A strong failure of \aleph_{0}-stability for atomic classes

Michael C. Laskowski*
Department of Mathematics
University of Maryland

Saharon Shelah ${ }^{\dagger}$
Hebrew University
Rutgers University

August 8, 2018

Abstract

We study classes of atomic models $\mathbf{A t}_{T}$ of a countable, complete first-order theory T. We prove that if $\mathbf{A t}_{T}$ is not pcl-small, i.e., there is an atomic model N that realizes uncountably many types over $\operatorname{pcl}(\bar{a})$ for some finite \bar{a} from N, then there are $2^{\aleph_{1}}$ non-isomorphic atomic models of T, each of size \aleph_{1}.

1 Introduction

In a series of papers [2, 3, 4, Baldwin and the authors have begun to develop a model theory for complete sentences of $L_{\omega_{1}, \omega}$ that have fewer than $2^{\aleph_{1}}$ nonisomorphic models of size \aleph_{1}. By well known reductions, one can replace the reference to infinitary sentences by restricting to the class of atomic models of a countable, complete first-order theory ${ }^{11}$

[^0]Fix, for the whole of this paper, a complete theory T in a countable language that has at least one atomic mode 2 of size \aleph_{1}. By theorems of Vaught, these restrictions on T are well understood. Such a T has an atomic model if and only if every consistent formula can be extended to a complete formula. Furthermore, any two countable, atomic models of T are isomorphic, and a model is prime if and only if it is countable and atomic. Using a well-known union of chains argument, T has an atomic model of size \aleph_{1} if and only if the countable atomic model is not minimal, i.e., it has a proper elementary substructure.

The analysis of $\mathbf{A t}_{T}$, the class of atomic models of T, begins by restricting the notion of types to those that can be realized in an atomic model. Suppose M is atomic and $A \subseteq M$. We let $S_{a t}(A)$ denote the set of complete types p over A for which $A b$ is an atomic set for some (equivalently, for every) realization b of p. It is easily checked that when A is countable, $S_{a t}(A)$ is a G_{δ} subset of the Stone space $S(A)$, hence $S_{a t}(A)$ is Polish with respect to the induced topology. We will repeatedly use the fact that any countable, atomic set A is contained in a countable, atomic model M. However, unlike the firstorder case, some types in $S_{a t}(A)$ need not extend to types in $S_{a t}(M)$. Indeed, there are examples where the space $S_{a t}(A)$ is uncountable (hence contains a perfect set) while $S_{a t}(M)$ is countable. Thus, for analyzing types over countable, atomic sets $A \subseteq M$, we are led to consider

$$
S_{a t}^{+}(A, M):=\left\{p \mid A: p \in S_{a t}(M)\right\}
$$

Equivalently, $S_{a t}^{+}(A, M)$ is the set of $q \in S_{a t}(A)$ that can be extended to a type $q^{*} \in S_{a t}(M)$.

Next, we recall the notion of pseudo-algebraicity, which was introduced in [2], that is the correct analog of algebraicity in the context of atomic models. Suppose M is an atomic model, and b, \bar{a} are from M. We say $b \in \operatorname{pcl}_{M}(\bar{a})$ if $b \in N$ for every elementary submodel $N \preceq M$ that contains \bar{a}. The seeming dependence on M is illusory - as is noted in [2], if $b^{\prime}, \bar{a}^{\prime}$ are inside another atomic model M^{\prime}, and $\operatorname{tp}_{M^{\prime}}\left(b^{\prime} \bar{a}^{\prime}\right)=\operatorname{tp}_{M}(b \bar{a})$, then $b \in \operatorname{pcl}_{M}(\bar{a})$ if and only if $b^{\prime} \in \operatorname{pcl}_{M^{\prime}}\left(\bar{a}^{\prime}\right)$. It is easily seen that inside any atomic model $M, \operatorname{pcl}_{M}(\bar{a})$ is countable for any finite tuple \bar{a}. Moreover, if $f: M \rightarrow M^{\prime}$ is an isomorphism of atomic models, then $f\left(\operatorname{pcl}_{M}(\bar{a})\right)=\operatorname{pcl}_{M^{\prime}}(f(\bar{a}))$ setwise. As an important special case, if $\bar{a} \subseteq M^{\prime} \preceq M$ and $f: M \rightarrow M^{\prime}$ fixes \bar{a} pointwise, then f

[^1]induces an elementary permutation on $D=\operatorname{pcl}_{M}(\bar{a})$, which in turn induces a bijection between $S_{a t}^{+}(D, M)$ and $S_{a t}^{+}\left(D, M^{\prime}\right)$.

We now give the major new definition of this paper:
Definition 1.1 An atomic class $\mathbf{A t}_{T}$ with an uncountable model is pcl-small if, for every atomic model N and for every finite \bar{a} from N, N realizes only countably many complete types over $\operatorname{pcl}_{N}(\bar{a})$.

The name of this notion is by analogy with the first-order case - A complete, first-order theory T is small if and only if for every model N and every finite \bar{a} from N, N realizes only countably many complete types over \bar{a}. The following proposition relates pcl-smallness with the spaces of types $S_{a t}^{+}(D, M)$.

Proposition 1.2 The atomic class $\mathbf{A t}_{T}$ is pcl-small if and only if the space of types $S_{a t}^{+}\left(\operatorname{pcl}_{M}(\bar{a}), M\right)$ is countable for every countable, atomic model M and every finite \bar{a} from M.

Proof. First, assume that some atomic model N and finite sequence \bar{a} from N witness that $\mathbf{A t}_{T}$ is not pcl-small. Choose $\left\{c_{i}: i \in \omega_{1}\right\} \subseteq N$ realizing distinct complete types over $D=\operatorname{pcl}_{N}(\bar{a})$. Also, choose a countable $M \preceq N$ that contains \bar{a}, and hence D. Then $\left\{\operatorname{tp}\left(c_{i} / D\right): i \in \omega_{1}\right\}$ witness that $S_{a t}^{+}(D, M)$ is uncountable.

For the converse, choose a countable, atomic model M and \bar{a} from M such that $S_{a t}^{+}(D, M)$ is uncountable, where $D=\operatorname{pcl}_{M}(\bar{a})$. We will inductively construct a continuous, increasing elementary chain $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ of countable, atomic models with $M=M_{0}$ and, for each ordinal α, there is an element $c_{\alpha} \in M_{\alpha+1}$ such that $\operatorname{tp}\left(c_{\alpha} / D\right)$ is not realized in M_{α}. Given such a sequence, it is evident that $N=\bigcup_{\alpha<\omega_{1}} M_{\alpha}$ and \bar{a} witness that $\mathbf{A t}_{T}$ is not pcl-small. To construct such a sequence, we have defined M_{0} to be M and take unions at limit ordinals. For the successor step, assume M_{α} has been defined. As M and M_{α} are each countable atomic models that contain \bar{a}, choose an isomorphism $f: M \rightarrow M_{\alpha}$ fixing \bar{a} pointwise. As noted above, f fixes D setwise. As M_{α} is countable, so is the set $\left\{\operatorname{tp}(c / D): c \in M_{\alpha}\right\}$. As $S_{a t}^{+}(D, M)$ is uncountable, choose an atomic type $p \in S_{a t}(M)$, whose restriction to D is distinct from $\left\{f^{-1}(\operatorname{tp}(c / D)): c \in M_{\alpha}\right\}$. Now choose c_{α} to realize $f(p)$. Then, as $M_{\alpha} c_{\alpha}$ is a countable atomic set, choose a countable elementary extension $M_{\alpha+1} \succeq M_{\alpha}$ containing c_{α}.

Recall that an atomic class $\mathbf{A t}_{T}$ is \aleph_{0}-stable ${ }^{3}$ if $S_{a t}(M)$ is countable for all (equivalently, for some) countable atomic models M. As $S_{a t}^{+}(A, M)$ is a set of projections of types in $S_{a t}(M)$, it will be countable whenever $S_{a t}(M)$ is. This observation makes the following corollary to Proposition 1.2 immediate:

Corollary 1.3 If an atomic class $\mathbf{A t}_{T}$ is \aleph_{0}-stable, then $\mathbf{A t}_{T}$ is pcl-small.
The converse to Corollary 1.3 fails. For example, the theory $T=R E F(b i n)$ of countably many, binary splitting equivalence relations is not \aleph_{0}-stable, yet $\operatorname{pcl}_{M}(\bar{a})=\bar{a}$ for every model M and \bar{a} from M. Thus, $S_{a t}\left(\operatorname{pcl}_{M}(\bar{a})\right)$ and hence $S_{a t}^{+}(\operatorname{pcl}(\bar{a}), M)$ is countable for every finite tuple \bar{a} inside any atomic model M. The main theorem of this paper is:

Theorem 1.4 Let T be a countable, complete theory T with an uncountable atomic model. If the atomic class $\mathbf{A t}_{T}$ is not pcl-small, then there are $2^{\aleph_{1}}$ non-isomorphic models in $\mathbf{A t}_{T}$, each of size \aleph_{1}.

Section 2 sets the stage for the proof. It describes the spaces of types $S_{a t}^{+}(A, M)$, states a transfer theorem for sentences of $L_{\omega_{1}, \omega}(Q)$, and details a non-structural configuration arising from non-pcl-smallness. In Section 3, the non-structural configuration is exploited to give a family of $2^{\aleph_{0}}$ nonisomorphic structures $\left(N, \bar{b}^{*}\right)$, where each of the reducts N is in $\mathbf{A t}{ }_{T}$ and has size \aleph_{1}. Theorem 1.4 is finally proved in Section 4. It is remarkable that whereas it is a ZFC theorem, the proof is non-uniform depending on the relative sizes of the cardinals $2^{\aleph_{0}}$ and $2^{\aleph_{1}}$.

2 Preliminaries

In this section, we develop some general tools that will be used in the proof of Theorem 1.4 .

2.1 On $S_{a t}^{+}(A, M)$

In this subsection we explore the space of types

$$
S_{a t}^{+}(A, M)=\left\{p \mid A: p \in S_{a t}(M)\right\}
$$

[^2]where A is a subset of a countable, atomic model M.
Fix a countable, atomic model M and an arbitrary subset $A \subseteq M$. Let \mathcal{P} denote the space of complete types in one free variable over finite subsets of M. As M is atomic, \mathcal{P} can be identified with the set of complete formulas $\varphi(x, m)$ over M. Implication gives a natural partial order on \mathcal{P}, namely $p \leq q$ if and only if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$ and $q \vdash p$. One should think of elements of \mathcal{P} as 'finite approximations' of types in $S_{a t}^{+}(A, M)$. We describe two conditions on $p \in \mathcal{P}$ that identify extreme behaviors in this regard.

Definition 2.1 We say a type $p^{*} \in S_{a t}^{+}(A, M)$ lies above $p \in \mathcal{P}$ if there is some $\bar{p} \in S_{a t}(M)$ extending $p \cup p^{*}$. As every $p \in \mathcal{P}$ extends to a type in $S_{a t}(M)$, it follows that at least one $p^{*} \in S_{a t}^{+}(A, M)$ lies above p.

- An element $p \in \mathcal{P}$ determines a type in $S_{\text {at }}^{+}(A, M)$ if exactly one $p^{*} \in$ $S_{a t}^{+}(A, M)$ lies above p.
- An element $p \in \mathcal{P}$ is A-large if $\left\{p^{*} \in S_{a t}^{+}(A, M): p^{*}\right.$ lies above $\left.p\right\}$ is uncountable.

To understand these extreme behaviors, we define a rank function rk_{A} : $\mathcal{P} \rightarrow\left(\omega_{1}+1\right)$ as follows:

- $\operatorname{rk}_{A}(p) \geq 0$ for all $p \in \mathcal{P}$;
- For $\alpha \leq \omega_{1}, \operatorname{rk}_{A}(p) \geq \alpha$ if and only if for every $\beta<\alpha$ and for all finite $F, \operatorname{dom}(p) \subseteq F \subseteq M$, there is $q \in S_{a t}(F)$ with $q \geq p$ that β - A splits, where:
- A type $q \in S_{a t}(F) A$-splits if, for some $\varphi(x, \bar{a})$ with \bar{a} from A, there are $q_{1}, q_{2} \geq q$ with $q \cup \varphi(x, \bar{a}) \subseteq q_{1}$ and $q \cup \neg \varphi(x, \bar{a}) \subseteq q_{2}$; and $q \in S_{a t}(F) \beta-A$ splits if, in addition, $\operatorname{rk}_{A}\left(q_{1}\right), \operatorname{rk}_{A}\left(q_{2}\right) \geq \beta$.
- For $\alpha<\omega_{1}$, we say $\operatorname{rk}_{A}(p)=\alpha$ if $\operatorname{rk}_{A}(p) \geq \alpha$, but $\operatorname{rk}_{A}(p) \nsupseteq \alpha+1$.

Proposition 2.2 If $p \in \mathcal{P}$ and $\operatorname{rk}_{A}(p)=\alpha<\omega_{1}$, then some $r \geq p$ determines a type in $S_{a t}^{+}(A, M)$.

Proof. We prove this by induction on α. We begin with $\alpha=0$. Suppose $\mathrm{rk}_{A}(p)=0$. As $\mathrm{rk}_{A}(p) \nsupseteq 1$, there is a finite F, $\operatorname{dom}(p) \subseteq F \subseteq M$ for which there is no $q \in S_{a t}(F)$ and $\varphi(x, \bar{a})$ with \bar{a} from A for which $q \geq p$ and both
$q \cup\{\varphi(x, \bar{a})\}$ and $q \cup\{\neg \varphi(x, \bar{a})\}$ are consistent. So fix any $r \in S_{a t}(F)$ with $r \geq p$. Any such r determines a type in $S_{a t}^{+}(A, M)$.

Next, choose $0<\alpha<\omega_{1}$ and assume the Proposition holds for all $\beta<\alpha$. Choose $p \in S_{a t}(E)$ with $\operatorname{rk}_{A}(p)=\alpha$. As $\operatorname{rk}_{A}(p) \geq \alpha$, while $\operatorname{rk}_{A}(p) \nsupseteq \alpha+1$, there is a finite $F, E \subseteq F \subseteq M$ for which there is no $q \in S_{a t}(F)$ that both extends p and $\alpha-A$ splits. So choose any $q \in S_{a t}(F)$ with $q \geq p$. If q determines a type in $S_{a t}^{+}(A, M)$, then we finish, so assume otherwise. Thus, there is some $\varphi(x, \bar{a})$ with \bar{a} from A such that both $q \cup\{\varphi(x, \bar{a})\}$ and $q \cup\{\neg \varphi(x, \bar{a})\}$ are consistent. Choose complete types $q_{1}, q_{2} \in S_{a t}(F \bar{a})$ extending these partial types. Clearly, both $q_{1}, q_{2} \geq q$, but since q does not $\alpha-A$ split, at least one of them has $\operatorname{rk}_{A}\left(q_{\ell}\right)<\alpha$. But then by our inductive hypothesis, there is $r \geq q_{\ell}$ that determines a type in $S_{a t}^{+}(A, M)$ and we finish.

Next, we turn our attention to A-large types and types of rank at least ω_{1} and see that these coincide. We begin with two lemmas, the first involving types of rank at least ω_{1} and the second involving A-large types.

Lemma 2.3 Assume that $E \subseteq M$ is finite and $p \in S_{a t}(E)$ has $\operatorname{rk}_{A}(p) \geq \omega_{1}$. Then:

1. For every finite $F, E \subseteq F \subseteq M$, there is $q \in S_{a t}(F), q \geq p$, with $\mathrm{rk}_{A}(q) \geq \omega_{1} ;$ and
2. There is some formula $\varphi(x, \bar{a})$ with \bar{a} from A and $q_{1}, q_{2} \in \mathcal{P}$ with $p \cup$ $\{\varphi(x, \bar{a})\} \subseteq q_{1}, p \cup\{\neg \varphi(x, \bar{a})\} \subseteq q_{2}$, and both $\operatorname{rk}_{A}\left(q_{1}\right), \operatorname{rk}_{A}\left(q_{2}\right) \geq \omega_{1}$.

Proof. (1) Fix a finite F satisfying $E \subseteq F \subseteq M$. As $\operatorname{rk}_{A}(p) \geq \omega_{1}$, for every $\beta<\omega_{1}$ there is some $q \geq p$ with $q \in S_{a t}(F)$ for which certain extensions of q have rank at least β. It follows that $\operatorname{rk}_{A}(q) \geq \beta$ for any such witness. However, as $S_{a t}(F)$ is countable, there is some $q \in S_{a t}(F)$ which serves as a witness for uncountably many β. Thus, $\mathrm{rk}_{A}(q) \geq \omega_{1}$ for any such $q \geq p$.
(2) Assume that there were no such formula $\varphi(x, \bar{a})$. Then, for any formula $\varphi(x, \bar{a})$, since \mathcal{P} is countable, there would be an ordinal $\beta^{*}<\omega_{1}$ such that either every $q \in \mathcal{P}$ extending $p \cup\{\varphi(x, \bar{a})\}, \operatorname{rk}_{A}(q)<\beta^{*}$ or every $q \in \mathcal{P}$ extending $p \cup\{\neg \varphi(x, \bar{a})\}$ has $\operatorname{rk}_{A}(q)<\beta^{*}$. Continuing, as there are only countably many formulas $\varphi(x, \bar{a})$, there would be an ordinal $\beta^{* *}<\omega_{1}$ that works for all formulas $\varphi(x, \bar{a})$. Restating this, p does not $\beta^{* *}-A$ split, so no extension of p could $\beta^{* *}-A$ split either. This contradicts $\operatorname{rk}_{A}(p) \geq \beta^{* *}+1$.

Lemma 2.4 Suppose $q \in S_{a t}(F)$ is A-large. Then:

1. For every finite $F^{\prime}, F \subseteq F^{\prime} \subseteq M$, there is some A-large $r \in S_{a t}\left(F^{\prime}\right)$ with $r \geq q$; and
2. For some $\varphi(x, \bar{a})$, there are A-large extensions $r_{1} \supseteq q \cup\{\varphi(x, \bar{a})\}$ and $r_{2} \supseteq q \cup\{\neg \varphi(x, \bar{a})\}$.

Proof. Fix such a q and let $\mathcal{S}=\left\{p^{*} \in S_{a t}^{+}(A, M): p^{*}\right.$ lies above $\left.q\right\}$.
(1) is immediate, since \mathcal{S} is uncountable, while $S_{a t}\left(F^{\prime}\right)$ is countable.

For (2), first note that if there is no such $\varphi(x, \bar{a})$, then there is at most one $p^{*} \in \mathcal{S}$ with the property that:

For any formula $\varphi(x, \bar{a})$ with parameters from $A, \varphi(x, \bar{a}) \in p^{*}$ if and only if there is an A-large $r \in S_{a t}(F \bar{a})$ extending $q \cup\{\varphi(x, \bar{a})\}$.

It follows that for any $q^{*} \in \mathcal{S}-\left\{p^{*}\right\}, q^{*}$ lies over some $r \geq q$ that is not A-large. That is, using the fact that there are only countably many $r \geq q$, $\mathcal{S}-\left\{p^{*}\right\}$ is contained in the union of countably many countable sets. But this contradicts q being A-large.

Proposition 2.5 For $p \in \mathcal{P}, \operatorname{rk}_{A}(p) \geq \omega_{1}$ if and only if p is A-large.
Proof. First, assume that $\mathrm{rk}_{A}(p) \geq \omega_{1}$. Fix an enumeration $\left\{c_{n}: n \in\right.$ $\omega\}$ of M. Using Clauses (1) and (2) of Lemma [2.3, we inductively construct a tree $\left\{p_{\nu}: \nu \in 2^{<\omega}\right\}$ of elements of \mathcal{P} satisfying:

1. $\operatorname{rk}_{A}\left(p_{\nu}\right) \geq \omega_{1}$ for all $\nu \in 2^{<\omega}$;
2. If $\lg (\nu)=n$, then $\left\{c_{i}: i<n\right\} \subseteq \operatorname{dom}\left(p_{\nu}\right)$;
3. $p_{\langle \rangle}=p$;
4. For $\nu \unlhd \mu, p_{\nu} \leq p_{\mu}$;
5. For each ν there is a formula $\varphi(x, \bar{a})$ with \bar{a} from A such that $\varphi(x, \bar{a}) \in$ $p_{\nu 0}$ and $\neg \varphi(x, \bar{a}) \in p_{\nu 1}$.

Given such a tree, for each $\eta \in 2^{\omega}$, let $\bar{p}_{\eta}:=\bigcup\left\{p_{\eta \mid n}: n \in \omega\right\}$ and let $p_{\eta}^{*}:=$ $\bar{p}_{\eta} \mid A$. By Clauses (2) and (4), each $\bar{p}_{\eta} \in S_{a t}(M)$, so each $p_{\eta}^{*} \in S_{a t}^{+}(A, M)$. By Clause (5), $p_{\eta}^{*} \neq p_{\eta^{\prime}}^{*}$ for distinct $\eta, \eta^{\prime} \in 2^{\omega}$. Finally, each of these types lies over p by Clause (3). Thus, p is A-large.

Conversely, we argue by induction on $\alpha<\omega_{1}$ that:
$(*)_{\alpha}: \quad$ If $p \in \mathcal{P}$ is A-large, then $\operatorname{rk}_{A}(p) \geq \alpha$.
Establishing $(*)_{0}$ is trivial, and for limit $\alpha<\omega_{1}$, it is easy to establish $(*)_{\alpha}$ given that $(*)_{\beta}$ holds for all $\beta<\alpha$. So assume $(*)_{\alpha}$ holds and we will establish $(*)_{\alpha+1}$. Choose any A-large $p \in \mathcal{P}$. Towards showing $\operatorname{rk}_{A}(p) \geq \alpha+1$, choose any finite F, $\operatorname{dom}(p) \subseteq F \subseteq M$. As $S_{a t}(F)$ is countable and uncountably many types in $S_{a t}^{+}(A, M)$ lie above p, there is some A-large $q \in S_{a t}(F)$ with $q \geq p$.

Next, by Lemma 2.4 choose a formula $\varphi(x, \bar{a})$ with \bar{a} from A such that there are A-large extensions $r_{1} \supseteq q \cup\{\varphi(x, \bar{a})\}$ and $r_{2} \supseteq q \cup\{\neg \varphi(x, \bar{a})\}$. Applying $(*)_{\alpha}$ to both r_{1}, r_{2} gives $\mathrm{rk}_{A}\left(r_{1}\right), \mathrm{rk}_{A}\left(r_{2}\right) \geq \alpha$. Thus, $q \alpha-A$ splits. Thus, by definition of the rank, $\operatorname{rk}_{A}(p) \geq \alpha+1$.

We obtain the following Corollary, which is analogous to the statement 'If T is small, then the isolated types are dense' from the first-order context.

Corollary 2.6 If $S_{a t}^{+}(A, M)$ is countable, then every $p \in \mathcal{P}$ has an extension $q \geq p$ that determines a type in $S_{a t}^{+}(A, M)$.

Proof. If $S_{a t}^{+}(A, M)$ is countable, then no $p \in \mathcal{P}$ is A-large. Thus, every $p \in \mathcal{P}$ has $\operatorname{rk}_{A}(p)<\omega_{1}$ by Proposition 2.5, so has an extension determining a type in $S_{a t}^{+}(A, M)$ by Proposition 2.2.

We close with a complementary result about extensions of A-large types.
Definition 2.7 A type $r \in S_{a t}(M)$ is A-perfect if $r \upharpoonright_{A}$ is omitted in M and for every finite \bar{m} from M, the restriction $r \upharpoonright_{\bar{m}}$ is A-large.

The name perfect is chosen because, relative to the usual topology on $S_{a t}(M)$, there are a perfect set of A-perfect types extending any A-large $p \in \mathcal{P}$. However, for what follows, all we need to establish is that there are uncountably many, which is notationally simpler to prove.

Proposition 2.8 Suppose $p \in \mathcal{P}$ is A-large. Then there are uncountably many A-perfect $r \in S_{a t}(M)$ extending p.

Proof. Fix an A-large $p \in \mathcal{P}$. Choose a set $R \subseteq S_{a t}(M)$ of representatives for $\left\{p^{*} \in S_{a t}^{+}(A, M): p^{*}\right.$ lies above $\left.p\right\}$, i.e., for every such p^{*}, there is exactly one $\bar{p} \in R$ whose restriction $\bar{p} \upharpoonright_{A}=p^{*}$. As p is A-large, R is uncountable. Now, for each finite \bar{m} from M, there are only countably many
complete $q \in S_{a t}(\bar{m})$, and if some $q \in S_{a t}(\bar{m})$ is A-small, then only countably many $\bar{p} \in R$ extend q. As M is countable, there are only countably many \bar{m}, hence all but countably many $\bar{p} \in R$ satisfy $\bar{p} \upharpoonright_{\bar{m}} A$-large for every \bar{m}. Further, again since M is countable, at most countably many $\bar{p} \in R$ have restrictions to A that are realized in M. Thus, all but countably many $\bar{p} \in R$ are A-perfect.

2.2 A transfer result

In this brief subsection we state a transfer result that follows immediately by Keisler's completeness theorem for the $\operatorname{logic} L_{\omega_{1}, \omega}(Q)$, given in [6]. Recall that $L_{\omega_{1}, \omega}(Q)$ is the logic obtained by taking the (usual) set of atomic L formulas and closing under boolean combinations, existential quantification, the ' Q quantifier,' i.e., if $\theta(y, \bar{x})$ is a formula, then so is $Q y \theta(y, \bar{x})$; and countable conjunctions of formulas involving a finite set of free variables, i.e., if $\left\{\psi_{i}(\bar{x})\right.$: $i \in \omega\}$ is a set of formulas, then so is $\bigwedge_{i \in \omega} \psi_{i}(\bar{x})$. We are only interested in standard interpretations of these formulas, i.e., $M \models \bigwedge_{i \in \omega} \psi_{i}(\bar{a})$ if and only if $M \models \psi_{i}(\bar{a})$ for every $i \in \omega$; and $M \models Q y \theta(y, \bar{a})$ if and only if the solution set $\theta(M, \bar{a})$ is uncountable.

Throughout the discussion let $Z F C^{*}$ denote a sufficiently large, finite subset of the ZFC axioms. In the notation of [8], Proposition [2.9] states that sentences of $L_{\omega_{1}, \omega}(Q)$ are grounded.

Proposition 2.9 Suppose L is a countable language, and $\Phi \in L_{\omega_{1}, \omega}(Q)$ are given. There is a sufficiently large, finite subset $Z F C^{*}$ of $Z F C$ such that IF there is a countable, transitive model $(\mathcal{B}, \epsilon) \models Z F C^{*}$ with $L, \Phi \in \mathcal{B}$ and

$$
(\mathcal{B}, \epsilon) \models ‘ \text { 'There is } M \models \Phi \text { and }|M|=\aleph_{1} ’
$$

THEN (in V!) there is $N \models \Phi$ and $|N|=\aleph_{1}$.
Proof. This follows immediately from Keiser's completeness theorem for $L_{\omega_{1}, \omega}$, given that provability is absolute between transitive models of set theory. More modern, 'constructive' proofs can be found in [1] and [2]. These use the existence \mathcal{B}-normal ultrafilters. Given an arbitrary language $L^{*} \in \mathcal{B}$ and any countable L^{*}-structure (\mathcal{B}, E, \ldots) where the reduct (\mathcal{B}, E) is an ω model of $Z F C^{*}$, for any \mathcal{B}-normal ultrafilter \mathcal{U}, the ultrapower $\operatorname{Ult}(\mathcal{B}, \mathcal{U})$ is a countable, ω-model that is an L^{*}-elementary extension of (\mathcal{B}, E, \ldots). It has
the additional property that for any L^{*}-definable subset $D, D^{U l t(\mathcal{B}, \mathcal{U})}$ properly extends $D^{\mathcal{B}}$ if and only if $(\mathcal{B}, E, \ldots) \models$ ' D is uncountable'.

Using this, one constructs (in V !) a continuous, L^{*}-elementary ω_{1}-sequence $\left\langle\mathcal{B}_{\alpha}: \alpha<\omega_{1}\right\rangle$ of ω-models, where each $\mathcal{B}_{\alpha+1}=\operatorname{Ult}\left(\mathcal{B}_{\alpha}, \mathcal{U}_{\alpha}\right)$. Then the interpretation $M^{\mathcal{C}}$ where $\mathcal{C}=\bigcup_{\alpha \in \omega_{1}} \mathcal{B}_{\alpha}$ will be a suitable choice of N. More details of this construction are given in [1] or [2].

2.3 A configuration arising from non-pcl-smallness

The goal of this subsection is to prove the following Proposition, the data from which will be used throughout Section 3.

Proposition 2.10 Assume T is a countable, complete theory for which $\mathbf{A t}_{T}$ has an uncountable atomic model, but is not pcl-small. Then there are a countable, atomic $M^{*} \in \mathbf{A t}_{T}$, finite sequences $\bar{a}^{*} \subseteq \bar{b}^{*} \subseteq M^{*}$, and complete 1-types $\left\{r_{j}\left(x, \bar{b}^{*}\right): j \in \omega\right\}$ such that, letting $D^{*}=\operatorname{pcl}_{M^{*}}\left(\bar{a}^{*}\right), A_{n}=$ $\bigcup\left\{r_{j}\left(M^{*}, \bar{b}^{*}\right): j<n\right\}$ and $A^{*}=\bigcup\left\{A_{n}: n \in \omega\right\}$ we have:

1. $A^{*} \subseteq D^{*}$;
2. $S_{a t}^{+}\left(A_{n}, M^{*}\right)$ is countable for every $n \in \omega$; but
3. $S_{a t}^{+}\left(A^{*}, M^{*}\right)$ is uncountable.

Proof. Fix any countable, atomic $M^{*} \in \mathbf{A t}_{T}$. Using Proposition 1.2 and the non-pcl-smallness of $\mathbf{A t}_{T}$, choose a finite tuple $\bar{a}^{*} \subseteq M^{*}$ such that $S_{a t}^{+}\left(D^{*}, M^{*}\right)$ is uncountable, where $D^{*}=\operatorname{pcl}_{M^{*}}\left(\bar{a}^{*}\right) \subseteq M^{*}$.

Fix any finite tuple $\bar{b} \supseteq \bar{a}^{*}$ from M^{*} and look at the complete 1-types $\mathcal{Q}_{\bar{b}}:=\left\{r \in S_{a t}(\bar{b})\right.$ such that $\left.r\left(M^{*}\right) \subseteq D^{*}\right\}$. These types visibly induce a partition D^{*}, and it is easily seen that if $\bar{b}^{\prime} \supseteq \bar{b}$, the partition induced by \bar{b}^{\prime} refines the partition induced by \bar{b}. Let $\mathcal{Q}:=\bigcup\left\{\mathcal{Q}_{\bar{b}}: \bar{a}^{*} \subseteq \bar{b} \subseteq M^{*}\right\}$.

Define a rank function rk: $\mathcal{Q} \rightarrow O N \cup\{\infty\}$ as follows:

- $\operatorname{rk}(c / \bar{b}) \geq 0$ if and only if $\operatorname{tp}(c / \bar{b}) \in \mathcal{Q}$;
- $\operatorname{rk}(c / \bar{b}) \geq 1$ if and only if $\operatorname{tp}(c / \bar{b}) \in \mathcal{Q}$ and there are infinitely many $c^{\prime} \in D^{*}$ realizing $\operatorname{tp}\left(c / D^{*}\right)$; and
- for an ordinal $\alpha \geq 2, \operatorname{rk}(c / \bar{b}) \geq \alpha$ if and only if for every $\beta<\alpha$ and every \bar{b}^{\prime} from M^{*}, there is $c^{\prime} \in D^{*}$ realizing $\operatorname{tp}(c / \bar{b})$ such that $\operatorname{rk}\left(c^{\prime} / \bar{b} \bar{b}^{\prime}\right) \geq \beta$.
- $\operatorname{rk}(c / \bar{b})=\alpha$ if and only if $\operatorname{rk}(c / \bar{b}) \geq \alpha$ but $\operatorname{rk}(c / \bar{b}) \nsupseteq \alpha+1$.

Claim 1. For every $r \in \mathcal{Q}, \operatorname{rk}(r)$ is a countable ordinal.
Proof. Assume by way of contradiction that $\operatorname{rk}(c / \bar{b}) \geq \omega_{1}$ for some type c / \bar{b}. Then, for any \bar{b}^{\prime} from M, as D^{*} is countable, there is an element $c^{\prime} \in D^{*}$ such that $\operatorname{rk}\left(c^{\prime} / \bar{b} \bar{b}^{\prime}\right) \geq \beta$ for uncountably many β^{\prime} s, hence $\operatorname{rk}\left(c^{\prime} / \bar{b} \bar{b}^{\prime}\right) \geq \omega_{1}$ as well. Using this idea, if we let $\left\langle\bar{b}_{n}: n \in \omega\right\rangle$ be an increasing sequence of finite sequences from M^{*} whose union is all of M^{*}, then we can find a sequence $\left\langle c_{n}: n \in \omega\right\rangle$ of elements from D^{*} such that, for each $n, \operatorname{rk}\left(c_{n} / \bar{b}_{n}\right) \geq \omega_{1}$ and $\operatorname{tp}\left(c_{n} / \bar{b}_{n}\right) \subseteq \operatorname{tp}\left(c_{n+1} / \bar{b}_{n+1}\right)$. The union of these 1-types yields a complete, atomic 1-type $q \in S_{a t}\left(M^{*}\right)$ all of whose realizations are in $\operatorname{pcl}_{M^{*}}(\bar{a})$. However, since the type asserting that ' $x=c^{\prime}$ has rank 0 for each $c \in D^{*}, q$ is omitted in M^{*}. To obtain a contradiction, choose a realization e of q and, as $M^{*} e$ is a countable, atomic set, construct a countable, elementary extension $M^{\prime} \succeq M^{*}$ with $e \in M^{\prime}$. But now, q implies that $e \in \operatorname{pcl}_{M^{\prime}}(\bar{a})$, yet this is contradicted by the fact that M^{*} contains \bar{a} but not e.

As notation, for a subset $\mathcal{S} \subseteq \mathcal{Q}_{\bar{b}}$, let $A_{\mathcal{S}}=\bigcup\left\{r\left(M^{*}\right): r \in \mathcal{S}\right\}$, which is always a subset of D^{*}. Define the set of 'candidates' as

$$
\mathcal{C}=\left\{(\mathcal{S}, \bar{b}): \bar{b} \supseteq \bar{a}^{*}, \mathcal{S} \subseteq \mathcal{Q}_{\bar{b}}, \text { and } S_{a t}^{+}\left(A_{\mathcal{S}}, M^{*}\right) \text { uncountable }\right\}
$$

Note that \mathcal{C} is non-empty as $\left(\mathcal{S}_{0}, \bar{a}^{*}\right) \in \mathcal{C}$, where \mathcal{S}_{0} is an enumeration of all the complete, pseudo-algebraic types over \bar{a}^{*}. Among all candidates, choose $\left(\mathcal{S}^{*}, \bar{b}^{*}\right) \in \mathcal{C}$ such that

$$
\alpha^{*}:=\sup \left\{r k(r)+1: r \in \mathcal{S}^{*}\right\}
$$

is as small as possible. Enumerate $\mathcal{S}^{*}=\left\{r_{j}: j \in \omega\right\}$ and put $A^{*}:=A_{\mathcal{S}^{*}}$ and $A_{n}:=\bigcup\left\{r_{j}\left(M^{*}, \bar{b}^{*}\right): j<n\right\}$ for each $n \in \omega$. As Clauses (1) and (3) are immediate, it suffices to prove the following Claim:

Claim 2. For each $n \in \omega, S_{a t}^{+}\left(A_{n}, M^{*}\right)$ is countable.
Proof. Fix any $n \in \omega$. First, note that if $\operatorname{rk}\left(r_{j}\right)=0$ for every $j<n$, then A_{n} would be finite, which would imply $S_{a t}\left(A_{n}\right)$ is countable. As $S_{a t}\left(A_{n}\right)$ contains $S_{a t}^{+}\left(A_{n}, M^{*}\right)$, the result follows.

Now assume $r k\left(r_{j}\right)>0$ for at least one $j<n$. Let $\beta:=\max \left\{r k\left(r_{j}\right): j<\right.$ $n\}$ and let $F=\left\{j<n: r k\left(r_{j}\right)=\beta\right\}$. Clearly, $\beta<\alpha^{*}$. For each $j \in F$, as $\beta>0$ but $r k\left(r_{j}\right) \nsupseteq \beta+1$, there is a finite tuple \bar{b}_{j} such that $\operatorname{rk}\left(c / \bar{b}^{*} \bar{b}_{j}\right)<\beta$ for all $c \in r_{j}\left(M^{*}\right)$.

Let \bar{b}^{\prime} be the concatenation of \bar{b}^{*} with each \bar{b}_{j} for $j \in F$ and let

$$
\mathcal{S}^{\prime}:=\left\{r^{\prime} \in \mathcal{Q}_{\bar{b}^{\prime}}: r^{\prime} \text { extends some } r_{j} \text { with } j<n\right\}
$$

Subclaim. $\operatorname{rk}\left(r^{\prime}\right)<\beta$ for every $r^{\prime} \in \mathcal{S}^{\prime}$.
Proof. Fix $r^{\prime} \in \mathcal{S}^{\prime}$ and choose $c \in r^{\prime}\left(M^{*}, \bar{b}^{\prime}\right)$. There are two cases. On one hand, if r^{\prime} extends some r_{j} with $j \in F$, then $\operatorname{rk}\left(c / \bar{b}^{\prime}\right) \leq \operatorname{rk}\left(c / \bar{b}^{*} \bar{b}_{j}\right)<\beta$. On the other hand, if r^{\prime} extends some r_{j} with $r_{j} \notin F$, then as $\operatorname{rk}\left(r_{j}\right)<\beta$, $\operatorname{rk}\left(c / \overline{b^{\prime}}\right) \leq \operatorname{rk}\left(c / \bar{b}^{*}\right)<\beta$.

Clearly $A_{\mathcal{S}^{\prime}}=A_{n}$, so $S_{a t}^{+}\left(A_{n}, M^{*}\right)=S_{a t}^{+}\left(A_{\mathcal{S}^{\prime}}, M^{*}\right)$. Thus, if $S_{a t}^{+}\left(A_{n}, M^{*}\right)$ were uncountable, then $\left(\mathcal{S}^{\prime}, \bar{b}^{\prime}\right)$ would be a candidate, i.e., an element of \mathcal{C}. But, as $\beta<\alpha^{*}$, this is impossible by the Subclaim and the minimality of α^{*}.

3 A family of $2^{\aleph_{0}}$ atomic models of size \aleph_{1}

Throughout the whole of this section, we assume that T is a complete theory in a countable language for which $\mathbf{A t}_{T}$ has an uncountable atomic model, but is not pcl-small. Appealing to Proposition 2.10,

Fix, for the whole of this section, a countable atomic model \mathbf{M}^{*}, tuples $\overline{\mathbf{a}}^{*} \subseteq \overline{\mathbf{b}}^{*} \subseteq \mathbf{M}^{*}$ and sets A^{*} and A_{n} for each $n \in \omega$ as in Proposition 2.10.

We work with this fixed configuration for the whole of this section and, in Subsection 3.3 eventually prove:

Proposition 3.1 There is a family $\left\{\left(N_{\eta}, \bar{b}^{*}\right): \eta \in 2^{\omega}\right\}$ of atomic models of T, each of size \aleph_{1}, that are pairwise non-isomorphic over \bar{b}^{*}.

3.1 Colorings of models realizing many types over A^{*}

Definition 3.2 Call a structure $\left(N, \bar{b}^{*}\right)$ rich if $N \in \mathbf{A t}_{T}$ has size $\aleph_{1}, M^{*} \preceq$ N, and N realizes uncountably many 1-types over A^{*}.

Lemma 3.3 For each $n \in \omega$, a rich $\left(N, \bar{b}^{*}\right)$ realizes only countably many distinct 1-types over A_{n}.

Proof. Fix any $\left(N, \bar{b}^{*}\right)$ and $n<\omega$ as above. If $\left\{c_{i}: i \in \omega_{1}\right\}$ realize distinct types over A_{n}, then the types $\left\{\operatorname{tp}_{N}\left(c_{i} / M^{*}\right): i \in \omega_{1}\right\}$ would be distinct, contradicting $S_{a t}^{+}\left(A_{n}, M^{*}\right)$ countable.

How can we tell whether rich structures are non-isomorphic? We introduce the notion of \mathcal{U}-colorings and Corollary 3.6 gives a sufficient condition.

Definition 3.4 Fix a subset $\mathcal{U} \subseteq \omega$ and a rich $\left(N, \bar{b}^{*}\right)$.

- For elements $d, d^{\prime} \in N$, define the splitting number $\operatorname{spl}\left(d, d^{\prime}\right) \in(\omega+1)$ to be the least $k<\omega$ such that $\operatorname{tp}\left(d / A_{k}\right) \neq \operatorname{tp}\left(d^{\prime} / A_{k}\right)$ if such exists; and $\operatorname{spl}\left(d, d^{\prime}\right)=\omega$ if $\operatorname{tp}\left(d / A^{*}\right)=\operatorname{tp}\left(d^{\prime} / A^{*}\right)$.
- A \mathcal{U}-coloring of a rich $\left(N, \bar{b}^{*}\right)$ is a function

$$
c: N \rightarrow \omega
$$

such that for all pairs $d, d^{\prime} \in N$, at least one of the following hold:

1. $\operatorname{tp}\left(d / A^{*}\right)=\operatorname{tp}\left(d^{\prime} / A^{*}\right)$; or
2. $c(d) \neq c\left(d^{\prime}\right)$; or
3. $\operatorname{spl}\left(d, d^{\prime}\right) \in \mathcal{U}$.

- The color filter $\mathcal{F}\left(N, \bar{b}^{*}\right):=\left\{\mathcal{U} \subseteq \omega:\right.$ a \mathcal{U}-coloring of $\left(N, \bar{b}^{*}\right)$ exists $\}$.

Lemma 3.5 Fix a rich $\left(N, \bar{b}^{*}\right)$. Then:

1. $\mathcal{F}\left(N, \bar{b}^{*}\right)$ is a filter;
2. $\mathcal{F}\left(N, \bar{b}^{*}\right)$ contains the cofinite subsets of ω; but
3. No finite $\mathcal{U} \subseteq \omega$ is in $\mathcal{F}\left(N, \bar{b}^{*}\right)$.

Proof. (1) First, note that if $\mathcal{U} \subseteq \mathcal{U}^{\prime} \subseteq \omega$, then every \mathcal{U}-coloring c is also a \mathcal{U}^{\prime}-coloring. Thus, $\mathcal{F}\left(N, \bar{b}^{*}\right)$ is upward closed. Next, suppose $\mathcal{U}_{1} \in \mathcal{F}\left(N, \bar{b}^{*}\right)$ via the coloring $c_{1}: N \rightarrow \omega$ and $\mathcal{U}_{2} \in \mathcal{F}\left(N, \bar{a}^{*} \bar{b}^{*}\right)$ via the coloring $c_{2}: N \rightarrow \omega$. Fix any bijection $t: \omega \times \omega \rightarrow \omega$. It is easily checked that $c^{*}: N \rightarrow \omega$ defined by $c^{*}(d)=t\left(c_{1}(d), c_{2}(d)\right)$ is a $\mathcal{U}_{1} \cap \mathcal{U}_{2}$-coloring of $\left(N, \bar{b}^{*}\right)$. Thus, $\mathcal{U}_{1} \cap \mathcal{U}_{2} \in \mathcal{F}\left(N, \bar{b}^{*}\right)$. So $\mathcal{F}\left(N, \bar{b}^{*}\right)$ is a filter.
(2) As $\mathcal{F}\left(N, \bar{b}^{*}\right)$ is a filter, it suffices to show $(\omega-n) \in \mathcal{F}\left(N, \bar{b}^{*}\right)$ for each $n \in \omega$. So fix such an n. By Lemma 3.3, N realizes at most countably many
types over A_{n}. Thus, we can produce a map $c: N \rightarrow \omega$ such that $c(d)=c\left(d^{\prime}\right)$ if and only if $\operatorname{tp}\left(d / A_{n}\right)=\operatorname{tp}\left(d^{\prime} / A_{n}\right)$. As any such c is an $(\omega-n)$-coloring, $(\omega-n) \in \mathcal{F}\left(N, \bar{b}^{*}\right)$.
(3) It suffices to show that no $n=\{0, \ldots, n-1\}$ is in $\mathcal{F}\left(N, \bar{b}^{*}\right)$. To see this, let $c: N \rightarrow \omega$ be an arbitrary map. We will show that c is not an $\{0, \ldots, n-1\}$-coloring. As N realizes \aleph_{1} distinct types over A^{*}, there is some $m^{*} \in \omega$ and an uncountable subset $\left\{d_{\alpha}: \alpha<\omega_{1}\right\} \subseteq N$ that realize distinct types over A^{*}, yet $c\left(d_{\alpha}\right)=m^{*}$ for each α. However, as N realizes only countably many types over A_{n}, there are $\alpha \neq \beta$ such that $n \leq \operatorname{spl}\left(d_{\alpha}, d_{\beta}\right)<\omega$. Thus, c is not an $\{0, \ldots, n-1\}$-coloring.

We close with a sufficient condition for non-isomorphism of rich models.
Corollary 3.6 Suppose that for $\ell=1,2,\left(N_{\ell}, \bar{b}^{*}\right)$ is a \mathcal{U}_{ℓ}-colored rich model, and $\mathcal{U}_{1} \cap \mathcal{U}_{2}$ is finite. Then there is no isomorphism $f: N_{1} \rightarrow N_{2}$ fixing \bar{b}^{*} pointwise.

Proof. If there were such an isomorphism, then $\left(N_{2}, \bar{b}^{*}\right)$ would be both \mathcal{U}_{1}-colored and \mathcal{U}_{2}-colored. Thus, both $\mathcal{U}_{1}, \mathcal{U}_{2} \in \mathcal{F}\left(N_{2}, \bar{b}^{*}\right)$, which contradicts Lemma 3.5.

3.2 Constructing a colored rich model via forcing

Arguing as in the proof of Proposition 1.2, from the data of Lemma 2.10 we can construct a rich $\left(N, \bar{b}^{*}\right)$ as the union of a continuous, elementary chain $\left\langle M_{\alpha}: \alpha \in \omega_{1}\right\rangle$ of countable, atomic models with $M_{0}=M^{*}$ such that, for each $\alpha \in \omega_{1}$ there is a distinguished $b_{\alpha} \in M_{\alpha+1}$ such that $\operatorname{tp}\left(b_{\alpha} / A^{*}\right)$ is omitted in M_{α}.

Our goal is to construct a sufficiently generic rich $\left(N, \bar{b}^{*}\right)$, along with a coloring $c: N \rightarrow(\omega+1)$ via forcing. Our forcing $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ encodes finite approximations of such an $\left(N, \bar{b}^{*}\right)$ and c. A fundamental building block is the notion of a striated type over a finite subset \bar{a} satisfying $\bar{b}^{*} \subseteq \bar{a} \subseteq M^{*}$. As an atomic type over a finite subset is generated by a complete formula, we use the terms interchangeably.

Definition 3.7 Choose a finite tuple \bar{a} with $\bar{b}^{*} \subseteq \bar{a} \subseteq M^{*}$. A striated type over \bar{a} is a complete formula $\theta(\bar{x}) \in S_{a t}(\bar{a})$ whose variables are partitioned as $\bar{x}=\left\langle\bar{x}_{j}: j<\ell\right\rangle$ where, for each $j, \bar{x}_{j}=\left\langle x_{j, n}: n<n(j)\right\rangle$ is an $n(j)$-tuple of
variable symbols that satisfy $\operatorname{tp}\left(x_{j, 0} / \bar{a} \cup\left\{\bar{x}_{i}: i<j\right\}\right)$ is A^{*}-large. The integer ℓ is the length of the striated type.

A simple realization of a striated type $\theta(\bar{x})$ of length ℓ is a sequence $\bar{b}=\left\langle\bar{b}_{j}: j<\ell\right\rangle$ of tuples from M^{*} such that $M^{*} \models \theta(\bar{b})$. A perfect chain realization of $\theta(\bar{x})$ is a pair (\bar{M}, \bar{b}), consisting of a chain $M_{0} \preceq M_{1} \preceq M_{\ell-1} \preceq$ M^{*} of ℓ elementary submodels of M^{*} and a simple realization $\bar{b}=\left\langle\bar{b}_{j}: j<\ell\right\rangle$ from M^{*} that satisfy: For each $j<\ell$,

1. $\bar{a} \cup\left\{\bar{b}_{i}: i<j\right\} \subseteq M_{j}$; and
2. $\operatorname{tp}\left(b_{j, 0} / M_{j}\right)$ is A^{*}-perfect (see Definition (2.7).

Lemma 3.8 Every striated type $\theta(\bar{x}) \in S_{a t}(\bar{a})$ has a perfect chain realization.
Proof. We argue by induction on ℓ, the length of the striation. For striations of length zero there is nothing to prove, so assume the Lemma holds for striated types of length ℓ and choose an $(\ell+1)$-striation $\theta(\bar{x}) \in S_{a t}(\bar{a})$. Let $\theta \upharpoonright_{\ell}$ be the truncation of θ to the variables $\bar{x} \upharpoonright_{\ell}=\left\langle\bar{x}_{j}: j<\ell\right\rangle$. As $\theta \Gamma_{\ell}$ is clearly an ℓ-striation, it has a perfect chain realization, i.e., a chain $M_{0} \preceq M_{1} \preceq M_{\ell-1} \preceq M^{*}$ and a tuple $\bar{b}=\left\langle\bar{b}_{j}: j<\ell\right\rangle$ from M^{*} realizing $\theta \Gamma_{\ell}$ such that $\bar{a} \cup\left\{\bar{b}_{i}: i<j\right\} \subseteq M_{j}$ and $\operatorname{tp}\left(b_{j, 0} / M_{j}\right)$ is A^{*}-perfect for each $j<\ell$.

Now, since $\operatorname{tp}\left(x_{\ell, 0} / \bar{a} \bar{b}\right)$ is A^{*}-large, by applying Proposition 2.8 there is an A^{*}-perfect type $\bar{p} \in S_{a t}\left(M^{*}\right)$ (in a single variable $\left.x_{\ell, 0}\right)$ extending $\operatorname{tp}\left(x_{\ell, 0} / \bar{a} \bar{b}\right)$. Choose a countable, atomic $N \succeq M^{*}$ and $e \in N$ realizing \bar{p}. As N and M^{*} are both countable and atomic, choose an isomorphism $f: N \rightarrow M^{*}$ that fixes $\bar{a} \bar{b}$ pointwise. Then $f\left(M_{0}\right) \preceq f\left(M_{1}\right) \preceq \ldots f\left(M_{\ell-1}\right) \preceq f\left(M^{*}\right) \preceq M^{*}$ is a chain. Let $b_{\ell, 0}:=f(e)$ and choose $\left\langle b_{\ell, 1} \ldots, b_{\ell, n(\ell)-1}\right\rangle$ arbitrarily from M^{*} so that, letting $\bar{b}_{\ell}=\left\langle\bar{b}_{\ell, n}: n<n(\ell)\right\rangle, \bar{b} \frown \bar{b}_{\ell}$ realizes $\theta(\bar{x})$. This chain and this sequence form a perfect chain realization of θ.

The following Lemma is immediate, and indicates the advantage of working with A^{*}-perfect types.

Lemma 3.9 Let (\bar{M}, \bar{b}) be any perfect chain realization of a striated type $\theta(\bar{x}) \in S_{a t}(\bar{a})$. Then for every $\bar{c} \subseteq M_{0}, \operatorname{tp}(\bar{b} / \bar{a} \bar{c}) \in S_{a t}(\bar{a} \bar{c})$ is a striated type extending $\theta(\bar{x})$, and (\bar{M}, \bar{b}) is a perfect chain realization of it.

The Lemma below, whose proof simply amounts to unpacking definitions, demonstrate that striated types are rather malleable.

Lemma 3.10 1. If $\operatorname{tp}(\bar{c} / \bar{a})$ is a striated type of length k and $\operatorname{tp}(\bar{d} / \bar{a} \bar{c})$ is a striated type of length ℓ, then $\operatorname{tp}(\bar{c} \bar{d} / \bar{a})$ is a striated type of length $k+\ell$.
2. Suppose $\operatorname{tp}(\bar{b} / \bar{a})$ is a striated type of length ℓ and $k<\ell$. Let $\bar{b}_{<k}$ and $\bar{b}_{\geq k}$ be the induced partition of \bar{b}. Then $\operatorname{tp}\left(\bar{b}_{<k} / \bar{a}\right)$ is a striated type of length ℓ and $\operatorname{tp}\left(\bar{b}_{\geq k} / \bar{a} \bar{b}_{<k}\right)$ is a striated type of length $(\ell-k)$. Moreover, if (\bar{M}, \bar{b}) is a perfect chain realization of $\operatorname{tp}(\bar{b} / \bar{a})$, then $\left(\bar{M}_{<k}, \bar{b}_{<k}\right)$ is a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{<k} / \bar{a}\right)$ and $\left(\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{\geq k} / \bar{a} \bar{b}_{<k}\right)$.

We begin by defining a partial order $\left(\mathbb{Q}_{0}, \leq_{\mathbb{Q}_{0}}\right)$ of 'preconditions'. Then our forcing $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ will be a dense suborder of these preconditions.

Definition 3.11 \mathbb{Q}_{0} is the set of all $\mathbf{p}=\left(\overline{\mathbf{a}}_{\mathbf{p}}, u_{\mathbf{p}}, \bar{n}_{\mathbf{p}}, \theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right), k_{\mathbf{p}}, \mathcal{U}_{\mathbf{p}}, c_{\mathbf{p}}\right)$, where

1. $\overline{\mathbf{a}}_{\mathbf{p}}$ is a finite subset of M^{*} containing \bar{b}^{*};
2. $u_{\mathbf{p}}$ is a finite subset of ω_{1};
3. $\bar{n}_{\mathbf{p}}=\left\langle n_{t}: t \in u_{\mathbf{p}}\right\rangle$ is a sequence of positive integers;
4. $\bar{x}_{\mathbf{p}}=\left\langle\bar{x}_{t, \mathbf{p}}: t \in u_{\mathbf{p}}\right\rangle$, where each $\bar{x}_{t, \mathbf{p}}=\left\langle x_{t, n}: n<\bar{n}_{t}\right\rangle$ is a finite sequence from the set $X=\left\{x_{t, n}: t \in \omega_{1}, n \in \omega\right\}$ of variable symbols;
5. $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right) \in S_{a t}\left(\overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length $\left|u_{\mathbf{p}}\right|$ (see Definition 3.7);
6. $k_{\mathbf{p}} \in \omega$;
7. $\mathcal{U}_{\mathbf{p}} \subseteq k_{\mathbf{p}}=\left\{0, \ldots, k_{\mathbf{p}}-1\right\}$;
8. $c_{\mathbf{p}}: \bar{x}_{\mathbf{p}} \rightarrow \omega$ is a function such that for all pairs $x_{t, n}, x_{s, m}$ from $\bar{x}_{\mathbf{p}}$ with $c_{\mathbf{p}}\left(x_{t, n}\right)=c_{\mathbf{p}}\left(x_{s, m}\right)$
(a) either $\operatorname{spl}\left(b_{t, n}, b_{s, m}\right) \geq k_{\mathbf{p}}$ for all perfect chain realizations (\bar{M}, \bar{b}) of $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$;
(b) or there is some $k \in \mathcal{U}_{\mathbf{p}}$ such that $\operatorname{spl}\left(b_{t, n}, b_{s, m}\right)=k$ for all perfect chain realizations (\bar{M}, b) of $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$.

We order elements of \mathbb{Q}_{0} by: $\mathbf{p} \leq_{\mathbb{Q}_{0}} \mathbf{q}$ if and only if

- $\overline{\mathrm{a}}_{\mathbf{p}} \subseteq \overline{\mathrm{a}}_{\mathbf{q}} ;$
- $u_{\mathbf{p}} \subseteq u_{\mathbf{q}}$ and $n_{t, \mathbf{p}} \leq n_{t, \mathbf{q}}$ for all $t \in u_{\mathbf{p}}$, hence $\bar{x}_{\mathbf{p}}$ is a subsequence of $\bar{x}_{\mathbf{q}}$;
- $\theta_{\mathbf{q}}\left(\bar{x}_{\mathbf{q}}\right) \vdash \theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$;
- $k_{\mathbf{p}} \leq k_{\mathbf{q}}$;
- $\mathcal{U}_{\mathbf{p}}=\mathcal{U}_{\mathbf{q}} \cap k_{\mathbf{p}}$ (hence, for $j<k_{\mathbf{p}}, j \in \mathcal{U}_{\mathbf{p}}$ if and only if $j \in \mathcal{U}_{\mathbf{q}}$);
- $c_{\mathbf{p}}=c_{\mathbf{q}} \upharpoonright_{\bar{x}_{\mathbf{p}}}$.

Visibly, $\left(\mathbb{Q}_{0}, \leq_{\mathbb{Q}_{0}}\right)$ is a partial order. Call a precondition $\mathbf{p} \in \mathbb{Q}_{0}$ unarily decided if, for every $x_{t, n} \in \bar{x}_{\mathbf{p}}, p\left(\bar{x}_{\mathbf{p}}\right)$ determines a type in $S_{a t}^{+}\left(A_{k_{\mathbf{p}}}, M^{*}\right)$ (see Definition (2.1). That the unarily decided preconditions are dense follows easily from the fact that $S_{a t}^{+}\left(A_{k_{\mathrm{p}}}, M^{*}\right)$ is countable.

Lemma 3.12 The set $\left\{\mathbf{p} \in \mathbb{Q}_{0}: \mathbf{p}\right.$ is unarily decided $\}$ is dense in $\left(\mathbb{Q}_{0}, \leq \mathbb{Q}_{0}\right)$. Moreover, given any $\mathbf{p} \in \mathbb{Q}_{0}$, there is a unarily decided $\mathbf{q} \geq_{\mathbb{Q}_{0}} \mathbf{p}$ with $\bar{x}_{\mathbf{q}}=\bar{x}_{\mathbf{p}}$ and $k_{\mathbf{q}}=k_{\mathbf{p}}$ (hence $\mathcal{U}_{\mathbf{q}}=\mathcal{U}_{\mathbf{p}}$).

Proof. Fix $\mathbf{p} \in \mathbb{Q}_{0}$ and let $k:=k_{\mathbf{p}}$. Arguing by induction on the size of the finite set $\bar{x}_{\mathbf{p}}$, it is enough to strengthen $p\left(x_{t, n}\right)$ individually for each $x_{t, n} \in \bar{x}_{\mathbf{p}}$. So fix $x_{t, n} \in \bar{x}_{\mathbf{p}}$. By Corollary [2.6 there is an $\bar{a}^{\prime} \supseteq \bar{a}_{\mathbf{p}}$ and a 1-type $q_{1}\left(x_{t, n}\right) \in S_{a t}\left(\bar{a}^{\prime}\right)$ extending $\operatorname{tp}\left(x_{t, n} / \bar{a}_{\mathbf{p}}\right)$ that determines a type in $S_{a t}^{+}\left(A_{k_{\mathrm{p}}}, M^{*}\right)$. Then, using Lemma 3.10(1) we can choose a striated type $p^{\prime}\left(\bar{x}_{\mathbf{p}}\right) \in S_{a t}\left(\bar{a}^{\prime}\right)$ extending $p\left(\bar{x}_{\mathbf{p}}\right) \cup q_{1}$.

We iterate the above procedure for each of the (finitely many) elements of $\bar{x}_{\mathbf{p}}$. We then get a unarily decided precondition $\mathbf{p}^{\prime} \geq_{\mathbb{Q}_{0}} \mathbf{p}$ whose type $p^{\prime}\left(\bar{x}_{\mathbf{p}}\right)$ still has the same free variables, and each of $k_{\mathbf{p}}, \mathcal{U}_{\mathbf{p}}, c_{\mathbf{p}}$ are unchanged.

Next, call a precondition $\mathbf{p} \in \mathbb{Q}_{0}$ fully decided if, it is unarily decided and, for each pair $x_{t, n}, x_{s, m}$ from $\bar{x}_{\mathbf{p}}$ with $c_{\mathbf{p}}\left(x_{t, n}\right)=c_{\mathbf{p}}\left(x_{s, m}\right)$, if $\operatorname{spl}\left(b_{t, n}, b_{s, m}\right) \geq k_{\mathbf{p}}$ for some perfect chain realization (\bar{M}, \bar{b}), then $\operatorname{tp}\left(b_{t, n} / A^{*}\right)=\operatorname{tp}\left(b_{s, m} / A^{*}\right)$ for all perfect chain realizations (\bar{M}, \bar{b}) of $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$.

Lemma 3.13 The set $\left\{\mathbf{p} \in \mathbb{Q}_{0}: \mathbf{p}\right.$ is fully decided $\}$ is dense in $\left(\mathbb{Q}_{0}, \leq_{\mathbb{Q}_{0}}\right)$. Moreover, given any $\mathbf{p} \in \mathbb{Q}_{0}$, there is a fully decided $\mathbf{q} \geq \mathbb{Q}_{0} \mathbf{p}$ with $\bar{x}_{\mathbf{q}}=\bar{x}_{\mathbf{p}}$.

Proof. It suffices to handle each pair $x_{t, n}, x_{s, m}$ from $\bar{x}_{\mathbf{p}}$ with $c\left(x_{t, n}\right)=$ $c\left(x_{s, m}\right)$ separately. Given such a pair, suppose there is some perfect chain realization (\bar{M}, \bar{b}) of $\theta\left(\bar{x}_{\mathbf{p}}\right) \in S_{a t}\left(\overline{\mathbf{a}}_{\mathbf{p}}\right)$ with $k_{\mathbf{p}} \leq \operatorname{spl}\left(b_{t, n}, b_{s, m}\right)<\omega$. Among all such perfect chain realizations, choose one that minimizes $k^{*}=\operatorname{spl}\left(b_{t, n}, b_{s, m}\right)$.

Choose a formula $\varphi(x, \bar{c})$ with \bar{c} from $A_{k^{*}+1}$ witnessing that $\operatorname{tp}\left(b_{t, n} / A_{k^{*}+1}\right) \neq$ $\operatorname{tp}\left(b_{s, m} / A_{k^{*}+1}\right)$. As $A_{k^{*}+1} \subseteq M_{0}$, by applying Lemma 3.9, let $\theta^{*}\left(\bar{x}_{\mathbf{p}}\right)$ be a complete formula over $\overline{\mathbf{a}}_{\mathbf{p}} \bar{c}$ isolating $\operatorname{tp}\left(\bar{b} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{c}\right)$. Form the precondition $\mathbf{p}^{\prime} \in$ \mathbb{Q}_{0} by putting $\overline{\mathbf{a}}_{\mathbf{p}^{\prime}}=\overline{\mathbf{a}}_{\mathbf{p}} \bar{c} ; \theta_{\mathbf{p}^{\prime}}=\theta^{*} ; k_{\mathbf{p}^{\prime}}=k^{*}+1$; and $\mathcal{U}_{\mathbf{p}^{\prime}}=\mathcal{U}_{\mathbf{p}} \cup\left\{k^{*}\right\} ;$ while leaving $\bar{x}_{\mathbf{p}}$ and $c_{\mathbf{p}}$ unchanged. It is evident that $\operatorname{spl}\left(b_{t, n}^{\prime}, b_{s, m}^{\prime}\right)=k^{*} \in \mathcal{U}_{\mathbf{p}^{\prime}}$ for all perfect chain realizations $\left(\bar{M}, \bar{b}^{\prime}\right)$ of $\theta_{\mathbf{p}^{\prime}}$. Continuing this process for each of the (finitely many) relevant pairs gives us a fully decided extension of \mathbf{p}.

Definition 3.14 The forcing $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ is the set of fully decided $\mathbf{p} \in \mathbb{Q}_{0}$ with the inherited order.

Lemma 3.15 The forcing $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ has the countable chain condition (c.c.c.).
Proof. Suppose $\left\{\mathbf{p}_{i}: i \in \omega_{1}\right\}$ is an uncountable subset of \mathbb{Q}. In light of Lemma 3.13, it suffices to find $i \neq j$ for which there is some precondition $\mathbf{q} \in \mathbb{Q}_{0}$ satisfying $\mathbf{p}_{i} \leq_{\mathbb{Q}_{0}} \mathbf{q}$ and $\mathbf{p}_{j} \leq_{\mathbb{Q}_{0}} \mathbf{q}$. First, by the Δ-system lemma applied to the finite sets $\left\{u_{\mathbf{p}_{i}}\right\}$, we may assume that $\left|u_{\mathbf{p}_{i}}\right|$ is constant and there is some fixed u^{*} that is an initial segment of each $u_{\mathbf{p}_{i}}$ and, moreover, whenever $i<j$, every element of ($u_{\mathbf{p}_{i}} \backslash u^{*}$) is less than every element of ($u_{\mathbf{p}_{j}} \backslash u^{*}$). By further trimming, but preserving uncountability, we may assume that the integer $k_{\mathbf{p}}$, the subset $\mathcal{U}_{\mathbf{p}} \subseteq k_{\mathbf{p}}$, and the parameter $\overline{\mathbf{a}}_{\mathbf{p}}$ remain constant. As notation, for $i<j$, let $f: u_{\mathbf{p}_{i}} \rightarrow u_{\mathbf{p}_{j}}$ be the unique order-preserving bijection. We may additionally assume that $n_{\mathbf{p}_{i}}(t)=n_{\mathbf{p}_{j}}(f(t))$, hence f has a natural extension (also called f): $\bar{x}_{\mathbf{p}_{i}} \rightarrow \bar{x}_{\mathbf{p}_{j}}$ given by $f\left(x_{t, n}\right)=x_{f(t), n}$. With this identification, we may assume $\theta_{\mathbf{p}_{i}}\left(\bar{x}_{\mathbf{p}_{i}}\right)=\theta_{\mathbf{p}_{j}}\left(f\left(\bar{x}_{\mathbf{p}_{i}}\right)\right)$. As well, we may also assume $\operatorname{tp}\left(x_{t, n} / A_{k_{\mathbf{p}}}\right)=\operatorname{tp}\left(x_{f(t), n} / A_{k_{\mathbf{p}}}\right)$ for every $x_{t, n} \in \bar{x}_{\mathbf{p}_{i}}$. As well, the colorings match up as well, i.e., $c\left(x_{t, n}\right)=x_{f(t), n}$.

Now fix $i<j$. Define \mathbf{q} by $k_{\mathbf{q}}:=k_{\mathbf{p}} ; \mathcal{U}_{\mathbf{q}}:=\mathcal{U}_{\mathbf{p}}$; and $\overline{\mathbf{a}}_{\mathbf{q}}:=\overline{\mathbf{a}}_{\mathbf{p}}$ (the common values). Let $u_{\mathbf{q}}:=u_{\mathbf{p}_{i}} \cup u_{\mathbf{p}_{j}}$, and, for $t \in u_{\mathbf{p}_{i}}, n_{t, \mathbf{q}}=n_{t, \mathbf{p}_{i}}$ while $n_{t, \mathbf{q}}=n_{t, \mathbf{p}_{j}}$ for $t \in u_{\mathbf{p}_{j}}$. To produce the striated type $\theta_{\mathbf{q}} \in S_{a t}\left(\overline{\mathbf{a}}_{\mathbf{q}}\right)$, first choose a perfect chain realization (\bar{M}, \bar{b}) of $\theta_{\mathbf{p}_{i}}\left(\bar{x}_{\mathbf{p}_{i}}\right)$. Say $\left|u_{\mathbf{p}_{i}}\right|=\ell=\left|u_{\mathbf{p}_{j}}\right|$, while $\left|u^{*}\right|=k<\ell$. By Lemma 3.10(2), $\operatorname{tp}\left(\bar{b}_{<k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length k and $\left(\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is a perfect chain realization of the striated type $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$ of length $(\ell-k)$. Choose \bar{d} from M_{k} such that $\operatorname{tp}\left(\bar{d} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)=\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$. Then by Lemma 3.9 (with M_{k} playing the role of M_{0} there), ($\left.\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is a perfect chain realization of the striated type $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k} \bar{d}\right)$. So, by Lemma 3.10 (1), $\operatorname{tp}\left(\overline{d b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$ is a striated type of length $2(\ell-k)$. Thus, a second application of Lemma $3.10(1)$ implies that $\operatorname{tp}\left(\bar{b}_{<k} \overline{d b} b_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated
type of length $2 \ell-k$. Let $\theta_{\mathbf{q}}$ be a complete formula over $\overline{\mathbf{a}}_{\mathbf{p}}$ generating this type.

In order to show that \mathbf{q} is a precondition (i.e., an element of \mathbb{Q}_{0}) only Clause (8) requires an argument. Fix any $x_{t, n}, x_{s, m}$ in $\bar{x}_{\mathbf{q}}$ with $c_{\mathbf{q}}\left(x_{t, n}\right)=$ $c_{\mathbf{q}}\left(x_{s, m}\right)$. As both $\mathbf{p}_{i}, \mathbf{p}_{j} \in \mathbb{Q}_{0}$, the verification is immediate if $\{t, s\}$ is a subset of either $u_{\mathbf{p}_{i}}$ or $u_{\mathbf{p}_{j}}$, so assume otherwise. By symmetry, assume $t \in u_{\mathbf{p}_{i}}-u^{*}$ and $s \in u_{\mathbf{p}_{j}}-u^{*}$. The point is that by our trimming, $x_{f(t), n} \in$ $\bar{x}_{\mathbf{p}_{j}}, c_{\mathbf{p}_{j}}\left(x_{f(t), n}\right)=c_{\mathbf{p}_{i}}\left(x_{t, n}\right)$, and $\operatorname{tp}\left(x_{t, n} / A_{k_{\mathbf{p}}}\right)=\operatorname{tp}\left(x_{f(t), n} / A_{k_{\mathbf{p}}}\right)$. There are now two cases: First, if $\operatorname{tp}\left(x_{f(t), n} / A^{*}\right)=\operatorname{tp}\left(x_{s, m} / A^{*}\right)$, then it follows that $\operatorname{tp}\left(x_{t, n} / A_{k_{\mathbf{p}}}\right)=\operatorname{tp}\left(x_{s, m} / A_{k_{\mathbf{p}}}\right)$, hence $\operatorname{spl}\left(e_{t, n}, e_{s, m}\right) \geq k_{\mathbf{p}}$ for any perfect chain realization (\bar{N}, \bar{e}) of $\theta_{\mathbf{q}}$. On the other hand, if $\theta_{\mathbf{p}_{j}} ' \operatorname{says} ' \operatorname{spl}\left(x_{f(t), n}, x_{s, m}\right)=$ $k \in \mathcal{U}_{\mathbf{p}}$, then $\theta_{\mathbf{q}}$ 'says' $\operatorname{spl}\left(x_{t, n}, x_{s, m}\right)=k \in \mathcal{U}_{\mathbf{q}}$ as well. Thus, $\mathbf{q} \in \mathbb{Q}_{0}$, which suffices by Lemma 3.13.

Lemma 3.16 Each of the following sets are dense and open in $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$.

1. For every $t \in \omega_{1}, D_{t}=\left\{\mathbf{p} \in \mathbb{Q}: t \in u_{\mathbf{p}}\right\}$;
2. For every $(t, n) \in \omega_{1} \times \omega, D_{t, n}=\left\{\mathbf{p} \in \mathbb{Q}: x_{t, n} \in \bar{x}_{\mathbf{p}}\right\}$; and
3. Henkin witnesses: For all $t \in \omega_{1}$, all $\left\langle x_{s_{i}, n_{i}}: i<m\right\rangle$ with each $s_{i} \leq t$ and all $\varphi\left(y, v_{i}: i<m\right),\left\{\mathbf{p} \in \mathbb{Q}:\right.$ either $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right) \vdash \forall y \neg \varphi\left(y, x_{s_{i}, n_{i}}: i<\right.$ $m)$ or for some $\left.n^{*}, \theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right) \vdash \varphi\left(x_{t, n^{*}}, x_{s_{i}, n_{i}}: i<m\right)\right\}$.
4. For all $e \in M^{*}, D_{e}=\left\{\mathbf{p} \in \mathbb{Q}: e \in \overline{\mathbf{a}}_{\mathbf{p}}\right.$ and $\theta\left(\bar{x}_{\mathbf{p}}\right) \vdash x_{0, n}=e$ for some $n \in \omega\}$.

Proof. That each of these sets is open is immediate. As for density, in all four clauses we will show that given some $\mathbf{p} \in \mathbb{Q}$, we will find an extension $\mathbf{q} \geq_{\mathbb{Q}} \mathbf{p}$ with $\bar{x}_{\mathbf{q}}$ a one-point extension of $\bar{x}_{\mathbf{p}}$. In all cases, we will put $k_{\mathbf{q}}:=k_{\mathbf{p}}, \mathcal{U}_{\mathbf{q}}=\mathcal{U}_{\mathbf{p}}$ and since $\bar{x}_{\mathbf{p}}$ is finite, we can choose the color $c_{\mathbf{q}}$ of the 'new element' to be distinct from the other colors. Because of that, Clause (8) for \mathbf{q} follows immediately from the fact $\mathbf{p} \in \mathbb{Q}$. Thus, for all four clauses, all of the work is in finding a striated type $\theta_{\mathbf{q}}$ extending $\theta_{\mathbf{p}}$.
(1) Fix $t \in \omega_{1}$ and choose an arbitrary $\mathbf{p} \in \mathbb{Q}$. If $t \in u_{\mathbf{p}}$ then there is nothing to prove, so assume otherwise. Let $\ell=\left|u_{\mathbf{p}}\right|$ and let $k=\mid\left\{s \in u_{\mathbf{p}}\right.$: $s<t\} \mid$. Assume that $k<\ell$, as the case of $k=\ell$ is similar, but easier. Choose a perfect chain realization (\bar{M}, \bar{b}) of $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$. By Lemma 3.10(2), $\operatorname{tp}\left(\bar{b}_{<k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length k. By Lemma 2.4(1), choose an A^{*}-large type $r \in$
$S_{a t}\left(\overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$ and choose a realization e of r in M_{k}. One checks immediately that $\operatorname{tp}\left(\bar{b}_{<k} e / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length $(k+1)$. Now, also by Lemma3.10(2), $\left(\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$. So, by Lemma 3.9, $\left(\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is also a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k} e\right)$. In particular, $\operatorname{tp}\left(\overline{\bar{b}}_{\geq k} / \overline{\overline{\mathbf{a}}}_{\mathbf{p}} \bar{b}_{<k} e\right)$ is a striated type of length $(\ell-k)$. Thus, by Lemma 3.10(1), $\operatorname{tp}\left(\bar{b}_{<k} e \bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length $(\ell+1)$. Take $\overline{\mathbf{a}}_{\mathbf{q}}:=\overline{\mathbf{a}}_{\mathbf{p}}, \bar{x}_{\mathbf{q}}:=$ $\bar{x}_{\mathbf{p}} \cup\left\{x_{t, 0}\right\}$, and take $\theta_{\mathbf{q}}\left(\bar{x}_{\mathbf{q}}\right)$ to be a complete formula in $\operatorname{tp}\left(\bar{b}_{<k} e \bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{q}}\right)$.

The proofs of (2) and (3) are extremely similar. We prove (2) and indicate the adjustment necessary for (3). Fix $(t, n) \in \omega_{1} \times \omega$. By (1) and an inductive argument, we may assume we are given $\mathbf{p} \in \mathbb{Q}$ with $t \in u_{\mathbf{p}}$ and $x_{t, n-1} \in \bar{x}_{\mathbf{p}}$. Say $\left|u_{\mathbf{p}}\right|=\ell$ and assyne t is the $(k-1)$ st element of u_{p} in ascending order. Choose a perfect chain realization (\bar{M}, \bar{b}) of $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$. By Lemma 3.10(2), $\operatorname{tp}\left(\bar{b}_{<k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is striated of length k. Choose an arbitrary $e \in M_{k}{ }^{4}$ and adjoin it to \bar{b}_{k-1}. More formally, let $\bar{b}_{<k}^{*}:=\left\langle\bar{b}_{j}^{*}: j<k\right\rangle$, where $\bar{b}_{j}^{*}=\bar{b}_{j}$ for $j<k-2$, while $\bar{b}_{k-1}^{*}:=\bar{b}_{k-1} e$. Note that $\operatorname{tp}\left(\bar{b}_{<k}^{*} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ remains a striated type of length k. By Lemma $3.10(2),\left(\bar{M}_{\geq k}, \bar{b}_{\geq k}\right)$ is a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}\right)$. So, by Lemma 3.9 it is also a perfect chain realization of $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}^{*}\right)$. In particular, $\operatorname{tp}\left(\bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}} \bar{b}_{<k}^{*}\right)$ is a striated type of length $(\ell-k)$, $\operatorname{so} \operatorname{tp}\left(\bar{b}_{<k}^{*} \bar{b}_{\geq k} / \overline{\mathbf{a}}_{\mathbf{p}}\right)$ is a striated type of length ℓ extending $\theta_{\mathbf{p}}\left(\bar{x}_{\mathbf{p}}\right)$. Put $\bar{x}_{\mathbf{q}}:=\bar{x}_{\mathbf{p}} \cup\left\{x_{t, n}\right\}$ and let $\theta_{\mathbf{q}}\left(\bar{x}_{\mathbf{q}}\right)$ be a complete formula isolating this type.
(4) is also similar and is left to the reader.

The following Proposition follows immediately from the density conditions described above.

Proposition 3.17 Let G be a \mathbb{Q}-generic filter. Then, in $V[G]$, a rich, $\mathcal{U}_{G^{-}}$ colored atomic model of T exists, where $\mathcal{U}_{G}=\left\{k \in \omega: k \in \mathcal{U}_{\mathbf{p}}\right.$ for some $\mathbf{p} \in G\}$.

Proof. There is a congruence \sim_{G} defined on $X=\left\{x_{t, n}: t \in \omega_{1}, n \in \omega\right\}$ defined by $x_{t, n} \sim_{G} x_{s, m}$ if and only if $\theta_{\mathbf{p}} \vdash x_{t, n}=x_{s, m}$ for some $\mathbf{p} \in G$. Let M_{G} be the model of T with universe X / \sim_{G} and relations $M_{G} \models \varphi\left(a_{1}, \ldots, a_{k}\right)$ if and only if there are $\left(x_{t_{1}, n_{1}}, \ldots, x_{t_{k}, n_{k}}\right) \in X^{k}$ such that $\left[x_{t_{i}, n_{i}}\right]=a_{i}$ for each i and $\theta_{\mathbf{p}} \vdash \varphi\left(x_{t_{1}, n_{1}}, \ldots, x_{t_{k}, n_{k}}\right)$ for some $\mathbf{p} \in G$. Since $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$ has c.c.c., M_{G} has size \aleph_{1}. As notation, for each $t \in \omega_{1}$, let $M_{\leq t}$ be the substructure of M_{G} with universe $\left\{\left[x_{s, m}\right]: s \leq t, m \in \omega\right\}$. Then $M^{*} \preceq M_{0}$ and $M_{\leq s} \preceq M_{\leq t} \preceq$ M_{G} whenever $s \leq t<\omega_{1}$. The definition of a striated type implies that

[^3]$\operatorname{tp}\left(\left[x_{t, 0}\right] / A^{*}\right)$ is omitted in $M_{<t}$, hence the set $\left\{\left[x_{t, 0}\right]: t \in \omega_{1}\right\}$ witnesses that $\left(M_{G}, \bar{b}^{*}\right)$ is rich. Also, define $c_{G}:=\bigcup\left\{c_{\mathbf{p}}: \mathbf{p} \in G\right\}$. Using the fact that each $\mathbf{p} \in \mathbb{Q}$ is fully decided, check that c_{G} is a \mathcal{U}_{G}-coloring of $\left(M_{G}, \bar{b}^{*}\right)$.

Note that in the Conclusion below, such a $G \in V$ always exists, since \mathcal{B} is countable.

Conclusion 3.18 Suppose \mathcal{B} is a countable, transitive model of $Z F C^{*}$, with $\left\{M^{*}, T, L\right\} \subseteq \mathcal{B}$, and let $G \in V, G \subseteq \mathbb{Q}$ be any filter meeting every dense $D \subseteq \mathbb{Q}$ with $D \in \mathcal{B}$. Then: Let $\mathcal{U}_{G}=\left\{k \in \omega: k \in \mathcal{U}_{\mathbf{p}}\right.$ for some $\left.\mathbf{p} \in G\right\}$. Then:

1. $\mathcal{U}_{G} \in V$; and
2. In V, there is a \mathcal{U}_{G}-colored, rich atomic model $\left(N, \bar{b}^{*}\right)$ of T.

Proof. That $\mathcal{U}_{G} \in V$ is immediate, since both \mathcal{B} and G are. As for (2), as G meets every dense set in $\mathcal{B}, \mathcal{B}[G]$ is a countable, transitive model of $Z F C^{*}$, and by applying Proposition 3.17.

$$
\mathcal{B}[G] \models \text { 'There is a rich, } \mathcal{U}_{G} \text {-colored }\left(M_{G}, \bar{b}^{*}\right) \text { of size } \aleph_{1} \text { ' }
$$

Let $L^{\prime}=L \cup\{c, R\} \cup\left\{c_{m}: m \in M^{*}\right\}$ Working in $\mathcal{B}[G]$, expand M_{G} to an L^{\prime}-structure M^{\prime}, interpreting each c_{m} by m, interpreting the unary function $c^{M^{\prime}}$ as $c_{G}=\bigcup\left\{c_{\mathbf{p}}: \mathbf{p} \in G\right\}$, and the unary predicate $R^{M^{\prime}}=\left\{\left[x_{t, 0}\right]: t \in \omega_{1}\right\}$.

Now, for each $d, d^{\prime} \in M^{\prime}$ and $k \in \omega$, the relation $\operatorname{tp}_{M^{\prime}}\left(d / A_{k}\right)=\operatorname{tp}_{M^{\prime}}\left(d^{\prime} / A_{k}\right)$ is definable by an $L_{\omega_{1}, \omega}^{\prime}$-formula. Thus, the binary function $\mathrm{spl}:\left(M^{\prime}\right)^{2} \rightarrow$ $(\omega+1)$ is also $L_{\omega_{1}, \omega^{-}}^{\prime}$ definable, hence, using the coloring c, there is an $L_{\omega_{1}, \omega^{-}}^{\prime}$ sentence Ψ stating that ' c induces a \mathcal{U}_{G}-coloring.' Finally, using the Q quantifier to state that R is uncountable, there is an $L_{\omega_{1}, \omega}^{\prime}$-sentence $\Phi \in \mathcal{B}[G]$ stating that the $L\left(\bar{b}^{*}\right)$-reduct of a given L^{\prime}-structure is a rich, atomic model of T, that is \mathcal{U}_{G}-colored via c. We finish by applying Proposition 2.9 to M^{\prime} and Φ.

3.3 Mass production

In this subsection we define a forcing $\left(\mathbb{P}, \leq_{\mathbb{P}}\right)$ such that a \mathbb{P}-generic filter G produces a perfect set $\left\{G_{\eta}: \eta \in 2^{\omega}\right\}$ of \mathbb{Q}-generic filters such that the associated subsets $\left\{\mathcal{U}_{G_{\eta}}: \eta \in 2^{\omega}\right\}$ of ω are almost disjoint. Although the
application there is very different, the argument in this subsection is similar to one appearing in [7].

We begin with one easy density argument concerning the partial $\left(\mathbb{Q}, \leq_{\mathbb{Q}}\right)$. Fundamentally, it allows us to 'stall' the construction for any fixed, finite length of time.

Lemma 3.19 For every $\mathbf{p} \in \mathbb{Q}$ and every $k^{*}>k_{\mathbf{p}}$, there is $\mathbf{q} \geq_{\mathbb{Q}} \mathbf{p}$ such that $\bar{x}_{\mathbf{q}}=\bar{x}_{\mathbf{p}}$, (hence $c_{\mathbf{q}}=c_{\mathbf{p}}$); but $k_{\mathbf{q}}=k^{*}$ and $\mathcal{U}_{\mathbf{q}}=\mathcal{U}_{\mathbf{p}}$, i.e., $\mathcal{U}_{\mathbf{q}} \cap\left[k_{\mathbf{p}}, k^{*}\right)=\emptyset$.

Proof. Simply define \mathbf{q} as above and then verify that $\mathbf{q} \in \mathbb{Q}$.

Definition 3.20 For $n \in \omega$, let
$\mathbb{P}_{n}=\left\{(k, \bar{p}): k \in \omega, \bar{p}=\left\langle p_{\eta}: \eta \in 2^{n}\right\rangle\right.$, where each $p_{\nu} \in \mathbb{Q}$ and every $\left.k_{p_{\nu}}=k\right\}$
As notation, for $\mathbf{p} \in \mathbb{P}_{n}$, we let $k(\mathbf{p})$ denote the (integer) first coordinate of \mathbf{p}. For each $\ell<k(\mathbf{p})$, define the trace of $\ell, \operatorname{tr}_{\ell}(\mathbf{p})=\left\{\nu \in 2^{n}: \ell \in \mathcal{U}_{p_{\nu}}\right\}$.

Let $\mathbb{P}=\bigcup_{n \in \omega} \mathbb{P}_{n}$. As notation, for $\mathbf{p} \in \mathbb{P}, n(\mathbf{p})$ is the unique n for which $\mathbf{p} \in \mathbb{P}_{n}$.

Definition 3.21 Define an order $\leq_{\mathbb{P}}$ on \mathbb{P} by $\mathbf{p} \leq_{\mathbb{P}} \mathbf{q}$ if and only if

1. $n(\mathbf{p}) \leq n(\mathbf{q}), k(\mathbf{p}) \leq k(\mathbf{q})$;
2. $p_{\nu} \leq_{\mathbb{Q}} q_{\mu}$ for all pairs $\nu \in 2^{n(\mathbf{p})}, \mu \in 2^{n(\mathbf{q})}$ satisfying $\nu \unlhd \mu$; and
3. For all $\ell \in[k(\mathbf{p}), k(\mathbf{q}))$, the set $\left\{\mu \upharpoonright_{n(\mathbf{p})}: \mu \in \operatorname{tr}_{\ell}(\mathbf{q})\right\}$ is either empty or is a singleton.

It is easily checked that $\left(\mathbb{P}, \leq_{\mathbb{P}}\right)$ is a partial order, hence a notion of forcing. The following Lemma describes the dense subsets of \mathbb{P}.

Lemma 3.22 1. For each n and $k,\{\mathbf{p} \in \mathbb{P}: n(\mathbf{p}) \geq n\}$ and $\{\mathbf{p} \in \mathbb{P}:$ $k(\mathbf{p}) \geq k\}$ are dense;
2. Suppose D is a dense, open subset of \mathbb{Q}. Then for every n and every $\mathbf{p} \in \mathbb{P}_{n}$, there is $\mathbf{q} \in \mathbb{P}_{n}$ such that $\mathbf{q} \geq_{\mathbb{P}} \mathbf{p}$ and, for every $\nu \in 2^{n}$, $\mathbf{q}_{\nu} \in D$.

Proof. Arguing by induction, it suffices to prove that for any given $\mathbf{p} \in \mathbb{P}$, there is $\mathbf{q} \geq_{\mathbb{P}} \mathbf{p}$ with $n(\mathbf{q})=n(\mathbf{p})+1$ and an $\mathbf{r} \geq_{\mathbb{P}} \mathbf{p}$ with $k(\mathbf{r})>k(\mathbf{p})$. Fix $\mathbf{p} \in \mathbb{P}$. Say $\mathbf{p} \in \mathbb{P}_{n}$ and $\mathbf{p}=(k, \bar{p})$. To construct \mathbf{q}, for each $\nu \in 2^{n}$, define $q_{\nu 0}=q_{\nu 1}=p_{\nu}$. Let $\bar{q}:=\left\langle q_{\mu}: \mu \in 2^{n+1}\right\rangle$ and $\mathbf{q}=(k, \bar{q})$. Then $\mathbf{q} \in \mathbb{P}_{n+1}$ and $\mathbf{q} \geq_{\mathbb{P}} \mathbf{p}$ (note that Clause (3) in the definition of $\leq_{\mathbb{P}}$ is vacuously satisfied since $k(\mathbf{p})=k(\mathbf{q}))$.

To construct \mathbf{r}, simply apply Lemma 3.19 to each p_{ν} to produce an extension $r_{\nu} \geq_{\mathbb{Q}} p_{\nu}$ with $k_{r_{\nu}}=k+1$, but $\mathcal{U}_{r_{\nu}}=\mathcal{U}_{p_{\nu}}$. Then let $\bar{r}:=\left\langle r_{\nu}: \nu \in 2^{n}\right\rangle$ and $\mathbf{r}=(k+1, \bar{r})$. Then $\mathbf{r} \geq_{\mathbb{P}} \mathbf{p}$ as required.
(2) Fix such a D and n. As we are working exclusively in \mathbb{P}_{n} and because 2^{n} is a fixed finite set, it suffices to prove that for any chosen $\nu \in 2^{n}$,

For every $\mathbf{p} \in \mathbb{P}_{n}$ there is $\mathbf{q} \in \mathbb{P}_{n}$ with $\mathbf{q} \geq_{\mathbb{P}} \mathbf{p}$ and $q_{\nu} \in D$.
To verify this, fix $\nu \in 2^{n}$ and $\mathbf{p} \in \mathbb{P}_{n}$. Concentrating on p_{ν}, as D is dense, choose $q_{\nu} \in D \cap \mathbb{Q}$ with $q_{\nu} \geq_{\mathbb{Q}} p_{\nu}$. Let $k^{*}:=k_{q_{\nu}}$. Next, for each $\delta \in 2^{n}$ with $\delta \neq \nu$, apply Lemma 3.19 to p_{δ}, obtaining some $q_{\delta} \in \mathbb{Q}$ satisfying $q_{\delta} \geq \mathbb{Q} p_{\delta}$, $k_{q_{\delta}}=k^{*}$, but $\mathcal{U}_{q_{\delta}}=\mathcal{U}_{p_{\delta}}$. Now, collect all of this data into a condition $\mathbf{q} \in \mathbb{P}_{n}$ defined by $k(\mathbf{q})=k^{*}$ and $\bar{q}=\left\langle q_{\gamma}: \gamma \in 2^{n}\right\rangle$, where each q_{γ} is as above. To see that $\mathbf{q} \geq_{\mathbb{P}} \mathbf{p}$, Clause (3) is verified by noting that for every $\ell \in\left[k(\mathbf{p}), k^{*}\right)$, $\operatorname{tr}_{\ell}(\mathbf{q})$ is either empty, or equals $\{\nu\}$, depending on whether or not $\ell \in \mathcal{U}_{q_{\nu}}$.

Notation 3.23 Suppose $\mathcal{B} \models Z F C^{*}$ and let $G^{*} \subseteq \mathbb{P}, G^{*} \in V$ be a filter meeting every dense subset $D^{*} \subseteq \mathbb{P}$ with $D^{*} \in \mathcal{B}$. For each n and $\nu \in 2^{n}$, let

$$
G_{\nu}:=\left\{\mathbf{p} \in \mathbb{Q}: \text { for some } \mathbf{p}^{*}=(k, \bar{p}) \in G^{*}, \mathbf{p}=\mathbf{p}_{\nu}^{*}\right\}
$$

Then, for each $\eta \in 2^{\omega}$, let

$$
G_{\eta}:=\bigcup\left\{G_{\eta \mid n}: n \in \omega\right\} \text { and } \mathcal{U}_{\eta}:=\left\{\ell \in \omega: \ell \in \mathcal{U}_{\mathbf{q}} \text { for some } \mathbf{q} \in G_{\eta}\right\}
$$

Proposition 3.24 In the notation of 3.23:

1. For every $\eta \in 2^{\omega}, G_{\eta} \subseteq \mathbb{Q}$ is a filter meeting every dense $D \subseteq \mathbb{Q}$ with $D \in \mathcal{B}$;
2. The sets $\left\{\mathcal{U}_{\eta}: \eta \in 2^{\omega}\right\}$ are an almost disjoint family of infinite subsets of ω.

Proof. (1) follows immediately from Lemma 3.22(2).
(2) Choose distinct $\eta, \eta^{\prime} \in 2^{\omega}$. Choose n_{0} such that $\eta\left|n \neq \eta^{\prime}\right| n$ whenever $n \geq n_{0}$. By Lemma $3.22(1)$, choose $\mathbf{p}^{*} \in G^{*}$ with $n\left(\mathbf{p}^{*}\right) \geq n_{0}$. We show that $\mathcal{U}_{\eta} \cap \mathcal{U}_{\eta^{\prime}}$ is finite by establishing that if $\ell \in \mathcal{U}_{\eta} \cap \mathcal{U}_{\eta^{\prime}}$, then $\ell \leq k\left(\mathbf{p}^{*}\right)$.

To establish this, choose $\ell \in \mathcal{U}_{\eta} \cap \mathcal{U}_{\eta^{\prime}}$. By unpacking the definitions, choose $\mathbf{q}^{*}, \mathbf{r}^{*} \in G^{*}$ such that, letting $\mu:=\eta \mid n\left(\mathbf{q}^{*}\right)$ and $\mu^{\prime}:=\eta^{\prime} \mid n\left(\mathbf{r}^{*}\right)$, we have $\ell \in \mathcal{U}_{\mathbf{q}_{\mu}^{*}} \cap \mathcal{U}_{\mathbf{r}_{\mu^{\prime}}^{*}}$. As G^{*} is a filter, choose $\mathbf{s}^{*} \in G^{*}$ with $\mathbf{s}^{*} \geq_{\mathbb{P}} \mathbf{p}^{*}, \mathbf{q}^{*}, \mathbf{r}^{*}$. As notation, let $\delta:=\eta \mid n\left(\mathbf{s}^{*}\right)$ and $\delta^{\prime}:=\eta^{\prime} \mid n\left(\mathbf{s}^{*}\right)$.

Claim: $\ell \in \mathcal{U}_{\mathrm{s}_{\delta}^{*}} \cap \mathcal{U}_{\mathrm{s}_{\delta^{\prime}}^{*}}$.
Proof. As $\ell \in \mathcal{U}_{\mathbf{q}_{\mu}^{*}}$, $\ell<k\left(\mathbf{q}^{*}\right)$. From $\mathbf{q}^{*} \leq_{\mathbb{P}} \mathbf{s}^{*}$ we conclude $k\left(\mathbf{q}^{*}\right) \leq$ $k\left(\mathbf{s}^{*}\right)$, so $\ell<k\left(\mathbf{s}^{*}\right)$ as well. From $\mathbf{q}^{*} \leq_{\mathbb{P}} \mathbf{s}^{*}$ and $\mu \unlhd \delta$ we obtain $\mathbf{q}_{\mu}^{*} \leq_{\mathbb{Q}} \mathbf{s}_{\delta}^{*}$. But then, as $\ell \in \mathcal{U}_{\mathbf{q}_{\mu}^{*}}$, it follows that $\ell \in \mathcal{U}_{\mathbf{s}_{\delta}^{*}}$. That $\ell \in \mathcal{U}_{\mathbf{s}_{\delta^{\prime}}^{*}}$ is analogous, using \mathbf{r}^{*} in place of \mathbf{q}^{*}.

Finally, assume by way of contradiction that $\ell \geq k\left(\mathbf{p}^{*}\right)$. The Claim implies that $\left\{\delta, \delta^{\prime}\right\} \subseteq \operatorname{tr}_{\ell}\left(\mathbf{s}^{*}\right)$. As $\ell \in\left[k\left(\mathbf{p}^{*}\right), k\left(\mathbf{s}^{*}\right)\right)$, Clause (3) of $\mathbf{p}^{*} \leq_{\mathbb{P}} \mathbf{s}^{*}$ implies that $\delta\left|n\left(\mathbf{p}^{*}\right)=\delta^{\prime}\right| n\left(\mathbf{p}^{*}\right)$. But, as $\eta\left|n\left(\mathbf{p}^{*}\right)=\delta\right| n\left(\mathbf{p}^{*}\right)$ and $\eta^{\prime} \mid n\left(\mathbf{p}^{*}\right)=$ $\delta^{\prime} \mid n\left(\mathbf{p}^{*}\right)$, we contradict our choice of \mathbf{p}^{*}.

We close this section with the proof of Proposition 3.1, which we restate for convenience.

Conclusion 3.25 There is a family $\left\{\left(N_{\eta}, \bar{b}^{*}\right): \eta \in 2^{\omega}\right\}$ of $2^{\aleph_{0}}$ rich, atomic models of T, each of size \aleph_{1}, that are pairwise non-isomorphic over \bar{b}^{*}.

Proof. Choose any countable, transitive model \mathcal{B} of $Z F C^{*}$ and choose any $G^{*} \in V, G^{*} \subseteq \mathbb{P}, G^{*}$ meets every dense subset $D^{*} \in \mathcal{B}$ (as \mathcal{B} is countable, such a G^{*} exists). For each $\eta \in 2^{\omega}$, choose G_{η} and \mathcal{U}_{η} as in Proposition 3.24, and apply Conclusion 3.18 to get a rich \mathcal{U}_{η}-colored $\left(N_{\eta}, \bar{b}^{*}\right)$ in V. That this family is pairwise non-isomorphic over \bar{b}^{*} follows immediately from Corollary 3.6, since the sets $\left\{\mathcal{U}_{\eta}: \eta \in 2^{\omega}\right\}$ are almost disjoint.

4 The proof of Theorem 1.4

Assume that the class $\mathbf{A} \mathbf{t}_{T}$ is not pcl-small, as witnessed by an (uncountable) model N^{*} containing a finite tuple \bar{a}^{*}. Fix a countable, elementary substructure $M^{*} \preceq N^{*}$ that contains \bar{a}^{*}. To aid notation, let $D^{*}:=\operatorname{pcl}_{N^{*}}\left(\bar{a}^{*}\right)$. We
now split into cases, depending on the relationship between the cardinals $2^{\aleph_{0}}$ and $2^{\aleph_{1}}$.

Case 1. $2^{\aleph_{0}}<2^{\aleph_{1}}$.
In this case, expand the language of T to $L\left(D^{*}\right)$, adding a new constant symbol for each $d \in D^{*}$. Then, the natural expansion $N_{D^{*}}^{*} N^{*}$ to an $L\left(D^{*}\right)-$ structure is a model of the infinitary $L\left(D^{*}\right)$-sentence Φ that entails $T h\left(N_{D^{*}}^{*}\right)$ and ensures that every finite tuple is L-atomic with respect to T. As $N_{D^{*}}^{*}$ is a model of Φ that realizes uncountably many types over the empty set (after fixing $D^{*}!$), it follows from [5], Theorem 45 of Keisler that there are $2^{\aleph_{1}}$ pairwise non- $L\left(D^{*}\right)$-isomorphic models Φ, each of size \aleph_{1}. As $2^{\aleph_{0}}<2^{\aleph_{1}}$, it follows that there is a subfamily of $2^{\aleph_{1}}$ pairwise non- L-isomorphic reducts to the original language L. As each of these models are L-atomic, we conclude that $\mathbf{A t}_{T}$ has $2^{\aleph_{1}}$ non-isomorphic models of size \aleph_{1}.
Case 2. $2^{\aleph_{0}}=2^{\aleph_{1}}$.
Choose \bar{b}^{*} from M^{*} as in Proposition 2.10 and apply Conclusion 3.25 to get a set $\mathcal{F}^{*}=\left\{\left(N_{\eta}, \bar{b}^{*}\right): \eta \in 2^{\omega}\right\}$ of atomic models, each of size \aleph_{1}, that are pairwise non-isomorphic over \bar{b}^{*}. Let $\mathcal{F}=\left\{N_{\eta}: \eta \in 2^{\omega}\right\}$ be the set of reducts of elements from \mathcal{F}^{*}. By our cardinal hypothesis, \mathcal{F} has size $2^{\aleph_{1}}$. The relation of L-isomorphism is an equivalence relation on \mathcal{F}, and each L-isomorphism equivalence class has size at most \aleph_{1} (since $\aleph_{1}^{<\omega}=\aleph_{1}$). As $\aleph_{1}<2^{\aleph_{1}}$ we conclude that \mathcal{F} has a subset of size $2^{\aleph_{1}}$ of pairwise non-isomorphic atomic models of T, each of size \aleph_{1}.

References

[1] J. Baldwin and P. Larson, Iterated elementary embeddings and the model theory of infinitary logic, Ann. Pure Appl. Logic 167 (2016), no. $3,309 ? 334$.
[2] J. Baldwin, M.C. Laskowski, and S. Shelah, Constructing many uncountable atomic models in \aleph_{1}, Journal of Symbolic Logic 81 no. 3, (2016) 1142-1162.
[3] J. Baldwin, M.C. Laskowski, Henkin constructions of models of size continuum (preprint).
[4] J. Baldwin, M.C. Laskowski, and S. Shelah, An active chain implies many atomic models in \aleph_{1} (preprint).
[5] H.J. Keisler, Model Theory for Infinitary logic. Logic with countable conjunctions and finite quantifiers, Studies in Logic and the Foundations of Mathematics, Vol. 62, North-Holland Publishing Co., Amsterdam-London, 1971
[6] H.J. Keisler, Logic with the quantifier "there exist uncountably many," Ann. Math. Logic 11970 1-93.
[7] S. Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of subsets of reals modulo meagre or null, Israel Journal of Math 88 (1994) 159-174
[8] D. Ulrich, R. Rast, and M.C. Laskowski, Borel complexity and potential canonical Scott sentences, Fundamenta Mathematicae (to appear). arXiv:1510.05679

[^0]: *Partially supported by NSF grant DMS-1308546.
 ${ }^{\dagger}$ Partially supported by European Research Council grant 338821 and NSF grant DMS1362974. Publication no. 1099.
 ${ }^{1}$ Specifically, for every complete sentence Φ of $L_{\omega_{1}, \omega}$, there is a complete first-order theory T in a countable vocabulary containing the vocabulary of Φ such that the models of Φ are precisely the reducts of the class of atomic models of T to the smaller vocabulary.

[^1]: ${ }^{2}$ A model M is atomic if, for every finite tuple \bar{a} from M, $\operatorname{tp}_{M}(\bar{a})$ is principal i.e., is uniquely determined by a single formula $\varphi(\bar{x}) \in \operatorname{tp}_{M}(\bar{a})$.

[^2]: ${ }^{3}$ Sadly, this usage of ' \aleph_{0}-stability' is analogous, but distinct from, the familiar first-order notion.

[^3]: ${ }^{4}$ In the proof of (3), e would be a realization of $\varphi\left(y, b_{s_{i}, n_{i}}: i<m\right)$ in M_{k}, if one existed.

