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INTERPRETABLE GROUPS IN MANN PAIRS

HAYDAR GÖRAL

Abstract. In this paper, we study an algebraically closed field Ω expanded by two unary
predicates denoting an algebraically closed proper subfield k and a multiplicative subgroup Γ.
This will be a proper expansion of algebraically closed field with a group satisfying the Mann
property, and also pairs of algebraically closed fields. We first characterize the independence in
the triple (Ω, k,Γ). This enables us to characterize the interpretable groups when Γ is divisible.
Every interpretable group H in (Ω, k,Γ) is, up to isogeny, an extension of a direct sum of k-
rational points of an algebraic group defined over k and an interpretable abelian group in Γ by
an interpretable group N , which is the quotient of an algebraic group by a subgroup N1, which
in turn is isogenous to a cartesian product of k-rational points of an algebraic group defined
over k and an interpretable abelian group in Γ.

1. Introduction

Let Ω be an algebraically closed ambient field, the field k be a proper subfield of Ω and Γ be

a multiplicative subgroup of Ω×. We begin by defining a uniform version of the Mann property

which was introduced in [5]. First, we recall the Mann property. Consider an equation

(1) a1x1 + · · ·+ anxn = 1

with n ≥ 1 and ai ∈ k×. A solution (g1, ..., gn) of this equation is called non-degenerate if for

every non-empty subset I of {1, 2, ..., n}, the sum
∑

i∈I aigi is not zero. We say that Γ has

the Mann property over k if every such equation (1) has only finitely many non-degenerate

solutions in Γ. It was proved by L. van den Dries and A. Günaydın [4, Proposition 5.6] that

the Mann property is global, which means if we choose ai to be in Ω in (1) then this still gives

finitely many non-degenerate solutions in Γ. We say that (k,Γ) is a Mann pair if for all n there

is a finite subset Γ(n) of Γ such that for all a1, ..., an in k× all non-degenerate solutions of (1)

in Γ lie in Γ(n). This is a uniform version of the Mann property and the finiteness condition

does not depend on the given parameters a1, ..., an. In particular, the group Γ has the Mann

property if (k,Γ) is a Mann pair. Given a1, ..., an in k×, let Nd(a1, ..., an) be the set of all

non-degenerate solutions of the equation (1) lying in Γ. Therefore, the group Γ has the Mann

property if and only if for each tuple (a1, ..., an) the set Nd(a1, ..., an) is finite, and (k,Γ) is a

Mann pair if and only if for each n ≥ 1 the whole union⋃
(a1,...,an)∈k×

Nd(a1, ..., an)

is finite.
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2 HAYDAR GÖRAL

Observe that if (k,Γ) is a Mann pair then taking n = 1 in the definition we see that the

intersection k ∩ Γ is finite, thus the intersection is a finite subset of the group of roots of unity

in Ω. Therefore, if (k,Γ) is a Mann pair and if Γ is infinite, then most of the elements in Γ

are transcendental over the field k. In [15], H. Mann showed that the set of complex roots of

unity µ has the Mann property and moreover the pair (Q, µ) is a Mann pair. His proof is

effective. Later on, H. Mann’s result was generalized in the 1980’s and it was proved that any

multiplicative group of finite rank (µ has rank 0) in any field of characteristic zero has the Mann

property; see [7]. To illustrate, every finitely generated multiplicative subgroup of C× has the

Mann property, such as 2Z3Z. The pair (Q, exp(Q)) is a Mann pair by Lindemann’s theorem.

Note that the group exp(Q) is of infinite rank. In [5, Theorem 1.1], L. van den Dries and A.

Günaydın proved that when k is algebraically closed, if the intersection k ∩Γ is trivial and if Γ

is of finite rank then (k,Γ) is a Mann pair. This provides substantial examples of Mann pairs,

such as (C, tZ) where t is an indeterminate.

Now fix an algebraically closed field Ω0. Moreover, we also fix an algebraically closed proper

subfield k0 of Ω0 and an infinite multiplicative subgroup Γ0 of Ω0 where (k0,Γ0) is a Mann pair.

By the triple (Ω0, k0,Γ0) we actually mean the structure (Ω0, k0,Γ0,+,−, ·, 0, 1). Thus, our lan-

guage is {+,−, ·, 0, 1, P1, P2} where P1 and P2 are unary predicates whose interpretations in Ω0

are k0 and Γ0 respectively. The model theory of the triple (Ω0, k0,Γ0) was studied in [5, 6] by

L. van den Dries and A. Günaydın, where they proved that the theory Th(Ω0, k0,Γ0) is stable

and it is ω-stable if Γ0 is divisible [5, Proposition 8.3]. To study definable groups in the triple,

we need to add the constants k0 ∪ Γ0 as they did in [5] to have certain subsets of km × Γn

definable with parameters from k0 and Γ0; see Theorem (2.1). So our language Lt throughout

this article is {+,−, ·, 0, 1, P1, P2} together with the constants for each element of k0 ∪ Γ0. Let

Tt be the complete theory of (Ω0, k0,Γ0) in the language Lt. Therefore, if (Ω, k,Γ) is a model

of Tt, then k and Γ are elementary extensions of k0 and Γ0 respectively. Note also that, if

Ω is an algebraically closed field containing Ω0 then (Ω, k0,Γ0) is an elementary extension of

(Ω0, k0,Γ0) by [6, 4.4] as they have the same k and Γ parts. Thus, L. van den Dries and A.

Günaydın proved that k ∪ Γ is small in Ω [5, Lemma 8.2], which means that by changing the

model (the triple) we may assume that Ω is |k ∪ Γ|+-saturated as a field. We also assume the

triple is κ-saturated and strongly homogeneous for some uncountable cardinal κ. Throughout

the paper, we will be working in this sufficiently saturated model (Ω, k,Γ) where the base field

Ω is also |k ∪ Γ|+-saturated as a field.

The model theory of the pair (Ω,Γ) was analyzed by the author in [9, 10] in terms of stability.

The model theory and definable groups in (Ω, k) were studied in [20, 1] and [2]. In this paper,

our concern will be the triple (Ω, k,Γ) in the stability framework, and this corresponds to the

third chapter of the author’s PhD thesis [9]. We also investigate the connection between the

triple (Ω, k,Γ) and the pairs (Ω, k) and (Ω,Γ). The triple (Ω, k,Γ) is a proper expansion of

(Ω, k) (a pair of algebraically closed fields) and also (Ω,Γ) (an algebraically closed field with

a distinguished group having the Mann property). We first focus on algebraic closure and

forking in the triple. This allows us to characterize definable groups in the triple in terms



INTERPRETABLE GROUPS IN MANN PAIRS 3

of definable and interpretable groups in Ω, k and Γ. Moreover, we characterize interpretable

groups following the approach of [2] and applying the group configuration theorem [11] from

geometric stability theory. Note that the group configuration theorem also holds for ∗-definable

groups [13]. More precisely, we prove the following result (see Theorem (5.13)):

Theorem A. (Definable Groups) Let Ω be an algebraically closed field, the field k be a proper

subfield of Ω which is also algebraically closed and Γ be a multiplicative subgroup of Ω× such

that (k,Γ) is a Mann pair. Any type-definable group in (Ω, k,Γ) is isogenous to a subgroup of

an algebraic group. Moreover, any type-definable group H is, up to isogeny, an extension by an

algebraic group V of the direct sum of the k-rational points of an algebraic group V1 over k and

a type-interpretable abelian group H1 in Γ:

0 −→ V (Ω) −→ H −→ V1(k)×H1(Γ) −→ 0.

When Γ is divisible, the characterization of definable groups in the triple enables us to

characterize interpretable groups. In particular, we conclude (see Theorem (6.12)):

Theorem B. (Interpretable Groups) Let Ω be an algebraically closed field, the field k be a proper

subfield of Ω which is also algebraically closed and Γ be a divisible multiplicative subgroup of Ω×

such that (k,Γ) is a Mann pair. Every interpretable group H in (Ω, k,Γ) is, up to isogeny, an

extension of a direct sum of k-rational points of an algebraic group V1 over k and an interpretable

abelian group H1 in Γ by an interpretable group N , which is a quotient of an algebraic group

W by a subgroup N1 which in turn is isogenous to a cartesian product of k-rational points of

an algebraic group V2 over k and an interpretable abelian group H2 in Γ :

0 −→ N −→ H −→ V1(k)×H1(Γ) −→ 0

with

0 −→ V2(k)×H2(Γ) −→ W −→ N −→ 0.

2. Preliminaries and Notations

Now we introduce more notations. For a substructure A in the sense of the triple, we denote

kA = A ∩ k (the k-part of A) and ΓA = A ∩ Γ (the Γ-part of A). By acl(A), we mean the

algebraic closure of A in the field sense and aclt(A) indicates the algebraic closure of A in the

triple (Ω, k,Γ). By |̂ we mean the algebraic independence in the pure field Ω and
t

|̂ signifies

the independence in the triple (Ω, k,Γ). Similarly,
P1

|̂ denotes the independence in the pair

(Ω, k) and
P2

|̂ indicates the independence in the pair (Ω,Γ). If A is a subset of Γ, the algebraic

closure of A in Γ will be represented by aclΓ(A). Let a be a tuple in Ω and B be a set of

parameters. Unless otherwise stated, the type tp(a/B) denotes the type of a over B in the

pure field sense. By tpt(a/B) we mean the type of a over B in the sense of the triple. We use

similar notations for tpk and tpΓ to indicate the types in k and Γ respectively.
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Let E,F and L be three fields where L ⊆ E ∩ F . We say that E is linearly disjoint from F

over L, denoted by E
ld

|̂
L

F , if each tuple (a1, ..., am) in Em which is linearly independent over

L is also linearly independent over F. The field extension E|L is called regular if E
ld

|̂
L

acl(L).

Now we list some basic properties of linear disjointness which we will use frequently in the rest

of the paper. For the details, we refer the reader to [8, Chapter 2] and [14, Chapter 8].

• (Symmetry) We have E
ld

|̂
L

F if and only if F
ld

|̂
L

E.

• (Transitivity) For a subfield S of F containing L, we have E
ld

|̂
L

F if and only if ES
ld

|̂
S

F

and E
ld

|̂
L

S.

• If E
ld

|̂
L

F then we have the algebraic independence E |̂
L

F.

• If L is an algebraically closed field, then the independence E |̂
L

F also implies E
ld

|̂
L

F .

Adding the constants for each element of k0 and Γ0 will be significant to control the param-

eters for definability, since we need algebraically closed structures to contain enough elements.

The following theorem is in [5] and it states that k and Γ are orthogonal in the model-theoretic

sense.

Theorem 2.1. [5, Theorem 1.2 and Remark in 8.3] For all m,n ≥ 1, every definable subset

of km × Γn definable in (Ω, k,Γ) is a finite union of sets X × Y with X ⊆ km definable in the

field k and Y ⊆ Γn definable in the group Γ. In other words, the induced structure on (k,Γ) is

itself. In particular, the set

Σn = {(k1, ..., kn, g1, ..., gn) : k1g1 + · · ·+ kngn = 0} ⊆ kn × Γn

is a finite union of sets X × Y with X ⊆ kn definable in the field k with parameters from k0

and Y ⊆ Γn definable in the group Γ with parameters from Γ0. That is to say, the set Σn is

∅-definable in the language Lt.

Using the theorem above, the following lemma follows immediately.

Lemma 2.2. Let f and g be automorphisms in Aut(k/k0) and Aut(Γ/Γ0) respectively. Then

there is an automorphism of k(Γ) in the pure field sense which extends both f and g.

Proof. Define Σn = {(k1, ..., kn, γ1, ..., γn) : k1γ1 + · · · + knγn = 0} ⊆ kn × Γn. By Theorem

(2.1), the set Σn is a finite union of sets X × Y with X ⊆ k definable in the field k with

parameters from k0 and Y ⊆ Γ definable in the group Γ with parameters from Γ0. Therefore

(k1, ..., kn, γ1, ..., γn) ∈ Σn if and only if (f(k1), ..., f(kn), g(γ1), ..., g(γn)) ∈ Σn. This yields a

well-defined ring automorphism h of the ring k[Γ] given by

h(k1γ1 + · · ·+ knγn) = f(k1)g(γ1) + · · ·+ f(kn)g(γn)

which further extends to the field k(Γ) . �
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The following lemma (see [3]) will be crucial in order to characterize algebraic closure in the

triple.

Lemma 2.3. [3, Lemma 2.1] Let T1 ⊂ T2 be stable theories in the languages L1 and L2 respec-

tively where L1 ⊆ L2. Suppose that T1 eliminates imaginaries. Let M be a model of T2 and a, b

be tuples in M . If C is an algebraically closed set in the sense of T2, then a
T2

|̂
C

b implies a
T1

|̂
C

b.

Remark 2.4. Applying lemma (2.3), one sees that if C is algebraically closed in the triple

(Ω, k,Γ) and a, b ∈ Ω, then the independence a
t

|̂
C

b implies the algebraic independence a |̂
C

b.

3. Characterization of Algebraic Closure

In this section, we give the characterization of algebraically closed structures in the triple

which will be a key tool for all other proofs throughout the paper. In order to characterize

algebraic closure, we depend upon the stability of the triple (Ω, k,Γ) which we know by [5,

Proposition 8.3]. We begin with a definition.

Definition 3.1. We say that a substructure A of the triple (Ω, k,Γ) is (k,Γ)-independent if

A
ld

|̂
kA(ΓA)

k(Γ).

Similarly A is k-independent if A
ld

|̂
kA

k and A is Γ-independent if

A |̂
ΓA

Γ.

Note that if A is algebraically closed in the sense of the triple, then it is k-independent by

[1, Remark 7.2].

Mann pairs over a subfield: We follow the notations of [5, Section 4, Page 7-8]. Let ā =

(a1, ..., an) be a tuple from Ω.Define Σnd(ā, k,Γ) as the set of all tuples (b̄, γ̄) = (b1, ..., bn, γ1, ..., γn)

where bi is in k×, the element γi is in Γ and (γ1, ..., γn) is a non-degenerate solution of

a1b1x1 + · · · + anbnxn = 0. We let Σnd(ā, k,Γ; γ̄) be the set of all tuples b̄ ∈ (k×)n such

that (b̄, γ̄) ∈ Σnd(ā, k,Γ). Let F be a subfield of Ω. We say that (k,Γ) is a Mann pair over F

if for every tuple r̄ = (r1, ..., rn) from F×, n ≥ 2, there is a finite subset Γ(r̄) of Γ such that

Σnd(r̄, k,Γ) =
⋃

γ̄∈Γ(r̄)

Σnd(r̄, k,Γ; γ̄)× Γγ̄.

One can see that (k,Γ) is a Mann pair over k as it is a Mann pair. In [5, Proposition 4.7], it

was proved that (k,Γ) is a Mann pair over Ω.

Lemma 3.2. Let A be algebraically closed in the sense of the triple (Ω, k,Γ). Then A is

(k,Γ)-independent.

Proof. Since A is also algebraically closed in the sense of (Ω, k), this yields that A is k-

independent, so A
ld

|̂
kA

k and therefore we have A
ld

|̂
kA(ΓA)

k(ΓA). By transitivity, it is enough to
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prove that

A
ld

|̂
k(ΓA)

k(Γ).

Suppose that α1, ..., αm belong to A and they are linearly dependent over k(Γ). So there are

elements q1, ..., qm from k(Γ) (not all zero) such that

(2) α1q1 + · · ·+ αmqm = 0.

As each qi is of the form ui
vi

where ui, vi ∈ k[Γ], by multiplying the equation (2) with the

denominators, we see that α1, ..., αm are linearly dependent over k[Γ]. Thus there are t1, ..., tm

from k[Γ] such that

(3) α1t1 + · · ·+ αmtm = 0.

Note that each ti is of the form ki1gi1 + · · ·+ kirgir for some r. Therefore by equation (3), we

get that there are elements a1, ..., an from A× (not necessarily distinct), k1, ..., kn from k× and

g1, ..., gn from Γ such that

(4) a1k1g1 + · · ·+ ankngn = 0.

Without loss of generality, we may suppose that (g1, ..., gn) is a non-degenerate solution of

a1k1x1 + · · · + anknxn = 0, because otherwise we split the equation into proper subsums such

that all of them have the non-degeneracy condition for some subtuples of (g1, ..., gn). In other

words, we may assume that there is no non-trivial subsum of (4) which is zero. From (4), we

see that

(5) 1 +
a2

a1

k2

k1

g2

g1

+ · · ·+ an
a1

kn
k1

gn
g1

= 0.

Thus the tuple
(
1, g2

g1
, ..., gn

g1

)
is a non-degenerate solution of

(6) x1 +
a2

a1

k2

k1

x2 + · · ·+ an
a1

kn
k1

xn = 0,

hence it is in Γ · Γ
(
1, a2

a1
, ..., an

a1

)
by [5, Proposition 4.7]. So there are γ ∈ Γ and (γ1, ..., γn) ∈

Γ
(
1, a2

a1
, ..., an

a1

)
such that (

1,
g2

g1

, ...,
gn
g1

)
= (γγ1, ..., γγn).

This yields that (
1,
g2

g1

, ...,
gn
g1

)
=

(
1,
γ2

γ1

, ...,
γn
γ1

)
.

As Γ
(
1, a2

a1
, ..., an

a1

)
is finite, we see that the equation (6) has only finitely many non-degenerate

solutions in Γ, whose first coordinate is 1. Since A is algebraically closed in the triple, we see

that the tuple
(
1, g2

g1
, ..., gn

g1

)
is in A. Now we finish the proof by dividing the equation (4) (or

(3)) by g1. �

Remark 3.3. The proof of lemma (3.2) also shows that if A is algebraically closed in the sense

of the triple, then it is Γ-independent. This can also be proved directly by applying the Mann

property, see [9, Lemma 2.4].

Next, we give the characterization of algebraic closure in the triple.
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Proposition 3.4. (Algebraic closure) Let A ⊂ Ω be a substructure in the sense of the triple.

Then A is algebraically closed in the sense of the triple if and only if A and kA are algebraically

closed fields, the group ΓA is algebraically closed in Γ and A is (k,Γ)-independent.

Proof. If A is algebraically closed in the sense of the triple then A and kA are algebraically

closed fields and ΓA is algebraically closed in Γ. Moreover, by lemma (3.2) the structure A

is (k,Γ)-independent. Now we prove the converse. Let α be in Ω \ A. Note that any field

automorphism of Ω fixing k and Γ is an automorphism of the triple.

Case 1: If α ∈ Γ. Then since ΓA is algebraically closed, we know that α has infinitely many

conjugates in Γ. Choose a conjugate β ∈ Γ of α. Then there is an automorphism f ∈ Aut(Γ/ΓA)

sending α to β. Since ΓA contains Γ0, by lemma (2.2) there is an automorphism h of k(Γ)

which is identity on k and f on Γ. Since A is (k,Γ)-independent, by linear disjointness the

former automorphism extends to a field automorphism of A(k,Γ) over A and this extends to

an automorphism of Ω over A which is actually an automorphism of the triple (Ω, k,Γ) over A.

Thus α is not in aclt(A). In particular, we have Γaclt(A) = ΓA.

Case 2: If α ∈ k. As kA is an algebraically closed field, we know that α has infinitely many

conjugates in k. Choose a conjugate β ∈ k of α. Similar to the first case and by lemma (2.2)

again, we construct an automorphism of the triple which sends α to β. Thus α is not in aclt(A).

This also indicates that kaclt(A) = kA.

Case 3: If α ∈ acl(A, k,Γ) \ A. Then there exist k1, ..., kn ∈ k and g1, ..., gn ∈ Γ such that

α ∈ acl(A, k1, ..., kn, g1, ..., gn) \ A. So for a rational polynomial

r(x0, x1, ..., xn, y1, ..., yn)

with coefficients from A, we have that

r(α, k1, ..., kn, g1, ..., gn) = 0.

Moreover, we may assume that k1, ..., kn, g1, ..., gn are algebraically independent over A. By the

first two cases, we know that ki and gi are not in aclt(A) for 1 ≤ i ≤ n. Thus the type

p = tpt(k1, ..., kn, g1, ..., gn/ aclt(A))

is non-algebraic. Now take m1, ...,mn, h1, ..., hn such that

(m1, ...,mn, h1, ..., hn) |= p

and

m1, ...,mn, h1, ..., hn
t

|̂
aclt(A)

k1, ..., kn, g1, ..., gn.

By remark (2.4), we obtain the algebraic independence

m1, ...,mn, h1, ..., hn |̂
aclt(A)

k1, ..., kn, g1, ..., gn.

We know that aclt(A) is (k,Γ)-independent by lemma (3.2). As kaclt(A) = kA and Γaclt(A) = ΓA

from Case 1 and Case 2, by transitivity we get that

m1, ...,mn, h1, ..., hn |̂
A

k1, ..., kn, g1, ..., gn.
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Since there is a triple automorphism over A sending (k1, ..., kn, g1, .., gn) to the tuple

(m1, ...,mn, h1, ..., hn),

this gives a conjugate β of α with β ∈ acl(A,m1, ...,mn, h1, ..., hn) by the polynomial equation

r = 0. Observe that β is different from α as we have

m1, ...,mn, h1, ..., hn |̂
A

k1, ..., kn, g1, ..., gn

and α is not in A. Choosing other independent elements, as a result, we conclude that α has

infinitely many conjugates over A and hence α is not in aclt(A).

Case 4: The element α is not in acl(A, k,Γ). Since any field automorphism of Ω fixing k and

Γ is an automorphism of the triple, we deduce that acl(A, k,Γ) = aclt(A, k,Γ). This indicates

that α is not in aclt(A). Hence we are done. �

Now we give several immediate corollaries of the previous proposition.

Corollary 3.5. For any subset D in Ω,

aclt(D) = acl(D, kaclt(D),Γaclt(D)).

If B = aclt(kA,ΓA) where A is algebraically closed in the sense of the triple, then B =

acl(kA,ΓA).

Proof. We put E = acl(D, kaclt(D),Γaclt(D)). As

D ∪ kaclt(D) ∪ Γaclt(D) ⊆ E ⊆ aclt(D),

observe that kE = kaclt(D) and ΓE = Γaclt(D). Since aclt(D) is (k,Γ)-independent by lemma (3.2),

we see that E is also (k,Γ)-independent. We obtain by (3.4) that E is algebraically closed in

the sense of the triple. As E contains D, we conclude that E = aclt(D). For the second case,

similarly B = aclt(kA,ΓA) ⊆ A is (k,Γ)-independent and so we have that F = acl(kA,ΓA) and

k(Γ) are linearly disjoint over kA(ΓA). In the proof of proposition (3.4), namely Case 1 and

Case 2, we observe that kF = kA and ΓF = ΓA. We finish the proof by proposition (3.4) again

and hence B = F . �

Corollary 3.6. Let B be algebraically closed in the sense of the triple. Then ΓB = Γaclt(B,k)

and kB = kaclt(B,Γ). In particular, we have B(k) ∩ Γ = ΓB and B(Γ) ∩ k = kB.

Proof. As B is (k,Γ)-independent by lemma (3.2), we obtain that

B(k)
ld

|̂
k(ΓB)

k(Γ) and B(Γ)
ld

|̂
kB(Γ)

k(Γ).

Therefore by proposition (3.4), we see that ΓB = Γaclt(B,k) and kB = kaclt(B,Γ). In particular, we

obtain that B(k) ∩ Γ = ΓB and B(Γ) ∩ k = kB. �

Elementary substructure: We follow the notations of [6, Page 2]. Let L be a subfield of

Ω, the integer n ≥ 2 and a1, ..., an belong to L×. A solution (s1, ..., sn) ∈ (Ω×)n of

(7) a1x1 + · · ·+ anxn = 0
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is called primitive over L if it is linearly independent over L for every non-empty proper subset

I of {1, ..., n}. Note that a primitive solution of (7) is also a non-degenerate solution of (7).

For a subfield k1 of k and a subgroup Γ1 of Γ, let Γ1(k1, n)pr be the set of all (g1, ..., gn) ∈ Γ1

such that gn = 1 and (g1, ..., gn) is a primitive solution of (7) over k1 for some tuple (a1, ..., an)

from k1
×. The following theorem is [6, Corollary 4.4] and the condition (i) below is automatic

as we assume that k is a proper subfield of Ω.

Theorem 3.7. [6, 4.4] Suppose that (B, kB,ΓB) ⊆ (Ω, k,Γ) is a substructure with [B : kB] >

2. Then (B, kB,ΓB) is an elementary substructure of the triple if and only if the following

conditions hold:

(i) [Ω : k] > 2,

(ii) Γ(k, n)pr = ΓB(kB, n)pr for every n ≥ 2,

(iii) kB � k and ΓB � Γ,

(iv) B |̂
kB(ΓB)

k(Γ).

Using the previous result, we obtain the following corollary, which will also be used in section

6. Recall that a subgroup Γ1 of Γ is called pure if for every c ∈ Γ1, the solvability of the equation

xn = c in Γ implies the solvability of the equation xn = c in Γ1, where n ≥ 1.

Corollary 3.8. Let k1 ⊇ k0 and Γ1 ⊇ Γ0 be algebraically closed substructures of k and Γ

respectively. Then B = acl(k1,Γ1) is an algebraically closed substructure of Ω in the sense of

the triple. Moreover, if k1 and Γ1 are elementary substructures of k and Γ respectively, then

B = acl(k1,Γ1) is an elementary substructure of Ω in the sense of the triple.

Proof. Let k1 ⊇ k0 and Γ1 ⊇ Γ0 be algebraically closed substructures of k and Γ respectively and

set B = acl(k1,Γ1). Observe that Γ1 is a pure subgroup of Γ. As we have Γ(k, n)pr = Γ0(k0, n)pr

for every n ≥ 2 and k and k0(Γ) are linearly disjoint over k0, we see that Γ(k, n)pr = Γ1(k1, n)pr

for every n ≥ 2. Therefore, the field extension k(Γ)|k1(Γ1) is regular by [6, Lemma 4.1]. In

other words,

(8) B
ld

|̂
k1(Γ1)

k(Γ).

By proposition (3.4) and (8), we deduce that B is algebraically closed in the sense of the triple.

If k1 and Γ1 are elementary substructures of k and Γ respectively, then similar to the argument

above, we conclude by Theorem (3.7) that B is an elementary substructure of Ω in the sense

of the triple, as most of the elements of Γ0 are transcendental over k. �

4. Characterization of Forking

In this section, we characterize forking in the triple. First, we need two lemmas. The following

lemma states when two algebraically closed structures in the sense of the triple have the same

type over a common substructure.

Lemma 4.1. Let B1,B2 and C ⊆ B1 ∩ B2 be three algebraically closed structures in the sense

of the triple. Then tpt(B1/C) = tpt(B2/C) if and only if there is a field automorphism over C

sending B1 to B2 with sending kB1 to kB2 and sending ΓB1 to ΓB2.
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Proof. Suppose that there is a field automorphism ϕ over C sending B1 to B2 with sending

kB1 to kB2 and sending ΓB1 to ΓB2 . In particular, we have tpk(kB1/kC) = tpk(kB2/kC) and

tpΓ(ΓB1/ΓC) = tpΓ(ΓB2/ΓC). Thus, there is an automorphism f ∈ Aut(k/kC) sending kB1

to kB2 and there is an automorphism g ∈ Aut(Γ/ΓC) sending ΓB1 to ΓB2 . As kC contains k0

and ΓC contains Γ0, by lemma (2.2) there is an automorphism h of k(Γ) over kC(ΓC) sending

kB1(ΓB1) to kB2(ΓB2). Since C is (k,Γ)-independent by lemma (3.2), we have

C
ld

|̂
kC(ΓC)

k(Γ),

and the map h further extends to an automorphism of C(k,Γ) over C. Moreover, since each Bi

is (k,Γ)-independent by lemma (3.2), we have that

Bi

ld

|̂
kBi

(ΓBi
)

k(Γ).

Thus we get that

(9) Bi

ld

|̂
C(kBi

,ΓBi
)

C(k,Γ).

By the maps ϕ and h, and the linear disjointness (9), we obtain an isomorphism τ between

B1(k,Γ) and B2(k,Γ) over C. As τ extends to a field automorphism of Ω fixing k and Γ setwise,

we conclude that tpt(B1/C) = tpt(B2/C). The other direction is clear. �

Now we prove another lemma before characterizing the independence in (Ω, k,Γ) and the

idea partially comes from [2, Lemma 1.2].

Lemma 4.2. Let C ⊆ A ∩ B be three algebraically closed structures in the sense of the triple

and suppose that A |̂
C,k,Γ

B, k,Γ. Then aclt(A,B) = acl(A,B). Moreover, we have kaclt(A,B) =

acl(kA, kB) and Γaclt(A,B) = aclΓ(ΓA,ΓB).

Proof. Since A is algebraically closed, lemma (3.2) and transitivity yield that

A |̂
C,kA,ΓA

B, k,Γ

and so A |̂
B,kA,ΓA

k,Γ. As B is algebraically closed, similarly we have that B |̂
kB ,ΓB

k,Γ and thus

B |̂
acl(kA,kB)(ΓAΓB)

k,Γ.

By transitivity, we obtain that

A,B |̂
acl(kA,kB)(ΓAΓB)

k,Γ.

Note that H = aclΓ(ΓA,ΓB) ⊆ acl(A,B). Thus we have

A,B |̂
acl(kA,kB)(H)

k,Γ.

By corollary (3.8), we see that aclt(kA, kB, H) = acl(kA, kB, H) and in particular it is (k,Γ)-

independent by lemma (3.2). By transitivity and in terms of linear disjointness we deduce
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that

acl(A,B)
ld

|̂
acl(kA,kB)(H)

k(Γ).

Hence by proposition (3.4), we conclude that aclt(A,B) = acl(A,B) and also that kaclt(A,B) =

acl(kA, kB) and Γaclt(A,B) = aclΓ(ΓA,ΓB). �

Now we are ready to give the characterization of forking in the triple by applying proposition

(3.4) and lemmas (4.1), (4.2). It turns out that independence in the triple is given by the

algebraic independence in Ω and k; see (iv) below. The proof of the following theorem is

motivated from [1, 7.3].

Theorem 4.3. (Characterization of Forking)

Let C = A ∩B and all of them be algebraically closed in the sense of the triple Tt. Then the

following are equivalent:

(i) A
t

|̂
C

B,

(ii) A |̂
C,k,Γ

B, k,Γ and A |̂
C

B

(iii) A |̂
C,k,Γ

B, k,Γ and kA,ΓA |̂
kC ,ΓC

kB,ΓB

(iv) A |̂
C,k,Γ

B, k,Γ and kA |̂
kC

kB.

Proof. First suppose that A
t

|̂
C

B. By remark (2.4), we have that A |̂
C

B. In particular, we

obtain

kA,ΓA |̂
C

kB,ΓB.

Moreover, since C is algebraically closed it is (k,Γ)-independent, thus we have that C |̂
kC ,ΓC

k,Γ

and in particular C |̂
kC ,ΓC

kB,ΓB. These two independence relations

kA,ΓA |̂
C

kB,ΓB and C |̂
kC ,ΓC

kB,ΓB

give us that kA,ΓA |̂
kC ,ΓC

kB,ΓB by transitivity. Similarly, the independence A |̂
C

B yields that

kA |̂
C

kB. Moreover, as C is algebraically closed in the pair (Ω, k) it is k-independent. Thus we

have C |̂
kC

k and so C |̂
kC

kB. By transitivity we deduce that kA |̂
kC

kB.

Now we prove that A |̂
C,k,Γ

B, k,Γ. Suppose for a contradiction that

A 6 |̂
C,k,Γ

B, k,Γ.

Let q = tp(B/C ∪ kB ∪ΓB) and λ ≥ ω1. As B is algebraically closed and contains C, by lemma

(3.2) we get that

(10) B |̂
C,kB ,ΓB

C, k,Γ.
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Thus by saturation, there exists (Bi)i≤λ with B = B0 such that Bi |= q and (Bi)i≤λ is inde-

pendent over C ∪ k ∪ Γ in the field sense, and also Bi |̂
C,kB ,ΓB

C, k,Γ by (10). By the choice of

(Bi)i≤λ, we get that kB ⊆ kBi
and ΓB ⊆ ΓBi

for all i. On the other hand, by the independence

Bi |̂
C,kB ,ΓB

C, k,Γ we have that kBi
,ΓBi

⊆ acl(C, kB,ΓB) ⊆ B. Thus we obtain the equalities

kB = kBi
and ΓB = ΓBi

for all i. As acl(C, kB,ΓB) ⊆ B, this yields that kB = kacl(C,kB ,ΓB) and

ΓB = Γacl(C,kB ,ΓB). Since B is (k,Γ)-independent by lemma (3.2), in particular we see that

acl(C, kB,ΓB)
ld

|̂
kB(ΓB)

k(Γ).

As Bi |̂
C,kB ,ΓB

k,Γ, by transitivity and in terms of linear disjointness, we obtain that

Bi

ld

|̂
kB(ΓB)

k(Γ).

Therefore by proposition (3.4), we deduce that Bi is algebraically closed in the sense of the triple

for all i. Then, lemma (4.1) yields that tpt(Bi/C) = tpt(B/C) for all i. By Erdős-Rado Theo-

rem, we may assume that (Bi)i≤λ is C-indiscernible in the sense of Tt. Let pi be the pullback

of the type tpt(A/B) under Bi −→ B. Since A
t

|̂
C

B, we know that
⋃
i≤λ pi(x,Bi) is consistent.

So there exists A1 such that tpt(A1Bi) = tpt(AB) for all i. Now (Bi)i≤λ is independent over

C ∪ k ∪ Γ and A1 6 |̂
C,k,Γ

Bi for each Bi. This contradicts the stability of the field Ω. Hence we

proved that (i) implies (ii), (iii) and (iv).

Now we prove that (ii), (iii) and (iv) are equivalent. We already proved that (ii) implies (iii)

and (iv) in the beginning. First, we make the following observation. Since A is algebraically

closed in the sense of the triple, it is (k,Γ)-independent by lemma (3.2). In particular, one has

A |̂
C,kA,ΓA

C, k,Γ. Thus if we have A |̂
C,k,Γ

B, this yields by transitivity that

(11) A |̂
C,kA,ΓA

B.

Suppose that we have (iii) and we will show that (ii) holds. Note that as A is (k,Γ)-independent

we also have that C(kA,ΓA) is (k,Γ)-independent and in particular

C(kA,ΓA) |̂
kA,ΓA

kB,ΓB.

As we also have

kA,ΓA |̂
kC ,ΓC

kB,ΓB,

by transitivity we obtain that C(kA,ΓA) |̂
kC ,ΓC

kB,ΓB and hence kA,ΓA |̂
C

kB,ΓB. As B is

(k,Γ)-independent, we deduce the independence kA,ΓA |̂
C

B by transitivity. From the previous

independence and by (11), we conclude that A |̂
C

B by transitivity again. Thus (iii) implies (ii).

Now assume that we have (iv) and we show (ii). As A is algebraically closed in the pair (Ω, k),
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it is k-independent. In particular, we have C, kA |̂
kA

kB. By kA |̂
kC

kB and transitivity, we obtain

that kA |̂
C

kB. As B is also k-independent, we see that B |̂
kB

kA. By the previous independence

and kA |̂
C

kB, we deduce that B |̂
C

kA by transitivity. Next, we prove that B |̂
C,kA

ΓA. So let

b1, ..., bn be in B, the elements k1, ..., kn be in kA and g1, ..., gn be in ΓA such that

b1k1g1 + · · ·+ bnkngn = 0.

We may suppose that no proper subsum of this equation is zero. Since Γ has the Mann property

over Ω, we obtain that gi
g1
∈ aclt(B, kA) and so gi

g1
∈ ΓB for all i by lemma (3.6). As gi

g1
∈ ΓA

also, we obtain that gi
g1
∈ ΓC for all i. Thus we have B |̂

C,kA

ΓA. By B |̂
C,kA

ΓA and B |̂
C

kA, we

obtain that B |̂
C

kA,ΓA. The previous independence and (11) give again that A |̂
C

B.

Lastly, we prove that (ii) implies (i). Our strategy for the proof of non-forking is to show

consistency of conjugates of types along a Morley sequence; see [21, Proposition 7.2.14]. So let

λ be an uncountable cardinal and (Bi)i<λ be a Morley sequence over C in the sense of the triple

where B0 = B. Note that (Bi, kBi
,ΓBi

)i<λ is also a Morley sequence over C in the sense of the

triple but for simplicity we write (Bi)i instead. Next we may assume the sequence (Bi)i is a

Morley sequence over CkAΓA in the field sense, as it can be seen from the following argument:

We observe by remark (2.4) that (Bi)i is C-independent in the field sense. By (ii) we also have

that

(12) kA,ΓA |̂
C

B.

By stability, we cannot have that

kA,ΓA 6 |̂
C

Bi

for many i, as (Bi)i is C-independent in the field sense. So we may assume that

(13) kA,ΓA |̂
C

Bi

for all i. Since C is an algebraically closed field and types over algebraically closed subfields are

stationary in the pure field Ω, by (12) and (13) we deduce that tp(Bi/CkAΓA) = tp(B/CkAΓA)

for all i. Now by Erdős-Rado Theorem, we may assume that (Bi)i is CkAΓA-indiscernible in

the sense of the pure field Ω. By [21, Lemma 7.2.19], we get that

kA,ΓA |̂
C

{Bi : i < λ}.

By transitivity and as (Bi)i is C-independent, we conclude that (Bi)i is a Morley sequence over

CkAΓA in the field sense.

Since A |̂
C

B, we also have

A |̂
C,kA,ΓA

B, kA,ΓA.
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Let p(x) = tp(A/B ∪ kA ∪ ΓA) and pi(x) be the copy over Bi ∪ kA ∪ ΓA. Thus there exists a

long tuple D such that D |=
⋃
i pi(x). Moreover as all Bi, k and Γ are small in Ω, by taking a

non-forking extension we may assume that

(14) D |̂
B,kA,ΓA

{Bi : i < λ}, k,Γ.

As A |̂
C,kA,ΓA

B, kA,ΓA, by transitivity we see that

(15) D |̂
C,kA,ΓA

Bi, k,Γ

for all i. Observe that kD = kA and ΓD = ΓA as D and A has the same type over BkAΓA

and by (15). Moreover, there is a field automorphism fi of Ω over CkAΓA sending ABkBΓB to

DBikBi
ΓBi

. Since A is (k,Γ)-independent and C ⊆ A, we also see that

acl(C, kA,ΓA)
ld

|̂
kA(ΓA)

k(Γ).

Since also we have D |̂
C,kA,ΓA

k,Γ, by transitivity and in terms of linear disjointness, we deduce

that

D
ld

|̂
kA(ΓA)

k(Γ).

Therefore by proposition (3.4), we conclude that D is algebraically closed in the sense of the

triple. By lemma (4.2), we see that aclt(A,B) = acl(A,B), and also kaclt(A,B) = acl(kA, kB) and

Γaclt(A,B) = aclΓ(ΓA,ΓB). Hence, we have

(16) acl(A,B)
ld

|̂
acl(kA,kB)(aclΓ(ΓA,ΓB))

k(Γ).

By the choice of D and by lemma (4.2) again, we also have that

(17) acl(D,Bi)
ld

|̂
acl(kA,kBi

)(aclΓ(ΓA,ΓBi
))

k(Γ).

As (Bi)i = (Bi, kBi
,ΓBi

) is a Morley sequence over CkAΓA in the field sense, there is a partial

field isomorphism σi of Ω over CkAΓA sending B to Bi, with kB to kBi
and ΓB to ΓBi

. In

particular, there is a partial field isomorphism gi sending kB to kBi
over kA, and there is a

partial group isomorphism hi sending ΓB to ΓBi
over ΓA. By strong homogeneity and (2.2), there

is a field automorphism ψi of k(Γ) (obtained by gi and hi) sending acl(kA, kB)(aclΓ(ΓA,ΓB))

to acl(kA, kBi
)(aclΓ(ΓA,ΓBi

)). Now by the two linear disjointness (16) and (17), we obtain a

partial field isomorphism τi preserving k,Γ and sending acl(AB) to acl(DBi). As τi extends

to an automorphism of Ω, which is indeed an automorphism of the triple, we conclude that

tpt(DBikAΓA) = tpt(ABkAΓA) for all i. Hence we have (i). �

Remark 4.4. The proof of Theorem (4.3) above indicates the characterization of independence

in pairs (Ω, k) and (Ω,Γ). More precisely, let C = A∩B and all of them be algebraically closed

in the pair (Ω, k). Then A and B are independent over C in (Ω, k) if and only if A |̂
C,k

B, k and
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kA |̂
kC

kB. If C = A ∩ B and all are algebraically closed in the pair (Ω,Γ), then A and B are

independent over C in (Ω,Γ) if and only if A |̂
C,Γ

B,Γ. For the details, see [1, 9, 10].

Corollary 4.5. For every a ∈ Ω, we have that

a
t

|̂
kaclt(a),Γaclt(a)

k,Γ.

Moreover, we also have the independence a
t

|̂
Γaclt(a)

Γ.

Proof. Since aclt(a) is (k,Γ)-independent, we have that

aclt(a) |̂
acl(kaclt(a),Γaclt(a))

acl(k,Γ)

and aclt(a) ∩ acl(k,Γ) = acl(kaclt(a),Γaclt(a)). By corollary (3.5), we see that

acl(kaclt(a),Γaclt(a)) = aclt(kaclt(a),Γaclt(a))

and also that aclt(k,Γ) = acl(k,Γ). Therefore, we deduce that

aclt(a) |̂
aclt(kaclt(a),Γaclt(a))

aclt(k,Γ).

Applying Theorem (4.3), we obtain the first part. For the second part, we have aclt(Γ) =

acl(Γ, k0) and aclt(Γaclt(a)) = acl(Γaclt(a), k0), and also that kaclt(Γ) = k0 by corollary (3.8). As

aclt(a) is Γ-independent by remark (3.3), we conclude by Theorem (4.3) similar to the first

part. �

The next lemma states that the independence in the triple implies the independence in Γ as

a pure group.

Lemma 4.6. Let C = A ∩ B and all of them be algebraically closed in the sense of the triple

and A
t

|̂
C

B. Then we have the independence ΓA
Γ

|̂
ΓC

ΓB in the abelian group Γ.

Proof. As A
t

|̂
C

B, we have ΓA
t

|̂
C

ΓB. Corollary (4.5) and the transitivity of the independence

yield that ΓA
t

|̂
ΓC

ΓB . Hence we conclude that ΓA
Γ

|̂
ΓC

ΓB. �

4.1. Independence over Models and Reducts. In this subsection we study the indepen-

dence over models. Then we investigate the relation between the independence in the triple

and the independence in (Ω, k) and (Ω,Γ).

Proposition 4.7. Let M = A∩B where A,B are algebraically closed in the sense of the triple

Tt and M is a model of Tt. Then A
t

|̂
M

B if and only if A
ld

|̂
M(kA,ΓA)

B(k,Γ) and kA |̂
kM

kB.

Proof. By Theorem (4.3)(iv), it is enough to prove that A
t

|̂
M

B implies A
ld

|̂
M(kA,ΓA)

B(k,Γ). Now

let a1, ..., an be in A (not necessarily distinct), the elements b1, ..., bn be in B, the elements
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k1, ..., kn be in k and g1, ..., gn be in Γ such that

a1b1k1g1 + · · ·+ anbnkngn = 0.

Suppose that f(x̄, ȳ, z̄, t̄) is the formula x1y1z1t1 + · · ·+xnynzntn = 0. Let φ(x̄, ȳ) be the formula

∃z̄ ∈ P1 ∃t̄ ∈ P2 f(x̄, ȳ, z̄, t̄).

Then ā |= φ(x̄, b̄). As A
t

|̂
M

B, by stability the type tpt(A/B) is an heir extension of tpt(A/M).

So there is m̄ ∈ M such that ā |= φ(x̄, m̄). We finish the proof by transitivity as A is (k,Γ)-

independent. �

Proposition 4.8. Let C = A ∩ B and all of them be algebraically closed in the sense of the

triple Tt. If A
t

|̂
C

B then we have A
P1

|̂
C

B and A
P2

|̂
C

B in the sense of the pairs (Ω, k) and (Ω,Γ)

respectively.

Proof. Suppose that A
t

|̂
C

B. By Theorem (4.3)(iv), we know that A |̂
C,k,Γ

B, k,Γ and kA |̂
kC

kB.

As A is (k,Γ)-independent by lemma (3.2), transitivity yields that A |̂
C,kA,ΓA

B, k,Γ. Thus by

remark (4.4), it is enough to show that A |̂
C,k

B, k and A |̂
C,Γ

B,Γ. Note that by corollary (3.6),

we have that Γaclt(B,k) = ΓB and kaclt(B,Γ) = kB. In order to show A |̂
C,k

B, k, by transitivity it is

enough to show that B(k)
ld

|̂
C(k)

C(k,ΓA). So let b1, ..., bn be in B, the elements k1, ..., kn be in k

and g1, ..., gn be in ΓA such that

b1k1g1 + · · ·+ bnkngn = 0.

We may suppose that no proper subsum of this equation is zero. Since Γ has the Mann property

over Ω, we obtain that gi
g1
∈ aclt(B, k) and so gi

g1
∈ ΓB for all i. As gi

g1
∈ ΓA also, we obtain

that gi
g1
∈ ΓC for all i. Thus we have what we desired. Similarly, to prove A |̂

C,Γ

B,Γ, we need to

show that B(Γ) |̂
C(Γ)

kA. Since kaclt(B,Γ) = kB and aclt(B,Γ) is k-independent, in particular we

obtain that B(Γ) |̂
kB

kA. As we also have kB |̂
kC

kA, we conclude by transitivity. Hence we have

the proposition. �

Now we give more equivalences for the characterization of forking in the triple:

Corollary 4.9. Let C = A∩B and all of them be algebraically closed in the sense of the triple

Tt. Then the following are equivalent:

(i) A
t

|̂
C

B,

(ii) A |̂
C,k,Γ

B, k,Γ and A |̂
C

B

(iii) A |̂
C,k,Γ

B, k,Γ and kA,ΓA |̂
kC ,ΓC

kB,ΓB,

(iv) A |̂
C,k,Γ

B, k,Γ and kA |̂
kC

kB.
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(v) A |̂
C,k,Γ

B, k,Γ and A |̂
C,Γ

B,Γ.

Proof. By Theorem (4.3) and proposition (4.8) we know that (i), (ii), (iii) and (iv) are equiv-

alent and (i) implies (v). Now we show that (v) implies (ii). If we have A |̂
C,Γ

B,Γ, then lemma

(2.3) and remark (4.4) yield the desired independence A |̂
C

B since the independence A |̂
C,Γ

B,Γ

implies A
P2

|̂
C

B. �

Remark 4.10. Note that in corollary (4.9)(v), we cannot replace A |̂
C,Γ

B,Γ by A |̂
C,k

B, k since

the latter independence does not imply the independence A |̂
C

B.

5. Definable Groups

In this section, we characterize definable groups in the triple (Ω, k,Γ) up to isogeny. It

emerges that definable groups in the triple are given by definable and interpretable groups in

Ω, k and Γ. The following lemma is from [19]:

Lemma 5.1. [19, 5.4] Suppose that G is a stable group. Every formula ϕ(x, y) can be associated

with a natural number n = n(ϕ) such that, if A is a generic subset of G defined by a formula

ϕ(x, a), then G is covered by n translates of A.

The next lemma affirms when a type-definable group in the triple is actually an algebraic

group and our method is similar to the result [2, Lemma 2.1].

Lemma 5.2. Let H be a connected Tt-type-definable subgroup of an algebraic group V , all

definable over an algebraically closed set A in the sense of the triple. Let a be the generic

over A which lies in some translate of H which is also definable over A. If kaclt(a,A) = kA and

Γaclt(a,A) = ΓA, then H is an algebraic group. In particular H is definable.

Proof. First we may assume that a ∈ H: Suppose that a ∈ bH. Let a′ be such that tpt(a′/A) =

tpt(a/A) and a′
t

|̂
A

a. Put a1 = a−1a′. Then we have a1

t

|̂
A

a and a1 ∈ H is generic. Since a′
t

|̂
A

a,

we have that a′, A
t

|̂
A

a,A. So by lemma (4.2) and Theorem (4.3), we see that

kaclt(a1,A) ⊆ kaclt(a′,a,A) ⊆ acl(kaclt(a′,A), kaclt(a,A)).

Since kaclt(a′,A) = kaclt(a,A) = kA, we deduce that kaclt(a1,A) = kaclt(A). Similarly we obtain that

Γaclt(a1,A) = ΓA. Thus we may assume that a ∈ H by changing a with a1. Put p = tpt(a/A)

and p0 its T -reduct where T is the theory of the field Ω. Let H0 be the smallest algebraic

group containing H which exists by the assumption and the ω-stability of Ω. Note that

H = stabt(p) ⊂ stabT (p0). So H0 ⊆ stabT (p0). On the other hand, since p0(x) implies that

x ∈ H0, we get that stabT (p0) ⊆ H0. Thus we have the equality and moreoverH0 is T -connected.

To prove the lemma it is enough to show that p is the unique generic of H0 in the sense of the

triple, as this implies that H0 = stabt(p) = H. Let h be a generic of H0 over A in the sense of

the triple and put q = tpt(h/A). Note that h is in particular a generic in the sense of the field
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so it has the same field type over A

Claim: We have h |̂
A

k,Γ.

Proof of the Claim: First note that a ∈ H0. As the algebraic closure aclt(a,A) is (k,Γ)-

independent by lemma (3.2) and by the assumptions kaclt(a,A) = kA and Γaclt(a,A) = ΓA, we have

that a,A |̂
kA,ΓA

k,Γ and so a |̂
A

k,Γ. As a consequence, we see that a is a generic of H0 over

A ∪ k ∪ Γ in the sense of the field Ω. Now if h 6 |̂
A

k,Γ, then there exists a formula ϕ(x,m, γ) ∈

tp(h/A, k,Γ) which is not generic in H0, with parameters from A, where m ∈ k and γ ∈ Γ. Put

n = n(ϕ) as in lemma (5.1) and

θ(y, z) = ∃h1...∃hn ∈ H0(∀x ∈ H0

∨
i≤n

ϕ(hi
−1x, hi

−1y, hi
−1z))

and φ(x, y, z) = ¬θ(y, z) ∧ ϕ(x, y, z). Observe that for all tuples (b, c), the formula φ(x, b, c) is

not generic in H0. However the formula

ψ(x) = ∃y ∈ P1 ∃z ∈ P2 φ(x, y, z)

whose parameters are from A, is realized by h and so it is generic in H0. Therefore finite number

of translates of ψ(x) cover H0, say H0 =
⋃
i≤k αiψ(x). Take c such that tpt(c/A) = tpt(a/A) and

c
t

|̂
A

α1, ...αk. Thus for a certain element α ∈ H0, we may suppose that a ∈ αψ(x) and a
t

|̂
A

α.

So a ∈ αφ(x,m′, γ′) for some m′ ∈ k and γ′ ∈ Γ. By the characterization of the independence

(4.3), we have that a |̂
A,k,Γ

α and by transitivity we get a |̂
A

α, k,Γ. This is a contradiction since

the formula αφ(x,m′, γ′) is not generic in H0. So we have the claim. �

Now since A is (k,Γ)-independent by lemma (3.2), by transitivity of the independence we

see that h,A |̂
kA,ΓA

k,Γ. As aclt(kA,ΓA) = acl(kA,ΓA) by corollary (3.5), it is (k,Γ) independent.

Therefore, by transitivity and in terms of linear disjointness, we obtain that

acl(h,A)
ld

|̂
kA(ΓA)

k(Γ).

Thus by proposition (3.4), we conclude that aclt(h,A) = acl(h,A), and also that kaclt(h,A) = kA

and Γaclt(h,A) = ΓA. Since there is a field automorphism over A sending a to h, linear disjointness

yields a field automorphism over A∪ k ∪ Γ sending a to h. Hence we obtain that q = p and we

conclude that H = H0. �

Remark 5.3. Observe that none of the groups k× and Γ satisfy the conclusion of lemma (5.2)

as they are not algebraic groups in Ω.

Definition 5.4. (Isogeny) Let G and H be two type-definable groups in a stable theory. We

say that G and H are isogenous (or there is an isogeny between them) if there is a type-definable

subgroup S of G×H such that

• The projection of S to G, denoted by GS, has bounded index (the index is less than the

saturation cardinal κ) in G,
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• The projection of S to H, denoted by HS, has bounded index in H,

• The kernel ker(S) = {g ∈ G : (g, 1) ∈ S} and the co-kernel coker(S) = {h ∈ H :

(1, h) ∈ S} are finite.

Note that if G and H are isogenous, then there is an isomorphism between GS/ker(S) and

HS/coker(S). In other words, isogeny is an isomorphism up to a bounded index and finite

kernel.

Remark 5.5. Note that the isogeny relation is an equivalence relation. Every group is isogenous

to its connected component and every isogeny of the connected component gives rise to an

isogeny of the group.

The following lemma is in [2] and it enables us to construct an isogeny between two groups.

Lemma 5.6. [2, 2.4 and 2.5] Let G1 and G2 be two groups type-definable (type-interpretable)

in a stable theory. If there exist parameters C = acleq(C) and elements a1, b1 of G1 and a2, b2

of G2 such that

(1) a1 and a2, b1 and b2, a1b1 and a2b2 are C-interalgebraic

(2) a1, b1 and a1b1 are pairwise independent over C,

then the element a1 (respectively a2) is generic in a unique translate of a connected subgroup

H1 of G1 (respectively H2 of G2), all definable over C and there is an isogeny between H1 and

H2 given by the stabilizer of the type tp(a1, a2/C). In the condition (1), if we just have a2 is

algebraic over C, a1 (respectively for b2 and a2b2), then there is a type-interpretable projection

from H1 to a quotient of H2 by a finite subgroup.

Remark 5.7. The above results can be generalized to the case when both groups G1 and G2

are ∗-interpretable. In the previous lemma (5.6), suppose that G1 is a type-definable connected

group and G2 is a connected ∗-interpretable group. If the kernel of the projection N is definable,

by stability there is a projection with the same kernel from G1 to a connected type-interpretable

subgroup D of G2 whose generic is C-interalgebraic with the generic of G2. This follows from

compactness as G1/N is a type-interpretable group whose generic is a finite tuple and it is

C-interalgebraic with the generic of G2 which is an infinite tuple.

Next we state and prove the Shelah lemma.

Lemma 5.8. (Shelah lemma) Let T be a stable theory. If the type tp(A/C) is stationary and

B |̂
C
A, given two C-elementary maps f : A→ A1 and g : B → B1 such that A1 |̂ C B1, then

f ∪ g is also C-elementary.

Proof. Since g is C-elementary, we have that g(A) |̂
C
B1 and g(A) ≡C A ≡C A1. By station-

arity there is an automorphism h fixing B1 and sending g(A) to A1. Now one can see that h ◦ g
restricted to A ∪B is f ∪ g. �

Lemma 5.9. Let v and h be generics over a small model M of Tt of an algebraic group V

defined over k and a type-definable group H in Γ respectively. Then we have the independence

v
t

|̂
M

h. If V and H are connected, then so is V ×H.
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Proof. Suppose that there is a formula ϕ(x, h) over M such that |= ϕ(v, h) and the formula

ϕ(x, h) forks over M . Let φ(x, y) = ϕ(x, y) ∧ (x ∈ P1) ∧ (y ∈ P2). Then by Theorem (2.1),

we know that φ(x, y) =
⋃
i,j φi(x) ∧ φj(y), where φi(x) is a formula defined in k and φj(y) is

a formula defined in Γ. Thus for some i or j, we obtain that φi(x) or φj(y) fork. However, a

generic over M does not fork over M , a contradiction. If V and H are connected, lemma (5.8)

yields that the tuple (v, h) is the unique generic of V × H over M and hence the product is

also connected. �

Remark 5.10. In stable theories, every type-definable group is an intersection of definable

groups in this theory.

The following result was proved by E. Hrushovski and A. Pillay [12]:

Theorem 5.11. [12] Let A be an interpretable group in a one-based stable theory. Then the

connected component of A is abelian.

Now we are ready to characterize definable groups in the triple (Ω, k,Γ) in terms of definable

and interpretable groups in each sort. We use the group configuration theorem [11] together with

lemma (5.6), Theorem (4.3), lemma (4.6), lemma (5.2) and lemma (5.9). Before characterizing

definable groups in the triple, we give some examples.

Example 5.12. (Some definable groups in the triple) Algebraic groups over Ω, algebraic groups

over k, the group Γ and its powers, the product Ω× k × Γ and

SL(2, k,Γ,Ω) =

{(
a b

c d

)
: ad− bc ∈ k×

}
×
{(

a b

c d

)
: ad− bc ∈ Γ

}
are all definable in the triple. One can see that each of them satisfy the conclusion of the

following Theorem (5.13). The following theorem and its proof are based directly on the result

[2, Proposition 2.6].

Theorem 5.13. (Definable Groups) Let Ω be an algebraically closed field, the field k be a proper

subfield of Ω which is also algebraically closed and Γ be a multiplicative subgroup of Ω× such

that (k,Γ) is a Mann pair. Any type-definable group in (Ω, k,Γ) is isogenous to a subgroup of

an algebraic group. Moreover, any type-definable group H is, up to isogeny, an extension by an

algebraic group V of the direct sum of the k-rational points of an algebraic group V1 over k and

a type-interpretable abelian group H1 in Γ:

0 −→ V (Ω) −→ H −→ V1(k)×H1(Γ) −→ 0.

Proof. Let H be a type-definable group in (Ω, k,Γ) over some parameters. By remark (5.5),

we may suppose that H is connected. We will work over a model containing the parameters

defining H which we will omit. Let T be the theory of Ω in the sense of the field. Given two

independent generics a and b of H, we write a, b and a · b instead of their algebraic closures in

the sense of the triple respectively. Observe that by lemma (4.2) and the characterization of

the independence (4.3), the tuple a · b is T -algebraic over a ∪ b since a, b are two independent

algebraically closed subsets. With the help of the third generic c which is independent from a

and b, we obtain the following diagram:
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aa
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a · b c · a

a

b cc · a · b

• •

•

•
• •

Then by remark (2.4), we have a T -group configuration. So by the group configuration theo-

rem [11] and lemma (5.6), there exists a ∗-interpretable group in the pure field Ω whose generic

is interalgebraic with the generic of H. As the generic of H is a finite tuple, we conclude that

there is an algebraic group in Ω which H embeds in up to isogeny. Thus up to isogeny, we may

assume that H is a subgroup of an algebraic group.

By lemma (4.2) and Theorem (4.3), the set ka·b is k-algebraic over ka ∪ kb. Similarly, the set

Γa·b is Γ-algebraic over Γa ∪ Γb. Applying the characterization of independence Theorem (4.3)

and lemma (4.6), we have the following diagrams:
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aa
aa

aa
aa

aa
a

Γa·b Γc·a

Γa

Γb ΓcΓc·a·b

• •

•

•
• •

So by the group configuration theorem [11], we obtain a connected ∗-interpretable group V1 in

k and a connected ∗-interpretable group H1 in Γ. Moreover, a generic v of V1 is k-interalgebraic

with ka. Similarly, a generic h of H1 is Γ-interalgebraic with Γa. Now lemma (5.6) yields a

projection π1 from H to a V1 and a projection π2 from H to H1. Furthermore the generic v of

V1 is Tt-interalgebraic with ka and the generic h of H1 is Tt-interalgebraic with Γa. By lemma

(5.9), the tuple (v, h) is a generic of V1 ×H1 which is Tt-interalgebraic with (ka,Γa). Since V1

and H1 are connected, the lemma (5.9) also yields that the tuple (v, h) is the only generic of

V1 ×H1 and this product is also connected. Thus by lemma (5.6) again, we have a projection

π from H to V1 ×H1 in k × Γ which is given by the stabilizer of the type tpt(a, v, h). Finally

we show that the connected component N of the kernel ker(π) is an algebraic group by lemma

(5.2). Let n be a generic of N over a in the sense of the triple. So we have n
t

|̂ a and n ·a
t

|̂ a.
Observe that n ·a ∈ Na is also a generic. As the tuple (n, 1, 1) is in the stabilizer of tpt(a, v, h),
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we have that the tuples (n · a, v, h) and (a, v, h) have the same t-type. Thus in particular, we

have kn·a = ka and Γn·a = Γa. Moreover, by lemma (4.2) and Theorem (4.3) we obtain that

kn·a,a is in the k-algebraic closure of kn·a and ka. Therefore we see that kn·a,a = ka and similarly

Γn·a,a = Γa. Now the type tpt(n · a/a) satisfies the hypothesis of lemma (5.2) and we conclude

that N is an algebraic group. By elimination of imaginaries in k and by remark (5.7), we can

take V1 to be an algebraic group and H1 to be type-interpretable. Note also that H1 is abelian

by (5.11) and remark (5.10), as pure abelian groups are one-based. �

6. Imaginaries and Interpretable Groups

Our goal in this section is to characterize interpretable groups in the triple (Ω, k,Γ). Through-

out the section, we assume that Γ is divisible. As (k,Γ) is a Mann pair, taking n = 1 in the

equation (1), we see that k ∩ Γ is finite, thus the intersection is a finite subset of the group of

roots of unity in Ω. In this case, the group Γ is torsion-free and hence it is strongly minimal

by [16, Corollary 3.1.11]. For every algebraically closed subset A in the triple, its Γ-part ΓA

contains Γ0 and so ΓA is an elementary substructure of Γ. By [5, Proposition 8.3], the triple

is ω-stable with infinite Morley rank. In this section, we will give a description of imaginar-

ies in the triple in terms of real elements and the motivation comes from [17]. This enables

us to characterize interpretable groups in (Ω, k,Γ). Observe that (Ω, k,Γ) does not eliminate

imaginaries. Our description of imaginaries will be by means of canonical bases as studied in

[17].

Lemma 6.1. Let B be an elementary substructure of (Ω, k,Γ). Suppose that

d = Cb(tp(a/ acl(B, k,Γ))).

Then a
t

|̂
d

B, k,Γ.

Proof. As Ω eliminates imaginaries as a pure field, we might assume that d is contained in Ω.

First of all, note that aclt(B, k,Γ) = acl(B, k,Γ) and a |̂
d

B, k,Γ as d is the canonical base.

The independence a |̂
d

B, k,Γ yields that

(18) acl(a, d) |̂
d,kaclt(d),Γaclt(d)

k,Γ.

Note that by corollary (3.5), we see that

(19) aclt(d) = acl(d, kaclt(d),Γaclt(d))

and

(20) aclt(kaclt(d),Γaclt(d)) = acl(kaclt(d),Γaclt(d)).

In particular, they are (k,Γ)-independent by lemma (3.2). Since

d |̂
kaclt(d),Γaclt(d)

k,Γ
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by lemma (3.2) again, from (18), (19) and transitivity we obtain that

acl(a, d, kaclt(d),Γaclt(d)) |̂
kaclt(d),Γaclt(d)

k,Γ.

Combining (20), lemma (3.2) and transitivity, in terms of linear disjointness we see that

acl(a, d, kaclt(d),Γaclt(d))
ld

|̂
kaclt(d)(Γaclt(d))

k(Γ)

as the k-part of acl(kaclt(d),Γaclt(d)) is kaclt(d) and the Γ-part of acl(kaclt(d),Γaclt(d)) is Γaclt(d). Thus

by proposition (3.4), we deduce that

aclt(a, d, kaclt(d),Γaclt(d)) = acl(a, d, kaclt(d),Γaclt(d)),

and also that kaclt(a,d) = kaclt(d) and Γaclt(a,d) = Γaclt(d). Now as a |̂
d

B, k,Γ, we have that

acl(a, d, kaclt(d),Γaclt(d)) |̂
acl(d,kaclt(d),Γaclt(d))

acl(B, k,Γ)

and this yields by corollary (3.5) that

aclt(a, d) |̂
aclt(d)

aclt(B, k,Γ).

We finish the proof by the characterization of the independence Theorem (4.3). �

The idea of the next corollary is due to [1, Proposition 7.5].

Corollary 6.2. Let B be an elementary substructure of (Ω, k,Γ) and let a be a finite tuple

from Ω. Put d = Cb(tp(a/ acl(B, k,Γ))). Then Cb(tpt(a/B)) is interalgebraic in (Ω, k,Γ) with

Cb(tpt(d/B)).

Proof. Set p = tpt(a/B) and q = tpt(d/B). Let e1 = Cb(p) and e2 = Cb(q). Note that e1 and

e2 are in Beq. By lemma (6.1), we know that a
t

|̂
d

B, k,Γ. So a
t

|̂
d

B, d and a
t

|̂
e2,d

B, d. As d
t

|̂
e2

B,

by transitivity we conclude that a
t

|̂
e2

B. This gives that e1 is algebraic over e2 in the sense of

the triple.

Now we show that e2 is algebraic over e1 in the sense of the triple. Take B1 such that

tpt(B1/e1) = tpt(B/e1) and B1

t

|̂
e1

B. Let pB1 and qB1 be the corresponding types. Choose an

element a1 |= pB∪pB1 such that a1

t

|̂
e1

B,B1. Put d1 = Cb(tp(a1/ acl(B,B1, k,Γ))), the element

d2 = Cb(tp(a1/ acl(B, k,Γ))) and d3 = Cb(tp(a1/ acl(B1, k,Γ))). The independence a1

t

|̂
e1

B,B1

yields that a1

t

|̂
B

B1 and by the characterization of the independence Theorem (4.3), we obtain

that

(21) a1 |̂
B,k,Γ

B1.
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Similarly we have

(22) a1 |̂
B1,k,Γ

B.

Thus by (21) and (22), the types tp(a1/ acl(B, k,Γ)) and tp(a1/ acl(B1, k,Γ)) have a common

non-forking extension tp(a1/ acl(B,B1, k,Γ)), in other words they are parallel types. Hence

we conclude that d1 = d2 = d3, as a canonical base is the minimal base over which the

type does not fork. By the choice of the element a1, we have that d1 |= qB ∪ qB1 . Note

that any triple automorphism fixes k and Γ setwise. Thus any automorphism which fixes

a1 and B also fixes the type tp(a1/ acl(B, k,Γ)) setwise. This yields that the element d1 is

in aclt(a1, B) ∩ aclt(a1, B1) as it is the canonical base of the types tp(a1/ acl(B, k,Γ)) and

tp(a1/ acl(B1, k,Γ)). Now, from a1

t

|̂
B1

B and d1 ∈ aclt(a1, B1), we obtain that d1

t

|̂
B1

B. By the

independence B1

t

|̂
e1

B and transitivity, we get that d1

t

|̂
e1

B. Hence e2 is algebraic over e1 in the

sense of the triple. �

Definition 6.3. Let T be a stable theory. Let a be a tuple and A be set of parameters (possibly

containing imaginary elements), and D be a definable subset. We say that the type tp(a/A) is

almost D-internal if there exists a set of parameters B such that a |̂
A

B and a ∈ acl(A,B,D).

We say that a type in the triple (Ω, k,Γ) is almost (k,Γ)-internal if it is almost k∪Γ-internal.

The next lemma asserts that, up to interalgebraicity, an imaginary element in the triple is a

canonical base of a type over itself and this type is almost (k,Γ)-internal. The proof of the

following lemma is based on [17, Lemma 2.2].

Lemma 6.4. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is e′ ∈ (Ω, k,Γ)eq interalge-

braic with e, such that for some finite tuple d′ from Ω we have e′ = Cb(tpt(d′/e′)) and tpt(d′/e′)

is almost (k,Γ)-internal.

Proof. Let a be a tuple in Ω such that e = f(a) for some ∅-definable function in (Ω, k,Γ)eq.

Set e1 = Cb(tpt(a/aclt
eq(e))). Observe that e1 is algebraic over e. As e = f(a) and a

t

|̂
e1

e,

we obtain that e
t

|̂
e1

e and hence e and e1 are interalgebraic. Now let B be an elementary

substructure of (Ω, k,Γ) such that e1 ∈ Beq and a
t

|̂
e1

B. Let d′ = Cb(tp(a/ acl(B, k,Γ))). We

may assume d′ to be a finite tuple in Ω due to the ω-stability and elimination of imaginaries. Put

e′ = Cb(tpt(d′/B)). Then by corollary (6.2) and a
t

|̂
e1

B, we see that e1 and e′ are interalgebraic,

and hence e and e′ are interalgebraic. Note that the type tpt(d′/B) is almost (k,Γ)-internal.

Thus, the type tpt(d′/e′) is also almost (k,Γ)-internal since d′
t

|̂
e′
B. �

The next lemma is motivated from [17, Lemma 1.8].

Lemma 6.5. Let e ∈ (Ω, k,Γ)eq and B = aclt(e) ∩ (k ∪ Γ). Let c be a tuple from k ∪ Γ. Then

tpt(c/B, e) is finitely satisfiable in B.
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Proof. By corollary (4.5), we see that

(23) aclt(e)
t

|̂
B

k,Γ.

Note that kaclt(e) is an elementary substructure of k and Γaclt(e) is an elementary substructure

of Γ. By corollary (3.8), we see that acl(B) = acl(kaclt(e),Γaclt(e)) is an elementary substructure

of Ω in the sense of the triple and

(24) acl(B) ∩ (k ∪ Γ) = kaclt(e) ∪ Γaclt(e) = B.

Now by equation (23) and [21, Corollary 8.3.7], we have that the type tpt(c/ acl(B), e) is finitely

satisfiable in acl(B). On the other hand, if c is in k ∪ Γ and acl(B), then it is in B by (24).

Hence we can say that any c ∈ acl(B) which satisfies a finite part of tpt(c/B, e) has to be in B

as well. �

Now we recall a theorem which ensures the definability of Morley rank.

Theorem 6.6. [22, Chapter 4, 4.7.10] Let T be an ω-stable theory. Suppose that there exist

strongly minimal formulas φ1, ..., φk such that any type is non-orthogonal to a certain φi. Then

T has finite Morley rank and Morley rank is definable, that is to say for every formula θ(x, y)

and every natural number n < ω the set {a : MR(θ(x, a)) = n} is definable.

For the following definition, we follow [4]. Given sets X and Y , we write

f : X
n−→ Y

to indicate that f is a map from X to the power set of Y such that |f(x)| ≤ n for all x ∈ X.
For such a map f , its graph Graph(f) is the set

{(x, y) ∈ X × Y : y ∈ f(x)},

and for a subset Z of X, we set f(Z) =
⋃
x∈Z f(x). If X and Y are definable in a structure,

then such an f is called definable if Graph(f) is, and for short we say that f is n-definable.

Clearly, 1- definable functions are ordinary definable functions.

The following lemma and its proof are directly based on [17, 2.4 and 2.5].

Lemma 6.7. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is a tuple d from Ω, an

Lt-definable function f(x) over ∅, an Lt-formula ψ(y) over e and an Lt-n-definable function

h(y, z1, z2) over e for some n such that

(i) f(d) = e,

(ii) ψ(y) ∈ tp(d/e),

(iii) (∀y, y′)(ψ(y) ∧ ψ(y′) =⇒ ∃z1∃z2(P1(z1) ∧ P2(z2) ∧ y′ ∈ h(y, z1, z2)))

(iv) Moreover d is Tt-independent from k ∪ Γ over e.

Proof. For (i), (ii) and (iii) we refer the reader to [17, 2.4], as the verbatim proof of [18, Lemma

7.4.2] (see also [23, Proposition 3.4.9]) yields the function h if we replace dcl by acl . Without

loss of generality, we may assume that h is an ordinary definable function. Now we prove (iv).

Let (f, ψ, h) be fixed as in the lemma. Choose d such that MR(tpt(d/e)) is minimized and also
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(i)-(iii) are satisfied with respect to (f, ψ, h). By lemma (6.4) we can assume that the type

q = tpt(d/e) is almost (k,Γ)-internal. We will show that d is independent from k,Γ over e.

Suppose not and choose b = (b1, b2) ∈ k × Γ such that d forks with b over e. Note that by

almost internality and as k and Γ are strongly minimal, we deduce that MR(tpt(d/e)) is finite.

Let m = MR(tpt(d/e, b)) < MR(tpt(d/e)). By almost internality again, there is a formula ϕ(x)

in q whose all realisations are almost (k,Γ)-internal. Now consider the induced structure on

ϕ∪k∪Γ with two strongly minimal formulas k and Γ. We apply Theorem (6.6) to this induced

structure. Thus by Theorem (6.6), there is a formula χ(y, z1, z2) in q such that χ(d, b1, b2) holds,

MR(χ(y, b1, b2)) = m and a formula θ(z1, z2) satisfied by (b1, b2) such that for any c = (c1, c2)

we have MR(χ(y, c1, c2)) = m if and only if θ(c1, c2) holds. In other words, we can say that

MR(χ(y, c1, c2)) = m if and only if χ(y, c1, c2) is consistent. Let ∆(z1, z2) be the formula

∃y(f(y) = e ∧ ψ(y)) ∧ (∀y1, y2)(ψ(y1) ∧ ψ(y2)) =⇒

(h(y1, z1, z2) = y2 ∧ P1(z1) ∧ P2(z2)).

Observe that ∆(b1, b2) holds. Let B = aclt(e)∩(k∪Γ). By lemma (6.5), there is r = (r1, r2) ∈ B
such that ∆(r1, r2) holds. Then we find d1 satisfying (i), (ii) and (iii) of the lemma with

χ(d1, r1, r2) holds. Since r is algebraic over e, we have that MR(tpt(d1/e)) ≤ m, contradicting

the choice of d. �

Combining lemmas (6.4) and (6.7), we obtain the following theorem which is a description

of imaginaries in terms of real elements:

Theorem 6.8. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is a finite real tuple d such

that e is algebraic over d, the type tpt(d/e) is almost (k,Γ)-internal and d is independent from

k ∪ Γ over e in the sense of the triple.

Next, we characterize interpretable groups in the triple. We start with a lemma from [2]:

Lemma 6.9. [2, Lemma 3.1] Let H be a connected interpretable group in a stable theory. Let

α, β and γ be three independent generics of H and a0 be a real element such that α is algebraic

over a0. Then there exist real tuples a, b, c, d, e and f such that

(a, α) ≡ (b, β) ≡ (c, γ) ≡ (d, αβ) ≡ (e, γα) ≡ (f, γαβ) ≡ (a0, α)

and

a |̂
α

b, c, d, e, f

and the same for the other tuples. Moreover in the following diagram

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@

@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

d e

a

b c
f

• •

•

•
• •

all non-linear triples are independent and each point is independent from each line which does

not contain it.
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We need two more lemmas for interpretable groups.

Lemma 6.10. If tpt(a/A) is almost (k,Γ)-internal over a real set of parameters A, then a ∈
acl(A, k,Γ).

Proof. Take B = aclt(B) containing A such that a
t

|̂
A

B and a ∈ aclt(B, k,Γ) = acl(B, k,Γ).

The characterization of the independence (4.3) yields that a |̂
A,k,Γ

B and therefore we obtain

that a ∈ acl(A, k,Γ). �

Lemma 6.11. Let H be a definable group in the sense of the triple. If a generic of H is almost

(k,Γ)-internal then H is isogenous to a cartesian product of k-rational points of an algebraic

group defined over k and an interpretable group in Γ.

Proof. By almost internality, we deduce that H is of finite Morley rank. By [4, 6.4], the pair

(Ω,Γ) is ω-stable and MR(Ω,Γ) = ω. Thus infinite algebraic groups have infinite Morley rank

in the triple as

MR(Ω, k,Γ) ≥ ω.

We conclude by Theorem (5.13) and ω-stability. �

Now we are ready to characterize interpretable groups in the triple and it demands all the

tools we have proved so far. The following theorem and its proof are directly based on [2,

Theorem 3.5].

Theorem 6.12. (Interpretable groups) Let Ω be an algebraically closed field, the field k be

a proper subfield of Ω which is also algebraically closed and Γ be a divisible multiplicative

subgroup of Ω× such that (k,Γ) is a Mann pair. Every interpretable group H in (Ω, k,Γ) is,

up to isogeny, an extension of a direct sum of k-rational points of an algebraic group V1 over

k and an interpretable abelian group H1 in Γ by an interpretable group N , which is a quotient

of an algebraic group W by a subgroup N1 which in turn is isogenous to a cartesian product of

k-rational points of an algebraic group V2 over k and an interpretable abelian group H2 in Γ :

0 −→ N −→ H −→ V1(k)×H1(Γ) −→ 0

with

0 −→ V2(k)×H2(Γ) −→ W −→ N −→ 0.

Proof. Let H be an interpretable group in (Ω, k,Γ). By remark (5.5), we may suppose that

H is connected. Again we work over a small model that we omit. Let α, β and γ be three

independent generics of H in the sense of the triple. By Theorem (6.8), the generic α is algebraic

over a real tuple a0 which is Tt-independent from k,Γ over α and the type tpt(a0/α) is almost

(k,Γ)-internal. Then by lemma (6.9), there are real tuples a, b, c, d, e and f such that

(a, α)≡t(b, β)≡t(c, γ)≡t(d, α · β)≡t(e, γ · α)≡t(f, γ · α · β)≡t(a0, α)

and if we put a = aclt(a) and the same for the others, we have the following diagram:
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�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@
@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

d e

a

b c
f

• •

•

•
• •

such that each non-colinear triples of them are Tt-independent and each set is Tt-independent

from the lines which do not contain it. Since a
t

|̂
α

k,Γ, we see that ka ⊂ aclt(α) ⊂ a. Therefore,

we obtain that ka = aclt(α) ∩ k. Moreover, by lemma (4.2) and Theorem (4.3), we have that

kaclt(a,b)
= acl(ka, kb). Since kd = aclt(α · β) ∩ k ⊂ kaclt(a,b)

, we get that kd ⊂ acl(ka, kb). This

is true for all other tuples and by Theorem (4.3), the set ka is independent in the field sense

from acl(kb, ke) and the same for the others. We have the same thing for the group Γ by lemma

(4.6). So we have the following diagrams:
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and by the group configuration theorem [11], there is a connected ∗-interpretable group V1(k) in

k whose generic v is k-interalgebraic with ka. By ω-stability, lemma (5.6) and since k eliminates

imaginaries, we may assume that V1 is an algebraic group and its generic v is interalgebraic

with ka in the sense of the triple. Similarly, there exists a connected interpretable group H1(Γ)

in Γ whose generic h is interalgebraic with Γa in Tt. Furthermore, by (5.11), the group H1 is

abelian. By lemmas (5.9), the tuple (v, h) is the generic of V1 ×H1 which is Tt-interalgebraic

with (ka,Γa). Moreover, by lemma (5.6), we have a projection π from H to the connected group

V1 ×H1 in k × Γ which is given by the stabilizer of the type tpt(a, v, h).

Next we show that the points a, b, c, d, e, f give a T -group configuration with the help of the

parameter set k,Γ. We know that all three non-colinear of them are independent in the sense

of the triple. As β is algebraic over b and αβ is algebraic over d, we have that α is algebraic

over b, d. Moreover by lemma (4.2), we know that acl(b, d) = aclt(b, d). Since the type tpt(a/α)
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is almost (k,Γ)-internal and α is algebraic over b, d, we observe that the type tpt(a/ acl(b, d))

is also almost (k,Γ)-internal. Thus by lemma (6.10) we obtain that a ∈ acl(k,Γ, b, d). The

same holds for the other tuples. Therefore, we obtain a connected ∗-interpretable group V

over acl(k,Γ) in the field sense and two independent generics a1, b1 of V such that a1 is field

interalgebraic with a over k,Γ, the element b1 is field interalgebraic with b and a1 · b1 is field

interalgebraic with d. Since the tuples α, β and γ (they are finite tuples) are algebraic over some

finite subtuples of a1, b1 and a1 · b1 respectively and as V is a connected pro-algebraic group,

there exists a connected algebraic group W over acl(k,Γ) and two independent generics a2, b2

such that α is algebraic over a2 and the same for the others. Note that a2 is field algebraic over

k,Γ, a and the same for the others. Moreover, since a, b and d are pairwise Tt-independent over

k,Γ, then so are a2, b2 and a2 · b2. As α is algebraic over a and a
t

|̂
ka,Γa

k,Γ by corollary (4.5),

we see that α
t

|̂
ka,Γa

k,Γ. Now let N be the connected component of ker(π). Then α is generic in

Nα over aclt(v, h) = aclt(ka,Γa), so α is also generic over k ∪ Γ.

Now we apply the lemma (5.6) to the tuples (a2, α) and (b2, β). So this gives us a surjection

φ from W to N , up to isogeny. Lastly, we show that the connected component N1 of ker(φ) is

isogenous to a cartesian product of k-rational points of an algebraic group defined over k and

an interpretable group in Γ. Let n1 be a generic of N1 over k,Γ and a2. Then the point (n1, 1N)

is in the stabilizer of the type tpt(a2, α/ acleq(k,Γ)) and so tpt(n1 · a2/α) = tpt(a2/α). Since

tpt(a2/α) is almost (k,Γ)-internal and as a2 is algebraic over k,Γ, a then the type tpt(n1 ·a2/α)

is also almost (k,Γ)-internal. As α is algebraic over k,Γ, a2, the type tpt(n1/k,Γ, a2) is almost

(k,Γ)-internal. Owing to the independence n1

t

|̂
k,Γ

a2, we conclude that tpt(n1/k,Γ) is also almost

(k,Γ)-internal. Then by lemma (6.12) we have that N1 is isogenous to a cartesian product of

k-rational points of an algebraic group defined over k and an interpretable group in Γ which is

abelian by (5.11). �
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