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CONTINUOUS REDUCIBILITY AND DIMENSION OF METRIC SPACES

PHILIPP SCHLICHT

Abstract. If (X, d) is a Polish metric space of dimension 0, then by Wadge’s lemma, no
more than two Borel subsets of X are incomparable with respect to continuous reducibility. In
contrast, our main result shows that for any metric space (X, d) of positive dimension, there
are uncountably many Borel subsets of (X, d) that are pairwise incomparable with respect to
continuous reducibility.

In general, the reducibility that is given by the collection of continuous functions on a
topological space (X, τ) is called the Wadge quasi-order for (X, τ). As an application of the
main result, we show that this quasi-order, restricted to the Borel subsets of a Polish space
(X, τ), is a well-quasiorder (wqo) if and only if (X, τ) has dimension 0.

Moreover, we give further examples of applications of the construction of graph colorings
that is used in the proofs.
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1. Introduction

The Wadge quasi-order on the subsets of the Baire space of all functions f : N → N is an
important notion that is used to fit definable sets into a hierarchy of complexity. Its importance
comes from the fact that it defines the finest known hierarchy on various classes of definable
subsets of the Baire space. For instance, it refines the difference hierarchy, the Borel hierarchy
and the projective hierarchy.

The structure of the Wadge quasi-order on the Baire space and its closed subsets has therefore
been an object of intensive research (see e.g. [Wad12, Lou83, And06]). Moreover, many structural
results could even be extended to many other classes of functions (see e.g. [AM03, MR09, MR10a,
MR10b, MR14, MRS14]).

In this paper, we study the Wadge quasi-order on the class of Borel subsets of arbitrary metric
spaces. By a Borel subset of a topological space, we mean an element of the least σ-algebra
that contains the open sets. We define the Wadge quasi-order for arbitrary topological spaces as
follows.

Definition 1.1. Suppose that (X, τ) is a topological space and A, B are subsets of X .

(a) A is reducible to B (A ≤(X,τ) B) if A = f−1[B] for some continuous map f : X → X .
(b) A, B are equivalent (A ∼(X,τ) B) if A ≤(X,τ) B and B ≤(X,τ) A.
(c) A, B are comparable if A ≤(X,τ) B or B ≤(X,τ) A, and otherwise incomparable.

The following principle states a further important property of these quasi-orders.

This paper supersedes an earlier preprint, where the main result of this paper was proved for Polish spaces, with
an unrelated proof.
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2 PHILIPP SCHLICHT

Definition 1.2. Assuming that (X, τ) is a topological space, the semi-linear ordering principle
SLO(X,τ) states that for all Borel subsets A, B of X , A is reducible to B, or B is reducible to
X \A.

It is easy to see that SLO(X,τ) implies that no more than two Borel subsets of X can be
incomparable, Moreover, Woodin observed that SLOR fails (see [Woo10, Remark 9.26], [And07,
Example 3]) and thus it is natural to ask the following question.

Question 1.3. Under which conditions on a Polish space (X, τ) does SLO(X,τ) fail?

The principle SLO holds for any Polish space that is homeomorphic to a closed subset of the
Baire space, since the proof of Wadge’s lemma (see e.g. [And07, Section 2.3]) works for these
spaces. Moreover, these Polish space are known to be exactly the ones with dimension 0, which is
defined as follows.

Definition 1.4. A topological space (X, τ) has dimension 0 if for every x in X and every open
set U subset of X containing x, there is a subset of U containing x that is both open and closed.
Moreover, the space has positive dimension if it does not have dimension 0.

This is usually denoted by having small inductive dimension 0, but note that for separable
metric spaces, it is equivalent to the condition that other standard notions of dimension, such as
the large inductive dimension 0 or the Lebesgue covering dimension, are equal to 0 by [Eng89,
Theorem 7.3.2]. However, not every totally disconnected Polish space has dimension 0, since for
instance the complete Erdös space [DvM09] has the former property, but not the latter.

The following is the main result of this paper, which is proved in Theorem 2.14 below.

Theorem 1.5. For any metric space (X, d) of positive dimension, there are uncountably many
Borel subsets of (X, d) that are pairwise incomparable with respect to continuous reducibility.

As an application of the main result, we will characterize the Wadge order on Polish spaces by
the following notion, which is important in the theory of quasi-orders (see e.g. [CP14]).

Definition 1.6. A well-quasiorder (wqo) is a quasi-order with the property that there is no infinite
strictly decreasing sequence and no infinite set of pairwise incomparable elements.

The next characterization is proved in Theorem 2.15 below and answers Question 1.3.

Theorem 1.7. Suppose that (X, d) is a Polish metric space. Then the following conditions are
equivalent.

(a) X has dimension 0.
(b) SLO(X,τ) holds.
(c) The Wadge order on the Borel subsets of X is a well-quasiorder.
(d) There are at most two pairwise incomparable Borel subsets of X.
(e) There are at most countably many pairwise incomparable Borel subsets of X.

It is worthwhile to mention that Pequignot defines an alternative quasi-order on the subsets of
an arbitrary Polish space [Peq15]. Moreover, his notion is more natural in the sense that it always
satisfes the SLO principle.

We will further prove the following variant of the main result in Theorem 4.1 below.

Theorem 1.8. Suppose that (X, d) is a locally compact metric space of positive dimension. Then
there is a (definable) injective map that takes sets of reals to subsets of X in such a way that these
subsets are pairwise incomparable with respect to continuous reducibility.

This paper has the following structure. We will prove Theorem 1.5 and Theorem 1.7 in Section
2, but postpone the proof of some auxiliary results to Section 3. Moreover, Section 4 contains the
proof of Theorem 1.8, and some further remarks on the proofs can be found in Section 5.

We would like to thank the referee for various useful suggestions to make the paper more
readable.
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2. Incomparable Borel sets

In this section, we will prove Theorem 1.5, except for some technical steps that are postponed
to the next sections.

We always let the letters i to n and s to w denote natural numbers. We assume that (X, d) is
a metric space of positive dimension and let α, β always denote elements of X . Moreover, for any
r > 0 we will denote the open ball with radius r around α by

Br(α) = {x ∈ X | d(α, x) < r}.

If α is an element and U is an open subset of X , then α is called U -positive if α ∈ U and no subset
V of U that contains α is open and closed in X . We further call an element α of X positive if it
is U -positive for some open set U . Now X has at least one positive element by the definition of
positive dimension.

For each α ∈ X , we fix some rα > 0 such that α is Brα(α)-positive if α is positive and rα is
arbitrary otherwise. We further fix a strictly increasing sequence rα = 〈rαt | t ≥ 0〉 with rα0 = 0
and supt≥0 r

α
t = rα. Let Xα = Brα(α) and Xα

<t = Brαt
(α) for any t ≥ 0.

Definition 2.1. If A ⊆ R≥0 = {x ∈ R | x ≥ 0}, let

Bα
A = {x ∈ Xα | d(α, x) ∈ A}

if inf(A) > 0 and

Bα
A = {x ∈ Xα | d(α, x) ∈ A} ∪ {α}

otherwise. If moreover i, j ∈ N with i < j, we let

Cα
(i,j) = Bα

(rα
i
,rα

j
)

and define this in an analogous way for half-open and closed intervals from i to j.

We always let m = 〈mi | i ≥ 0〉 and n = 〈ni | i ≥ 0〉 denote strictly increasing sequences of
natural numbers beginning with 0. Moreover, we will frequently use the following notation.

Definition 2.2. Suppose that n is as above. Letting [ni, ni+1) denote the interval in N, we define
the following sets of natural numbers.

(a) Evenn =
⋃

i∈N is even[ni, ni+1),
(b) Oddn =

⋃

i∈N is odd[ni, ni+1).

In the next definition, we define sets Dα
n
for α and n as above. These sets will later be shown

to be incomparable under appropriate assumptions.

α
Dα,0

n

Eα,0
n

Dα,1
n

Eα,1
n

Dα,2
n

Figure 1. A diagram of Dα
n
(shaded), assuming that n0 = 0, n1 = 1 and n2 = 2.

Solid lines consist of elements of Dα
n
and dotted lines of elements of Eα

n
.

Definition 2.3. Suppose that n is as above.
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(a) (i) Let s denote the string of symbols 2j, 2j + 1.

Dα
n,j =

{

Cα
[s) if j ∈ Evenn,

Cα
(s] if j ∈ Oddn,

(ii) Dα
n
=

⋃

j≥0 D
α
n,j,

(b) (i) Let s denote the string of symbols 2j + 1, 2j + 2 and let u denote the ordered pair
(j, j + 1).

Eα
n,j =























Cα
[s) if u ∈ Evenn × Evenn,

Cα
[s] if u ∈ Evenn ×Oddn,

Cα
(s) if u ∈ Oddn × Evenn,

Cα
(s] if u ∈ Oddn ×Oddn,

(ii) Eα
n,j =

⋃

j≥0 E
α
n,j .

The sets Eα
n,j are chosen to partition the complement of Dα

n
in Xα, and thus the sets Dα

n
, Eα

n

partition Xα, as illustrated in Figure 1.
The idea for the proof of Theorem 1.5 in the remainder of this section is as follows. We will

associate certain graphs to the sets Dα
n
for various sequences n as above. Then, we will show that

for all positive α, β, the existence of a continuous reduction F : X → X of Dα
m

to Dβ
n
implies the

existence of certain maps associated to these graphs, and moreover, that such maps cannot exist
if m, n are sufficiently different.

The combinatorics in the following proofs reflect the fact that it does not follow from the
existence of such a function F that m and n are equal, as can be seen from the example in Figure
2.

α

X

β

X

Figure 2. Diagrams of Dα
n
, Dβ

n
(shaded) for a one-dimensional subspace X of

R
2 and positive elements α, β of X .

In (undirected) graphs, we will identify the edges, i.e. 2-element sets of vertices, with ordered
pairs.

Definition 2.4. A colored graph consists of a graph G with vertex set V and edge set E that
satisfy the following conditions, together with a coloring cG in the colors 0 and 1 that is defined
both on the vertices and the edges.

(a) V is a (finite or infinite) interval in Z of size at least 2.
(b) E consists of the pairs of successive vertices in V .

We will write cG(i, i + 1) for the color of the edge (i, i + 1) and thereby omit the additional
brackets.

Definition 2.5. Suppose that G and H are colored graphs.

(a) A reduction f from G to H is a function defined on both the vertices and the edges of G
that satisfies the following conditions. The vertices of G are mapped to vertices of H , the
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edges of G are mapped to edges of H and the map preserves colors in both cases. Moreover,
if (i, i + 1) is an edge in G, then f(i) and f(i + 1) are end points of the edge f(i, i + 1) in
H . We will write dom(f) and ran(f) for the sets of vertices in the domain and range of f ,
respectively.

(b) An unfolding of G, H is a pair ξ = (f, g) such that for some finite colored graph I, f is a
reduction from I to G and g is a reduction from I to H . We will write dom(ξ) for the vertex
set of I and let cξ = cI .

It follows immediately from the definition of reductions that the image of a reduction f is an
interval in Z, and for all i with i, i+1 ∈ dom(f) and f(i) 6= f(i+ 1), f(i, i+1) = (f(i), f(i+1)).

The followings colored graphs carry information about the sets Dα
n
and Eα

n
, which were de-

fined above. Moreover, the maps between graphs defined below carry information about possible
continuous reductions from Dα

m
to Dβ

n
for positive elements α, β of X and sequences m, n as

above.

Definition 2.6. Suppose that n is as above. Let Gn denote the colored graph with vertex set N
and the coloring cn defined on the vertices by

cn(2j) =

{

1 if j ∈ Evenn

0 if j ∈ Oddn

cn(2j + 1) =

{

0 if j ∈ Evenn

1 if j ∈ Oddn

for j ≥ 0 and on the edges by

cn(j, j + 1) =

{

1 if j is even

0 if j is odd

for j ≥ 0.

When m, n are as above and ξ is an unfolding, we will always mean that it is an unfolding of
Gm, Gn.

0 2 4 6

Figure 3. A diagram of the graph Gn corresponding to Figures 1 and 2. The
solid lines denote edges with color 1 and the dotted lines denote edges with color
0. Moreover, the marked vertices have color 1 and the other ones have color 0.

Definition 2.7. Suppose that m, n are as above and ξ = (f, g) is an unfolding of Gm, Gn, where
f is a reduction from I to Gm and g is a reduction from I to Gn. We define the relation ∼ξ on
pairs of vertices and pairs of edges as follows.

(a) If k is a vertex in Gm and l is a vertex in Gn, let k ∼ξ l if f(j) = k and g(j) = l for some
vertex j in I.

(b) If v is an edge in Gm and w is an edge in Gn, let v ∼ξ w if f(u) = v and g(u) = w for some
edge u in I.

We will from now on always assume that we are in the following situation. We assume that α is a
positive and β is an arbitrary element of X . The sequences m, n are strictly increasing sequences
in N beginning with 0 as above and F : X → X is a continuous function with Dα

m
∩ Y α,β =

F−1[Dβ
n
] ∩ Y α,β , where Y α,β = Xα ∩ F−1[Xβ].

Definition 2.8. Suppose that m, n, α, β, F are as above. Moreover, suppose that x ∈ Xα and
ξ = (f, g) is an unfolding of Gm, Gn. We say that x and ξ are compatible with respect to m, n,
α, β, F if one of the following conditions holds.

(a) (x, F (x)) ∈ Dα
m,i ×Dβ

n,j for some pair (i, j) with

(2i, 2i+ 1) ∼ξ (2j, 2j + 1).
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(b) (x, F (x)) ∈ Eα
m,i × Eβ

n,j for some pair (i, j) with

(2i+ 1, 2i+ 2) ∼ξ (2j + 1, 2j + 2).

We will omitm, n, α, β, F if they are clear from the context. Moreover, we define the compatibility

range of ξ with respect to these parameters as the set Xα,β,F
m,n,ξ of all x ∈ Xα such that x and ξ are

compatible.

Definition 2.9. Suppose that m, n, α, β, F are as above, i ≥ 0 and t ≥ 1.

(a) Let Um,n,i denote the set of unfoldings ξ of Gm, Gn with 0 ∼ξ i and Um,n,i,<t the set of
ξ = (f, g) ∈ Um,n,i with t /∈ ran(f).

(b) Let Xα,β,F
m,n,i,<t = Xα

<t ∩
⋃

ξ∈Um,n,i,<t
Xα,β,F

m,n,ξ .

The key to the proof of the main theorem is given by the next lemma, whose proof is postponed
to Section 3.2 due to its technical nature.

Lemma 2.10. For all m, n, α, β, F as above with ∆m, ∆n strictly increasing, s ≥ 0 and t ≥ 1,

Xα,β,F
m,n,s,<t is an open and relatively closed subset of Xα

<t.

Note that it follows that Xα,β,F
m,n,s,<t is an open subset of the full space X , since Xα is open.

However, we do not require that Xα,β,F
m,n,s,<t is a closed subset of X .

The next step in the proof of Theorem 1.5 is given by the following result, which is used only
for α = β = γ there and later, in its general form, in the proof of Theorem 1.8.

Lemma 2.11. Suppose that m, n, α, β, F are as above with ∆m, ∆n strictly increasing and
some γ ∈ Xα

<1 ∩ Y α,β is Xα-positive. Then
⋃

(f,g)∈Um,n,l

ran(f) = N

for some l ≥ 0.

Proof. We assumed before Definition 2.8 that F : X → X is a continuous function with Dα
m

∩
Y α,β = F−1[Dβ

n
] ∩ Y α,β , where Y α,β = Xα ∩ F−1[Xβ] as given before Definition 2.8. Now the

assumptions on γ imply that γ ∈ Dα
m

∩ Y α,β and hence F (γ) ∈ Dβ
n
. Since the sets Dβ

n,j are

pairwise disjoint for different j ≥ 0, there is a unique l ≥ 0 with F (γ) ∈ Dβ
n,l. We will prove the

next two claims for arbitrary t ≥ 1 and write X2l = Xα,β,F
m,n,2l,<t.

Claim. γ ∈ X2l.

Proof. By the definition of X2l = Xα,β,F
m,n,2l,<t in Definition 2.9, it is sufficient to show that there is

some unfolding ξ = (f, g) of Gm, Gn with 0 ∼ξ 2l and t /∈ ran(f) such that γ and ξ are compatible
with respect to m, n, α, β, F . We consider the colored graph I with vertex set {0, 1}, vertex
colors cI(0) = cI(1) = 1 and edge color cI(0, 1) = 1.

Since cm(0) = 1 and cm(0, 1) = 1 by the definition of cm, we can define a reduction f from I
to Gm by

f(0) = f(1) = 0

f(0, 1) = (0, 1).

If l ∈ Evenn, then cn(2l) = 1 and cn(2l, 2l + 1) = 1 by the definition of cn. Therefore, we can
define a reduction g from I to Gn by

g(0) = g(1) = 2l

g(0, 1) = (2l, 2l+ 1).

If l ∈ Oddn, then we let g(0) = g(1) = 2l + 1 and leave the remaining values of f , g unchanged.
Thus ξ = (f, g) is an unfolding of Gm, Gn with 1 /∈ ran(f). We have γ ∈ Dα

m,0 by the definition

of Dα
m,0 and F (γ) ∈ Dβ

n,l by the choice of l. Hence γ and ξ are compatible with respect to m, n,

α, β, F as witnessed by the fact that (0, 1) ∼ξ (2l, 2l+ 1). �

Claim. For every r with d(α, γ) ≤ r < rαt , there is some x ∈ X2l with d(α, x) = r.
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Proof. By the previous claim, we can assume that r > d(α, γ). Towards a contradiction, suppose
that there is no x ∈ X2l with d(α, x) = r. It follows that X2l ∩Br(α) = X2l ∩ B̄r(α), where

B̄r(α) = {x ∈ X | d(α, x) ≤ r}

denotes the closed ball of radius r around α in X . Let

U = X2l ∩Br(α) = X2l ∩ B̄r(α).

We have that X2l ∩Br(α) is open by Lemma 2.10 and X2l ∩ B̄r(α) is relatively closed in Xα
<t by

Lemma 2.10 and hence closed in X . Thus U is a subset of Xα with γ ∈ Xα that is both open and
closed in X . However, this contradicts the assumption that γ is Xα-positive. �

Claim.
⋃

(f,g)∈Um,n,2l
ran(f) = N.

Proof. Suppose that j ≥ 0 and r is chosen with rα2j < r < rα2j+1 and d(α, γ) < r. By the previous

claim for t = 2j + 1, there is some x ∈ X2l with d(α, x) = r. In particular, we have x ∈ Dα
n,j by

the definition of Dα
n,j.

By the definition of X2l = Xα,β,F
m,n,2l,<t in Definition 2.9, there is some unfolding ξ = (f, g) ∈

Um,n,2l with t /∈ ran(f) and x ∈ Xα,β,F
m,n,ξ . Thus x and ξ are compatible with respect to m, n, α, β,

F . Together with the fact that x ∈ Dα
n,j and by the definition of compatibility in Definition 2.8,

we thus obtain that 2j ∈ ran(f). Since moreover 0 ∈ ran(f) by the definition of Um,n,2l and since
ran(f) is an interval in Z by the definition of reductions, it follows that {0, . . . , 2j} ⊆ ran(f). �

The last claim completes the proof of Lemma 2.11. �

Given the preceding lemma, the remaining step is to show that ∆m, ∆n are Etail-equivalent,
where ∆m, ∆n are as above and the equivalence relation Etail is defined as follows.

Definition 2.12. Suppose that m, n are as above.

(a) We define an equivalence relation Etail on the set of sequences n as above as follows. Two
sequences m, n are Etail-equivalent if there is some i0 ≥ 0 and some j ∈ Z such that
mi = ni+j for all i ≥ i0.

(b) Let ∆m denote the sequence with values (∆m)i = mi+1 −mi for all i ≥ 0.

The proof of Etail-equivalence uses the next result, whose proof is postponed to Section 3.1 due
to its technical nature.

Lemma 2.13. Suppose that m, n are as above with ∆m, ∆n strictly increasing. Moreover,
suppose that

⋃

(f,g)∈Um,n,l

ran(f) = N

for some l ≥ 0. Then ∆m, ∆n are Etail-equivalent.

We are now ready to complete the proof of the main result.

Theorem 2.14. For any metric space (X, d) of positive dimension, there are uncountably many
Borel subsets of (X, d) that are pairwise incomparable with respect to continuous reducibility.

Proof. Let A denote the subset of the Baire space NN consisting of the sequences n beginning with
0 such that both n and ∆n are strictly increasing. Since A is a closed subset of NN, it is itself a
Polish space. Moreover, we consider the equivalence relation E on A defined by

(m,n) ∈ E ⇐⇒ (∆m,∆n) ∈ Etail.

Then E is a Borel equivalence relation on A whose equivalence classes are countable. Therefore,
it is easy to check and follows from standard results (see e.g. [Jec03, Lemma 32.2] and [Kec95,
Theorem 8.41]) that there is a perfect subset of A whose elements are pairwise E-inequivalent.
Let α be any positive element of X , as defined in the beginning of this section. The claim now
follows from Lemma 2.11 for α = β = γ and Lemma 2.13. �

Moreover, we can now easily obtain the following application of the main result.

Theorem 2.15. Suppose that (X, d) is a Polish metric space. Then the following conditions are
equivalent.
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(a) X has dimension 0.
(b) SLO(X,τ) holds.
(c) The Wadge order on the Borel subsets of X is a well-quasiorder.
(d) There are at most two pairwise incomparable Borel subsets of X.
(e) There are at most countably many pairwise incomparable Borel subsets of X.

Proof. It is well-known that any Polish metric space (X, d) of dimension 0 is homeomorphic to
the set of branches [T ] of some subtree T of the tree N

<N of finite sequences of natural numbers,
ordered by inclusion. Since the proof of Wadge’s lemma (see e.g. [And07, Section 2.3]) works for
these spaces, it follows from Borel determinacy that SLO(X,d) holds. The remaining implications
follow immediately from Theorem 2.14. �

3. Auxiliary results

In this section we complete the missing proofs of Lemma 2.10 and 2.13 from the previous
section.

3.1. Unfoldings and Etail-equivalence. In this section we will prove Lemma 2.13 and several
other auxiliary results about unfoldings. We always let m, n denote strictly increasing sequences
in N beginning with 0. Whenever ξ, ξ∗ are unfoldings, we say that ξ∗ extends ξ if every pair or
vertices or edges that appears in ∼ξ also appears in ∼ξ∗ .

Lemma 3.1. In the following, ξ, ξ∗ will denote unfoldings of Gm, Gn. Suppose that ξ = (f, g),
k, l > 0 and cm(k) = cn(l). If one of the conditions

(k, k + 1) ∼ξ (l, l + 1)

(k − 1, k) ∼ξ (l − 1, l)

(k, k + 1) ∼ξ (l − 1, l)

(k − 1, k) ∼ξ (l, l + 1)

holds, then there is some ξ∗ = (f∗, g∗) that extends ξ and satisfies the respective condition in the
list

(k − 1, k) ∼ξ∗ (l − 1, 1)

(k, k + 1) ∼ξ∗ (l, l+ 1)

(k − 1, k) ∼ξ∗ (l, l+ 1)

(k, k + 1) ∼ξ∗ (l − 1, l)

and moreover ran(f∗) = ran(f) ∪ {k}, ran(g∗) = ran(g) ∪ {l}.

Proof. Suppose that dom(ξ) = [u, u∗]. We begin with the first case. By the assumption and by
the definition of ∼ξ, there is some j ∈ dom(ξ) with f(j, j+1) = (k, k+1) and g(j, j+1) = (l, l+1).

We define the following coloring on the vertices in the interval [u− 1, u∗ + 1] and on the edges
between adjacent vertices, and thereby define a colored graph I.

cI(i) =











cξ(i+ 1) if i ≤ j − 1

cm(k) = cn(l) if i ∈ {j, j + 1}

cξ(i− 1) if i ≥ j + 2

cI(i, i+ 1) =











cξ(i+ 1, i+ 2) if i ≤ j − 1

1− cm(k, k + 1) = 1− cn(l, l + 1) if i = j

cξ(i− 1, i) if i ≥ j + 1

We further define the following maps f∗, g∗ on the vertices and edges of I.

f∗(i) =











f(i+ 1) if i ≤ j − 1

k if i ∈ {j, j + 1}

f(i− 1) if i ≥ j + 2
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f∗(i, i+ 1) =











f(i+ 1, i+ 2) if i ≤ j − 1

(k − 1, k) if i = j

f(i− 1, i) if i ≥ j + 1

The definition of g∗ is obtained from the definition of f∗ by replacing f , k by g, l. The
statement that ξ∗ = (f∗, g∗) is an unfolding that extends ξ can be checked from the definitions
above. Moreover, the statements about the ranges of f∗, g∗ follows from the definitions above.

We now describe the changes to the above definitions in the remaining three cases. Here j is
chosen such that f(j, j + 1), g(j, j + 1) are equal to the two given pairs that are in the relation
∼ξ by one of the conditions. In the definition cI(i, i+ 1) = 1− cm(k, k + 1) = 1 − cn(l, l + 1) for
i = j, the arguments (k, k + 1), (l, l + 1) are replaced by the two given pairs. The definitions of
f∗, g∗ remain the same if the first pair is (k, k + 1) or the second pair is (l, l+ 1), respectively. If
the first pair is (k− 1, k), then the definition of f∗ is changed to f∗(i, i+1) = (k, k+1) for i = j,
and similarly, if the second pair is (l − 1, l), then we let g∗(i, i+ 1) = (l, l + 1) for i = j. �

For the statement of the next result, we fix the following notation. If G is a colored graph and
V is a sub-interval of the vertex set of G, then we let GV denote the unique colored graph with
vertex set V that is induced by G.

Lemma 3.2. Suppose that m, n are as above, s, t ≥ 0 and ξ = (f, g) is an unfolding of Gm, Gn

with
ran(f) ⊆ [2ms, 2ms+1 − 1]

ran(g) ⊆ [2nt, 2nt+1 − 1].

Then the following statements hold.

(1) The equation
(∗i,j) f(i)− f(j) = (−1)s+t(g(i)− g(j))

holds for all i, j ∈ dom(ξ).

(2) We obtain a unique reduction from G
ran(f)
m to G

ran(g)
n by restricting fg−1 to the vertices

and edges of G
ran(f)
m . The same holds for gf−1 when G

ran(f)
m is replaced with G

ran(g)
n and

conversely.

Proof. To prove the first claim, suppose that f is a reduction from I to Gm and g is a reduction
from I to Gn, where I is a finite colored graph. It is sufficient to prove the claim for i ≤ j, since
this implies the claim for i ≥ j. We now fix i and prove the formula (∗i,j) by induction on j ≥ i.
Therefore, we assume that the formula holds for some j ≥ i with j + 1 ∈ dom(ξ).

Case. f(j + 1) = f(j).

Since f , g are reductions, the case assumption implies that

cn(g(j + 1)) = cI(j + 1) = cm(f(j + 1)) = cm(f(j)) = cI(j) = cn(g(j)).

Since the colors of vertices alternate in [2nt, 2nt+1 − 1] by the definition of Gn, and since g is a
reduction, this implies that g(j + 1) = g(j). Thus the formula (∗i,j+1) follows immediately from
the formula (∗i,j) that is given by the induction hypothesis.

Case. f(j + 1) 6= f(j).

We can assume that f(j + 1) > f(j), since the case that f(j + 1) < f(j) is symmetric. Using
this assumption and the fact that f is a reduction, it follows that f(j + 1) = f(j) + 1. We can
further assume that s, t are even and that f(j) is even, because the remaining cases are symmetric.
Since f , g are reductions, s is even, f(j) is even and by the definition of Gm, we have

(1) cn(g(j)) = cI(j) = cm(f(j)) = 1

(2) cn(g(j), g(j + 1)) = cI(j, j + 1) = cm(f(j), f(j + 1)) = cm(f(j), f(j) + 1) = 1.

Since t is even and by the definition of Gn, equation (1) implies that g(j) is even and g(j+1) is
odd. Finally, since we argued that g(j) is even, since t is even and by the definition of Gn, equation
(2) implies that g(j + 1) = g(j) + 1. Since s, t are assumed to be even, (−1)s+t = 1. Thus the
formula (∗i,j+1) follows immediately from the statements f(j+1) = f(j)+1 and g(j+1) = g(j)+1.
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We now indicate the modifications to the previous proof in the situation that f(j + 1) = f(j)
for the remaining cases. In all cases with f(j + 1) < f(j) below, we will write f(j)− 1 instead of
f(j) + 1 in equation (2).

We first assume that s, t have the same parity. It follows that f(j), g(j) have the same parity
by equation (1). If f(j + 1) > f(j) and f(j) is even, then equation (2) takes the value 1. Since
it follows from the case assumption that g(j) is also even, this implies that g(j + 1) = g(j) + 1.
Similarly, if f(j+1) < f(j) and f(j) is odd, then equation (2) takes the same value, and it follows
from this and the fact that g(j) is odd that g(j + 1) = g(j)− 1.

If f(j + 1) > f(j) and f(j) is odd, then equation (2) takes the value 0. Since it follows
from the case assumption that g(j) is also odd, this implies that g(j + 1) = g(j) + 1. Similarly,
if f(j + 1) < f(j) and f(j) is even, then equation (2) takes the same value, g(j) is even and
g(j + 1) = g(j)− 1.

We now assume that s, t have different parity and hence f(j), g(j) have different parity by
equation (1). If f(j +1) > f(j) and f(i) is even, then (2) has the value 1. Since g(j) is then odd,
this shows that g(j + 1) = g(j)− 1. If f(j +1) < f(j) and f(j) is odd, then the (2) has the same
value, and it follows from this and the fact that g(j) is even that g(j + 1) = g(j) + 1.

If f(j+1) > f(j) and f(j) is odd, then (2) has the value 0. Since g(j) is then even, this implies
that g(j +1) = g(j)− 1. Finally, if f(j +1) < f(j) and f(j) is even, then (2) has the same value,
g(j) is odd and g(j + 1) = g(j) + 1.

We now prove the second claim. Note that it is immediate from the first claim that the
restriction of fg−1 to vertices is a well-defined map on ran(g). Moreover, we can assume that s+ t
is even, since the case that s+ t is odd is symmetric. Then s, t have the same parity. If i0 ∈ ran(g)
and g(j0) = i0, then by the first claim, fg−1(i0 + i) = f(j0) + i for all i with i0 + i ∈ ran(g). It
now follows from the fact that f , g are reductions that

fg−1(i0 + i, i0 + i+ 1) = (f(j0) + i, f(j0) + i + 1)

for all i with i0 + i, i0 + i+ 1 ∈ ran(g), and thus the described restriction of fg−1 is a reduction.
In the symmetric case that i + j is odd, we replace f(j0) + i with f(j0) − i in the previous

statements. �

By keeping the range of f restricted to a single interval but allowing g to range over several
intervals, we obtain the following variant of the previous lemma.

Lemma 3.3. Suppose that m, n are as above and ξ = (f, g) is an unfolding of Gm, Gn. Moreover,
suppose that a ∈ dom(ξ), s, t ≥ 0 and w ≥ t are such that

ran(f) ⊆ [2ms, 2ms+1 − 1]

ran(g) ⊆ [g(a), 2nw − 1]

g(a) ∈ [2nt, 2nt+1 − 1].

Let

bu =

{

g(a) if u = t

2nu if t < u ≤ w,

pu = (bu+1 − bu)− 1

for t ≤ u < w and

Σv =
∑

t≤u<v

(−1)upu.

for t ≤ v ≤ w.

(1) If i ∈ dom(ξ), let v, j be unique with t ≤ v < w, j ≤ pv and g(i) = bv + j < bv+1. Then

(∗i) f(i) = f(a) + (−1)s(Σv + (−1)vj)

(2) Assume that ∆m, ∆n are strictly increasing and t ≤ v < v+1 = w. If ran(g) ⊆ [g(a), 2nw−
1], then |f(i)− f(i∗)| ≤ pv for all i, i∗ ∈ dom(ξ). If moreover ran(g) ⊆ [g(a), 2nw − 1), then
we obtain the strict inequality |f(i)− f(i∗)| < pv.
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Proof. To prove the first claim, suppose that f is a reduction from I to Gm and g is a reduction
from I to Gn, where I is a finite colored graph.

We prove the formula (∗i) by induction on i ≥ a. The proof for i ≤ a is symmetric (by replacing
i + 1 with i − 1 in the equations below). Let a∗ = max(dom(ξ)). Suppose that the formula (∗i)
holds for some i with a ≤ i < a∗.

We partition [a, a∗] into maximal subintervals [a0, a
∗
0], . . . , [al, a

∗
l ] such that for all j < l, there

is some u with t ≤ u < w and

ran(g↾[aj , aj+1]) ⊆ [bu, bu+1 − 1].

Moreover, we can assume that the intervals are ordered such that aj < aj+1 for all j < l.

Case. i = a∗k for some k < l.

By the choice of the subintervals and since i < a, we have i + 1 = a∗k + 1 = ak+1 and there is
some v with t ≤ v + 1 < w and

(1) {g(i), g(i+ 1)} = {g(a∗k), g(ak+1)} = {bv+1 − 1, bv+1}.

Since cn(bv+1 − 1) = cn(bv+1) by the definition of Gn, it follows from equation (1) and the fact
that f , g are reductions that

(2) cm(f(i)) = cI(i) = cn(g(i)) = cn(g(i + 1)) = cI(i+ 1) = cm(f(i+ 1)).

Since the colors of vertices in [2ms, 2ms+1−1] alternate by the definition of Gm and since ran(f)
is contained in this interval by assumption, it follows from equation (2) that f(i) = f(i+ 1).

Since bv+1 − 1 = bv + pv and Σv + (−1)vpv = Σv+1, it follows from the equation (1) that the
formulas (∗i) and (∗i+1) yield the same value. Since we argued that f(i) = f(i + 1) and the
formula (∗i) holds by the induction hypothesis, this implies that (∗i+1) holds.

Case. i ∈ [ak, a
∗
k) for some k ≤ l.

Suppose that t ≤ u < w and ran(g↾[ak, a
∗
k]) ⊆ [bu, bu+1 − 1]. Moreover, let j, j∗ ≤ pu be the

unique numbers with g(i) = bu + j < bu+1 and g(i+ 1) = bu + j∗ < bu+1. We have

(3) f(i+ 1)− f(i) = (−1)s+u(g(i+ 1)− g(i)) = (−1)s+u(j∗ − j)

by Lemma 3.2. Moreover, by the induction hypothesis (∗i), we have f(i) = f(a) + (−1)s(Σu +
(−1)uj) and hence (∗i+1) by equation (3).

It remains to prove the second claim. Note that by the first claim, fg−1 defines a unique
map on ran(g). Moreover, it follows immediately from the first claim that the restrictions of
fg−1 to sub-intervals of ran(g) of the form [ni, ni+1) are affine functions whose direction changes
between adjacent intervals. Since ∆n is strictly increasing, the lengths pu = (bu+1 − bu) − 1 of
the intervals [bu, bu+1 − 1] have the same property. It thus follows by induction on u that for all
u with t ≤ u < w, we have

ran(fg−1↾[g(a), bu+1 − 1]) = ran(fg−1↾[bu, bu+1 − 1])

Since the length of [bv, bv+1 − 1] is pv, this implies the first distance statement. Moreover, by
comparing the lengths of the last two intervals, we obtain

ran(fg−1↾[g(a), bv+1 − 1)) = ran(fg−1↾[bv, bv+1 − 1))

Since the length of [bv, bv+1 − 1) is pv − 1, the last distance statement follows. �

We are now ready to prove Lemma 2.13 above, which we restate now.

Lemma 3.4. Suppose that m, n are strictly increasing sequences of natural numbers beginning
with 0 such that also ∆m, ∆n are strictly increasing. Moreover, suppose that

⋃

(f,g)∈U
m,n

l

ran(f) = N

for some l ≥ 0. Then ∆m, ∆n are Etail-equivalent.
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Proof. Let pu = 2(mu+1 − mu) − 1 and qv = 2(nv+1 − nv) − 1 for u, v ≥ 0. Moreover, suppose
that

l ∈ [2nt, 2nt+1 − 1]

and let
Φ = {pu | u ≥ 0, pu > p0, qt}

Ψ = {qv | v ≥ 0, qv > p0, qt}.

Claim. If u ≥ 0, pu ∈ Φ and v is least with pu ≤ qv, then u, v have the same parity, i.e. both are
even or both are odd.

Proof. Let
a = 2mu + pu = 2mu+1 − 1

and
b = 2nv + pu.

By the assumptions, there is some unfolding ξ = (f, g) ∈ U
m,n
l with a ∈ ran(f). Suppose that

f is a reduction from I to Gm and g is a reduction from I to Gn, where I is a finite colored graph.
Since ξ ∈ U

m,n
l , there is some j0 ∈ dom(f) with f(j0) = 0 and g(j0) = l. Moreover, since

a ∈ ran(f), there is some k ∈ dom(f) with f(k) = a. We can assume that k > j0, since the case
that k < j0 is symmetric (by changing the order of j0, j, j∗, j

∗, k below).
The next subclaim follows almost immediately from the definitions.

Subclaim. f(j0) < 2mu ≤ a and g(j0) < 2nv ≤ b.

Proof. For the first claim, the assumption pu ∈ Φ implies that p0 < pu. Since ∆m is strictly
increasing, the last inequality implies that 0 < u and hence 0 ≤ 2m1 − 1 < 2mu. Therefore,

f(j0) = 0 < 2mu ≤ 2mu + pu = a.

The proof of the second claim is very similar to the previous proof. The assumptions pu ∈ Φ
and pu ≤ qv imply that qt < pu ≤ qv. Since ∆n is strictly increasing, the last inequality implies
that t < v and hence l ≤ 2nt+1 − 1 < 2nv. Therefore,

g(j0) = l < 2nv ≤ 2nv + pu = b.

�

Let j∗ > j0 be least with f(j∗) = a or g(j∗) = b. We can assume that f(j∗) = a, since the case
that g(j∗) = b is symmetric (by replacing f , a, mu, pu with g, b, nv, qv and conversely).

Subclaim. g(j∗) = b.

Proof. Suppose that g(j∗) 6= b. By the choice of j∗ and since g(j0) < b by the previous subclaim,
we have g(j) < b for all j ∈ [j0, j

∗].
Let j < j∗ be minimal such that f(i) ∈ [2mu, a] for all i ∈ [j, j∗]. Since f(j0) < 2mu by

the previous subclaim, the choice of j implies that j > j0 and f(j) = 2mu. We further have
qw < pu for all w < v by the choice of v, and moreover ran(g↾[j0, j

∗]) is bounded strictly below
b = 2nv + pu, as we argued above.

By the definition of j∗, we can now apply Lemma 3.3 to restrictions of f to sub-intervals of
[j, j∗]. Let j∗ < j∗ be maximal with g(j∗) = g(j). Since the last equation holds for j∗ = j, we
have j ≤ j∗.

We first assume that j < j∗. We then choose some a∗ ∈ [j, j∗] with g(a∗) least among all g(i)
for i ∈ [j, j∗]. We further consider the unique t∗, w such that the minimal and maximal values of
g(i) for i ∈ [j, j∗] are elements of [2nt∗ , 2nt∗+1 − 1] and [2nw, 2nw+1 − 1], respectively. The sum
formula in the first claim of Lemma 3.3 can now be applied to the unfolding that is given by the
restrictions of f , g to [j, j∗] instead of f , g and to the parameters u, t∗, w, a∗ instead of s, t, w,
a above. Since g(j∗) = g(j) by the choice of j∗, it follows immediately from the sum formula that
f(j∗) = f(j) = 2mu, similar to the argument in the end of the proof of Lemma 3.3.

We now choose some a∗ ∈ [j∗, j
∗] with g(a∗) least among all g(i) for i ∈ [j∗, j

∗] and consider
the unique t∗ with g(a∗) ∈ [2nt∗ , 2nt∗+1−1]. We then apply the second claim of Lemma 3.3 to the
unfolding that is given by the restrictions of f , g to [j∗, j

∗] instead of f , g and to the parameters
u, t∗, v, v + 1, a∗ instead of s, t, v, w, a above.
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To apply this, the following conditions are satisfied. The range of the restriction of g to [j∗, j
∗]

is a subset of [g(a∗), 2nv+1 − 1), since our assumption pu ≤ qv and the argument in the beginning
of the proof of this subclaim imply that the range is strictly bounded by b = 2nv+pu ≤ 2nv+qv =
2nv+1 − 1. Moreover its minimum is g(a∗) by the definition of a∗, t∗.

Hence |f(i) − f(i∗)| < pu for all i, i∗ ∈ [j∗, j
∗]. However, this contradicts the assumption

f(j∗) = a = 2mu + pu that was made before the current subclaim, and the fact that f(j∗) = 2mu

as we have just proved.
If j = j∗, then the argument in the last paragraph leads to the same contradiction. �

Before we complete the proof, we discuss the changes that have to be made above in the
symmetric cases. The proof of the first subclaim will remain unchanged.

We first assume that k < j0 and describe how we will define numbers j, j∗, j
∗ with k < j∗ <

j∗ < j < j0 in reverse order compared to above. Before the second subclaim, we now let j∗ < j0 be
largest instead of j∗ > j0 least with f(j∗) = a or g(j∗) = b. In the proof of the second subclaim,
we consider the interval [j∗, j0] instead of [j0, j

∗], choose j > j∗ maximal instead of j < j∗ minimal
and j∗ > j∗ minimal instead of j∗ < j∗ maximal with the same properties as above. If j > j∗,
we first apply Lemma 3.3 to the restrictions of f , g to the interval [j∗, j] and then to the interval
[j∗, j∗] with the same parameters as above. If j = j∗, then as above, the argument for the last
application of Lemma 3.3 is sufficient.

We now consider the changes for the symmetric case g(j∗) = b to the assumption f(j∗) = a
made before the second subclaim in the case k > j0. This is obtained by replacing f , a, mu, pu
with g, b, nv, qv and conversely as follows. The changes for the case k < j0 are then obtained by
again changing the order of j0, j, j∗, j

∗, k, as we have just described.
The statement of the second subclaim is now that f(j∗) = a. In the proof of the second

subclaim, we assume towards a contradiction that f(j∗) 6= a. It follows as above that f(j) < a for
all j ∈ [j0, j

∗]. We then work with the condition g(i) ∈ [2nv, b] instead of f(i) ∈ [2mu, a]. In the
proof above, we used that qw < pu for all w < v by the choice of v. Since pu ≤ qv by the choice
of v and pw < pu for all w < u, we now have the symmetric property that pw < qv for all w < u.

In the following, the role of a∗ is replaced with b∗, where b∗ is defined using f instead of g.
Moreover, the role of f and g are interchanged here and in the rest of the proof. Lemma 3.3 is
now applied to the unfolding that is given by the restrictions of g, f to [j, j∗] instead of f , g and
to the parameters v, t∗, w, b∗ instead of s, t, w, a. We then define b∗ via f instead of a∗ via g.
The second application of Lemma 3.3 is to the unfolding that is given by the restrictions of g, f
to [j∗, j

∗] instead of f , g and to the parameters v, t∗, u, u+ 1, b∗ instead of s, t, v, w, a.
This completes the description of the symmetric cases and we now complete the proof of the

claim.
Since f(j∗) = a by the assumption and g(j∗) = b by the previous subclaim, we have

cm(a) = cm(f(j∗)) = cI(j
∗) = cn(g(j

∗)) = cn(b).

We have a = 2mu + pu < 2mu+1 and b = 2nv + pu < 2nv+1, since pu ≤ qv by the assumptions of
the claim. Thus the last equation and the definition of Gm, Gn imply that cm(2mu) = cn(2nv).
By the definition of Gm, Gn in Definition 2.6, this implies that mu ∈ Evenm ⇐⇒ nv ∈ Evenn.
However, mu ∈ Evenm holds if and only if u is even by the definition of Evenm in Definition 2.2,
and the same holds for nv, Evenn and v. Hence u, v have the same parity. �

We now let

u0 = min{u ≥ 0 | pu ∈ Φ}

v0 = min{v ≥ 0 | qv ∈ Ψ}.

Claim. ∆m, ∆n are Etail-equivalent.

Proof. It follows immediately from the definitions of Φ and Ψ that the sequences

p = 〈pu | u ≥ u0〉

q = 〈qv | v ≥ v0〉

enumerate Φ and Ψ, respectively. By the definitions of pu and qv and since ∆m, ∆n are strictly
increasing by the assumption, the sequences p, q are strictly increasing.
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We now show that Φ = Ψ. By the properties of p, q that were just stated, this implies that
pu0+j = qv0+j for all j ≥ 0, and hence ∆m, ∆n are Etail-equivalent, proving the claim. We will
only show that Φ ⊆ Ψ, since the proof of the other inclusion is symmetric.

Suppose that pu ∈ Φ and v is least with pu ≤ qv. Then u, v have the same parity by the first
claim.

Subclaim. qv < pu+1.

Proof. Towards a contradiction, suppose that pu+1 ≤ qv. By the choice of v as least with pu ≤ qv,
this implies that v is also least with pu+1 ≤ qv. Then u + 1, v have the same parity by the first
claim. But this contradicts the fact that u, v have the same parity. �

To complete the proof of the claim, it is sufficient to show that pu = qv. Towards a contradiction,
suppose that pu < qv. Since pu < qv < pu+1 by the previous subclaim, w = u + 1 is least with
qv < pw. Note that the proof of the first claim also works for Ψ, n, m instead of Φ, m, n by
switching the roles of p0 and qt. Therefore u+1, v have the same parity. However, this contradicts
the fact that u, v have the same parity. �

The statement of the previous claim completes the proof of Lemma 3.4. �

3.2. The compatibility range is open and closed. In this section we will prove Lemma 2.10
and two auxiliary results.

As stated before Definition 2.8, we always assume the following situation. We assume that α is a
positive and β is an arbitrary element of X . The sequences m, n are strictly increasing sequences
in N beginning with 0 as above and F : X → X is a continuous function with Dα

m
∩ Y α,β =

F−1[Dβ
n
] ∩ Y α,β , where Y α,β = Xα ∩ F−1[Xβ]. From now on, we additionally assume that ∆m,

∆n are strictly increasing.

Definition 3.5. Suppose that α, β, F are as above and x ∈ Y α,β . A subset U of Y α,β is called
(α, β)-small at x if x ∈ U and the following conditions hold for all i, j ∈ N with i < j and
A = (i, j).

(a) If x ∈ Cα
A, then U ⊆ Cα

A.

(b) If F (x) ∈ Cβ
A, then F [U ] ⊆ Cβ

A.

The next lemma is almost immediate from the previous definition.

Lemma 3.6. Suppose that α, β are as above, F : X → X is continuous and x ∈ Y α,β. Then
there is an open subset U of Y α,β that is (α, β)-small at x.

Proof. First, we note that Bα
A as given in Definition 2.1 is an open subset of X , whenever A is

an open interval in R≥0. By the definition of the sets Cα
A, we further have that Xα is the union

of all sets Cα
(i,j), where 0 ≤ i < j. Hence we can associate to each x ∈ Xα the smallest interval

Aα
x = (i, j) with 0 ≤ i < j and x ∈ Cα

(i,j). Then U = Cα
Aα

x
∩ F−1[Cβ

A
β

F (x)

] is (α, β)-small at x.

Moreover U is open, since F is continuous. �

If β is as above, let Γβ = Bα
Aβ , where Aβ = {rαt | t ≥ 1}. The next lemma reduces the later

proofs to the case that x ∈ Γα and F (x) ∈ Γβ .

Lemma 3.7. Suppose that m, n, α, β, F are as above, x ∈ Y α,β and x /∈ Γα or F (x) /∈ Γβ. If
U is an open subset of Y α,β that is (α, β)-small at x and y ∈ U , then

x ∈ Xα,β,F
m,n,ξ ⇐⇒ y ∈ Xα,β,F

m,n,ξ

for all unfoldings ξ.

Proof. Note that the assumptions imply that x ∈ Y α,β . We will distinguish the following cases,
depending on the values of x and F (x).

Case. x /∈ Γα and F (x) /∈ Γβ.

Proof. We can assume that x ∈ Dα
m
, since the case that x ∈ Eα

m
is symmetric. Since x ∈ Dα

m
\Γα,

we have x ∈ Cα
(2j,2j+1) for some j ≥ 0, and by the assumption that U is (α, β)-small at x, this

implies that U ⊆ Cα
(2j,2j+1).
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Since x ∈ Dα
m

∩ Y α,β = F−1[Dβ
n
] ∩ Y α,β , we have F (x) ∈ Dβ

n
and thus F (x) ∈ Dβ

n
\ Γβ by

the case assumption. Hence F (x) ∈ Cβ

(2k,2k+1) for some k ≥ 0, and by the assumption that U is

(α, β)-small at x, this implies that F [U ] ⊆ Cβ

(2k,2k+1). The equivalence follows from the inclusions

U ⊆ Cα
(2j,2j+1) and F [U ] ⊆ Cβ

(2k,2k+1).

We now indicate the changes to the previous proof in the remaining case that x ∈ Eα
m
. Here

we simply replace Dα
m
, Dβ

n
with Eα

m
, Eβ

n
and shift all indices upwards by 1. �

Case. x /∈ Γα and F (x) ∈ Γβ.

Proof. We can assume that x ∈ Dα
m
, since the case that x ∈ Eα

m
is symmetric. Since x ∈ Dα

m
\Γα,

we have x ∈ Cα
(2j,2j+1) for some j ≥ 0, and by the assumption that U is (α, β)-small at x, this

implies that U ⊆ Cα
(2j,2j+1).

By the assumption that F (x) ∈ Γβ, we can assume that d(β, F (x)) = rβi and i = 2k for some
k ≥ 1, since the case that i = 2k + 1 for some k ≥ 0 is symmetric. Since U is (α, β)-small at x

and d(β, F (x)) = rβ2k, we have F [U ] ⊆ Cβ

(2k−1,2k+1). Therefore

U ⊆ Dα
m

∩ Y α,β = F−1[Dβ
n
] ∩ Y α,β

and hence

F [U ] ⊆ Cβ

(2k−1,2k+1) ∩Dβ
n
= Cβ

[2k,2k+1)

(note that in this case k ∈ Evenn, since d(β, F (x)) = rβ2k and F (x) ∈ Dβ
n
). The equivalence follows

from the inclusions U ⊆ Cα
(2j,2j+1) and F [U ] ⊆ Cβ

[2k,2k+1).

We again indicate the necessary changes in the remaining cases. If x ∈ Eα
m
, we replace Dα

m
,

Dβ
n
by Eα

m
, Eβ

n
and (2j, 2j +1), [2k, 2k+1) by (2j +1, 2j+2), (2k− 1, 2k) in the previous proof.

If i = 2k+ 1, we replace (2k− 1, 2k+ 1), [2k, 2k+1) by (2k, 2k+2), (2k, 2k+ 1). Finally, if both
x ∈ Eα

m
and i = 2k + 1, we replace Dα

m
, Dβ

n
by Eα

m
, Eβ

n
and shift all indices upwards by 1. �

Case. x ∈ Γα and F (x) /∈ Γβ.

Proof. We can assume that x ∈ Dα
m
, since the case x ∈ Eα

m
is symmetric. Since Dα

m
∩ Y α,β =

F−1[Dβ
n
] ∩ Y α,β , this implies that F (x) ∈ Dβ

n
, and hence F (x) ∈ Dβ

n
\ Γβ by the assumption.

Then F (x) ∈ Cβ

(2k,2k+1) for some k ≥ 0, and since U is (α, β)-small at x, this implies that

F [U ] ⊆ Cβ

(2k,2k+1).

By the assumption that x ∈ Γα, we can assume that d(α, x) = rαi and i = 2j for some j ≥ 1,
since the case that i = 2j + 1 for some j ≥ 0 is symmetric. Since U is (α, β)-small at x and
d(α, x) = rα2j , we have U ⊆ Cα

(2j−1,2j+1). Since moreover

F [U ] ⊆ Cβ

(2k,2k+1) ⊆ Dβ
n
,

we have U ⊆ F−1[Dβ
n
] ∩ Y α,β = Dα

m
∩ Y α,β . Hence

U ⊆ Cα
(2j−1,2j+1) ∩Dα

m
= Cα

[2j,2j+1)

(note that in this case j ∈ Evenm, since d(α, x) = rα2j and x ∈ Dα
m
). The equivalence follows from

the inclusions U ⊆ Cα
[2j,2j+1) and F [U ] ⊆ Cβ

(2k,2k+1).

We finally indicate the changes in the remaining cases. If x ∈ Eα
m
, we replace Dα

m
, Dβ

n
by

Eα
m
, Eβ

n
and (2k, 2k + 1), [2j, 2j + 1) by (2k + 1, 2k + 2), (2j − 1, 2j). If i = 2j + 1, we replace

(2j − 1, 2j + 1), [2j, 2j + 1) by (2j, 2j + 2), (2j, 2j + 1). Finally, if both x ∈ Eα
m

and i = 2j + 1,
we replace Dα

m
, Dβ

n
by Eα

m
, Eβ

n
and shift all indices upwards by 1. �

Since we have covered all cases, the conclusion of Lemma 3.7 follows. �

We are now ready to prove the first part of Lemma 2.10 above, which we restate now.

Lemma 3.8. For all m, n, α, β, F as above, s ≥ 0 and t ≥ 1, Xα,β,F
m,n,s,<t is an open subset of

Xα
<t.
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Proof. Suppose that x ∈ Xα,β,F
m,n,s,<t ⊆ Y α,β. By Lemma 3.6, there is an open subset U of Y α,β

that is (α, β)-small at x and it is sufficient to show that U ⊆ Xα,β,F
m,n,s,<t.

The claim follows from Lemma 3.7 if x /∈ Γα or F (x) /∈ Γβ . Therefore, we can assume that

x ∈ Γα and F (x) ∈ Γβ , and thus d(α, x) = rαk and d(β, F (x)) = rβl for some k, l ≥ 1. Since

x ∈ Xα,β,F
m,n,s,<t ⊆ Xα

<t, this implies that t > k.
We can further assume that k = 2i and l = 2j for some i, j ≥ 1, since the cases that k = 2i+1

or l = 2j + 1 for some j ≥ 0 are symmetric. We can finally assume that x ∈ Dα
m
, since the case

that x ∈ Eα
m

is symmetric.
Since d(α, x) = rα2i, the last assumption implies that i ∈ Evenm. Since x ∈ Dα

m
∩ Y α,β =

F−1[Dβ
n
] ∩ Y α,β, we further have F (x) ∈ Dβ

n
, and since d(β, F (x)) = rβ2j , this implies that

j ∈ Evenn. It now follows from i ∈ Evenm and j ∈ Evenn that

cm(k) = cm(2i) = cn(2j) = cn(l).

Since x ∈ Xα,β,F
m,n,s,<t, there is some unfolding ξ = (f, g) with (k, k + 1) ∼ξ (l, l + 1) and 0 ∼ξ s.

Now the first case of Lemma 3.1 yields an unfolding ξ∗ = (f∗, g∗) of Gm, Gn that extends ξ with
(k − 1, k) ∼ξ∗ (l − 1, l) and ran(f∗) = ran(f) ∪ {k}. We have 0 ∼ξ∗ s, since ξ∗ extends ξ. Since
moreover t /∈ ran(f) and t > k, we have t /∈ ran(f∗). It is thus sufficient to show the following.

Claim. U ⊆ Xα,β,F
m,n,ξ∗ .

Proof. Suppose that y ∈ U is given. Since U is (α, β)-small at x and moreover d(α, x) = rα2i and

d(β, F (x)) = rβ2j , we have U ⊆ Cα
(2i−1,2i+1) and F [U ] ⊆ Cβ

(2j−1,2j+1). In particular, we have that

y ∈ Y α,β.

Case. y ∈ Cα
(2i−1,2i).

Since Dα
m
, Eα

m
are complements in Xα∗ and Dβ

n
, Eβ

n
in Xβ∗, our assumption Dα

m
∩ Y α,β =

F−1[Dβ
n
] ∩ Y α,β immediately implies that Eα

m
∩ Y α,β = F−1[Eβ

n
] ∩ Y α,β . Since Cα

(2i−1,2i) ⊆ Eα
m
,

we then have y ∈ Eα
m

∩ Y α,β = F−1[Eβ
n
] ∩ Y α,β and hence F (y) ∈ Eβ

n
. Since j ∈ Evenn, we thus

have

F (y) ∈ Cβ

(2j−1,2j+1) ∩Eβ
n
= Cβ

(2j−1,2j).

Since (2i− 1, 2i) ∼ξ∗ (2j − 1, 2j) by the choice of ξ∗, it follows that y ∈ Xα,β,F
m,n,ξ∗ .

Case. y ∈ Cα
[2i,2i+1).

Since Cα
[2i,2i+1) ⊆ Dα

m
, then y ∈ Dα

m
∩ Y α,β = F−1[Dβ

n
] ∩ Y α,β and hence F (y) ∈ Dβ

n
. Since

j ∈ Evenn, we have

F (y) ∈ Cβ

(2j−1,2j+1) ∩Dβ
n
= Cβ

[2j,2j+1).

Since (2i, 2i+ 1) ∼ξ (2j, 2j + 1) by the choice of ξ, it follows that y ∈ Xα,β,F
m,n,ξ ⊆ Xα,β,F

m,n,ξ∗ . �

The previous claim completes the proof of Lemma 3.8 in the case that is stated above. We now
describe the necessary changes for the remaining cases.

We first assume x ∈ Eα
m

instead of x ∈ Dα
m
. We then have i ∈ Oddm, j ∈ Oddn, (k − 1, k) ∼ξ

(l − 1, l) and obtain some ξ∗ with (k, k + 1) ∼ξ∗ (l, l + 1) by the second case of Lemma 3.1. As

in the two cases in the previous proof, it follows that y ∈ Cα
(2i,2i+1) ⇐⇒ F (y) ∈ Cβ

(2j,2j+1) and

therefore y ∈ Xα,β,F
m,n,ξ∗ for all y ∈ U .

Second, we assume that k = 2i + 1 and l = 2j + 1. If x ∈ Dα
m
, then i ∈ Oddm, j ∈ Oddn,

(k − 1, k) ∼ξ (l − 1, l) and there is some ξ∗ with (k, k + 1) ∼ξ∗ (l, l + 1) by the second case of

Lemma 3.1. Similarly to the above proof, we obtain y ∈ Cα
(2i+1,2i+2) ⇐⇒ F (y) ∈ Cβ

(2j+1,2j+2) and

the conclusion follows. On the other hand, if x ∈ Eα
m
, then i ∈ Evenm, j ∈ Evenn, (k, k + 1) ∼ξ

(l, l+1). We then obtain some ξ∗ with (k− 1, k) ∼ξ∗ (l− 1, l) by the first case of Lemma 3.1 and

y ∈ Cα
(2i,2i+1) ⇐⇒ F (y) ∈ Cβ

(2j,2j+1) for all y ∈ U .

Third, we assume that k = 2i and l = 2j + 1. If x ∈ Dα
m
, then i ∈ Evenm, j ∈ Oddn,

(k, k + 1) ∼ξ (l − 1, l) and we obtain some ξ∗ with (k − 1, k) ∼ξ∗ (l, l + 1) by the third case

of Lemma 3.1. As above, it follows that y ∈ Cα
(2i−1,2i) ⇐⇒ F (y) ∈ Cβ

(2j+1,2j+2) for all y ∈ U .
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If x ∈ Eα
m
, then i ∈ Oddm, j ∈ Evenn, (k − 1, k) ∼ξ (l, l + 1). We then obtain some ξ∗ with

(k, k+ 1) ∼ξ∗ (l− 1, l) by the last case of Lemma 3.1 and y ∈ Cα
(2i,2i+1) ⇐⇒ F (y) ∈ Cβ

(2j,2j+1) for

all y ∈ U .
Finally, assume that k = 2i + 1 and l = 2j. If x ∈ Dα

m
, then i ∈ Oddm, j ∈ Evenn,

(k−1, k) ∼ξ (l, l+1) and we obtain some ξ∗ with (k, k+1) ∼ξ∗ (l−1, l) by the last case of Lemma

3.1. Then y ∈ Cα
(2i+1,2i+2) ⇐⇒ F (y) ∈ Cβ

(2j−1,2j) for all y ∈ U . If x ∈ Eα
m
, then i ∈ Evenm,

j ∈ Oddn, (k, k + 1) ∼ξ (l − 1, l), we obtain ξ∗ with (k − 1, k) ∼ξ∗ (l, l + 1) by the third case of

Lemma 3.1 and y ∈ Cα
(2i,2i+1) ⇐⇒ F (y) ∈ Cβ

(2j,2j+1) for all y ∈ U . �

We are now ready to prove the second part of Lemma 2.10 above, which we restate now.

Lemma 3.9. For all m, n, α, β, F as above, s ≥ 0 and t ≥ 1, Xα,β,F
m,n,s,<t is a relatively closed

subset of Xα
<t.

Proof. Suppose that x ∈ Xα
<t and x = limu≥0 xu for some sequence x = 〈xu | u ≥ 0〉 with

xu ∈ Xα,β,F
m,n,s,<t for all u ≥ 0.

Claim. x ∈ Y α,β.

Proof. We will show that F (xu) ∈ Xβ
<k for some k ≥ 1 and all u ≥ 0. Since F is continuous, this

implies that F (x) ∈ Xβ
<k+1 and thus x ∈ Y α,β .

Towards a contradiction, suppose that this claim is false. We first choose some v ≥ 0 with
2mv+1 > t and let pv = 2(mv+1 −mv) − 1. Moreover, let k ≥ 0 with 2nk > s and nk+1 − nk >

pv + 1. By the assumption, there is some u ≥ 0 with F (xu) /∈ Xβ
<2nk+1

. Since xu ∈ Xα,β,F
m,n,s,<t,

there is some unfolding ζ = (f, g) of Gm, Gn with 0 ∼ζ s, t /∈ ran(f) and xu ∈ Xα,β,F
m,n,ζ . In

particular, ran(f) ⊆ {0, . . . , t− 1} and xu, ζ are compatible with respect to m, n, α, β, F . Since

F (xu) /∈ Xβ
<2nk+1

and by the definition of compatibility, ran(g) contains a number that is at least

2nk+1. Since s < 2nk+pv+1 < 2nk+1 by the choice of k and ran(g) is an interval in Z containing
s, it follows that 2nk + pv ∈ ran(g). Let j ∈ dom(ξ) with g(j) = 2nk + pv + 1.

Now let [i, i∗] be a maximal subinterval of dom(ξ) that containins j with ran(g↾[i, i∗]) ⊆
[2nk, 2nk+1 − 1]. Since s ∈ ran(g) and s < 2nk, this must be a strict subinterval and it thus
follows from the maximality that g(i) ∈ {2nk, 2nk+1 − 1} or g(i∗) ∈ {2nk, 2nk+1 − 1}. Since
nk+1 − nk > pv and g(j) = 2nk + pv + 1 by the choice of k and j, we thus have |g(j)− g(i)| > pv
or |g(j)− g(i∗)| > pv.

We further choose some a ∈ [i, i∗] such that f(a) takes the least value for such a. Since
2mv+1 > t, there is a unique l ≤ v with f(a) ∈ [2nl, 2nl+1 − 1]. Let w = v + 1. By (2) of Lemma
3.3 applied to the restrictions of g, f to [i, i∗] instead of f , g and the parameters k, l, v, w instead
of s, t, v, w, we have that |g(j) − g(j∗)| ≤ pv = 2(mv+1 − mv) − 1 for all j∗ ∈ [i, i∗], but this
contradicts the inequalities above. �

By the previous claim and Lemma 3.6, there is an open subset U of Y α,β that is (α, β)-small
at x. Since x = limu≥0 xu ∈ U and U is open, there is some u ≥ 0 with xu ∈ U . Since moreover

xu ∈ Xα,β,F
m,n,s,t, there is some unfolding ξ with xu ∈ Xα,β,F

m,n,ξ and 0 ∼ξ u.

If x /∈ Γα or F (x) /∈ Γβ , then x ∈ Xα,β,F
m,n,ξ ⊆ Xα,β,F

m,n,s,<t by Lemma 3.7. We now assume

that x ∈ Γα and F (x) ∈ Γβ. Then d(α, x) = rαk and d(β, F (x)) = rβl for some k, l ≥ 1. Since

x ∈ Xα,β,F
m,n,s,<t ⊆ Xα

<t, we have t > k.
We can further assume that k = 2i and l = 2j for some i, j ≥ 1, since the cases that k = 2i+1

or l = 2j + 1 for some j ≥ 0 are symmetric. We can finally assume that x ∈ Dα
m
, since the case

x ∈ Eα
m

is symmetric.
Since d(α, x) = rα2i, the last assumption implies that i ∈ Evenm. Since moreover F (x) ∈ Y α,β

by the last claim, we have x ∈ Dα
m

∩ Y α,β = F−1[Dβ
n
] ∩ Y α,β and hence F (x) ∈ Dβ

n
. Since

d(β, F (x)) = rβ2j , this implies that j ∈ Evenn and hence

cm(k) = cm(2i) = cn(2j) = cn(l).

Since U is (α, β)-small at x and moreover d(α, x) = rα2i and d(β, F (x)) = rβ2j , we have U ⊆

Cα
(2i−1,2i+1) and F [U ] ⊆ Cβ

(2j−1,2j+1). It is sufficient to prove the following.
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Claim. x ∈ Xα,β,F
m,n,s,<t.

Proof. We already argued that xu ∈ U ⊆ Cα
(2i−1,2i+1).

Case. xu ∈ Dα
m
.

Since i ∈ Evenm, we then have xu ∈ Cα
(2i−1,2i+1) ∩ Dα

m
= Cα

[2i,2i+1). Therefore xu ∈ Dα
m

∩

Y α,β = F−1[Dβ
n
] ∩ Y α,β and thus F (xu) ∈ Dβ

n
. Since moreover F (xu) ∈ F [U ] ⊆ Cβ

(2j−1,2j+1) and

j ∈ Evenn, we obtain

F (xu) ∈ Cβ

(2j−1,2j+1) ∩Dβ
n
= Cβ

[2j,2j+1).

Since xu ∈ Xα,β,F
m,n,ξ and we just argued that xu ∈ Cα

[2i,2i+1) and F (xu) ∈ Cβ

[2j,2j+1), we have

(2i, 2i+ 1) ∼ξ (2j, 2j + 1) by the definition of ∼ξ. It follows that x ∈ Xα,β,F
m,n,ξ ⊆ Xα,β,F

m,n,s,<t.

Case. xu ∈ Eα
m
.

Note that the assumption Dα
m
∩Y α,β = F−1[Dβ

n
]∩Y α,β immediately implies that Eα

m
∩Y α,β =

F−1[Eβ
n
] ∩ Y α,β. Since i ∈ Evenm, we have xu ∈ Cα

(2i−1,2i+1) ∩ Eα
m

= Cα
(2i−1,2i) by the case

assumption. Therefore xu ∈ Eα
m
∩Y α,β = F−1[Eβ

n
]∩Y α,β and hence F (xu) ∈ Eβ

n
. Since moreover

F (xu) ∈ F [U ] ⊆ Cβ

(2j−1,2j+1) and j ∈ Evenn, we have

F (xu) ∈ Cβ

(2j−1,2j+1) ∩ Eβ
n
= Cβ

(2j−1,2j).

Since xu ∈ Xm,n,α,β
ξ,F and we just argued that xu ∈ Cα

(2i−1,2i) and F (xu) ∈ Cβ

(2j−1,2j), we have

(2i − 1, 2i) ∼ξ (2j − 1, 2j) by the definition of ∼ξ. We argued above that cm(k) = cm(2i) =
cn(2j) = cm(l). Therefore, the second case of Lemma 3.1 yields an unfolding ξ∗ that extends ξ
with (2i, 2i+ 1) ∼ξ∗ (2j, 2j + 1) and ran(ξ∗) = ran(ξ) ∪ {k}. Since we argued in the beginning of

the proof that t > k, it thus follows that t /∈ ran(ξ∗) and x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t. �

The previous claim completes the proof of Lemma 3.9 in the case above. We now discuss the
necessary changes to the previous argument in the remaining cases.

We first assume that x ∈ Eα
m
. If xu ∈ Dα

m
, then xu ∈ Cα

(2i,2i+1), F (xu) ∈ Cβ

(2j,2j+1) and

xu ∈ Xm,n,α,β
ξ,F . Therefore (2i, 2i + 1) ∼ξ (2j, 2j + 1) by the definition of ∼ξ. Since i ∈ Oddm

and j ∈ Oddn, we have cm(2i) = cn(2j). By the first case of Lemma 3.1, there is an unfolding
ξ∗ = (f∗, g∗) that extends ξ with (2i− 1, 2i) ∼ξ∗ (2j − 1, 2j) and ran(f∗) = ran(f) ∪ {k}. It thus

follows that x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t. Otherwise, we have xu ∈ Eα
m
. It follows that xu ∈ Cα

(2i−1,2i]

and F (xu) ∈ Cβ

(2j−1,2j]. Since xu ∈ Xα,β,F
m,n,ξ , we have (2i − 1, 2i) ∼ξ (2j − 1, 2j) by the definition

of ∼ξ and hence x ∈ Xα,β,F
m,n,ξ .

Second, we assume that k = 2i + 1 and l = 2j + 1. Moreover, we first assume that x ∈ Dα
m
.

Then i ∈ Oddm, j ∈ Oddn and hence cm(2i+ 1) = cn(2j + 1). If xu ∈ Dα
m
, then xu ∈ Cα

(2i,2i+1],

F (xu) ∈ Cβ

(2j,2j+1] and hence (2i, 2i+ 1) ∼ξ (2j, 2j + 1). It follows that x ∈ Xα,β,F
m,n,ξ . If xu ∈ Eα

m
,

then xu ∈ Cα
(2i+1,2i+2), F (xu) ∈ Cβ

(2j+1,2j+2) and hence (2i+1, 2i+2) ∼ξ (2j+1, 2j+2). By the first

case of Lemma 3.1, we obtain some ξ∗ with (2i, 2i+1) ∼ξ∗ (2j, 2j+1) and ran(f∗) = ran(f)∪{k}.

Therefore x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t.

If x ∈ Eα
m
, then i ∈ Evenm, j ∈ Evenn and hence cm(2i + 1) = cn(2j + 1). If xu ∈ Dα

m
, then

xu ∈ Cα
(2i,2i+1), F (xu) ∈ Cβ

(2j,2j+1) and hence (2i, 2i + 1) ∼ξ (2j, 2j + 1). By the second case of

Lemma 3.1, we obtain some ξ∗ with (2i+1, 2i+2)∼ξ∗ (2j+1, 2j+2) and ran(f∗) = ran(f)∪{k},

hence x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t. If xu ∈ Eα
m
, then xu ∈ Cα

[2i+1,2i+2), F (xu) ∈ Cβ

[2j+1,2j+2) and

therefore (2i+ 1, 2i+ 2) ∼ξ (2j + 1, 2j + 2) and x ∈ Xα,β,F
m,n,ξ .

Third, we assume that k = 2i and l = 2j + 1. Moreover, we first assume that x ∈ Dα
m
. Then

i ∈ Evenm, j ∈ Oddn and hence cm(2i) = cn(2j + 1). If xu ∈ Dα
m
, then xu ∈ Cα

[2i,2i+1) and

F (xu) ∈ Cβ

(2j,2j+1]. Therefore (2i, 2i + 1) ∼ξ (2j, 2j + 1) and x ∈ Xα,β,F
m,n,ξ . If xu ∈ Eα

m
, then

xu ∈ Cα
(2i−1,2i), F (xu) ∈ Cβ

(2j+1,2j+2) and hence (2i − 1, 2i) ∼ξ (2j + 1, 2j + 2). By the last case

of Lemma 3.1, we obtain some ξ∗ with (2i, 2i + 1) ∼ξ∗ (2j, 2j + 1) and ran(f∗) = ran(f) ∪ {k}.

Thus x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t.
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If x ∈ Eα
m
, then i ∈ Oddm, j ∈ Evenn and hence cm(2i) = cn(2j + 1). If xu ∈ Dα

m
, then

xu ∈ Cα
(2i,2i+1), F (xu) ∈ Cβ

(2j,2j+1) and hence (2i, 2i + 1) ∼ξ (2j, 2j + 1). By the third case of

Lemma 3.1, we obtain some ξ∗ with (2i− 1, 2i) ∼ξ∗ (2j + 1, 2j + 2) and ran(f∗) = ran(f) ∪ {k}.

Hence x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t. If xu ∈ Eα
m
, then xu ∈ Cα

(2i−1,2i] and F (xu) ∈ Cβ

[2j+1,2j+2).

Therefore (2i− 1, 2i) ∼ξ (2j + 1, 2j + 2) and x ∈ Xα,β,F
m,n,ξ .

Finally, we assume that k = 2i+ 1 and l = 2j. Moreover, we first assume that x ∈ Dα
m
. Then

i ∈ Oddm, j ∈ Evenn and hence cm(2i + 1) = cn(2j). If xu ∈ Dα
m
, then xu ∈ Cα

(2i,2i+1] and

F (xu) ∈ Cβ

[2j,2j+1). Therefore (2i, 2i + 1) ∼ξ (2j, 2j + 1) and x ∈ Xα,β,F
m,n,ξ . If xu ∈ Eα

m
, then

xs ∈ Cα
(2i+1,2i+2), F (xu) ∈ Cβ

(2j−1,2j) and hence (2i+ 1, 2i+ 2) ∼ξ (2j − 1, 2j). By the third case

of Lemma 3.1, we obtain some ξ∗ with (2i, 2i + 1) ∼ξ∗ (2j, 2j + 1) and ran(f∗) = ran(f) ∪ {k}.

Thus x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t.

If x ∈ Eα
m
, then i ∈ Evenm, j ∈ Oddn and hence cm(2i + 1) = cn(2j). If xu ∈ Dα

m
, then

xu ∈ Cα
(2i,2i+1), F (xs) ∈ Cβ

(2j,2j+1) and hence (2i, 2i + 1) ∼ξ (2j, 2j + 1). By the last case of

Lemma 3.1, we obtain some ξ∗ with (2i+ 1, 2i+ 2) ∼ξ∗ (2j, 2j + 1) and ran(f∗) = ran(f) ∪ {k}.

Hence x ∈ Xα,β,F
m,n,ξ∗ ⊆ Xα,β,F

m,n,s,<t. If xu ∈ Eα
m
, then xu ∈ Cα

[2i+1,2i+2) and F (xu) ∈ Cβ

(2j−1,2j].

Therefore (2i+ 1, 2i+ 2) ∼ξ (2j − 1, 2j) and x ∈ Xα,β,F
m,n,ξ . �

4. Incomparable non-definable sets

The main result suggests the question whether it is possible to construct larger families of
incomparable subsets of metric spaces of positive dimension. The next result shows that this is
possible, if we make an additional assumption.

Theorem 4.1. Suppose that (X, d) is a locally compact metric space of positive dimension. Then
there is a (definable) injective map that takes sets of reals to subsets of X in such a way that these
subsets are pairwise incomparable.

Proof. We will write cl(Y ) for the closure of a subset Y of X . Let A denote the set of non-positive
and B the set of positive elements of X . Since (X, d) has positive dimension, B is nonempty. Let
γ ∈ B. Since (X, d) is moreover locally compact, there is an open ball Y containing γ that is
pre-compact, i.e. its closure cl(Y ) is compact. In particular, Y is an open subset of a compact
metric space and hence itself a Polish space.

It follows from the definition of A that its dimension is 0. If B ∩ Y is countable, then Y has
dimension 0 by [HW41, Theorem II.2] and this contradicts the choice of γ. Therefore B ∩ Y
is uncountable. Since Y is pre-compact, it follows from the perfect set property for closed sets
[Kec95, Theorem 6.2] that there is a perfect subset C of cl(B) ∩ Y that is nowhere dense in
cl(B) ∩ Y .

Claim. There is a sequence α = 〈αn | n ≥ 0〉 of distinct elements of B ∩ Y and a sequence
r = 〈rn | n ≥ 0〉 of positive real numbers converging to 0 with the following properties for all
distinct i, j ∈ N.

(a) cl(Bri(αi)) ⊆ Y \ C.
(b) Bri(αi) ∩Brj (αj) = ∅.
(c) C ⊆ cl({αn | n ≥ 0}).

Since the construction of such sequences is immediate, we omit the proof. Note that these
conditions remain true if α is fixed and each rn is decreased. Recall that rα > 0 was chosen in
the beginning of Section 2 such that α is Brα(α)-positive for any positive α and Xα = Brα(α).
Again, this remains true if α is fixed and rα is decreased. Therefore, we can assume that rn = rαn

for all n ≥ 0.
Moreover, we fix a sequence 〈mn | n ≥ 0〉 of strictly increasing sequences mn in N

N beginning
with 0 such that ∆mn is strictly increasing and moreover, the sequences ∆mn are pairwise not
Etail-equivalent for different n ≥ 0. We now consider the subsets Dαn

mn
of Xαn that were given in

Definition 2.3. We further fix a bijection h : 2N → C and for each subset I of 2N, let

DI = h[I] ∪
⋃

n≥0

Dαn
mn

.
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For the following claims, we fix some n ≥ 0. Let A∗ denote the set of non-Xαn-positive and B∗

the set of Xαn -positive elements of Xαn . Then A∗ is an open and B∗ a relatively closed subset of
Xαn and moreover αn ∈ B∗.

Claim. Suppose that 0 < s < rn and U is a subset of B∗ ∩Bs(αn) with αn ∈ U that is open and
closed in B∗ ∩Bs(αn). Then for any r < s, there is some x ∈ U with d(αn, x) = r.

Proof. The claim holds for r = 0, since αn ∈ U . Assuming that the claim fails for some r with
0 < r < s, let B̄r(αn) = {x ∈ X | d(αn, x) ≤ r} denote the closed ball of radius r around xn in
X and V = U ∩ Br(αn) = U ∩ B̄r(αn). Then V is a subset of B∗ with αn ∈ V that is open and
closed in B∗ and the values d(αn, x) for x ∈ V are bounded strictly below s. Thus it is sufficient
to show that there is no such set.

We choose some ǫ > 0 with d(αn, x) < s− ǫ for all x ∈ V . We further claim that there is some
δ with 0 < δ ≤ ǫ and d(x, y) > δ for all (x, y) ∈ V × (B∗ \ V ). Assuming that this fails, it follows
from the fact that Y is pre-compact that there exist two sequences in V and B∗ \ V that both
converge to the same y ∈ cl(Y ). Since B∗ is closed in Xαn and d(αn, y) < rn, we have y ∈ B∗.
But this contradicts the fact that V is open and closed in B∗.

We fix some such δ and let S∼ = {x ∈ Bs(αn) | d(x, V ) ∼ δ} for ∼∈ {=,≤, <}. Since S=, S≤

are closed subsets of Bs(αn) and d(αn, x) ≤ s − ǫ for all x ∈ S≤ by the choice of ǫ and δ, these
sets are closed in cl(Y ) and in X .

By the definition of A∗, there is a family 〈Ak | k ∈ K〉 of sets that are both open and closed in
X with A∗ =

⋃

k∈K Ak. Since S= is a closed subset of the compact set cl(Y ), it is itself compact.
Since S= is disjoint from B∗ by the choice of δ and is thus a subset of A∗, there is a finite set
L ⊆ K with S= ⊆

⋃

l∈LAl. Let W = S≤ \
⋃

l∈L Al = S< \
⋃

l∈LAl. Since the sets Al are open
and closed, S≤ is closed and S< is open in X , we have that W is a subset of Bs(αn) that contains
αn and is open and closed in X . However, this contradicts the fact that αn ∈ B∗. �

It remains to show that DI , DJ are incomparable whenever I, J are distinct subsets of 2N.
Towards a contradiction, assume that F : X → X is a continuous map with DI = F−1[DJ ]. Let
B∗ = B∗ ∩Br

αn
1

(αn).

Claim. There is some x ∈ B∗ with F (x) /∈ C.

Proof. Towards a contradiction, we assume that ran(F ↾B∗) ⊆ C. It follows that for any subset V
of C with F (αn) ∈ V that is open and closed in C, its preimage U = (F ↾B∗)

−1[V ] contains αn

and is open and closed in B∗. By the previous claim applied to s = rαn

1 , for any r < rαn

1 there is
some x ∈ U with d(αn, x) = r.

We now apply this statement to arbitrarily small neighborhoods V of F (αn) in C that are open
and closed in C and to arbitrarily large r < rα1 to obtain a sequence x = 〈xi | i ≥ 0〉 of elements
of U as above. Since Y is pre-compact, x has a subsequence converging to some x ∈ cl(Y ) with
d(αn, x) = rαn

1 and F (x) = F (αn).
Since mn begins with 0, we have 0 ∈ Evenmn

by Definition 2.2 and thus the first block of Dαn
mn

is Cαn

[0,1) = Br
αn
1

(αn) by Definition 2.3. Since d(αn, x) = rαn

1 , this implies that x /∈ Dαn
mn

and

x /∈ DI by the definition of DI before the second claim and the conditions (a) and (b) in the first
claim. Since moreover αn ∈ Dαn

mn
⊆ DI and F (x) = F (αn) by the choice of x, this contradicts the

assumption that F is a reduction of DI to DJ . �

We now fix some x ∈ B∗ as in the last claim. Since x ∈ B∗ = B∗ ∩ Br
αn
1

⊆ Br
αn
1

⊆ Dαn
mn

⊆

DI = F−1[DJ ], we have F (x) ∈ DJ . Since moreover F (x) /∈ C by the choice of x, there is some
k ∈ N with F (x) ∈ Dαk

mk
by the definition of DJ .

Claim. ∆mn, ∆mk are Etail-equivalent.

Proof. Let Y αn,αk = Xαn ∩F−1[Xαk ] as given before Definition 2.8. We have Dαn
mn

∩Xαn = DI ∩
Xαn and Dαk

mk
∩Xαk = DJ ∩Xαk by the definition of DI , DJ and condition (a) in the first claim.

Moreover, we made the assumption that DI = F−1[DJ ]. Hence Dαn
mn

∩ Y αn,αk = DI ∩ Y αn,αk =

F−1[DJ ]∩Y αn,αk = F−1[DJ ∩Xαk ]∩Y αn,αk = F−1[Dαn
mn

∩Xαk ]∩Y αn,αk = F−1[Dαn
mn

]∩Y αn,αk .
In particular, the conditions stated before Definition 2.8 hold for mn, mk, αn, αk, F . We further
have x ∈ Br

αn
1

(αn), F (x) ∈ Dαk
mk

⊆ Xαk and x ∈ B∗ by the choice of x, k before this claim.
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These facts show that Lemma 2.11 can be applied to the parameters α = αn, β = αk, m = mn,
n = mk, γ = x and F . The claim thus follows from Lemmas 2.11 and 2.13. �

The last claim implies that n = k by the definition of ∆mn, ∆mk. Thus the last two claims
show that for every n ≥ 0, there is some x ∈ Br

αn
1

(αn) ⊆ Brn(αn) with F (x) ∈ Dαn
mn

⊆ Brn(αn).

Since C ⊆ cl({αn | n ≥ 0}) by condition (c) in the first claim and r = 〈rn | n ≥ 0〉 converges to 0,
it follows that F ↾C = id↾C. We further have DI ∩ C = h[I] and DJ ∩ C = h[J ] by the definition
of DI , DJ . Since we assumed that DI = F−1[DJ ], it follows that h[I] = DI ∩C = F−1[DJ ]∩C =
DJ ∩ C = h[J ]. Since h : 2N → C is a bijection, this implies that I = J , but this contradicts our
assumption that I, J are distinct. �

5. Further remarks

We state a few further observations about the main theorem.

Remark 5.1. It follows from Theorem 1.5 that there are totally disconnected Polish spaces with un-
countably many incomparable Borel subsets, for instance the complete Erdös space (see [DvM09]).

By Urysohn’s metrization theorem, the conclusion of the main theorem holds for countably
based regular Hausdorff spaces, but fails without this requirement by the next remark.

Remark 5.2. The conclusion of Theorem 1.5 fails for countable T0 spaces by [MRSS15, Remark
5.35].

Moreover, the conclusion of the main theorem is optimal in the sense that the next remark
prevents further embedding results, unless additional properties of the space are assumed.

Remark 5.3. There is a compact connected subspace of X of R3 such that any two nonempty
subsets that are not equal to X are incomparable [Coo67, Theorem 11] (see the remark after
Theorem 5.15 in [MRSS15]).

We finally remark that the construction in the proof of the main theorem can also be used to
prove other embedding results.

Remark 5.4. If there is a partition of a metric space (X, d) into infinitely many subspaces of
positive dimension that are both open and closed, then (P(N),⊆) embeds into the Wadge quasi-
order on the collection of Borel subsets of (X, d). This can be proved by applying the construction
in the proof of the main theorem to the subspaces.

6. Questions

We conclude with some open questions. Since the sets Dn defined in the proof of the main
theorem are intersections of open and closed sets, this suggests the following question.

Question 6.1. Does the conclusion of Theorem 1.5 hold for sets A such that both A and its
complement is an intersection of an open and a closed set?

It is further open whether it is necessary for the proof of the main theorem to assume that the
space is a metric space.

Question 6.2. Does the conclusion of Theorem 1.5 hold for all regular spaces of positive dimen-
sion?

Moreover, it is open whether local compactness can be omitted in the construction of incom-
parable non-definable sets in Section 4.

Question 6.3. Does the conclusion of Theorem 1.8 hold for all Polish spaces of positive dimen-
sion?

In a different direction, it would be interesting to consider similar problems for functions on
arbitrary metric spaces (see e.g. [Car13, Ele02]).
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