EXTENDIBLE CARDINALS AND THE MANTLE

TOSHIMICHI USUBA

ABSTRACT. The mantle is the intersection of all ground models of V. We show that if there exists an extendible cardinal then the mantle is the smallest ground model of V.

1. INTRODUCTION

Let us say that an inner model W of ZFC is a ground if the universe V is a set-forcing extension of W. The set-theoretic geology, initiated by Fuchs-Hamkins-Reitz [1], is a study of the structure of all grounds of V. An important object in the set-theoretic geology is the mantle:

Definition 1.1. The mantle \mathbb{M} is the intersection of all grounds of V.

It is known that the mantle is a transitive, definable, forcing-invariant model of ZFC ([1], Usuba [7]). The mantle itself needs not to be a ground of V, but if the mantle is a ground of V then it is the smallest ground. In [1], they asked the following question: Under what circumstances is the mantle also a ground model of the universe? For this question, Usuba answered if some very large cardinal exists then the mantle must be a ground:

Fact 1.2 ([7]). Suppose there exists a hyper-huge cardinal. Then the mantle is a ground of V. More precisely, there is a poset $\mathbb{P} \in \mathbb{M}$ and a (\mathbb{M}, \mathbb{P}) -generic G such that $|\mathbb{P}| < \kappa$ and $V = \mathbb{M}[G]$.

An uncountable cardinal κ is hyper-huge if for every cardinal $\lambda \geq \kappa$, there is an elementary embedding $j: V \to M$ for some inner model M such that the critical point of j is $\kappa, \lambda < j(\kappa)$, and M is closed under $j(\lambda)$ -sequences.

In this paper we prove that the hyper-huge cardinal assumption can be weakened to the extendible cardinal assumption. Recall that an uncountable cardinal κ is *extendible* if for every ordinal $\alpha \geq \kappa$, there exists $\beta > \alpha$ and an elementary

⁽T. Usuba) Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555 Japan. Tel: +81 3 5286 3000

 $E\text{-}mail \ address: \texttt{usuba@waseda.jp}.$

²⁰¹⁰ Mathematics Subject Classification. 03E45, 03E55.

Key words and phrases. extendible cardinal, mantle, set-theoretic geology.

This research was supported by JSPS KAKENHI grant Nos. 18K03403 and 18K03404.

embedding $j: V_{\alpha} \to V_{\beta}$ such that the critical point of j is κ and $\alpha < j(\kappa)$. Every hyper-huge cardinal is an extendible cardinal limit of extendible cardinals.

Theorem 1.3. Suppose there exists an extendible cardinal. Then the mantle is a ground of V. In fact if κ is extendible then the κ -mantle of V is its smallest ground (The κ -mantle will be defined in Definition 2.6 below).

2. Some materials

Let's recall some basic definitions and facts about the set-theoretic geology. See [1] for more information.

Fact 2.1 ([1], Reitz [5]). There is a formula $\varphi(x, y)$ of set-theory such that:

(1) For every r, the class $W_r = \{x \mid \varphi(x,r)\}$ is a ground of V with $r \in W_r$. (2) For every ground W of V, there is r with $W = W_r$.

It turned out that all grounds are downward set-directed:

Fact 2.2 ([7]). Let $\{W_r \mid r \in V\}$ be the collection of all grounds of V defined as in Fact 2.1. For every set X, there is r such that $W_r \subseteq W_s$ for every $s \in X$.

A key of the definability of grounds as in Fact 2.1 is the covering and the approximation properties introduced by Hamkins [2]:

Definition 2.3 ([2]). Let $M \subseteq V$ be a transitive model of ZFC containing all ordinals. Let κ be a cardinal.

- (1) M satisfies the κ -covering property for V if for every set x of ordinals, if $|x| < \kappa$ then there is $y \in M$ with $x \subseteq y$ and $|y| < \kappa$.
- (2) M satisfies the κ -approximation property for V if for every set A of ordinals, if $A \cap x \in M$ for every set $x \in M$ with size $< \kappa$, then $A \in M$.

Fact 2.4 (Hamkins, see Laver [4]). Let κ be a regular uncountable cardinal. Let M, N be transitive models of ZFC containing all ordinals. If M and N satisfy the κ -covering and the κ -approximation properties for $V, \mathcal{P}(\kappa) \cap M = \mathcal{P}(\kappa) \cap N$, and $\kappa^+ = (\kappa^+)^M = (\kappa^+)^N$, then M = N.

Fact 2.5 ([2]). Let κ be a regular uncountable cardinal, and \mathbb{P} a poset of size $< \kappa$. Let G be (V, \mathbb{P}) -generic. Then, in V[G], V satisfies the κ -covering and the κ -approximation properties for V[G].

Let us make some definition and observations.

Definition 2.6. Let κ be a cardinal. A ground W of V is a κ -ground if there is a poset $\mathbb{P} \in W$ of size $< \kappa$ and a (W, \mathbb{P}) -generic G such that V = W[G]. The κ -mantle is the intersection of all κ -grounds.

The κ -mantle is a definable, transitive, and extensional class. It is trivially consistent that the κ -mantle is a model of ZFC, and we can prove that if κ is strong limit, then the κ -mantle must be a model of ZF. A sketch of the proof is as follows. First we show that all κ -grounds are downward-directed. For any two κ -grounds W_0 and W_1 , since κ is a limit cardinal, there is a regular cardinal $\lambda < \kappa$ such that W_0 and W_1 are λ -grounds. Then V is a λ -c.c. forcing extension of both W_0 and W_1 . By the proof of Fact 2.2 (see [7]), we can find a ground $W \subseteq W_0 \cap W_1$ of V such that V is a λ^{++} -c.c. forcing extension of W. Then, we can find a poset $\mathbb{P} \in W$ of size $\leq 2^{2^{\lambda^{++}}}$ and a (W, \mathbb{P}) -generic filter G with V = W[G](e.g., see Appendix in Sargsyan-Schindler [6]), so W is a κ -ground of V as well. The downward-directedness of the κ -grounds implies that the κ -mantle is absolute between all κ -grounds, so the κ -mantle of V is definable in all κ -grounds. Now, by Lemma 21 in [1], the κ -mantle is a model of ZF.

However we do not know whether the κ -mantle is always a model of ZFC.

Question 2.7. For a given cardinal κ , is the κ -mantle always a model of ZFC?

By Facts 2.4 and 2.5, if W is a κ -ground of V, then W is completely determined by the set $P = \mathcal{P}(\kappa) \cap W$, that is, W is a unique ground W' with $\mathcal{P}(\kappa) \cap W' = P$, $\kappa^+ = (\kappa^+)^{W'}$, and W' satisfies the κ -covering and the κ -approximation properties. This means that there are at most $2^{2^{\kappa}}$ many κ -grounds of V, hence there is a set X of size $\leq 2^{2^{\kappa}}$ such that the collection $\{W_r \mid r \in X\}$ is the κ -grounds. We have the following by the combination of this observation and Fact 2.2:

Lemma 2.8. Let κ be a cardinal and \overline{W} the κ -mantle of V. Then there is a ground W such that $W \subseteq \overline{W}$.

For a class $C \subseteq V$ and an ordinal α , let $C_{\alpha} = C \cap V_{\alpha}$, the set of all elements of C with rank $< \alpha$.

Lemma 2.9. Let κ be a cardinal and \overline{W} the κ -mantle of V. For an inaccessible $\theta > \kappa$, let $\overline{W}^{V_{\theta}}$ be the κ -mantle of V_{θ} , that is, $\overline{W}^{V_{\theta}}$ is the intersection of all κ -grounds of V_{θ} .

- (1) If θ is inaccessible > κ and $W \subseteq V$ is a κ -ground of V, then W_{θ} is a κ -ground of V_{θ} .
- (2) $\overline{W}^{V_{\theta}} \subseteq \overline{W}_{\theta}$ for every inaccessible $\theta > \kappa$.
- (3) Suppose there are proper class many inaccessible cardinals. Then there is $\alpha > \kappa$ such that for every inaccessible cardinal $\theta > \alpha$, we have $\overline{W}^{V_{\theta}} = \overline{W}_{\theta}$.

Proof. (1) is easy, and (2) easily follows from (1).

(3). Suppose not. Then, by (2), the family $C = \{\theta > \kappa \mid \theta \text{ is inaccessible}, \overline{W}^{V_{\theta}} \subseteq \overline{W}_{\theta}\}$ forms a proper class. For $\theta \in C$, there is a κ -ground M^{θ} of V_{θ} with $\overline{W}_{\theta} \nsubseteq M^{\theta}$. Fix a poset $\mathbb{P}^{\theta} \in (M^{\theta})_{\kappa}$ and an $(M^{\theta}, \mathbb{P}^{\theta})$ -generic G^{θ} such that $V_{\theta} = M^{\theta}[G^{\theta}]$. By Fact 2.5, M^{θ} has the κ -covering and the κ -approximation properties for V_{θ} , and $\kappa^{+} = (\kappa^{+})^{V_{\theta}} = (\kappa^{+})^{M^{\theta}}$. Since C is a proper class, there are a poset $\mathbb{P} \in V_{\kappa}$, a filter $G \subseteq \mathbb{P}$, and $P \subseteq \mathcal{P}(\kappa)$ such that the family $C' = \{\theta \in C \mid M^{\theta} \cap \mathcal{P}(\kappa) = P, \mathbb{P}^{\theta} = \mathbb{P}, G^{\theta} = G\}$ forms a proper class. Take θ_0 , θ_1 from C' with $\theta_0 < \theta_1$. Then $(M^{\theta_1})_{\theta_0}$ is a model of ZFC, and $(M^{\theta_1})_{\theta_0} \subseteq V_{\theta_0}$ has the κ -covering and the κ -approximation properties for V_{θ_0} . By applying Fact 2.4, we have $(M^{\theta_1})_{\theta_0} = M^{\theta_0}$. Hence the sequence $\langle M^{\theta} \mid \theta \in C' \rangle$ is coherent, that is, $(M^{\theta_1})_{\theta_0} = M^{\theta_0}$ for every $\theta_0 < \theta_1$ from C'. Then $M = \bigcup_{\theta \in C'} M^{\theta}$ is transitive, closed under the Gödel's operations, and almost universal, hence M is a model of ZFC (see e.g. Theorem 13.9 in Jech [3]). Moreover M[G] = V because $M^{\theta}[G] = V_{\theta}$ for every $\theta \in C'$, so M is a κ -ground of V. Therefore we have $\overline{W} \subseteq M$, and $\overline{W}_{\theta} \subseteq M_{\theta} = M^{\theta}$ for every $\theta \in C'$, this is a contradiction.

3. The proof

We start the proof of Theorem 1.3.

Proof. Let \overline{W} be the κ -mantle of V. We prove that \overline{W} is the mantle of V, this provides Theorem 1.3; By Lemma 2.8, there is a ground W with $W \subseteq \overline{W}$. Clearly $\mathbb{M} \subseteq W \subseteq \overline{W} = \mathbb{M}$, hence $\mathbb{M} = \overline{W} = W$ is a ground of V.

If not, by Lemma 2.8, there is a ground W of V with $W \subsetneq \overline{W}$. Fix a large inaccessible cardinal $\lambda > \kappa$ such that W is a λ -ground of V and $W_{\lambda} \subsetneq \overline{W}_{\lambda}$. W_{λ} and V_{λ} are transitive models of ZFC. By Lemma 2.9, we can find an inaccessible $\theta > \lambda$ such that $\overline{W}^{V_{\theta}} = \overline{W}_{\theta}$, where $\overline{W}^{V_{\theta}}$ is the κ -mantle of V_{θ} .

Take an elementary embedding $j: V_{\theta+1} \to V_{j(\theta)+1}$ such that the critical point of j is κ and $\theta < j(\kappa)$. $j(\theta)$ is inaccessible, so $V_{j(\theta)}$ and $W_{j(\theta)}$ are transitive models of ZFC. By the elementarity of j, the set $j(\overline{W}^{V_{\theta}})$ is the $j(\kappa)$ -mantle of $j(V_{\theta}) = V_{j(\theta)}$. By Lemma 2.9, $W_{j(\theta)}$ is a λ -ground of $V_{j(\theta)}$, hence $j(\overline{W}^{V_{\theta}}) \subseteq W_{j(\theta)}$.

Fix a sequence $\vec{S} = \langle S_{\alpha} \mid \alpha < \lambda \rangle \in W$ of pairwise disjoint sets such that each S_{α} is a stationary subset of $\lambda \cap \operatorname{Cof}(\omega)^W$ in W. Since V is a λ -c.c. forcing extension of W, each S_{α} is stationary in $\lambda \cap \operatorname{Cof}(\omega)^V$ in V as well. Let $\langle S_{\alpha}^* \mid \alpha < j(\lambda) \rangle = j(\vec{S}) \in V_{j(\theta)}$. By a well-known argument by Solovay, we have that $j^*\lambda = \{\alpha < \sup(j^*\lambda) \mid S_{\alpha}^* \cap \sup(j^*\lambda) \text{ is stationary in } \sup(j^*\lambda)\}$ (e.g., see Theorem 14 in Woodin-Davis-Rodorigues [8]).

Claim 3.1. $j``\lambda \in W_{j(\theta)}$.

Proof of the claim. Since $\vec{S} \in W_{\theta} \subseteq \overline{W}_{\theta} = \overline{W}^{V_{\theta}}$, we have $j(\vec{S}) \in j(\overline{W}^{V_{\theta}}) \subseteq W_{j(\theta)}$. $V_{j(\theta)}$ is a λ -c.c. forcing extension of $W_{j(\theta)}$. Hence for each set $S \subseteq \sup(j^*\lambda)$ with $S \in W_{j(\theta)}$, the stationarity of S is absolute between $V_{j(\theta)}$ and $W_{j(\theta)}$. This means that for every $\alpha < \sup(j^*\lambda)$, we have that $\alpha \in j^*\lambda$ if and only if $S^*_{\alpha} \cap \sup(j^*\lambda)$ is stationary in $\sup(j^*\lambda)$ in $W_{j(\theta)}$. Thus we have $j^*\lambda \in W_{j(\theta)}$. Finally we claim that $W_{\lambda} = \overline{W}_{\lambda}$, which yields the contradiction. The inclusion $W_{\lambda} \subseteq \overline{W}_{\lambda}$ is trivial. For the converse, we shall prove $\overline{W}_{\alpha} \subseteq W_{\alpha}$ by induction on $\alpha < \lambda$. Since the critical point of j is κ , we have $j(\overline{W}^{V_{\theta}})_{\kappa} = (\overline{W}^{V_{\theta}})_{\kappa} = \overline{W}_{\kappa}$. Since $j(\overline{W}^{V_{\theta}}) \subseteq W_{j(\theta)}$, we have $\overline{W}_{\kappa} \subseteq W_{\kappa}$. Take α with $\kappa \leq \alpha < \lambda$, and suppose $\overline{W}_{\alpha} \subseteq W_{\alpha}$ (so $\overline{W}_{\alpha} = W_{\alpha}$). To show that $\overline{W}_{\alpha+1} \subseteq W$, take $X \in \overline{W}_{\alpha+1}$. Since \overline{W} is transitive, we have $X \subseteq \overline{W}_{\alpha}$. $X \in \overline{W}_{\alpha+1} = (\overline{W}^{V_{\theta}})_{\alpha+1} \subseteq \overline{W}^{V_{\theta}}$, hence $j(X) \in j(\overline{W}^{V_{\theta}})$. We know $\overline{W}_{\alpha} = W_{\alpha} \in W_{\lambda}$ and W_{λ} is a model of ZFC, hence there is $\gamma \in W_{\lambda}$ and $j(f) \in j(\overline{W}^{V_{\theta}})$. $j^{``}\lambda \in W_{j(\theta)}$ and $j(f) \in j(\overline{W}^{V_{\theta}})$ hence $j(f)^{``}(j^{``}\gamma) = j^{``}\overline{W}_{\alpha} \in W_{j(\theta)}$. Now $j(X) \in j(\overline{W}^{V_{\theta}}) \subseteq W_{j(\theta)}$, thus $j^{``}X = j(X) \cap j^{``}\overline{W}_{\alpha} \in W_{j(\theta)}$. Let $\pi \in W_{j(\theta)}$ be the collapsing map of $j^{``}\overline{W}_{\alpha}$. Then $\pi^{``}(j^{``}\overline{W}_{\alpha}) = \overline{W}_{\alpha}$, and $X = \pi^{``}(j^{``}X) \in W_{j(\theta)}$, so we have $X \in W_{\alpha+1}$.

We conclude this paper by asking the following natural question:

Question 3.2. Let κ be an extendible cardinal. Is there a poset $\mathbb{P} \in \mathbb{M}$ of size $< \kappa$ and a (\mathbb{M}, \mathbb{P}) -generic G with $V = \mathbb{M}[G]$?

This question is equivalent to the destructibility of extendible cardinals by nonsmall forcings:

Question 3.3. Let κ be a cardinal, and \mathbb{P} a poset such that for every $p \in \mathbb{P}$, the suborder $\{q \in \mathbb{P} \mid q \leq p\}$ is not forcing equivalent to a poset of size $< \kappa$. Does \mathbb{P} necessarily force that " κ is not extendible"?

The referee pointed out that this question might be related to the following result. See Sargsyan-Schindler [6] for the definitions.

Fact 3.4 ([6]). Let M_{SW} be the least iterable inner model with a strong cardinal above a Woodin cardinal. If κ is a strong cardinal of M_{SW} , then the κ -mantle of M_{SW} is the smallest ground of M_{SW} via some κ^+ -c.c. poset of size κ^{++} , while M_{SW} cannot be a forcing extension of its κ -mantle via a poset of size $< \kappa$.

References

- G. Fuchs, J. D. Hamkins, J. Reitz, Set-theoretic geology. Ann. Pure Appl. Logic 166 (2015), no. 4, 464–501.
- [2] J. D. Hamkins, Extensions with the approximation and cover properties have no new large cardinals. Fund. Math. 180 (2003), no. 3, 257–277.
- [3] T. Jech, Set theory. The third millennium edition, revised and expanded. Springer-Verlag, 2003.
- [4] R. Laver, Certain very large cardinals are not created in small forcing extensions. Ann. Pure Appl. Logic 149 (2007), no. 1-3, 1–6.
- [5] J. Reitz, The Ground Axiom. J. of Symbolic Logic 72 (2007), no. 4, 1299–1317.
- [6] G. Sargsyan, R. Schindler, Varsovian models I. To appear in J. of Symbolic Logic.

- [7] T. Usuba, The downward directed grounds hypothesis and very large cardinals. J. Math. Logic 17, 1750009 (2017)
- [8] W. H. Woodin, J. Davis, D. Rodriguez, *The HOD dichotomy*. Unpublished but available at https://arxiv.org/abs/1605.00613