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Abstract We investigate the expressivity of many-valued modal logics based on an
algebraic structure with a complete linearly ordered lattice reduct. Necessary and
sufficient algebraic conditions for admitting a suitable Hennessy-Milner property are
established for classes of image-finite and (appropriately defined) modally saturated
models. Full characterizations are obtained for many-valued modal logics based on
complete BL-chains that are finite or have the real unit interval [0, 1] as a lattice
reduct, including Łukasiewicz, Gödel, and product modal logics.1

1 Introduction

Many-valued modal logics generalize the Kripke semantics of classical modal logic
to incorporate a local many-valued semantics based on an algebra with a complete
lattice reduct, where the accessibility relation may be crisp (Boolean-valued) or take
values in the algebra itself (see, e.g., [13,14,26,5]). Such logics can be designed to
model modal notions such as necessity, belief, and spatio-temporal relations in the
presence of uncertainty, possibility, or vagueness, spanning, e.g., fuzzy belief [15],
fuzzy similarity measures [16], spatial reasoning with vague predicates [27], and
many-valued tense logics [19,10]. Many-valued multi-modal logics also provide a
basis, as in the classical setting, for defining fuzzy description logics (see, e.g., [18,
28,4]). More generally, many-valued modal logics provide a first foray, similarly to
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the classical case, into investigating useful and computationally feasible fragments of
corresponding many-valued first-order logics.

The study of many-valued modal logics is still very much in its infancy and has
focussed to date mostly on issues of axiomatization, decidability, and complexity.
Other topics from the rich theory of classical modal logic have not as yet received
much attention. In particular, the question of the expressivity of many-valued modal
logics has remained, until very recently (see [21,2] and the remarks in Section 6),
largely unexplored. In the classical setting, Van Benthem’s theorem demonstrates that
the modal logic K may be viewed as the bisimulation-invariant fragment of first-order
logic, and it may be asked if similar results hold in a many-valued context. To address
this challenging question, we ask first whether analogues of the Hennessy-Milner
property — modal equivalence coinciding with bisimilarity — hold for classes of
models for a many-valued modal logic, focussing in particular on the class of image-
finite models (i.e., where each state has finitely many successors) and a broader class
of modally saturated models. Modal equivalence between two states means here that
each formula takes the same value in both states, while the definition of a bisimulation
matches the classical notion except that variables take the same value in bisimilar
states.

We restrict our attention in this paper to crisp Kripke frames and assume that the
underlying algebra has a complete chain (linearly ordered lattice) reduct. This frame-
work spans many-valued modal logics defined over a complete MTL-chain (integral
commutative residuated chain): in particular, the families of Gödel, Łukasiewicz, and
product modal logics studied in [7,23,8,6], [17,20,11], and [29], respectively. More
concretely, in Section 2, we define a many-valued modal logic K(A)C based on a
single algebra A with a complete chain reduct and provide necessary and sufficient
algebraic conditions on A for the classes of image-finite models (Section 3) and
suitably defined modally saturated models (Section 4) to admit the Hennessy-Milner
property.

In Section 5, we obtain full characterizations when A is a BL-chain (a divisible
MTL-chain) that is finite or has the real unit interval [0, 1] as a lattice reduct. In
both cases, the class of image-finite models admits the Hennessy-Milner property
precisely when A is an MV-chain (a BL-chain with an involutive negation) or the
ordinal sum of two MV-chains. In particular, the class of image-finite models for
each Łukasiewicz modal logic and the three-valued Gödel modal logic admits the
Hennessy-Milner property, but this does not hold for product modal logic or Gödel
modal logics with more than three truth values. For the class of modally saturated
models to admit the Hennessy-Milner property, the BL-chain A must also be finite.

2 Many-Valued Kripke Models

Let L be a finite algebraic language that includes the binary operation symbols ∧ and
∨ and the constant symbols ⊥ and >. An algebraic structure A for L will be called
chain-based if the reduct 〈A,∧A,∨A,⊥A,>A〉 is a complete bounded chain; i.e.,
the order defined by a ≤A b :⇔ a ∧A b = a for a, b ∈ A is linear, and

∧A
B and
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B exist in A for all B ⊆ A. In what follows, we omit the superscript A when the

algebra or corresponding order is clear from the context.

Example 1 We will pay particular attention to chain-based algebras that arise in the
study of substructural and many-valued logics (see, e.g., [17,24,25,5]). An MTL-
algebra — where MTL stands for monoidal t-norm logic — is an algebraic structure

A = 〈A,∧,∨, ·,→,⊥,>〉

such that 〈A,∧,∨,⊥,>〉 is a bounded lattice, 〈A, ·,>〉 is a commutative monoid, and
for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ a ≤ b→ c.

For a ∈ A, we also fix ¬a := a → ⊥ and a ↔ b := (a → b) ∧ (b → a), and define
inductively a0 := > and an+1 := a · an for n ∈ N.

An MTL-algebra A is divisible and a BL-algebra — where BL stands for basic
logic — if whenever a ≤ b in A, there exists c inA such that b·c = a, or, equivalently,
A satisfies the identity x · (x → y) ≈ y · (y → x). If the lattice reduct of an MTL-
algebra or BL-algebra A is linearly ordered, then A is an MTL-chain or a BL-chain,
respectively. In particular, if the lattice reduct of A is the real unit interval [0, 1] with
the usual order, then · is a left-continuous t-norm with unit > = 1 and residual →,
and A is a standard MTL-chain; if · is also continuous, then A is a standard BL-
chain. Such algebras provide standard semantics for Łukasiewicz logic, Gödel logic,
and product logic when · is the Łukasiewicz t-norm max(0, x+y−1), the minimum
(Gödel) t-norm min(x, y), or the product t-norm xy (multiplication), respectively.

Let L�♦ be the language L extended with unary connectives � and ♦. The set
of formulas Fm�♦ of this language, with arbitrary members denoted by ϕ,ψ, . . . , is
defined inductively over a countably infinite set Var of propositional variables, with
arbitrary members denoted by p, q, . . . . The set of propositional formulas will be
denoted by Fm. Subformulas are defined as usual, the length `(ϕ) of ϕ ∈ Fm�♦ is
the number of symbols occurring in ϕ, and we write ϕ(p1, . . . , pn) to denote that the
variables occurring in ϕ are among p1, . . . , pn.

A frame is an ordered pair 〈W,R〉, where W is a non-empty set of states and
R ⊆ W × W is a binary accessibility relation on W . As usual, we write Ruv or
Ruv = 1 to denote 〈u, v〉 ∈ R and Ruv = 0 to denote 〈u, v〉 6∈ R. For any u ∈ W ,
we define R[u] := {v ∈W | Ruv}.

Now let A be a chain-based algebra. A K(A)C-model2 is a triple M = 〈W,R, V 〉,
where 〈W,R〉 is a frame and V : Var ×W → A is a mapping, called a valuation,
extended to V : Fm�♦ ×W→ A by

V (?(ϕ1, . . . , ϕn), w) = ?A(V (ϕ1, w), . . . , V (ϕn, w))

2 The superscript C denotes that the frame is “crisp”; more generally, a K(A)-model is defined for
frames equipped with a “many-valued” accessibility relation R : W ×W → A and the conditions for
�,♦ are revised accordingly (see [5] for details).
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for each n-ary operation symbol ? of L, and

V (�ϕ,w) =
∧
{V (ϕ, v) | Rwv}

V (♦ϕ,w) =
∨
{V (ϕ, v) | Rwv}.

A general definition of validity of formulas in K(A)C-models is not required for
considering relationships between modal equivalence and bisimulations. Indeed, such
a definition depends anyway on the intended interpretation of the logic. Nevertheless,
the following example provides a standard definition for a large family of many-
valued modal logics defined over a complete MTL-chain.

Example 2 Suppose that A is a complete MTL-chain (see Example 1). Then we may
say that ϕ ∈ Fm�♦ is valid in a K(A)C-model M = 〈W,R, V 〉 if V (ϕ,w) = >
for all w ∈ W . If ϕ is valid in all K(A)C-models, then ϕ is said to be K(A)C-valid.
Logics based on K(A)C-validity (and also K(A)-validity, where the relation R can
take values in A) have been investigated in some generality in [5], while the particular
cases of Gödel, Łukasiewicz, and product modal logics have been studied in greater
detail in [7,23,8,6], [17,20,11], and [29], respectively.

A K(A)C-model M = 〈W,R, V 〉 is called a tree-model with root w and height
n if 〈W,R〉 is a tree with root w and height n. Let us also write (a1, . . . , an) ∈ An
as a vector a and given a propositional formula ϕ(p1, . . . , pn) ∈ Fm, let ϕ[a] denote
the value of ϕ (understood as a term function) at a in A. For ψ(p1, . . . , pn) ∈ Fm
and ϕ1, . . . , ϕn ∈ Fm�♦, the formula ψ[ϕ1/p1, . . . , ϕn/pn] denotes the result of
replacing all occurrences of pi in ψ with ϕi for each i ∈ {1, . . . , n}. The following
useful substitution lemma is proved by a straightforward induction on the length of a
propositional formula.

Lemma 1 Let ψ(p1, . . . , pn) ∈ Fm and ϕ1, . . . , ϕn ∈ Fm�♦. Then for any K(A)C-
model M = 〈W,R, V 〉 and w ∈W ,

V (ψ[ϕ1/p1, . . . , ϕn/pn], w) = ψ[V (ϕ1, w), . . . , V (ϕn, w)].

In particular, if V (ϕi, w) = V (pi, w) for each i ∈ {1, . . . , n}, then

V (ψ[ϕ1/p1, . . . , ϕn/pn], w) = V (ψ,w).

Consider now two K(A)C-models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉. We
will say that w ∈ W and w′ ∈ W ′ are modally equivalent, written w ! w′, if
V (ϕ,w) = V ′(ϕ,w′) for all ϕ ∈ Fm�♦. The following lemma provides a useful
criterion for modal equivalence when considering tree-models of height 1.

Lemma 2 Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be K(A)C-tree-models of
height 1 with roots w and w′, respectively. Suppose that V (p, w) = V ′(p, w′) for
all p ∈ Var and V (�ϕ,w) = V ′(�ϕ,w′) and V (♦ϕ,w) = V ′(♦ϕ,w′) for every
propositional formula ϕ ∈ Fm. Then w and w′ are modally equivalent.
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Proof We prove the claim by induction on `(ϕ). The base case is immediate and
for the inductive step, the cases for the propositional connectives follow easily us-
ing the induction hypothesis. Suppose now that ϕ = �ψ, the case ϕ = ♦ψ be-
ing very similar. Let ψ∗ be the propositional formula obtained from ψ by replac-
ing (iteratively) all subformulas of the form �ψ′ by > and all subformulas of the
form ♦ψ′ by ⊥. Then, using the fact that M and M′ are tree-models of height
1, it follows by an easy induction that V (ψ, v) = V (ψ∗, v) for all v ∈ W such
that Rwv, and V ′(ψ, v′) = V ′(ψ∗, v′) for all v′ ∈ W ′ such that R′w′v′. But then
V (�ψ,w) = V (�ψ∗, w) = V ′(�ψ∗, w′) = V ′(�ψ,w′) as required. ut

A non-empty relation Z ⊆W ×W ′ will be called a bisimulation between M and
M′ if the following conditions are satisfied:

1. If wZw′, then V (p, w) = V ′(p, w′) for all p ∈ Var.

2. If wZw′ and Rwv, then there exists v′ ∈ W ′ such that vZv′ and R′w′v′ (the
forth condition).

3. If wZw′ and R′w′v′, then there exists v ∈W such that vZv′ and Rwv (the back
condition).

We say that w ∈ W and w′ ∈ W ′ are bisimilar, written w ≡ w′, if there exists a
bisimulation Z between M and M′ such that wZw′.

The notions of modal equivalence and bisimulation defined here follow very
closely the standard classical notions; the only difference is that agreement of vari-
ables in bisimilar states and formulas in modally equivalent states means that they
take the same values in those states. Moreover, the proof that bisimilarity implies
modal equivalence is very similar to the classical proof (see, e.g., [3]).

Lemma 3 Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be K(A)C-models. If w ∈
W and w′ ∈W ′ are bisimilar, then they are modally equivalent.

Proof We prove that for all ϕ ∈ Fm�♦, w ∈ W , and w′ ∈ W ′, w ≡ w′ implies
V (ϕ,w) = V ′(ϕ,w′), proceeding by induction on `(ϕ). For the case where ϕ is a
variable, the claim follows directly from the definition of a bisimulation. The cases
of the propositional connectives follow immediately using the induction hypothesis.
Consider then ϕ = ♦ψ, the case ϕ = �ψ being very similar. Since w ≡ w′, it
follows by the forth condition that for each v ∈ R[w], there exists v′ ∈ R′[w′] such
that v ≡ v′ and, by the induction hypothesis, V (ψ, v) = V ′(ψ, v′). So V (♦ϕ,w) ≤
V ′(♦ϕ,w′). But also by the back condition, for each v′ ∈ R′[w′], there exists v ∈
R[w] such that v ≡ v′ and, by the induction hypothesis, V (ψ, v) = V ′(ψ, v′). So
V (♦ψ,w) ≥ V ′(♦ψ,w′). Hence V (♦ψ,w) = V ′(♦ψ,w′) as required. ut

Modal equivalence between states does not imply the bisimilarity of those states
even in the classical case. Instead, we consider certain classes of models for which
the two properties may or may not coincide, depending on the underlying chain-
based algebra A. We say that a class K of K(A)C-models has the Hennessy-Milner
property if for any models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 in K, whenever
the states w ∈W and w′ ∈W ′ are modally equivalent, they are also bisimilar. In the
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next section, we provide an algebraic characterization of chain-based algebras A for
which the class of “image-finite” K(A)C-models has the Hennessy-Milner property.
In Section 4, we then adapt this characterization to a suitable notion of “modally
saturated” K(A)C-models. Finally, in Section 5, we use these characterizations to
obtain precise descriptions for the case of BL-chains (divisible MTL-chains) that are
finite or have lattice reduct [0, 1].

3 Image-Finite Models

Let us fix again a chain-based algebra A. We call a K(A)C-model image-finite ifR[w]
is finite for each w ∈ W . The standard proof that the class of image-finite Kripke
models for the classical modal logic K has the Hennessy-Milner property proceeds
as follows (see [3]). Suppose, towards a contradiction, that there exist image-finite
Kripke models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 for which modal equiva-
lence is not a bisimulation. Now assume (without loss of generality) that the forth
condition fails. Then there are w, v ∈ W and w′ ∈ W ′ such that w ! w′ and
Rwv, but for each v′i ∈ R′[w′] = {v′1, . . . , v′n}, there is a formula ϕi satisfying
V (ϕi, v) = 0 and V ′(ϕi, v

′
i) = 1. Defining ϕ = �(ϕ1 ∨ · · · ∨ ϕn), we obtain

V (ϕ,w) = 0 and V ′(ϕ,w′) = 1, contradicting w! w′.
This reasoning extends easily to K(A)C in the case where all distinct pairs of

values in A can be distinguished by a one-variable propositional formula.

Lemma 4 Suppose that there exists c ∈ A such that for any distinct a, b ∈ A, there
exists a one-variable propositional formula ψa,b ∈ Fm satisfying ψa,b[a] ≥ c and
ψa,b[b] < c. Then the class of image-finite K(A)C-models has the Hennessy-Milner
property.

Proof We revisit the proof for the classical case. Suppose for a contradiction that
there are image-finite K(A)C-models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 for
which modal equivalence is not a bisimulation. Assuming (without loss of generality)
that the forth condition does not hold, there are w, v ∈ W and w′ ∈ W ′ such that
w ! w′ and Rwv, but for each v′i ∈ R′[w′] = {v′1, . . . , v′n}, there exists ϕi ∈
Fm�♦ satisfying V (ϕi, v) 6= V ′(ϕi, v

′
i). Let ai = V ′(ϕi, v

′
i) and bi = V (ϕi, v)

for each i ∈ {1, . . . , n}. Then, by assumption, there is a one-variable propositional
formula ψi(p) for each i ∈ {1, . . . , n} such that ψi[ai] ≥ c and ψi[bi] < c. We define

ϕ = �(ψ1[ϕ1/p] ∨ · · · ∨ ψn[ϕn/p]).

Then, using Lemma 1 and the linearity of A,

V (ϕ,w) ≤ V (ψ1[ϕ1/p], v) ∨ · · · ∨ V (ψn[ϕn/p], v)

= ψ1[b1] ∨ · · · ∨ ψn[bn]

< c,
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but also
V ′(ϕ,w′) =

∧n
i=1 V

′(ψ1[ϕ1/p] ∨ · · · ∨ ψn[ϕn/p], v
′
i)

≥
∧n
i=1 V

′(ψi[ϕi/p], v
′
i)

=
∧n
i=1 ψi[ai]

≥ c.

This contradicts w! w′. ut

Example 3 Consider the chain-based algebra for three-valued Łukasiewicz logic

Ł3 = 〈{0, 12 , 1},min,max, ·Ł,→Ł, 0, 1〉,

where x ·Ł y = max(0, x + y − 1) and x →Ł y = min(1, 1 − x + y). We can
distinguish values (with respect to 1) using the propositional formulas

ψ1,0 = (p↔ >), ψ1, 12
= (p · p), ψ 1

2 ,0
= (¬p→ p),

ψ0,1 = (p↔ ⊥), ψ 1
2 ,1

= (p→ ¬p), ψ0, 12
= (¬p · ¬p).

Hence, by Lemma 4, the class of image-finite K(Ł3)C-models has the Hennessy-
Milner property. Indeed, as we will see in Section 5, essentially the same reasoning
can be used to show that the property holds for the class of image-finite models in the
case of any finite-valued Łukasiewicz logic.

However, it is not the case that the class of image-finite K(A)C-models has the
Hennessy-Milner property for any chain-based algebra A.

Example 4 Gödel logics are defined over chain-based algebras of the form

A = 〈A,min,max,→G, 0, 1〉,

where A is a complete subset of [0, 1] containing 0 and 1, and x→G y = y if x > y
and x→G y = 1 otherwise. Suppose that |A| > 3 and 0 < a < b < c in A. Consider
the K(A)C-models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 displayed in Fig. 1 with
W = {w0, w1, w2, w3} and W ′ = {v0, v1, v2}, R and R′ as indicated by the arrows,
and V and V ′ with the displayed values of p and all other values 1. Then it is easily
shown (e.g., by considering the non-equivalent one-variable formulas) that w0 and
v0 are modally equivalent. However, they are not bisimilar, as there is no state in W ′

corresponding to w2. So the class of image-finite K(A)C-models does not have the
Hennessy-Milner property.

Example 5 Consider the chain-based algebra for product logic

P = 〈[0, 1],min,max, ·P,→P, 0, 1〉,

where x ·P y = xy (multiplication) and x →P y is y
x for x > y and x →P y = 1

otherwise. Choose c ∈ (0, 1) and let b = c2 and a = c3, noting that 0 < a <
b < c < 1. Consider again the models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉
displayed in Fig. 1 with W = {w0, w1, w2, w3} and W ′ = {v0, v1, v2}, R and R′

as indicated by the arrows, and V and V ′ with the displayed values of p and all
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w0

w1 w2 w3

p = a p = b p = c

v0

v1 v2

p = a p = c

Fig. 1 Failure of the Hennessy-Milner property

other values 1. Clearly, w0 and v0 are not bisimilar. To see that they are modally
equivalent, consider any propositional formula ψ(p) ∈ Fm. An easy induction on
`(ψ) establishes that ψ restricted to (0, 1] is equivalent to ⊥ or pk for some k ∈ N.
But then V (�ψ,w0) = V ′(�ψ, v0) and V (♦ψ,w0) = V ′(♦ψ, v0) for all ψ ∈ Fm.
By Lemma 2, w0 and v0 are modally equivalent. So the class of K(P)C-image-finite
models does not have the Hennessy-Milner property.

Finding propositional formulas ψa,b, as described in Lemma 4, that distinguish
distinct elements a, b ∈ A is a sufficient condition for the class of image-finite
K(A)C-models to have the Hennessy-Milner property, but not a necessary one. Con-
sider, for example, A = {0, 12 , 1} in Example 4, giving an algebra A for three-valued
Gödel logic. It is easy to show (by considering all possibilities) that there is no one-
variable propositional formula ψ in this case such that ψ[ 12 ] > ψ[1], from which it
follows that the lemma cannot be applied. On the other hand, the class of image-
finite K(A)C-models does have the Hennessy-Milner property, as will be shown in
Section 5. To obtain a complete characterization, we introduce a more complicated
but still purely algebraic condition for A.

Let a ∈ An and C = (c1, . . . , cn) ∈ An×n. We call a propositional formula
ψ(p1, . . . , pn) ∈ Fm an a/C-distinguishing formula if

ψ[a] < ψ[ci] for all i ∈ {1, . . . , n} or ψ[a] > ψ[ci] for all i ∈ {1, . . . , n}.

We say that A has the distinguishing formula property if for all n ∈ Z+, a ∈ An,
and C = (c1, . . . , cn) ∈ An×n such that a 6= ci for all i ∈ {1, . . . , n}, there is an
a/C-distinguishing formula.

We establish the following characterization, noting that this theorem also holds
(with an almost identical proof) for the box and diamond fragments of K(A)C if
we restrict the distinguishing formula property to the first and second conditions,
respectively.

Theorem 1 The class of image-finite K(A)C-models has the Hennessy-Milner prop-
erty if and only if A has the distinguishing formula property.

Proof Assume that A has the distinguishing formula property and suppose for a
contradiction that there are two image-finite K(A)C-models M = 〈W,R, V 〉 and
M′ = 〈W ′, R′, V ′〉 for which modal equivalence is not a bisimulation. If w! w′
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for w ∈W and w′ ∈W ′, then by definition V (p, w) = V ′(p, w′) for all p ∈ Var, so
the back condition or forth condition must be violated.

Let us suppose that the forth condition fails, the back condition being very similar.
Then there exist w, v ∈W and w′ ∈W ′ such that

1. w! w′ and Rwv.

2. No v′ ∈W ′ satisfies both R′w′v′ and v! v′.

IfR′[w′] = ∅, then consider ♦>. We have V (♦>, w) = >, but V ′(♦>, w′) =
∨
∅ =

⊥, which contradicts w! w′. Suppose then that R′[w′] is non-empty and (because
of image-finiteness) finite, say R′[w′] = {v′1, . . . , v′n}. So there are formulas ϕi such
that V (ϕi, v) 6= V ′(ϕi, v

′
i) for each i ∈ {1, . . . , n}.

We define a = (a1, . . . , an) and C = (c1, . . . , cn) with ci = (ci,1, . . . , ci,n) by

ai = V (ϕi, v) and ci,j = V ′(ϕj , v
′
i) for i, j ∈ {1, . . . , n}.

Note that a 6= ci for each i ∈ {1, . . . , n} (because ai 6= ci,i).
By the distinguishing formula property, there exists an a/C-distinguishing propo-

sitional formula ψ(p1, . . . , pn) ∈ Fm. Suppose that

ψ[a] < ψ[ci] for all i ∈ {1, . . . , n},

the case where ψ[a] > ψ[ci] for all i ∈ {1, . . . , n} being very similar. Now define

ϕ = �ψ[ϕ1/p1, . . . , ϕn/pn].

Then using Lemma 1 and the linearity of A,

V (ϕ,w) ≤ V (ψ[ϕ1/p1, . . . , ϕn/pn], v)

= ψ[V (ϕ1, v), . . . , V (ϕn, v)]

= ψ[a]

<
∧n
i=1 ψ[ci]

=
∧n
i=1 ψ[V ′(ϕ1, v

′
i), . . . , V

′(ϕn, v
′
i)]

=
∧n
i=1 V

′(ψ[ϕ1/p1, . . . , ϕn/pn], v′i)

= V ′(ϕ,w′).

This contradicts w! w′.
Suppose now conversely that the class of image-finite K(A)C-models has the

Hennessy-Milner property. For n ∈ Z+, a ∈ An, and C = (c1, . . . , cn) ∈ An×n

such that a 6= ci for all i ∈ {1, . . . , n}, we seek an a/C-distinguishing propo-
sitional formula ψ(p1, . . . , pn) ∈ Fm. Consider two image-finite K(A)C-models
M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 such that

1. W = {w, v1, . . . , vn, v} and W ′ = {w′, v′1, . . . , v′n}
2. R = {(w, vi) | 1 ≤ i ≤ n} ∪ {(w, v)} and R′ = {(w′, v′i) | 1 ≤ i ≤ n}
3. V (pj , vi) = V ′(pj , v

′
i) = ci,j and V (pj , v) = aj for 1 ≤ i, j ≤ n, and V, V ′ are

constantly > elsewhere.
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Observe that w and w′ are not bisimilar; there is no state in W ′ accessible from w′

that agrees with v on all propositional variables since a 6= ci for each i ∈ {1, . . . , n}.
Hence, by the Hennessy-Milner property for image-finite K(A)C-models, w and

w′ are not modally equivalent. Using Lemma 2, it follows that V (ϕ,w) 6= V ′(ϕ,w′)
for some formula ϕ = �ψ or ϕ = ♦ψ where ψ ∈ Fm contains only the variables
p1, . . . , pn. Suppose that ϕ = �ψ, the case ϕ = ♦ψ being very similar. Clearly
V (�ψ,w) ≤ V ′(�ψ,w′), so for each i ∈ {1, . . . , n},

ψ[a] = V (ψ, v) = V (�ψ,w) < V ′(�ψ,w′) ≤ V ′(ψ, v′i) = ψ[ci].

That is, ψ is the required a/C-distinguishing formula. ut

4 Modally Saturated Models

We first recall the definition of modally saturated models for classical modal logic.
Consider a (classical) Kripke model M = 〈W,R, V 〉. A set Σ of (classical modal)
formulas is satisfiable in X ⊆ W if there exists w ∈ X satisfying V (ϕ,w) = 1 for
all ϕ ∈ Σ; it is finitely satisfiable in X if every finite subset of Σ is satisfiable in X .
The model M is (classically) modally saturated if for every w ∈ W , any set Σ of
formulas that is finitely satisfiable in R[w] is also satisfiable in R[w].

We now generalize this notion to the many-valued setting, fixing again a chain-
based algebra A. Instead of satisfaction of a set of formulas at some state, we specify
the exact values that formulas should take at some state. Intuitively, this is achieved by
assigning values from A to formulas in such a way that the propositional operations
are preserved. More formally, let Fm∗ be the formula algebra of L over the set of
variables Var ∪ {�ϕ,♦ϕ | ϕ ∈ Fm�♦}, noting that Fm∗ = Fm�♦. We call a
homomorphism U : Fm∗ → A a pseudo-valuation for A. Note in particular that for
any K(A)C-model M = 〈W,R, V 〉 and w ∈W , the map

Vw : Fm�♦ → A; ϕ 7→ V(ϕ,w)

is a pseudo-valuation. Indeed, such pseudo-valuations will play a key role in the proof
of the main theorem below.

Now consider a K(A)C-model M = 〈W,R, V 〉 and a pseudo-valuation U for
A. We say that Σ ⊆ Fm�♦ is U -satisfiable in X ⊆ W if there exists w ∈ X
satisfying V (ϕ,w) = U(ϕ) for all ϕ ∈ Σ; it is finitely U -satisfiable in X if every
finite subset of Σ is U -satisfiable in X . We call M modally saturated if for every
w ∈ W and pseudo-valuation U for A, any subformula-closed Σ ⊆ Fm�♦ that is
finitely U -satisfiable in R[w] is also U -satisfiable in R[w].

In the case where A is the two-valued Boolean algebra 2, this notion coincides
with the usual classical definition. Suppose that a K(2)C-model M = 〈W,R, V 〉 is
classically modally saturated and consider w ∈ W , a pseudo-valuation U for 2, and
a subformula-closed Σ ⊆ Fm�♦ that is finitely U -satisfiable in R[w]. Let

Γ = {ϕ | ϕ ∈ Σ and U(ϕ) = 1} ∪ {¬ϕ | ϕ ∈ Σ and U(ϕ) = 0}.

Then Γ is finitely satisfiable in R[w] and hence, by assumption, satisfiable in R[w].
By the definition of Γ, it follows that Σ is also U -satisfiable in R[w].
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Suppose now conversely that M is modally saturated and consider w ∈ W and a
set Σ ⊆ Fm�♦ that is finitely satisfiable in R[w]. Observe that for any ϕ ∈ Fm�♦,
either Σ ∪ {ϕ} or Σ ∪ {¬ϕ} is finitely satisfiable in R[w]. Hence Σ extends to a set
Σ∗ ⊆ Fm�♦ that is maximally finitely satisfiable in R[w]. Define

U(ϕ) =

{
1 if ϕ ∈ Σ∗

0 otherwise.

Observe that U(ϕ1 ∧ ϕ2) = 1 if and only if U(ϕ1) = U(ϕ2) = 1 and U(¬ϕ) = 1
if and only if U(ϕ) = 0, so U is a pseudo-valuation for 2. Now consider any finite
subset of Fm�♦, which we can assume to be of the form Σ1 ∪Σ2, where Σ1 ∪{¬ϕ |
ϕ ∈ Σ2} ⊆ Σ∗. Since Σ∗ is finitely satisfiable in R[w], Σ1 ∪ {¬ϕ | ϕ ∈ Σ2}
is satisfiable in R[w]. But then also Σ1 ∪ Σ2 is U -satisfiable in R[w]. So Fm�♦ is
finitely U -satisfiable in R[w] and hence, by assumption, U -satisfiable in R[w]. In
particular, Σ is satisfiable in R[w].

We may also confirm that m-saturation is a generalization of image-finiteness.

Lemma 5 Every image-finite K(A)C-model is modally saturated.

Proof Let M = 〈W,R, V 〉 be an image-finite K(A)C-model, w ∈ W , and U a
pseudo-valuation for A. Suppose contrapositively that a subformula-closed Γ ⊆
Fm�♦ is not U -satisfiable in R[w]. Since M is image-finite, R[w] is finite, say
R[w] = {v1, . . . , vn}. So for each i ∈ {1, . . . , n}, there is a formula ϕi ∈ Γ such that
V (ϕi, vi) 6= U(ϕi). But then also the finite set {ϕ1, . . . , ϕn} ⊆ Γ is not U -satisfiable
in R[w]. ut

The converse to this lemma does not hold. Consider the K(A)C-model M =
〈W,R, V 〉 with W = N, R = {(0, n) | n ∈ N}, and a constant valuation defined for
some fixed a ∈ A by V (p, n) = a for all p ∈ Var and n ∈ N. Obviously, this model
is modally saturated, but not image-finite.

We note the following useful property.

Lemma 6 Let M be a K(A)C-tree-model with root w and height 1 such that V is the
constant function > on (Var\P ) ×W for some finite P ⊆ Var. Then M is modally
saturated.

Proof Let M be a K(A)C-tree-model with rootw and height 1 such that V is the con-
stant function > on (Var\P )×W for some finite P ⊆ Var. Consider a subformula-
closed set Σ ⊆ Fm�♦. Let Q be the set of variables occurring in both P and Σ and
define the propositional set of formulas Σ∗ = {ϕ∗ | ϕ ∈ Σ} where ϕ∗ is obtained
from ϕ by replacing every variable not in Q by >, every subformula �ψ by >, and
every subformula ♦ψ by ⊥. A simple induction yields that V (ϕ, v) = V (ϕ∗, v) for
any v ∈ R[w] and ϕ ∈ Σ. Now consider a pseudo-valuation U for A such that Σ is
finitely U -satisfiable in R[w]. Clearly then also Σ∗ is finitely U -satisfiable in R[w].
In particular, since Σ is subformula-closed, Q ⊆ Σ and there exists v ∈ R[w] such
that V (p, v) = U(p) for all p ∈ Q. Hence also V (ϕ, v) = U(ϕ∗) for all ϕ ∈ Σ.
Moreover, a simple induction on `(ϕ) shows that U(ϕ∗) = U(ϕ) for all ϕ ∈ Σ. So
Σ is U -satisfiable in R[w]. ut
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We now consider a stronger version of the distinguishing formula property which
will allow us to give a characterization of the Hennessy-Milner property for classes
of modally saturated models. Given a ∈ An, we say that a propositional formula
ψ(p1, . . . , pn) ∈ Fm is a strong distinguishing formula for a if

ψ[a] > sup{ψ[c] | c ∈ An\{a}} or ψ[a] < inf{ψ[c] | c ∈ An\{a}}.

We say that A has the strong distinguishing formula property if for all n ∈ Z+

and a ∈ An, there is a strong distinguishing formula for a. Note that if A has the
strong distinguishing formula property, then it clearly has the distinguishing formula
property. Moreover, if A is finite, then these two notions coincide.

We obtain the following characterization of the Hennessy-Milner property for
classes of modally saturated models.

Theorem 2 The class of modally saturated K(A)C-models has the Hennessy-Milner
property if and only if A has the strong distinguishing formula property.

Proof Suppose that A has the strong distinguishing formula property and consider
modally saturated K(A)C-models M = 〈W,R, V 〉, M′ = 〈W ′, R′, V ′〉, andw ∈W ,
w′ ∈ W ′ such that w! w′. Assume for a contradiction that modal equivalence is
not a bisimulation between w and w′. By definition, w and w′ agree on all proposi-
tional variables, so the forth or the back condition must be violated. Assume that the
forth condition is violated, i.e., there is a v ∈ R[w] but no v′ ∈ R′[w′] such that v!
v′. Then Fm�♦ is not Vv-satisfiable in R′[w′]. So, since M′ is modally saturated,
Fm�♦ is not finitely Vv-satisfiable in R′[w′]. Hence there exists {ϕ1, . . . , ϕn} ⊆
Fm�♦ such that {ϕ1, . . . , ϕn} is not Vv-satisfied in any v′ ∈ R′[w′]. We set

a = (V (ϕ1, v), . . . , V (ϕn, v)).

By the strong distinguishing formula property, there exists a propositional formula
ψ(p1, . . . , pn) ∈ Fm such that

ψ[a] > sup{ψ[c] | c ∈ An\{a}} or ψ[a] < inf{ψ[c] | c ∈ An\{a}}.

Suppose that ψ[a] > sup{ψ[c] | c ∈ An\{a}}, the other case being very similar. For
each v′ ∈ R′[w′], let cv′ = (V ′(ϕ1, v

′), . . . , (V ′(ϕn, v
′)), observing that a 6= cv′ ,

and define the modal formula

ψ̃ = ψ[ϕ1/p1, . . . , ϕn/pn].

Using Lemma 1, we obtain

V (♦ψ̃, w) ≥ V (ψ̃, v)

= ψ[a]

> sup{ψ[cv′ ] | v′ ∈ R′[w′]}
= sup{V ′(ψ̃, v′) | v′ ∈ R′[w′]}
= V ′(♦ψ̃, w′),

contradicting w! w′. The case where the back condition fails is analogous.
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Now assume conversely that the class of modally saturated K(A)C-models has
the Hennessy-Milner property. Consider a ∈ An and variables {p1, . . . , pn} ⊆ Var.
We define K(A)C-models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 satisfying

1. W = {w, va} ∪ {vc | c ∈ An\{a}} and W ′ = {w′} ∪ {v′c | c ∈ An\{a}}
2. R = {(w, va)} ∪ {(w, vc) | c ∈ An\{a}} and R′ = {(w′, v′c) | c ∈ An\{a}}
3. V (pi, va) = ai and V (pi, vc) = V ′(pi, v

′
c) = ci for 1 ≤ i ≤ n and c ∈ An\{a},

and V, V ′ are constantly > elsewhere.

It follows from Lemma 6 that both M and M′ are modally saturated. Clearly, w and
w′ are not bisimilar, since there is no state in R′[w′] corresponding to va. By the
Hennessy-Milner property, w and w′ are not modally equivalent, so there exists a
formula ϕ such that V (ϕ,w) 6= V ′(ϕ,w′). By Lemma 2, it follows that V (ϕ,w) 6=
V ′(ϕ,w′) for some formula ϕ = �ψ or ϕ = ♦ψ where ψ ∈ Fm is a propositional
formula. Suppose that ϕ = ♦ψ, the other case being very similar. Then V (♦ψ,w) >
V ′(♦ψ,w′) and

ψ[a] = V (ψ, va)

> sup{V ′(ψ, v′c) | c ∈ An\{a}}
= sup{ψ[c] | c ∈ An\{a}}.

That is, A has the strong distinguishing formula property. ut

5 Divisible Chain-Based Modal Logics

In this section, we provide full characterizations for finite and standard BL-chains
(see Example 1), describing exactly when the classes of image-finite and modally
saturated K(A)C-models of such an algebra A admit the Hennessy-Milner property.
For convenience, we exploit the fact that a ∧ b = a · (a → b) and a ∨ b = ((a →
b) → b) ∧ ((b → a) → a) for all a, b ∈ A, and restrict to the (usual) language of
BL-algebras with operation symbols ·,→,⊥,>.

We consider first the special case where A is an MV-chain, defined (up to term
equivalence) as a BL-chain satisfying the involution property ¬¬a = a for all a ∈ A.
Consider in particular the MV-chains

Łn+1 = 〈{0, 1
n , . . . ,

n−1
n , 1}, ·Ł,→Ł, 0, 1〉 (n ∈ Z+)

Ł∞ = 〈[0, 1], ·Ł,→Ł, 0, 1〉,

where x ·Ł y = max(0, x+y−1) and x→Ł y = min(1, 1−x+y). For convenience,
fix also Ł1 to be an MV-chain with one element. Then every finite MV-chain A is
isomorphic to Ł|A| and every standard MV-chain is isomorphic to Ł∞ (see [9] for
proofs and a wealth of further details for MV-algebras).

We use McNaughton’s description of the free one-generated MV-algebra to dis-
tinguish between rational values in [0, 1]. A unary McNaughton function is a con-
tinuous function f : [0, 1] → [0, 1] with the property that there exist linear func-
tions g1, . . . , gk with integer coefficients such that for any x ∈ [0, 1], there is an
i ∈ {1, . . . , k} satisfying f(x) = gi(x).
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Theorem 3 (McNaughton [22]) The free one-generated MV-algebra is isomorphic
to the algebra of unary McNaughton functions equipped with pointwise defined op-
erations.

Lemma 7 Let A be an MV-chain.

(a) If A is finite, then the classes of image-finite and modally saturated K(A)C-
models have the Hennessy-Milner property.

(b) If A is standard, then the class of image-finite K(A)C-models has the Hennessy-
Milner property, but not the class of modally saturated K(A)C-models.

Proof By the above remarks, we need only consider the case where A is Łα for
α ∈ Z+ ∪{∞}. Consider distinct a, b ∈ A. Suppose that a < b, the case a > b being
very similar. Then there exist c, d ∈ Q such that a < c < d < b and we can define
f to be 1 on the interval [0, c], 0 on the interval [d, 1], and linear on (c, d). Using
Theorem 3, there exists a propositional formula ψa,b(p) such that in the algebra Ł∞,
we have ψa,b[x] = f(x) for all x ∈ [0, 1]. Since A is a subalgebra of Ł∞, also
ψa,b[a] = 1 and ψa,b[b] 6= 1. Hence, by Lemma 4, the class of image-finite K(A)C-
models has the Hennessy-Milner property. If α ∈ Z+, then A is finite and the same
holds for the class of modally saturated K(A)C-models. Finally, to show that the class
of modally saturated K(Ł∞)C-models does not have the Hennessy-Milner property,
observe that for any propositional formula ψ[x], by continuity,

ψ[1] = sup{ψ[c] | 0 ≤ c < 1} = inf{ψ[c] | 0 ≤ c < 1}.

So ψ is not a strong distinguishing formula for 1. ut

In order to extend this characterization to finite and standard BL-chains, we recall
a useful description of the structure of these algebras. A hoop is an algebra A =
〈A, ·,→,>〉 such that 〈A, ·,>〉 is a commutative monoid and for a, b, c ∈ A,

1. a→ a = >
2. a · (a→ b) = b · (b→ a)

3. a→ (b→ c) = (a · b)→ c.

Defining a ≤ b if and only if a → b = > provides a semilattice order with meet
operation a∧ b = a · (a→ b) such that · and→ are a residuated pair; i.e., a ≤ b→ c
if and only if a · b ≤ c. If the order is linear, then A is called an o-hoop; if A = [0, 1]
and ≤ is the usual order, then the o-hoop is called standard.

Suppose now that Ai = 〈Ai, ·i,→i,>〉 is a non-trivial o-hoop for each i in a
linearly ordered set I with bottom element i0, where Ai ∩ Aj = {>} for distinct
i, j ∈ I and Ai0 has a bottom element ⊥. Then the ordinal sum of (Ai)i∈I is⊕

i∈I
Ai := 〈

⋃
i∈I

Ai, ·,→,⊥,>〉
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where

x · y =


x ·i y if x, y ∈ Ai
x if x ∈ Ai\{>}, y ∈ Aj , and i < j

y if y ∈ Ai\{>}, x ∈ Aj , and i < j

x→ y =


> if x ∈ Ai\{>}, y ∈ Aj , and i < j

x→i y if x, y ∈ Ai
y if y ∈ Ai, x ∈ Aj , and i < j.

We also write A1 ⊕ · · · ⊕An when I = {1, . . . , n} has the usual order.
Any ordinal sum of o-hoops is a BL-chain. Moreover, each “irreducible BL-

chain” A (a BL-chain that cannot be expressed as proper ordinal sums of o-hoops)
is either (i) the hoop reduct 〈A, ·,→,>〉 of an MV-chain 〈A, ·,→,⊥,>〉, or (ii) a
cancellative o-hoop, i.e., a→ (a · b) = b for all a, b ∈ A. Note that there are no finite
cancellative o-hoops and that every standard cancellative o-hoop is isomorphic to the
o-hoop

C = 〈(0, 1], ·C,→C, 1〉

where x ·C y = xy (multiplication) and x →C y is y
x for x > y and x →C y = 1

otherwise.

Theorem 4 (Aglianò and Montagna [1]) Every non-trivial BL-chain is the unique
ordinal sum of a family of o-hoops each of which is either the hoop reduct of an
MV-chain or a cancellative o-hoop.

The next two lemmas identify ordinal sums A of o-hoops such that the class of
image-finite K(A)C-models does or does not have the Hennessy-Milner property. For
convenience, we let Ah denote the hoop reduct of a BL-chain A.

Lemma 8 Suppose that A is the ordinal sum of a family of (non-trivial) o-hoops
(Ai)i∈I . If |I| ≥ 3 or Ai is cancellative for some i ∈ I , then the class of image-finite
K(A)C-models does not have the Hennessy-Milner property.

Proof Suppose first that Ai is cancellative for some i ∈ I . Let c ∈ Ai\{>} and
define b = c · c and a = c · c · c, noting that, by cancellativity, a < b < c < >. The
failure of the Hennessy-Milner property then follows as described in Example 5 for
product modal logic, considering Ai instead of (0, 1]. Now consider the case where
|I| ≥ 3 and no Ai is cancellative for i ∈ I . Then, by Theorem 4, each Ai is a hoop
reduct of an MV-chain and has a bottom element distinct from the top element of A
for i ∈ I . But these bottom elements and also the top element are idempotents (i.e.,
a · a = a) and hence A contains as a subalgebra, a Gödel algebra with more than
three elements. The failure of the Hennessy-Milner property then follows exactly as
described in Example 4. ut

Lemma 9 Let A = Łh
α ⊕ Łh

β for some α, β ∈ Z+ ∪ {∞}. Then the class of image-
finite K(A)C-models has the Hennessy-Milner property.
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Proof By Theorem 1, it suffices to show that A has the distinguishing formula prop-
erty. Let n ∈ Z+, a = (a1, . . . , an) ∈ (Łhα ⊕ Łhβ)n, and C = (c1, . . . , cn) ∈ An×n
with ci 6= a for each i ∈ {1, . . . , n}. We denote the bottom elements of Łα and Łβ
by 01 and 02, respectively. As a preliminary step, note that there exists r ∈ Z+ such
that for any element b 6= 1 occurring in a or C, either b ∈ Łhα and br = 01 or b ∈ Łhβ
and br = 02.

Suppose first that a = (a1, . . . , am, am+1, . . . , an) (allowing for some rearrange-
ment of the elements in a) where

a1, . . . , am ∈ Łhα\{1} and am+1 = · · · = an = 1.

We define a formula ψ = ψ1 ∧ ψ2 ∧ ψ3 such that

ψ[a] = 1 and ψ[ci] < 1 for all i ∈ {1, . . . , n}.

1. Let ψ1 = ¬pr1 ∧ · · · ∧ ¬prm and observe that

ψ1[a1, . . . , am] = 1 and ψ1[. . . , b, . . . ] = 01 < 1 for b ∈ Łhβ .

2. Using Theorem 3, for each j ∈ {1, . . . ,m}, there exists a propositional formula
ϕj(pj) such that for all i ∈ {1, . . . , n},

ϕj [aj ] = 1 and ϕj [ci,j ] = 01 if ci,j ∈ Łhα\{aj}.

Let ψ2 = ϕ1 ∧ · · · ∧ ϕm and observe that for all i ∈ {1, . . . , n},

ψ2[a1, . . . , am] = 1 and ψ2[. . . , ci,j , . . . ] = 01 if ci,j ∈ Łhα\{aj}.

3. Let ψ3 = pm+1 ∧ · · · ∧ pn and observe that

ψ3[am+1, . . . , an] = 1 and ψ3[. . . , c, . . . ] < 1 for c 6= 1.

By construction, ψ = ψ1 ∧ ψ2 ∧ ψ3 satisfies our requirements.
Suppose now that a = (a1, . . . , am, am+1, . . . , ak, ak+1, . . . , an) (again allow-

ing for some rearrangement of the elements in a) where

a1, . . . , am ∈ Łhα\{1}, am+1 = · · · = ak = 1, and ak+1, . . . , an ∈ Łhβ\{1}.

We define a formula ψ = ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 ∨ ψ5 such that

ψ[a] < 1 and ψ[ci] = 1 for all i ∈ {1, . . . , n}.

1. Let ψ1 = ¬¬pr1 ∨ · · · ∨ ¬¬prm and observe that

ψ1[a1, . . . , am] = 01 < 1 and ψ2[. . . , b, . . . ] = 1 for b ∈ Łhβ .

2. Let ψ2 = ¬prm+1 ∨ · · · ∨ ¬prn and observe that

ψ2[am+1, . . . , an] = 01 < 1 and ψ2[. . . , b, . . . ] = 1 for b ∈ Łhα\{1}.

3. Let ψ3 = pk+1 ∨ · · · ∨ pn and observe that

ψ3[ak+1, . . . , an] < 1 and ψ3[. . . , 1, . . . ] = 1.
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4. Using Theorem 3, for each j ∈ {1, . . . ,m}, there exists a propositional formula
ϕj(pj) such that for all i ∈ {1, . . . , n},

ϕj [aj ] = 01 and ϕj [ci,j ] = 1 if ci,j ∈ Łhα\{aj}.

Let ψ4 = ϕ1 ∨ · · · ∨ ϕm. Then ψ4[a1, . . . , am] = 01 and for all i ∈ {1, . . . , n},

ψ4[ci,1, . . . , ci,m] = 1 if ci,j ∈ Łhα\{aj} for some j ∈ {1, . . . ,m}.

5. Let us temporarily interpret the constant ⊥ by 02. Then, using Theorem 3, for
each j ∈ {m + 1, . . . , n}, there exists a propositional formula ϕj(pj) such that,
with respect to this temporary interpretation,

ϕj [aj ] = 02 < 1 and ϕj [ci,j ] = 1 if ci,j ∈ Łβ\{aj}.

Recall that ark+1 = 02 and cri,k+1 = 02 if ci,k+1 ∈ Łhβ\{1}. For each j ∈
{m+ 1, . . . , n}, let ϕ′j be the formula obtained by replacing the constant symbol
⊥ in ϕj with the formula prk+1 and observe that ϕ′j [aj , ak+1] = 02 < 1 and

ϕ′j [ci,j , ci,k+1] = 1 if ci,j ∈ Łhβ\{aj} and ci,k+1 ∈ Łhβ\{1}.

Now let ψ5 = ϕ′m+1 ∨ · · · ∨ ϕ′n and observe that ψ5[am+1, . . . , an] = 02 < 1

and ψ5[ci,m+1, . . . , ci,n] = 1 if ci,j ∈ Łhβ\{aj} and ci,k+1 ∈ Łhβ\{1} for some
j ∈ {m+ 1, . . . , n}.
Finally, let ψ = ψ1∨ψ2∨ψ3∨ψ4∨ψ5. Clearly ψ[a] < 1. To check that ψ[ci] = 1

for all i ∈ {1, . . . , n}, we consider the following cases:

1. If ci,j ∈ Łhβ for some j ∈ {1, . . . ,m}, then ψ[ci] = ψ1[ci] = 1.

2. If ci,j ∈ Łhα\{1} for some j ∈ {m+ 1, . . . , n}, then ψ[ci] = ψ2[ci] = 1.
3. If ci,j = 1 for some j ∈ {k + 1, . . . , n}, then ψ[ci] = ψ3[ci] = 1.
4. If ci,j ∈ Łhα\{aj} for some j ∈ {1, . . . ,m}, then ψ[ci] = ψ4[ci] = 1.
5. If ci,j ∈ Łhβ\{aj , 1} for some j ∈ {m+ 1, . . . , n}, then ψ[ci] = (ψ3 ∨ψ5)[ci] =

1.

Hence ψ is an a/C distinguishing formula. ut

Combining Lemmas 8 and 9 with the description of BL-chains provided in The-
orem 4, we obtain the following characterizations.

Theorem 5 The following are equivalent for any finite BL-chain A:

(1) The class of image-finite K(A)C-models has the Hennessy-Milner property.
(2) The class of modally saturated K(A)C-models has the Hennessy-Milner property.
(3) A is isomorphic to Łn+1 or Łh

n+1 ⊕ Łh
m+1 for some m,n ∈ N.

Theorem 6 For any standard BL-chain A:

(a) The class of image-finite K(A)C-models has the Hennessy-Milner property if and
only if A is isomorphic to either Ł∞ or Łh

∞ ⊕ Łh
∞.

(b) The class of modally saturated K(A)C-models does not have the Hennessy-Milner
property.



18 Michel Marti, George Metcalfe

6 Concluding Remarks

In this paper, we have provided necessary and sufficient conditions on a chain-based
algebra A for the classes of image-finite and modally saturated K(A)C-models to
have the Hennessy-Milner property, fully characterizing the case where A is a finite
or standard BL-chain. Moreover, we expect that this approach can be extended in
several directions. A treatment of alternative quantifiers (e.g., to express the average
truth value at accessible worlds) or models based on (nonlinear) complete lattices
might be obtained by suitably adapting the algebraic characterizations. We also aim
to extend the approach beyond the crisp (Boolean-valued) setting to many-valued
Kripke models where the accessibility relation is replaced by a binary map from states
to elements of A. This will require an appropriate definition of bisimulations between
such models, perhaps following [12] where two different notions of a bisimulation are
considered for many-valued modal logics based on Heyting algebras extended with
additional constants for elements of the algebra.

Finally, let us remark that a promising methodology for tackling the extensions
mentioned in the previous paragraph is provided by the recent paper [2], which
presents a coalgebraic approach to expressivity in many-valued modal logics. The
coalgebraic setting allows a wide range of many-valued modal logics, including those
with crisp, many-valued, and probabilistic Kripke frames, to be defined uniformly by
varying an underlying set endofunctor. By understanding modalities as many-valued
predicate liftings, it is shown that a set of liftings satisfying a certain separation con-
dition guarantees an expressive modal language for the logic. Indeed, the distinguish-
ing formula property for image-finite models presented in Theorem 1 (first reported
in [21]) follows as a direct corollary of this result. It is not yet clear how the strong
distinguishing formula property for modally saturated models presented in Theorem 2
transfers to the coalgebraic setting, and characterization theorems such as Theorems 5
and 6 require a detailed algebraic study of the relevant structures. Nevertheless, the
coalgebraic approach is, in our opinion, the most flexible and appropriate framework
for further investigations into expressivity in many-valued modal logics.
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