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ON A QUESTION OF SILVER ABOUT GAP-TWO CARDINAL

TRANSFER PRINCIPLES

MOHAMMAD GOLSHANI AND SHAHRAM MOHSENIPOUR

Abstract. Assuming the existence of a Mahlo cardinal, we produce a generic extension

of Gödel’s constructible universe L, in which the GCH holds and the transfer principles

(ℵ2,ℵ0) → (ℵ3,ℵ1) and (ℵ3,ℵ1) → (ℵ2,ℵ0) fail simultaneously. The result answers a

question of Silver from 1971. We also extend our result to higher gaps.

1. Introduction

In this paper we study cardinal transfer principles introduced by Vaught [6], [7], and

prove some consistency results related to them.

Assume L is a first order language which contains a unary predicate U. By a (κ, λ)-model

for L, we mean a model M = (M,UM, . . . ), where |M | = κ and |UM| = λ, where UM is

the interpretation of U in M. Following Devlin [2], we use the notation

(κ, λ) → (κ′, λ′)

to mean the following transfer principle:

For every countable first order language L as above, and every

first order theory T of L, if T has a (κ, λ)-model, then it has a

(κ′, λ′)-model.

For any natural number n ≥ 1, by the gap-n-cardinal transfer principle we mean the

statement

∀κ ∀λ (κ+n, κ) → (λ+n, λ).

In [5], Silver proved the independence of gap-2-cardinal transfer principle. Starting from

an inaccessible cardinal, he was able to produce a model in which the cardinal transfer

(ℵ3,ℵ1) → (ℵ2,ℵ0) fails. His proof is simply as follows: By a result of Vaught [7], there
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exists a sentence φKH in a suitable first order language, such that for any infinite cardinal

β,

φKH has a (β++, β)-model ⇐⇒ there exists a β+-Kurepa tree.

Now, starting from an inaccessible cardinal κ, Silver shows that in the generic extension by

the Levy collapse Col(ℵ1, < κ), there are no ℵ1-Kurepa trees. If we start with V = L, then in

the resulting extension, there are ℵ2-Kurepa trees, and so the transfer principle (ℵ3,ℵ1) →

(ℵ2,ℵ0) fails in it. Similarly if we force with Col(ℵ2, < κ), then in the extension there are no

ℵ2-Kurepa trees, and we can use it to prove the independence of (ℵ2,ℵ0) → (ℵ3,ℵ1). The

following question was asked by Silver [5].

Question 1.1. 1 Is it consistent with GCH that both transfer principles (ℵ3,ℵ1) → (ℵ2,ℵ0)

and (ℵ2,ℵ0) → (ℵ3,ℵ1) fail simultaneously?

Remark 1.2. If we drop the GCH assumption from the question, then one can easily

answer the above question. Assume κ is an inaccessible cardinals and let G∗H be Col(ℵ1, <

κ) ∗ Add
∼

(ℵ0, κ)-generic over L. In the generic extension L[G ∗H ] there are no ℵ1-Kurepa

trees (see Devlin [3]) but there exists an ℵ2-Kurepa tree, and hence by the remarks above,

the transfer principle (ℵ3,ℵ1) → (ℵ2,ℵ0) fails in L[G ∗H ].

On the other hand L[G ∗ H ] satisfies “2ℵ0 = 2ℵ1 = κ = ℵ2”. Let L = (U, F ), where U

is a unary predicate symbol and F is a binary predicate symbol. let T be an L-theory which

says the following:

(1) ∀x, y F (x, y) → U(y). In particular, for each x, F determines a subset Fx of U,

namely, Fx = {y : F (x, y)}.

(2) For all x 6= x′, Fx 6= Fy.

Then T has an (ℵ2,ℵ0) model but it does not have an (ℵ3,ℵ1)-model (as otherwise we should

have 2ℵ1 ≥ ℵ3). Thus the transfer principle (ℵ2,ℵ0) → (ℵ3,ℵ1) fails in L[G ∗H ].

We give an affirmative answer to this question by proving the following theorem:

1On page 388 of [5], Silver writes “One can also get a GCH model in which (ℵ7,ℵ5) → (ℵ3,ℵ1) fails

and a GCH model which (ℵ3,ℵ1) → (ℵ7,ℵ5) fails (though I don’t see how to get the → both ways to fail

simultaneously)”.
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Theorem 1.3. Assume κ is a Mahlo cardinal. Then there is a generic extension of L, the

Gödel’s constructible universe, in which the GCH holds and the cardinal transfer principles

(ℵ2,ℵ0) → (ℵ3,ℵ1) and (ℵ3,ℵ1) → (ℵ2,ℵ0) fail.

Then we prove a general model theoretic fact, and use it to extend the above result to

higher gaps:

Theorem 1.4. Assume κ is a Mahlo cardinal. Then there is a generic extension of L

in which the GCH holds and for all n ≥ 2, the cardinal transfer principles (ℵn,ℵ0) →

(ℵn+1,ℵ1) and (ℵn+1,ℵ1) → (ℵn,ℵ0) fail.

Remark 1.5. Our proofs can be easily extended to get the following consistency result:

assume α < β are regular cardinals and assume there exists a Mahlo cardinal above them.

Then in a generic extension of L, the GCH holds and both transfer principles (α+n, α) →

(β+n, β) and (β+n, β) → (α+n, α) fail.

In Section 2 we prove Theorem 1.3 and in Section 3, we prove Theorem 1.4. In the last

section, we discuss the same problem for the case of gap-1.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3.

2.1. On a result of Jensen. In this subsection we state a result of Jensen [4] and mention

some of its basic properties which are needed. Let L = {∈, A, C}, where A is a unary

predicate and C is a function symbol. Let TJ be the following theory in L:

“ZFC−+GCH +A+ is the largest cardinal+C is a �A+ -sequence”.

By a (κ, λ)-model of TJ we mean a model M = (M,∈M, AM, CM) of TJ , where |M | = κ

and |AM| = λ.

Theorem 2.1. (Jensen [4]) Assume GCH + ♦β+ holds, where β is a regular cardinal, and

suppose κ > β is a Mahlo cardinal. Then there is a forcing notion Pβ,κ such that if K is

Pβ,κ-generic over V , then the following hold in V [K]:

(a) V [K] |=“GCH”.
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(b) The principle ♦+
β+ holds.

(c) The theory TJ does not have any (β++, β)-model.

Proof. As requested by the referees, we sketch the proof of the theorem, by providing the

forcing construction Pβ,κ, and refer to [4] for details. Let G be Col(β+, < κ)-generic over

V , where

Col(β+, < κ) = {p : β+ × κ → κ : |p| ≤ β and for all (α, λ) ∈ dom(p), p(α, λ) < λ}

is the Levy collapse. The next claim is standard.

Claim 2.2. (a) The forcing Col(β+, < κ) is β+-closed and κ-c.c.

(b) V [G] |=“GCH + ♦β+”.

(c) V [G] |=“κ = β++ and �β++ fails”.

In [4], the following strengthening of Claim 2.2(c) is proved.

Claim 2.3. In V [G], the theory TJ has no (β++, β)-model

From now on we work in V [G]. Let S = 〈Sα : α < β+〉 witness ♦β+ . For each α < β+ let

dα : β → α be an onto function and set d = 〈dα : α < β+〉. For α < β+ set

Mα = Lγα
[S ↾ α+ 1, d ↾ α+ 1],

where γα is the least ordinal γ > α such that γ > supν<α γν and

Lγ [S ↾ α+ 1, d ↾ α+ 1] |= “ZFC− ”.

Define

S∗ = 〈S∗

α : α < β+〉,

where S∗
α = P (α)∩Mα. We find a generic extension of V [G] in which S∗ is a ♦+

β+ -sequence.

Let A ⊆ κ be such that Lκ[A] = H(κ) and define the sequence 〈ρν : ν < κ〉 by recursion

on ν as follows: ρν is the least ordinal ρ > β+ such that

• ρ > supξ<ν ρξ.

• 〈Mα : α < β+〉 ∈ Lρ[A].

• cf(ρ) = β+.



ON A QUESTION OF SILVER ABOUT GAP-TWO CARDINAL TRANSFER PRINCIPLES 5

• Lρ[A] |=“ZFC− + ∀x, |x| ≤ β+.

Set ρ̃ν = β+ ∪ supξ<ν ρξ,

Uν = 〈Lρν
[A],∈, A ∩ ρν , 〈Mα : α < β+〉〉,

and for ν > 0 set

Ũν =
⋃

ξ<ν

Ũξ = 〈Lρ̃ν
[A],∈, A ∩ ρ̃ν , 〈Mα : α < β+〉〉.

Then set

fν = the Uν -least bijection f : β+ ↔ ρ̃ν .

aξ = the ξ-th a ⊆ β+ in Lκ[A].

ãν = {(ξ, µ) : ξ ∈ afν(µ)}.

We are now ready to define the desired forcing notion, that we denote by Add(♦+
β+). First

we define the forcing notions Add(♦+
β+)ν , ν < κ, which are the building blocks of the main

forcing construction 2.

A condition in Add(♦+
β+)ν is a subset p of β+ such that

(1) p ⊆ β+ is closed and bounded.

(2) α ∈ p =⇒ ãν ∩ α ∈ Mα.

Add(♦+
β+)ν is ordered by end extension:

p ≤ q ⇐⇒ q = p ∩ (max(p) + 1).

Let us now define Add(♦+
β+). A condition in Add(♦+

β+) is a function p such that

(1) dom(p) ⊆ κ and | dom(p)| ≤ β.

(2) ∀ν ∈ dom(p), p(ν) ∈ Add(♦+
β+)ν .

(3) If ν ∈ dom(p), then

(a) f ′′
ν [max(p(ν))] ⊆ dom(p).

(b) For each ξ ∈ f ′′
ν [max(p(ν))], max(p(ξ)) ≥ max(p(ν)).

(c) α ∈ p(ν) =⇒ C̃p,ν ∩ α ∈ Mα, where

C̃p,ν = {(µ, ξ) ∈ max(p(ν))×max(p(ν)) : µ ∈ p(fν(ξ))}.

2In [4], the forcing notion Add(♦+

β+ )ν is denoted by P
A
ν and the forcing notion Add(♦+

β+ ) is denoted by

P
A
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The forcing Add(♦+
β+) is ordered as follows: p ≤ q if and only if

dom(p) ⊇ dom(q) and for all ν ∈ dom(q), p(ν) ≤Add(♦+

β+
)ν

q(ν).

Let H be Add(♦+
β+)-generic over V [G]. The next claim is proved in [4].

Claim 2.4. (a) Add(♦+
β+) is β+-distributive and κ = β++-c.c.”.

(b) V [G ∗H ] |=“GCH”.

(c) S∗ witnesses that ♦+
β+ holds in V [G ∗H ].

(d) The theory TJ does not have a (β++, β)-model in V [G ∗H ].

Then Pβ,κ = Col(β+, < κ) ∗Add
∼

(♦+
β+) is as required. �

Suppose K = G ∗H is Pβ,κ-generic over V . As ♦+
β+ implies the existence of a β+-Kurepa

tree [2], in V [K], we have β+-Kurepa trees.

2.2. Completing the proof of Theorem 1.3. In this subsection we complete the proof

of Theorem 1.3. Thus assume V = L and let κ be a Mahlo cardinal. Let λ be the least

inaccessible cardinal. So λ < κ. Let G be Col(ℵ1, < λ)-generic over L. Then:

Lemma 2.5. (a) L[G] |= “There are no ℵ1-Kurepa trees”.

(b) L[G] |= “ GCH holds”.

(c) L[G] |= “ κ is a Mahlo cardinal”.

Proof. (a) and (b) hold by [5], and (c) is clear, as the forcing Col(ℵ1, < λ) has size < κ. �

Let K be P
L[G]
ℵ1,κ

-generic over L[G]. We show that L[G ∗K] is the required model. First

note that by Theorem 2.1,

L[G ∗K] |=“ there exists an ℵ2-Kurepa tree”.

But by Lemma 2.5, L[G] |= “There are no ℵ1-Kurepa trees”. On the other hand, L[G] |=“Pℵ1,κ

is λ = ℵ2-distributive”, in particular

L[G ∗K] |= “There are no ℵ1-Kurepa trees”.

It follows that

L[G ∗K] |= “ (ℵ3,ℵ1) → (ℵ2,ℵ0) fails ”.



ON A QUESTION OF SILVER ABOUT GAP-TWO CARDINAL TRANSFER PRINCIPLES 7

On the other hand, by Theorem 2.1(b), L[G ∗K] |=“TJ does not have an (ℵ3,ℵ1)-model”.

We show that TJ has an (ℵ2,ℵ0)-model in L[G ∗K]. First note that ℵ
L[G∗K]
2 = λ, which is

inaccessible but not Mahlo in L, so it follows from results of Jensen and Solovay (see [2])

that �ℵ1
holds in both L[G] and L[G ∗ K]. Let C = 〈Cα : α < λ, lim(α)〉 ∈ L[G] witness

this. Consider the model

M = (H(λ)L[G],∈,ℵ0, C),

where ℵ0 is considered as the interpretation of A. Then M is an (ℵ2,ℵ0)-model of T . So

L[G ∗K] |= “ (ℵ2,ℵ0) → (ℵ3,ℵ1) fails ”.

The theorem follows.

3. A general model theoretic fact and the proof of Theorem 1.4

In this section we prove a general model theoretic fact, and use it to prove Theorem 1.4.

3.1. A general model theoretic fact. In this subsection we prove the following lemma

and consider some of its consequences.

Lemma 3.1. Assume n ≥ 1, L is a first order language which contains a unary predicate

U, and T is a theory in L. Then there are L+ ⊇ L and a theory T+ in L+, such that for all

infinite cardinals β:

T has a (β+n, β)-model ⇐⇒ T+ has a (β+n+1, β)-model.

Proof. Let L+ = L∪{<,W0, . . . ,Wn, F−1, F0, . . . , Fn} where < is a binary predicate symbol,

Wi’s are unary predicate symbols, F−1 is a binary predicate symbol and Fi’s, 0 ≤ i ≤ n, are

ternary predicate symbols. Let T+ consists of the following axioms:

(1) φWn , for each φ ∈ T, where φWn is the relativization of φ to Wn.

(2) < is a linear ordering of the universe.

(3) Under <, each Wi is an initial segment of Wi+1, i < n, and Wn is an initial segment

of the universe (in particular W0 ⊆ W1 ⊆ · · · ⊆ Wn).

(4) U ⊆ Wn (i.e., ∀x(U(x) → Wn(x))).

(5) F−1 ⊆ U ×W0 defines a bijection from U onto W0.
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(6) For each 0 ≤ i < n, Fi ⊆ (Wi+1 \Wi) ×Wi ×Wi+1 is such that if x ∈ Wi+1 \Wi,

then {(y, z) : Fi(x, y, z)} is a bijection from Wi onto {z ∈ Wi+1 : z < x}.

(7) Fn is such that if x /∈ Wn, then {(y, z) : Fn(x, y, z)} is a bijection from Wn onto

{z : z < x}.

Now suppose that T has a (β+n, β)-model M = (β+n, UM, . . . ). Consider the model

M+ = (β+n+1,M, <, β, . . . , β+n, f−1, f0, . . . , fn),

where f−1 : UM ↔ β, each fi, 0 ≤ i ≤ n is such that for each β+i ≤ γ < β+i+1, {(ζ, η) :

(γ, ζ, η) ∈ fi} defines a bijection β+i ↔ γ. It is easily seen that M+ is a (β+n+1, β)-model

for T+.

Conversely assume that M+ is a (β+n+1, β)-model for T+. Consider the model M which

is obtained from M+ ↾ L, by replacing its universe with WM
+

n . It follows from (1) that

M is a model of T . We show that it is a (β+n, β)-model. We have UM = UM
+

, which

has size β. On the other hand, axioms (4)-(6) can be used to show that |WM
+

0 | = β,

|WM
+

i+1 | ≤ |WM
+

i |+ and |WM
+

m | ≥ β+n, so by induction on i ≤ n, we have |WM
+

i | = β+i.

In particular |WM
+

n | = β+n, and the result follows. �

Corollary 3.2. For each n ≥ 1, the gap-(n + 1)-cardinal transfer principle implies the

gap-n-cardinal transfer principle.

Remark 3.3. In personal communication, Ali Enayat informed us that Corollary 3.2 is an

immediate consequence of the downward Löwenheim-Skolem theorem, i.e., the fact that if

M = (M, . . . ) is an infinite structure in a countable language and X is any subset of M ,

then there is an elementary substructure M0 = (M0, . . . ) of M that includes X and whose

cardinality is max{ℵ0, |X |}. Using this theorem, it is easy to see that every model M that

exhibits a gap-m model, say (κ+m, κ), for some m > 0 has an elementary sub-model M0

that exhibits a gap-n model (κ+n, κ) for all n < m.

3.2. Proof of Theorem 1.4. In this subsection we complete the proof of Theorem 1.4. Let

L[G ∗H ] be the model obtained in Subsection 2.2. So in L[G ∗H ] both transfer principles

(ℵ3,ℵ1) → (ℵ2,ℵ0) and (ℵ2,ℵ0) → (ℵ3,ℵ1) fail. So, by induction, and using Lemma 3.1, for
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each n ≥ 2, the transfer principles

(ℵn,ℵ0) → (ℵn+1,ℵ1)

and

(ℵn+1,ℵ1) → (ℵn,ℵ0)

fail in L[G ∗H ].

4. The case of gap-1 and some problems

In general, we can not hope to prove a result as above for gap-1-cardinal transfer princi-

ples. This is because of Vaught’s theorem [7] that the transfer principle (β+, β) → (ℵ1,ℵ0)

is a theorem of ZFC. However we do not know the answer to the following question:

Question 4.1. Is it consistent that both transfer principles (ℵ2,ℵ1) → (ℵ3,ℵ2) and (ℵ3,ℵ2) →

(ℵ2,ℵ1) fail simultaneously.

As we showed in Corollary 3.2, the gap-(n + 1)-cardinal transfer principle implies the

gap-n-cardinal transfer principle.

On the other hand if L[G] is a generic extension of L by the Levy collapse of an inaccessible

cardinal κ to ℵ2, then it follows from results of Vaught [7], Chang [1] and Jensen [2] that

the gap-1-cardinal transfer principle holds in L[G], while by Silver’s result stated in the

introduction, the gap-2-cardinal transfer principle fails in L[G]. We do not know the answer

for higher gaps.

Question 4.2. Assume n > 1. Is it consistent that the gap-n-cardinal transfer principle

holds while the gap-(n + 1)-cardinal transfer principle fails?
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