Skip to main content
Log in

Shadows of the axiom of choice in the universe \(L(\mathbb {R})\)

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that several theorems about Polish spaces, which depend on the axiom of choice (\(\mathcal {AC}\)), have interesting corollaries that are theorems of the theory \(\mathcal {ZF} + \mathcal {DC}\), where \(\mathcal {DC}\) is the axiom of dependent choices. Surprisingly it is natural to use the full \(\mathcal {AC}\) to prove the existence of these proofs; in fact we do not even know the proofs in \(\mathcal {ZF} + \mathcal {DC}\). Let \(\mathcal {AD}\) denote the axiom of determinacy. We show also, in the theory \(\mathcal {ZF} + \mathcal {AD} + V = L(\mathbb {R})\), a theorem which strenghtens and generalizes the theorem of Drinfeld (Funct Anal Appl 18:245–246, 1985) and Margulis (Monatshefte Math 90:233–235, 1980) about the unicity of Lebesgue’s measure. This generalization is false in \(\mathcal {ZFC}\), but assuming the existence of large enough cardinals it is true in the model \(\langle L(\mathbb {R}),\in \rangle \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies, R.O., Ostaszewski, A.: Denumerable compact metric spaces admit isometry-invariant finitely additive measures. Mathematika 26, 184–186 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Drinfeld, V.G.: Finitely additive measures in \(\mathbb{S}^2\) and \(\mathbb{S}^3\), invariant with respect to rotations. Funct. Anal. Appl. 18, 245–246 (1985). (Translation of Russian original from 1984)

    Article  Google Scholar 

  3. Følner, E.: On groups with full Banach mean value. Math. Scand. 3, 243–254 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kanamori, A.: The Higher Infinity, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Kechris, A.: The axiom of determinacy implies dependent choices in \(L(\mathbb{R})\). J. Symb. Logic 49, 161–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Keisler, H.J., Tarski, A.: From accessible to inaccessible cardinals. Fund. Math. 53, 225–308 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luxemburg, W.A.J.: Reduced direct products of the real number system and equivalents of the Hahn–Banach extension theorem. In: Luxemburg, W.A.J. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability. Holt, Rinehart and Winston, New York (1969)

    Google Scholar 

  8. Łoś, J.: Some properties of inaccessible numbers, in the collection Infinitistic Methods. In: Proceedings of the Symposium on Foundations of Mathematics, Warsaw 1959, Pergamon Press and Państwowe Wydawnictwo Naukowe, pp. 21–23 (1961)

  9. Margulis, G.A.: Some remarks on invariant means. Monatshefte Math. 90, 233–235 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martin, D.A.: Descriptive Set Theory: Projective Sets, in the Collection Handbook of Mathematical Logic, Editor J. Barwise. Elsevier, Amsterdam (1977)

    Google Scholar 

  11. Morse, A.P.: Squares are normal. Fund. Math. 36, 35–39 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mycielski, J.: On the axiom of determinateness. Fund. Math. 53, 205–224 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mycielski, J.: Two remarks on Tychonoff’s product theorem. Bull. Acad. Polon. Sci. 12, 439–441 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Mycielski, J.: Remarks on invariant measures in metric spaces. Coll. Math. 32, 105–112 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mycielski, J.: Games with perfect information. In: Aumann, R.J., Hart, S. (eds.) Chap. 3 In the collection Handbook of Game Theory with Economic Applications, vol. I, pp. 41–70. Elsevier, Amsterdam (1992)

  16. Mycielski, J.: Non-amenable groups with amenable action and some paradoxical decompositions in the plane. Coll. Math. 75, 149–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mycielski, J., Steinhaus, H.: A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. Séries Math. Astr. Phys. 10, 1–3 (1962)

    MathSciNet  MATH  Google Scholar 

  18. Mycielski, J., Tomkowicz, G.: On small subsets in Euclidean spaces. Bull. Polish Acad. Sci. 64, 109–118 (2016)

    Article  MATH  Google Scholar 

  19. Oxtoby, J.C.: Cartesian products of Baire spaces. Fund. Math. 49, 157–166 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Solovay, R.M., Woodin, H.W.: Letters to Jan Mycielski from (2015)

  21. Tomkowicz, G., Wagon, S.: The Banach–Tarski Paradox, 2nd edn. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Tomkowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mycielski, J., Tomkowicz, G. Shadows of the axiom of choice in the universe \(L(\mathbb {R})\) . Arch. Math. Logic 57, 607–616 (2018). https://doi.org/10.1007/s00153-017-0596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0596-x

Keywords

Mathematics Subject Classification

Navigation