth
as follows:

d(ϕ,ψ) = −(−|ϕ− ψ|)T

and, from Corollary 30, we get

d(ϕ,ψ) = inf{r ∈ Q : ⊢ |ϕ− ψ| ≤ r}.

Finally we define the notion of n-type and a topology on the set of types.

For simplicity we deal with parameter-free types only. In a slightly dif-
ferent form, the following arguments carry through even in presence of pa-
rameters.

From now on Γ will denote some maximal consistent set of L-sentences
(equivalently: Γ is the set of L-sentences which are true in some L-structure).

Let n ∈ N. An n-type is a set p of Ln-formulas for which there exist
a structure M and an assignment a : V → M such that M |= Γ and
p = {ϕ : Ma |= ϕ}. We denote the set of n-types by Sn(Γ).

For notational simplicity, we fix Γ as above and we write Sn for Sn(Γ).
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18 STEFANO BARATELLA

We endow the reals with the standard topology. To each Ln-formula ϕ
we associate the mapping

ϕ̄ : Sn → R

p 2→ ϕP
p ,

where ϕP
p is the previously defined degree of provability of ϕ with respect

to the type p.

Remark 31. Let p ∈ Sn. By definition of type, ϕP
p = ϕMa for some (any)

R-structure M and some (any) assignment a : V → M such that M |= Γ
and p = {ψ ∈ Ln : Ma |= ψ}. Notice also that, if we had the reals as
unary connectives, for each p ∈ Sn there would be a unique r ∈ R such that
(ϕ = r) ∈ p and we could simply define ϕ̄(p) = r.

Let τn be the initial topology on Sn with respect to the family of mappings

Fn = {ϕ̄ : ϕ is an Ln-formula}.

Since Fn separates points, τn is Hausdorff. It is easy to see that the basic
open sets in the topology τn are of the form

[ϕ] := {p ∈ Sn : (r ≤ ϕ) ∈ p for some 0 < r ∈ Q},

for some Ln-formula ϕ. Notice the similarities with the logic topology defined
in [5].

Let ϕ ∈ Ln. We claim that

(5) Sn \ [ϕ] = {p ∈ Sn : −ϕ ∈ p}.

The left-to-right inclusion follows by noticing that

Sn \ [ϕ] = {p ∈ Sn : for all 0 < r ∈ Q (r ≤ ϕ) /∈ p}
⊆ {p ∈ Sn : for all 0 < r ∈ Q (ϕ ≤ r) ∈ p}
⊆ {p ∈ Sn : −ϕ ∈ p},

by definition of type.
As for the converse inclusion, let p be such that −ϕ ∈ p. Therefore (ϕ ≤

r) ∈ p for all 0 < r ∈ Q. If it were that for some 0 < s ∈ Q, (2s ≤ ϕ) ∈ p,
then from (ϕ ≤ s) ∈ p we would get −s ∈ p: a contradiction. Hence
p ∈ Sn \ [ϕ].

We characterize the τn-closed sets as follows:

Proposition 32. Let C ⊆ Sn. The following are equivalent:

(1) C is closed in the topology τn;
(2) there exists some set ∆ of Ln-formulas such that

C = {p ∈ Sn : ∆ ⊆ p}.

Proof. (1) ⇒ (2). Let C be closed and let Ψ ⊆ Ln be such that C =
⋂

ψ∈Ψ(Sn \ [ψ]). By (5)

C =
⋂

ψ∈Ψ

{p ∈ Sn : −ψ ∈ p} = {p ∈ Sn : {−ψ : ψ ∈ Ψ} ⊆ p}.
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A PREDICATE EXTENSION OF REAL VALUED LOGIC 19

(2) ⇒ (1). Let C be as in (2). Again by (5), we get that for all δ ∈ ∆ and
all p ∈ Sn, δ ∈ p if and only if p ∈ Sn \ [−δ]. Therefore, for all p ∈ Sn, ∆ ⊆ p
if and only if p ∈

⋂

δ∈∆(Sn \ [−δ]). Hence C is closed. !

Theorem 33. The space (Sn, τn) is compact.

Proof. Let F be a family of closed subsets of Sn with the finite intersection
property. For each C ∈ F let ∆C be a set of Ln-formulas as in (2) of
Proposition 32. By the fip the set Γ∪

⋃

C∈F
∆C is finitely satisfiable, hence

it is satisfiable by the Compactness Theorem. Let p ∈ Sn be such that
⋃

C∈F
∆C ⊆ p. Then p ∈

⋂

F . !

We consider the space C(Sn,R) of continuous functions from Sn to R

endowed with the topology of uniform convergence, i.e. the topology asso-
ciated to the norm ∥f∥ = sup{|f(p)| : p ∈ Sn}.

By definition of τn, Fn ⊆ C(Sn,R). The following is an analogue of [5,
Proposition 8.10]. We prove it in detail for sake of completeness.

Proposition 34. The set Fn is dense in C(Sn,R).

Proof. We prove that:

(1) The set Fn separates points. Let p ̸= q be n-types and, without loss
of generality, let ϕ ∈ p \ q. Let Ma, Nb |= Γ be such that p = {ψ ∈
Ln : Ma |= ψ} and q = {ψ ∈ Ln : Nb |= ψ} respectively. Then
0 ≤ ϕMa ; ϕNb < 0 and, by Remark 31, ϕ̄(p) ̸= ϕ̄(q).

(2) The constant function 1 belongs to Fn. Actually, 1̄(p) = 1 for all
p ∈ Sn.

(3) For all ϕ̄ ∈ Fn and all t ∈ R the function tϕ̄ belongs to the closure of
Fn. To prove this, let (rk)k∈N be a sequence of rationals converging
to t. The equality rkϕ = rkϕ holds for all k ∈ N and (rkϕ̄k)k∈N
converges uniformly to sϕ̄.

(4) For all ϕ̄, η̄ ∈ Fn, the function ϕ̄ + η̄ belongs to Fn. We claim that
ϕ̄+ η̄ = ϕ+ η. This follows from Remark 31 and from (ϕ+ η)Ma =
ϕMa + ηMa .

(5) For all ϕ̄, η̄ ∈ Fn, the function max(ϕ̄, η̄) belongs to Fn. We claim
that max(ϕ̄, η̄) = (ϕ− η) ∨ 0 + η. This follows from Remark 31 and
from max(ϕMa , ηMa) = ((ϕ− η) ∨ 0 + η)Ma .

By applying a suitable version of the Stone-Weierstrass Theorem (see [7,
Theorem 7.29]) we finally get that Fn is dense in C(Sn,R).

!

Next we notice that the space (Sn, τn) is regular and T1. Therefore, under
the assumption that the language L is countable, (Sn, τn) is metrizable, by
the Urysohn’s Metrization Theorem (see [8]).

Actually, even when the language is uncountable, it is possible to define
a nontrivial extended metric δ : Sn × Sn → [0,+∞] as follows:

δ(p, q) = sup{|ϕ̄(p)− ϕ̄(q)| : ϕ ∈ Ln}.
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20 STEFANO BARATELLA

The properties of a metric can be easily verified as well as the fact that,
for every ϕ ∈ Ln, the function ϕ̄ is uniformly continuous with the respect
to the metric δ. Furthermore, the topology induced by δ is finer than the
topology τn previously defined: let [ϕ] ∈ τn and, for each p ∈ [ϕ], let rp be a
positive rational such that (rp ≤ ϕ) ∈ p and rp < ϕ̄(p). It is straightforward
to check that the open δ-ball B(p, rp/2) is contained in [ϕ]. Therefore

[ϕ] =
⋃

p∈ϕ

B(p, rp/2).

Proposition 35. The space (Sn, δ) is complete.

Proof. Let (pk)k∈N be a Cauchy sequence in Sn. Then, for each formula
ϕ ∈ Ln, the sequence (ϕ̄(pk))k∈N is Cauchy. Let rϕ be its limit and let
(sϕl )l∈N, (t

ϕ
l )l∈N be rational sequences converging to rϕ from below and from

above respectively. Let

∆ = Γ ∪ {sϕk ≤ ϕ, ϕ ≤ tϕk : ϕ ∈ Ln and k ∈ N}.

For every finite subset Σ of ∆ there exists a sufficiently large k such that
Σ ⊆ pk. Therefore ∆ is finitely satisfiable, hence satisfiable. Let p be a type
such that ∆ ⊆ p. Then (pk)k∈N converges to p. !

It is straightforward to check that, for each ϕ ∈ Ln, the function ϕ̄ is
uniformly continuous with respect to the metric δ.

Eventually we notice that, if a structure M is equipped with a distance
dM (which might not be one of the relations in M : this is certainly the
case when dM is unbounded) and the interpretations in M of predicate and
function symbols are continuous (uniformly continuous) functions, then it
follows easily that, for all n ∈ N, the interpretation ϕM : Mn → R of
each formula ϕ ∈ Ln is a continuous (uniformly continuous) function. This
suggests further investigations in the line of continuous logic.
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