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Abstract

We show that, consistently, there can be maximal subtrees of P(ω) and
P(ω)/fin of arbitrary regular uncountable size below the size of the contin-
uum c. We also show that there are no maximal subtrees of P(ω)/fin with
countable levels. Our results answer several questions of Campero-Arena,
Cancino, Hrušák, and Miranda-Perea [CCHM].

1 Introduction

A partial order (T ,≤) is called a tree if it has a largest element 1 and for every
t ∈ T , the set of predecessors of t in T , predT (t) = {s ∈ T : s ≥ t} is well-
ordered by the reverse order of ≤. For each ordinal α, the α-th level of T is
given by Levα(T ) = {t ∈ T : predT (t) has order type α}. The height of T ,
ht(T ), is the least ordinal α such that Levα(T ) is empty. The width of T is the
cardinal sup{|Levα(T )| : α < ht(T )}. Instead of saying T has width (at most)
κ we may sometimes just say T has levels of size ≤ κ. Let (P,≤) be a partial
order with largest element 1. T ⊆ P is a subtree of (P,≤) (or, a tree in P) if
1 ∈ T and (T ,≤ ↾(T ×T )) is a tree in the above sense. Note that incomparable
(equivalently, incompatible) elements of T are not necessarily incompatible in
P; that is, for s, t ∈ T with s ̸≤ t and t ̸≤ s there may exist r ∈ P with r ≤ s, t
(of course, such r cannot belong to T ).

Trees are ordered by end-extension, that is, S ≤ T if S ⊆ T and predT (s) =
predS(s) for every s ∈ S. By Zorn’s Lemma, maximal trees, that is, trees
without proper end-extensions, exist in a given partial order. It is easy to see
that T ⊆ P is maximal iff for every p ∈ P
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• either there is q ∈ T with q ≤ p,

• or there are incomparable elements q, r ∈ T with p ≤ q, r.

See [Mo, Proposition 17.11].
We will consider maximal trees for the case when P is either P(ω) \ {∅},

ordered by inclusion, or (P(ω)/fin) \ {∅}, ordered by inclusion mod finite. For
simplicity, we will call the former trees in P(ω) and the latter trees in P(ω)/fin
or, more correctly, in ([ω]ω,⊆∗). Recall that for A,B ∈ [ω]ω, A ⊆∗ B iff A \ B
is finite. Monk [Mo, Proposition 17.9] observed that there are always maximal
trees in P(ω) of size ω and c, and in P(ω)/fin of size c, and asked whether
there can consistently be maximal trees of other sizes [Mo, Problems 156 and
157]. These questions were solved by Campero-Arena, Cancino, Hrušák, and
Miranda-Perea who proved that it is consistent that the continuum hypothesis
CH fails and there is a maximal tree of height and width ω1 in P(ω)/fin [CCHM,
Theorem 3.2] and a tree of height ω and width ω1 which is maximal as a subtree
of both P(ω) and P(ω)/fin [CCHM, Theorem 4.1]. More explicitly, the existence
of such trees follows from one of the parametrized diamond principles of [MHD],
and it is well-known that this principle is consistent with ¬CH. Define the tree
number tr as the least size of a maximal tree in P(ω)/fin and recall that the
reaping number r (see [Bl, Definition 3.6]) is the least size of a family A ⊆ [ω]ω

such that for all B ∈ [ω]ω there is A ∈ A such that either A ∩ B is finite or
A ⊆∗ B. It is easy to see that ω1 ≤ r ≤ tr ≤ c [CCHM, p. 81], and by
the mentioned result ω1 = r = tr < c is consistent while the consistency of
ω1 < r = tr = c was established by showing it holds under Martin’s axiom
MA [Mo, Theorem 17.14 and Corollary 17.15]. This left open the question of
whether tr can consistently be strictly in between ω1 and c [CCHM, Question
5.3].

We answer this question in the affirmative by proving that for arbitrary reg-
ular uncountable κ, maximal trees in P(ω)/fin of height and width κ can be
added generically to a model with large continuum (Theorem 5 in Section 3
below). Furthermore, we show that, consistently, we may simultaneously adjoin
maximal trees of different sizes (Theorem 6), thus making the tree spectrum
Spectree = {κ : there is a maximal tree in P(ω)/fin of size κ} large and an-
swering [CCHM, Question 5.4]. By modifying the construction, we also obtain
consistently trees of width κ and height ω which are maximal in both P(ω)/fin
and P(ω), for arbitrary regular uncountable κ (Theorem 11 in Section 4). Again,
this construction can be extended to get large spectrum (Theorem 12).

In all such constructions of maximal trees in P(ω)/fin, the width is at least
the cofinality of the height, and we do not know whether there can consistently
be a maximal tree of regular height whose width is smaller than its height (Ques-
tion 8). However, we prove in ZFC that there are no maximal trees in P(ω)/fin
of countable width, thus answering [CCHM, Question 5.2] (see Theorem 2 in
Section 2).
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Hrušák for asking the questions leading to this paper, for many stimulating
discussions, and for financial support. He is also grateful to UNAM for their
hospitality.

2 Trees with countable levels

A set A ∈ [ω]ω is a branching node in a tree T if there are incomparable B,C ∈ T
such that predT (B) = predT (C) and A is the ⊆∗-smallest node of predT (B).
b ⊆ T is a maximal branch if b is a maximal linearly ordered subset of T .

If F ⊆ [ω]ω has the finite intersection property, that is,
∩
F is infinite for

every finite F ⊆ F , a set C ∈ [ω]ω is called a pseudointersection of F if C ⊆∗ A
for all A ∈ F .

Lemma 1. Assume T is a tree with countable levels and b = {Aα : α < γ} is a
maximal branch in T with cf(γ) > ω such that only countably many nodes Aα

of b are branching nodes. Then T cannot be maximal.

Proof. Assume T is maximal. By assumption, for some α0 < γ, no branching
occurs in b after Aα0 . Also, by assumption, the set B of all B ∈ T such that B
is an immediate successor of some Aα but B /∈ b must be countable. For each
α > α0 consider the set Cα := Aα0 \ Aα. By maximality, there must be a set
Bα ∈ B such that Cα ⊆∗ Bα (otherwise we could add Cα to T ). By countability
of B and by cf(γ) > ω, we see that there is a single B ∈ B such that for all
α > α0, Cα ⊆∗ B. On the other hand, Aα0 ̸⊆∗ B. In particular Aα0 \ B is
a pseudointersection of the Aα (which cannot be added to the tree). Using a
standard diagonal argument, we can construct a set C such that

• C ⊆ Aα0 ,

• Aα0 \B ̸⊆∗ C, and

• C ̸⊆∗ B′ for all B′ ∈ B.

Now, it is easy to see that C can be added to T : by the third clause, the only
predecessors of C in T are in b. By the second clause, no Aα is almost contained
in C. Thus we obtain a contradiction.

Theorem 2. There are no maximal trees with countable levels in P(ω)/fin.

Proof. Assume T were such a tree. Let b = {Aα : α < γ} be a maximal branch
such that the length γ of b is minimal. If cf(γ) ̸= ω1, then, because of minimality
and the countable levels, there can only be countably many branching nodes in b.
More explicitly, if there are ω1 many branching nodes in b, they are bounded in
b because of cf(γ) ̸= ω1, say by Aα; the minimality of γ then allows us to build
ω1 many branches branching off from b so that the α-th level is uncountable, a
contradiction. In particular, the set B of all B ∈ T such that B is an immediate
successor of some element of b yet B /∈ b must be countable. If γ = δ + 1 is a
successor, a standard diagonal argument yields a C ⊆ Aδ with Aδ ̸⊆∗ C such
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that C ̸⊆∗ B for all B ∈ B. Similarly, if γ has countable cofinality, we obtain
C ⊆∗ Aδ for all δ < γ such that C ̸⊆∗ B for all B ∈ B. In either case, C can
be added to T , showing that T is not maximal. If cf(γ) > ω1, we immediately
obtain a contradiction by the previous lemma.

So assume cf(γ) = ω1. By the previous lemma, using again minimality
and countable levels, we see that there is a cofinal subset of order type ω1 of
branching nodes in b. Furthermore, all but countably many of the branches
branching off from b must have length exactly γ: they cannot be shorter by
minimality, and not longer by countable levels. In particular, we may find a
branching node A⟨⟩ = Aα0 ∈ b such that a branch b′ branching off from b in A⟨⟩
has length γ. Applying this argument again to both b and b′, we find branching
nodes A⟨0⟩ ∈ b and A⟨1⟩ ∈ b′ above A⟨⟩. Let α1 > α0, α1 < γ, be such that the
level of A⟨0⟩ and A⟨1⟩ is below α1. Iterating this procedure, we construct nodes
As, s ∈ 2<ω, in T such that As and At are incomparable for incomparable s
and t, and At ⊆∗ As for t extending s. Furthermore, the level of all As, s ∈ 2n,
is below αn < γ, and the αn form a strictly increasing sequence of ordinals. Let
αω =

∪
n αn. Clearly αω < γ. Thus, by minimality, for each f ∈ 2ω there is

Af ∈ T with Af ⊆∗ Af↾n for all n on level αω. In particular, the level αω of T
has size c, a contradiction.

3 Forcing: matrix trees

Recall that two sets A,B ∈ [ω]ω are almost disjoint if A ∩B is finite. A ⊆ [ω]ω

is an almost disjoint family (a.d. family, for short) if any two distinct members
of A are almost disjoint.

Let F be a filter on ω containing all cofinite sets. Mathias forcing with
F , written M(F), consists of all pairs (s,A) such that s ∈ [ω]<ω, A ∈ F ,
and max(s) < min(A). M(F) is ordered by stipulating that (t, B) ≤ (s,A) if
s ⊆ t ⊆ s ∪ A and B ⊆ A. It is well-known and easy to see that M(F) is a
σ-centered forcing which generically adds a pseudointersection X of F such that
X has infinite intersection with all F-positive sets of the ground model. Here
C ∈ [ω]ω is F-positive if C ∩A is infinite for all A ∈ F .

Definition 3. Let γ be an ordinal. Say that a tree T = {Aβ
α : α, β ≤ γ} in

P(ω)/fin is a matrix tree if

(i) for α ≤ γ, {Aβ
α : β ≤ γ} is the α-th level of T ,

(ii) for β ≤ γ and α < α′ ≤ γ, Aβ
α′ ⊆∗ Aβ

α,

(iii) for finite D ⊆ γ + 1 and β /∈ D, Aβ
0 \

∪
β′∈D Aβ′

0 is infinite,

(iv) for α > 0, {Aβ
α : β ≤ γ} is an a.d. family, and

(v) for β ̸= β′, Aβ
γ and Aβ′

0 are almost disjoint.
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Lemma 4. (Extension Lemma) Assume T = {Aβ
α : α, β ≤ γ} is a matrix tree.

Then there is a ccc forcing end-extending T to a matrix tree T ′ = {Aβ
α : α, β ≤

γ + 2} such that no C ∈ [ω]ω from the ground model can be added to T ′.

Proof. Let F be a maximal filter with the property that for all F ∈ F and all
β ≤ γ, F ∩ Aβ

γ is infinite. Force with the product M(F) ×M(F). Let X0 and

X1 be the two generic subsets of ω. We let Aβ
γ+1 = X0 ∩ X1 ∩ Aβ

γ . Clearly

this set is infinite by genericity. Choose Aβ
γ+2 ⊆ Aβ

γ+1 arbitrarily. We also let

Aγ+1
0 = ω \X0 and Aγ+2

0 = ω \X1. Then clearly Aβ
γ+1 and Aβ′

0 are disjoint for
β ≤ γ and β′ ∈ {γ + 1, γ + 2}. A straightforward genericity argument shows
that clause (iii) is still satisfied. Thus we can easily add sets Aγ+1

1 ⊆ Aγ+1
0

and Aγ+2
1 ⊆ Aγ+2

0 by ccc forcing such that Aβ
0 and Aβ′

1 are almost disjoint

for β′ ∈ {γ + 1, γ + 2} and any β ̸= β′. Finally let {Aβ′

α : 1 < α ≤ γ + 2}
be decreasing chains below Aβ′

1 for β′ ∈ {γ + 1, γ + 2}. It follows now that
properties (iv) and (v) in the definition of matrix tree hold. Also, T ′ is indeed
a tree.

Let C ∈ [ω]ω. If F ∩ Aβ
γ ⊆∗ C for some β ≤ γ and some F ∈ F , then

Aβ
γ+1 ⊆∗ C, and C cannot be added to T ′. So assume this is not the case, that is,

(F∩Aβ
γ )\C is infinite for all β ≤ γ and F ∈ F . Then ω\C ∈ F by the maximality

of F . Hence X0∪X1 ⊆∗ ω \C and C ⊆∗ (ω \X0)∩ (ω \X1) = Aγ+1
0 ∩Aγ+2

0 and,
again, C cannot be added to T ′. This completes the proof of the lemma.

Recall that cov(M) is the least size of a family of meager sets covering the
real line. It is well-known that cov(M) ≤ r [Bl, Theorem 5.19] and that adding
Cohen reals increases cov(M) [Bl, Subsection 11.3].

Theorem 5. Let κ ≤ λ be regular uncountable cardinals with λω = λ. There is
a ccc generic extension with tr = κ and c = λ.

Proof. First add λ Cohen reals. Then perform a finite support iteration ⟨Pγ , Q̇γ :
γ < κ⟩ of ccc forcing. Let Vγ denote the intermediate model. If γ is an even
ordinal, the model Vγ+1 will contain a matrix tree Tγ = {Aβ

α : α, β ≤ γ} such
that

• for γ < δ, Tδ end-extends Tγ ,

• if γ = δ + 2, then no C from Vγ can be added to the tree Tγ .

If γ is an odd ordinal, Q̇γ is the trivial forcing. If γ = δ + 2 is even, Q̇γ is the
forcing from the preceding lemma applied to the tree Tδ ∈ Vδ+1 ⊆ Vγ . If γ is a

limit ordinal, define Q̇γ as follows: let T<γ =
∪

δ<γ Tδ = {Aβ
α : α, β < γ}. First

add pseudointersections Aβ
γ to the decreasing chains {Aβ

α : α < γ} for β < γ (if
cf(γ) = ω, they can be constructed outright, otherwise they can be forced by

ccc forcing). Next add a set Aγ
0 almost disjoint from Aβ

0 , β < γ, by ccc forcing.
This can be done by (iii) and will preserve (iii) in Definition 3. Finally let
{Aγ

α : 0 < α ≤ γ} be a decreasing chain below Aγ
0 . Put Tγ = {Aβ

α : α, β ≤ γ}.
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Then (iv) and (v) in Definition 3 clearly hold as well. This completes the
definition of the iteration.

Clearly Tκ =
∪

γ<κ Tγ is a maximal tree of size κ by Lemma 4. Therefore
tr ≤ κ. On the other hand, tr ≥ r ≥ cov(M) ≥ κ because of the Cohen reals
added in limit stages of the iteration (see [Go, Example 2]).

Note that the tree Tκ constructed in this proof has height and width κ.

Theorem 6. Let C be a set of regular uncountable cardinals. There is a ccc
generic extension such that for all λ ∈ C, there is a maximal tree in P(ω)/fin
of size λ.

Proof. Let κ = minC. For λ ∈ C with λ > κ, let ϵλ = λ · κ be the ordinal
product. Make a finite support iteration ⟨Pγ , Q̇γ : γ < κ⟩ of ccc forcing such
that

• if γ = δ + 2 is even, then Q̇γ is defined exactly as in the proof of the
previous theorem and end-extends the matrix tree Tδ = {Aβ

α : α, β ≤ δ} ∈
Vδ+1 ⊆ Vγ to the matrix tree Tγ = {Aβ

α : α, β ≤ γ} ∈ Vγ+1,

• if γ = δ + 1 is odd, then, for each λ ∈ C \ {κ}, Q̇γ end-extends a matrix
tree T λ

δ = {Aβ
α : α, β ≤ λ · δ} ∈ Vγ to a matrix tree T λ

δ+2 = {Aβ
α : α, β ≤

λ · (δ + 2)} ∈ Vγ+1 using a finite-support product indexed by λ ∈ C \ {κ}
of finite-support iterations of length λ · 2 for each λ ∈ C \ {κ} as in the
proof of the previous theorem,

• if γ is limit, Q̇γ end-extends T<γ to the matrix tree Tγ as in the proof of the
previous theorem and also end-extends the T λ

<γ := {Aβ
α : α, β < λ·γ} ∈ Vγ

to matrix trees T λ
γ = {Aβ

α : α, β ≤ λ · γ} ∈ Vγ+1.

In the final extension, let Tκ =
∪

γ<κ Tγ and Tλ =
∪

γ<κ T λ
γ for λ ∈ C \ {κ}.

By construction, all these trees Tλ are maximal trees, and their respective size
is λ.

We do not know whether there is a way to control the λ for which a maximal
tree of size λ is added in this proof.

Question 7. Let C be a set of regular cardinals (possibly satisfying some addi-
tional condition). Is there a ccc forcing extension in which there is a maximal
tree of size λ iff λ ∈ C?

Notice that for λ > κ := minC, the trees in the previous proof all have
width λ = |λ · κ| and height λ · κ. In particular, by pruning the branches while
keeping maximality, we easily see that we can obtain maximal trees of width
λ and height κ as well. Therefore, we see that all maximal trees T of regular
height constructed so far either have width |T | and height ω (see Theorem 11
below or [CCHM, Theorem 4.1]) or width and height |T | or width |T | and height
some uncountable regular cardinal below |T |. We do not know whether there
can be a maximal tree whose width is smaller than the cofinality of its height:

6



Question 8. Is it consistent that there is a maximal tree with levels of size ω1

and height ω2 (with all branches of length ω2)?

4 Forcing: wide-branching trees

Definition 9. Let γ be an ordinal. Say that a tree T = {As : s ∈ γ<ω} in
P(ω) is a wide-branching tree if

(i) for all n, {As : s ∈ γn} is the n-th level of T ,

(ii) for s ⊆ t in γ<ω, At ⊆ As,

(iii) for finite D ⊆ γ and β /∈ D, A⟨β⟩ \
∪

α∈D A⟨α⟩ is infinite,

(iv) for n ≥ 2, {As : s ∈ γn} is an a.d. family, and

(v) for all α ≤ β < γ and s ∈ γ≥2, if s(0) ̸= α and β ∈ ran(s) then As and
A⟨α⟩ are almost disjoint.

Lemma 10. (Extension Lemma) Let γ ≥ ω be a limit ordinal. Assume T =
{As : s ∈ γ<ω} is a wide-branching tree. Then there is a ccc forcing end-
extending T to a wide-branching tree T ′ = {As : s ∈ (γ + ω)<ω} such that for
every C ∈ [ω]ω from the ground model, either As ⊆ C for some s ∈ (γ + ω)<ω

or C ⊆ A⟨γ+n⟩ ∩A⟨γ+n+1⟩ for some n ∈ ω.

Proof. Let F be a maximal filter such that F ∩As is infinite for all s ∈ γ<ω and
all F ∈ F . Force with the finite support product M(F)ω of countably many
copies of M(F). Let (Xn : n ∈ ω) be the generic sequence. Put X := {m : m ∈
Xn for all n ≤ m}. By genericity, X is an infinite pseudointersection of the Xn.
For each s ∈ γ<ω \ {⟨⟩}, let Bs = As ∩X. Note that for all finite D,E ⊆ γ and
all F ∈ F such that s(0) /∈ E, F ∩ As \ (

∪
β∈D Aŝ ⟨β⟩ ∪

∪
α∈E A⟨α⟩) is infinite.

(To see this, take δ > maxE, δ /∈ D. Then Aŝ ⟨δ⟩ is almost disjoint from∪
β∈D Aŝ ⟨β⟩ ∪

∪
α∈E A⟨α⟩ by (iv) and (v), and F ∩ Aŝ ⟨δ⟩ is infinite.) Thus, by

genericity, for all finite D,E ⊆ γ with s(0) /∈ E, Bs \(
∪

β∈D Aŝ ⟨β⟩∪
∪

α∈E A⟨α⟩)
is infinite. In particular, by a further ccc forcing, we can add pairwise disjoint
sets Aŝ ⟨γ+n⟩, n ∈ ω, contained in Bs such that all of them are almost disjoint
from all Aŝ ⟨β⟩, β < γ, and all A⟨α⟩, α < γ, with s(0) ̸= α. This means that
clauses (iv) and (v) still hold for these sets. In particular, they can be added to
the tree (that is, they are neither above an element of the tree, nor below two
incomparable elements of the tree). Furthermore, for any s ∈ γ<ω \ {⟨⟩}, any
n ∈ ω, and any t ∈ (γ + ω)<ω, we can now build sets Aŝ ⟨γ+n⟩̂ t contained in
Aŝ ⟨γ+n⟩ such that all the clauses are still satisfied.

Next, let A⟨γ+n⟩ = ω\Xn for n ∈ ω. These sets are almost disjoint from any
As with s(0) < γ and γ + n belonging to ran(s) for some n ∈ ω. In particular,
property (v) is preserved. Also, property (iii) still holds by genericity. Hence
an additional ccc forcing adds sets B⟨γ+n⟩ ⊆ A⟨γ+n⟩ such that B⟨γ+n⟩ and
A⟨β⟩ are almost disjoint for n ∈ ω and any β ̸= γ + n with β < γ + ω. Let
{A⟨γ+n⟩̂ ⟨α⟩ : α < γ + ω} be an a.d. family below B⟨γ+n⟩ for n ∈ ω. More
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generally, for any n ∈ ω and any t ∈ (γ + ω)<ω, we can build sets A⟨γ+n⟩̂ t

contained in A⟨γ+n⟩ such that all the clauses are still satisfied. This completes
the definition of T ′, and it is clear T ′ is a wide-branching tree.

Let C ∈ [ω]ω. If F ∩ As ⊆∗ C for some F ∈ F and s ∈ γ<ω, then Bs ⊆∗ C.
In particular, for some n ∈ ω, Aŝ ⟨γ+n⟩ ⊆ C. Hence, assume that (F ∩ As) \ C
is infinite for all F ∈ F and s ∈ γ<ω. Then ω \ C ∈ F by maximality of F .
Therefore Xn ⊆∗ ω \ C for all n ∈ ω and, by genericity, there is in fact an
n ∈ ω such that Xn ∪ Xn+1 ⊆ ω \ C. Therefore, C ⊆ A⟨γ+n⟩ ∩ A⟨γ+n+1⟩ as
required.

Theorem 11. Let κ ≤ λ be regular uncountable cardinals with λω = λ. There is
a ccc generic extension with tr = κ, c = λ, and, additionally, there is a maximal
tree in P(ω) of size κ.

Proof. Add λ Cohen reals and then make a finite support iteration ⟨Pγ , Q̇γ :
γ < κ⟩ of ccc forcing as in the proof of Theorem 5. Let Vγ be the intermediate
model. If γ is a limit ordinal, the model Vγ will contain a wide-branching tree
Tγ = {As : s ∈ γ<ω} such that

• for γ < δ, Tδ end-extends Tγ ,

• for C ∈ [ω]ω ∩ Vγ either As ⊆ C for some s ∈ (γ + ω)<ω or C ⊆ A⟨γ+n⟩ ∩
A⟨γ+n+1⟩ for some n ∈ ω (in the model Vγ+1 which contains the tree
Tγ+ω).

If γ is a successor ordinal, Q̇γ is the trivial forcing. If γ is a limit ordinal,

Q̇γ is the forcing from the preceding lemma applied to the tree Tγ ∈ Vγ and
yielding the tree Tγ+ω ∈ Vγ+1. Here Tγ is obtained as follows: if γ = δ + ω,
then Tγ ∈ Vδ+1 has been constructed earlier; if γ is a limit of limits, then
Tγ =

∪
δ<γ Tδ.

Clearly, Tκ =
∪

γ<κ Tγ is a maximal tree in P(ω) of size κ by Lemma 10
which is additionally maximal in P(ω)/fin. tr = κ follows as in the proof of
Theorem 5.

As with Theorem 6, the previous result can be extended to yield big spectrum
for the size of maximal trees in P(ω).

Theorem 12. Let C be a set of regular uncountable cardinals. There is a ccc
generic extension such that for all λ ∈ C, there is a maximal tree in P(ω) of
size λ which is additionally maximal in P(ω)/fin.

Proof. Combine the proofs of Theorems 6 and 11.
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Incomparable families and maximal trees, Fund. Math. 234 (2016),
73-89.

[Go] M. Goldstern, Tools for your forcing construction, in: Set Theory of
the Reals (H. Judah, ed.), Israel Mathematical Conference Proceedings,
Vol. 6 (1993) 305-360.

[Mo] D. Monk, Cardinal invariants on Boolean algebras, 2nd revised edition,
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