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Abstract

Several researchers have recently established that for every Turing de-

gree c, the real closed field of all c-computable real numbers has spectrum

{d : d′ ≥ c
′′}. We investigate the spectra of real closed fields further,

focusing first on subfields of the field R0 of computable real numbers,

then on archimedean real closed fields more generally, and finally on non-

archimedean real closed fields. For each noncomputable, computably enu-

merable set C, we produce a real closed C-computable subfield of R0 with

no computable copy. Then we build an archimedean real closed field with

no computable copy but with a computable enumeration of the Dedekind

cuts it realizes, and a computably presentable nonarchimedean real closed

field whose residue field has no computable presentation.

1 Introduction

The Turing degree spectrum of a countable first-order structure A provides a
natural measure of the complexity of the isomorphism type of that structure.
The spectrum of A, by definition, is the set of those Turing degrees d such
that for some copy of A (that is, for some B ∼= A with domain ω), the atomic
diagram of B has Turing degree d. In [10], Knight proved that the spectrum
is closed upwards under Turing reducibility in all but the most trivial cases (in
which it is a singleton), and so spectra fall under the more general heading of
mass problems, a source of broad interest in computability theory.

Nontrivial structures with computable copies (also known as computable
presentations) have all Turing degrees in their spectrum, by Knight’s result,
and we view these structures as being as simple as possible to present. More
complex structures have no computable copy, and the spectrum tells us how
much information suffices if one wishes to present a copy of such a structure.
In certain cases, the spectrum may be the upper cone above a specific degree
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Julia Knight and Reed Solomon.

1

http://arxiv.org/abs/1807.07489v1


d, in which case we view d itself as a very precise measure of the difficulty
of presenting the structure, as first described by Richter in [17]. More recent
work has yielded many structures in which information (specifically, a given set
C) is coded not directly into the atomic diagram of the structure, but rather
into the n-quantifier diagram, for various n, and so the spectrum may contain
those degrees whose n-th jump computes C. Such structures are discussed in
[4], among other places, and we will meet some of them below.

Reversing these arguments, many researchers have also compared different
classes of structures by investigating the spectra which can be realized by those
classes. The class of symmetric irreflexive graphs has been known for quite
some time to be complete in this sense: every spectrum of a non-trivial first-
order structure (in a computable language) is also the spectrum of such a graph.
Details appear in [6], which also established this completeness for classes such
as groups, rings, partial orders, and lattices. Recently, in [14], fields of arbitrary
characteristic have also been shown to be complete in this sense. On the other
hand, classes such as linear orders, Boolean algebras, and trees (as partial or-
ders) were shown in the same work of Richter not to be complete this way, and
these classes have been parsed further since then. In [2], for example, Boolean
algebras were shown incapable of realizing certain spectra which had been seen
in [8] to be the spectra of linear orders.

To our knowledge, it remains unknown whether real closed fields have this
completeness property or not. A real closed field is simply a model of the theory
of the structure (R, 0, 1,+, ·), the field of real numbers. It makes no difference
whether we include the relation < in the signature, since this relation is ∆0

1-
definable in every real closed field anyway: a < b if and only if (b − a) has a
nonzero square root in the field, which holds if and only if (a− b) has no square
root. Real closed fields have far more complex possible spectra than algebraically
closed fields, all of which have computable presentations. Recently, independent
results in [9] and [1] have proven that degrees d for which d

′ ≥T 0′′ form the
spectrum of the real closed field R0 containing precisely the computable real
numbers. The article [1] went further, investigating the archimedean real closed
field containing all real numbers computable from degrees in a given countable
ideal I within the Turing degrees. The goal of this article is to investigate the
possible spectra of real closed fields further.

Our work here is organized roughly by scope. After introducing our defini-
tions and conventions, we begin in Section 4 with basic results, which apply to
archimedean real closed fields. Theorem 4.1 describes conditions for a degree
to belong to the spectrum of such a field. In certain respects, this theorem
can be viewed as dividing the problem in two: the degree needs to be able to
enumerate the Dedekind cuts realized in the field, and its jump needs to be able
to decide the algebraic dependence relation on those cuts. We provide examples
to distinguish these two requirements.

In Section 5, we consider real closed subfields of the field R0 of all com-
putable real numbers. We show that it is possible to take any nonzero c.e.
degree d and give a real closed subfield of R0 whose spectrum contains d but
not 0. In particular, this can be done even when d is low, meaning that the
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spectrum cannot be defined merely by conditions on jumps of degrees. The
results are reminiscent in certain respects of known theorems about spectra of
linear orders, but some of the results for linear orders remain open (and appear
more challenging) when one asks about real closed subfields of R0.

In Section 6, we continue on to nonarchimedean real closed fields. Here
many more questions remain unanswered. However, in Theorem 6.2 we give
the first example (we believe) of a computable real closed field F whose residue
field has no computable presentation. We also use this field to establish that
the question of the spectrum of a real closed field depends on more than just
the spectrum of the residue field and the spectrum of the derived linear order
of the positive infinite multiplicative classes: the F built here has the same
derived linear order as another real closed field built earlier in this article, and
the residue fields of the two both have the same spectrum, yet the two fields
themselves have distinct spectra.

A theorem of Madison in [12] shows that for every ordered field (F,<),
the real closure RC(F ) of F has a presentation computable from the atomic
diagram of (F,<), and indeed the process of computing the real closure from
this diagram is uniform. Therefore, Spec(F,<) ⊆ Spec(RC(F )). However, this
containment can be proper. We leave for another time the question of degree
spectra of ordered fields.

2 Computable Dedekind Cuts

We fix a computable bijection between the sets ω (of nonnegative integers) and
Q (of rational numbers, viewed as equivalence classes in ω × (ω − {0})). Thus
we may speak of computable and c.e. subsets of Q, as well as of ω.

We will need to deal with three distinct kinds of Dedekind cuts.

Definition 2.1 A right-leaning Dedekind cut consists of two subsets A and B
of Q such that:

• A ∪B = Q and A 6= ∅ and B 6= ∅; and

• for every q ∈ A and r ∈ B, we have q < r; and

• A has no greatest element (under the usual order < on Q).

The number realized, or defined, by this cut is the unique real number x in⋂
q∈A,r∈B(q, r]. For a left-leaning Dedekind cut, we alter the final item to stip-

ulate that B has no least element, but now A is allowed to have a greatest
element. In a strict Dedekind cut, neither has a least nor a greatest element,
and we weaken the first item, which now requires that A 6= ∅ 6= B and that
(Q− (A∪B)) be either empty or a singleton. Of course, the distinction between
the three kinds of Dedekind cuts is trivial when x is irrational. For rational x,
the different kinds simply specify whethere x itself should lie: in B, in A, or in
neither.
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If A and B are both d-computably enumerable (or equivalently, if they are
both d-computable), then this is a d-computable Dedekind cut. The term applies
to all three kinds.

A d-computable enumeration of Dedekind cuts consists of two sequences
{An}n∈ω and {Bn}n∈ω, both uniformly d-c.e., such that, for every n, (An, Bn)
forms a Dedekind cut.

When A = ∪sAs and B = ∪sBs are d-computable enumerations of these
sets, with every As and Bs finite and nonempty, it is often convenient to describe
the Dedekind cut (A,B) by a sequence of nested intervals describing the possible
values of the real filling the cut: (as, bs) for a strict cut, or (as, bs] or [as, bs)
if the cut leans right or left, where as = maxAs and bs = minBs. Of course,
many distinct sequences of intervals will correspond to the same cut (A,B),
depending on the enumerations used for A and B.

The following result appears as Lemma 2.1 in [1].

Lemma 2.2 Let {(An, Bn)}n∈ω be a d-computable enumeration of Dedekind
cuts. Then there exists another d-computable enumeration {(Ck, Dk)}k∈ω real-
izing exactly the same real numbers, but such that, for all j < k, (Cj , Dj) and
(Ck, Dk) realize distinct real numbers. (We call the latter a Friedberg enumer-
ation, in honor of the originator of the similar theorem for c.e. sets.)

Moreover, there is a procedure for building the Friedberg enumeration from
the original enumeration, uniformly for all enumerations {(An, Bn)}n∈ω and
uniformly relative to the degree d. Also, there is a d-computable function f
(uniformly, again) such that, for every k, (Ck, Dk) realizes the same real number
as (Af(k), Bf(k)).

This theorem applies to all three kinds of Dedekind cuts. For a Friedberg
enumeration, one simply waits to enumerate a cut until it has distinguished
itself from the finitely many cuts preceding it in the original enumeration. (This
is far easier than Friedberg’s own result for c.e. sets.)

Computable Dedekind cuts (A,B) are those for which both A and B are
computable – or equivalently, both are c.e. In this case, the unique real number
filling the cut (A,B) is said to be computable. Computable real numbers form
a simple bridge connecting the computable Dedekind cuts with the computable
subsets of ω.

Lemma 2.3 There is an effective bijection between computable subsets S ⊆ ω
and computable non-strict Dedekind cuts of real numbers in [0, 1].

“Non-strict” means that, when x ∈ (0, 1) is rational, we include both the left-
leaning and the right-leaning cut defined by x. To make things perfect, we
include the right-leaning cut of 0 and the left-leaning cut of 1. Then the bijection
is defined recursively by letting n lie in S just if

1

2n+1
+

∑

m∈S & m<n

1

2m+1

lies in the left side of the cut.
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Lemma 2.4 Let S ⊆ ω. Then S is computable if and only if the real number
rS =

∑
n∈S

1
2n+1 ∈ [0, 1] is computable.

It is possible here to have rS = rT for distinct sets S and T (e.g., for S = {1}
and T = ω−{0, 1}), but only if one set is finite and the other cofinite. With this
lemma, the next result follows quickly, using a theorem proven by Jockusch in
[7]. Again, this result was established in [1], in a more general form: instead of
considering sets ≤T c, they considered all sets in a countable ideal I of Turing
degrees.

Proposition 2.5 (see [7] and Theorem 1.1 of [1]) Fix any Turing degree
c. Then for each Turing degree d, the following are equivalent.

• d can enumerate the set of all c-computable nonstrict Dedekind cuts of
numbers in [0, 1];

• d can enumerate the c-computable sets;

• d
′ ≥ c

′′, i.e., d is high relative to c.

The equivalence of the last two conditions, which is not trivial, is Jockusch’s
result, relativized to c, while the equivalence of the first two follows from Lemma
2.3.

3 Known Spectra of Real Closed Fields

The next result was proven (with c = 0) by Korovina and Kudinov [9], as well
as in [1].

Theorem 3.1 For each Turing degree c, the spectrum of the field Rc of all c-
computable real numbers contains precisely those degrees d ≥ c which are high
relative to c, i.e., with d

′ ≥ c
′′. Moreover, these are the only degrees capable of

enumerating the Dedekind cuts realized in Rc.

Of course, each upper cone of Turing degrees ≥T c is the spectrum of the
field Q(x), where x is any real number of degree c, and is also the spectrum
of the real closure of Q(x). We can combine this with the preceding idea as
follows, to obtain spectra which are neither upper cones nor jump-preimages
of upper cones. Recall the definition: an ordered field F is archimedean if, for
every element x ∈ F , there is a natural number n with x < n.

Theorem 3.2 For every pair of Turing degrees c0 and c1, there exists an
archimedean real closed field F with

Spec(F ) = {d : c0 ∪ c1 ≤ d & c
′′
1 ≤ d

′}.
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Proof. Fix a real number x of degree c0, and let F be the real closure of Rc1
(x),

where Rc1
contains all c1-computable real numbers. Clearly every d ∈ Spec(F )

computes the cut of x, so d ≥ c0. Also, with a d-oracle, we may start enu-
merating all non-strict Dedekind cuts (both left-leaning and right-leaning) of
elements y ∈ F with 0 ≤ y ≤ 1. Whenever we see that, for some y ∈ F , x
is algebraic in F over Q(y), we change the enumerations of the two cuts of y
so that they enumerate the cuts of some convenient rational number instead.
Thus, in the end, our enumeration contains exactly the non-strict cuts in [0, 1]
realized in the ground field Rc1

, i.e., the c1-computable cuts in this interval. By
Proposition 2.5, d must be ≥ c1 and high relative to c1 (that is, d′ ≥ c

′′
1).

Conversely, if d ≥ c1 and d
′ ≥ c

′′
1 , then d computes a copy of Rc1

, by
Theorem 3.1, and if also d ≥ c0, then we can extend this copy to a presentation
of Rc1

(x) as an ordered field. (If c0 ≤ c1, this is just Rc1 itself; whereas if not,
then x must be transcendental over Rc1

, and so the field arithmetic is just that
of a purely transcendental extension of Rc1

.) By Madison’s theorem from [12],
the real closure F of Rc1

(x) is also d-computably presentable.

So far, therefore, the spectra of archimedean real closed fields we have met
are exactly those named in Theorem 3.2: the set of degrees in some upper
cone satisfying a particular highness condition. (The condition d

′ ≥ c
′′ defines

highness relative to c; the set of degrees satisfying this condition may also be
described as the preimage of the upper cone above c′′ under the jump operation.)
Adjoining finitely many elements x1, . . . , xn of incomparable degree to a given
real closed field does not create any further spectra: the upper cone now is
simply that above the join of the degrees of x1, . . . , xn. However, in Section 5
we will produce archimedean real closed fields with spectra distinct from those
described in Theorem 3.2.

4 Archimedean Real Closed Fields

Proposition 2.5 shows that for the countable real closed fields Rc, the ability
to enumerate the cuts of the real numbers in Rc is equivalent to the ability
to present the field Rc. In general, however, having a computable Friedberg
enumeration of the Dedekind cuts realized in an archimedean real closed field
F is not a priori sufficient to yield a computable presentation of F . In fact, it
is not difficult to give a computable Friedberg enumeration ( 〈ai,s, bi,s〉 )i,s∈ω of
the cuts realized in the real closure of Q in such a way that the addition function
(mapping a pair (i, j) to the unique k such that lims ak,s = lims(ai,s+aj,s)) and
the multiplication function each have degree 0′. (0′ is readily seen to be sufficient
to compute these functions, given any computable Friedberg enumeration for
an archimedean real closed field F as described above.) In Theorem 4.3 we will
give a separate example.

The basic criteria for belonging to the spectrum of a real closed field are
given by the following theorem.
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Theorem 4.1 Let F be an archimedean real closed field. Then, for each Turing
degree d, the following are equivalent.

1. d ∈ Spec(F ).

2. There is a d-computable Friedberg enumeration of the strict Dedekind cuts
realized in F , in which the algebraic dependence relation on those cuts is
d
′-decidable.

3. There is a d-computable Friedberg enumeration of a set of Dedekind cuts
such that the real numbers filling those cuts form a transcendence basis for
F .

(In (2), one can substitute either right-leaning or left-leaning Dedekind cuts for
strict ones, yielding two more equivalent conditions.)

Proof. It is immediate that (1) =⇒ (2). A d-computable presentation of F
gives a Friedberg enumeration of the cuts realized in F , just by enumerating
the elements of the presentation and listing the cuts in which they lie. Since
d also computes the field operations on these cuts, the dependence relation on
these cuts these elements is Σd

1 , hence d
′-decidable, proving (2).

It is also clear that (1) =⇒ (3) when F has finite transcendence degree
over Q: just enumerate the cuts for any transcendence basis. For a field F of
infinite transcendence degree over Q, start with a d-computable presentation
of F . We define cuts C0, C1, . . .. At stage 0, we begin enumerating C0 as the
cut of the element x0 in the domain {x0, x1, . . .} of F , saying that C0 is being
guided by x0. At stage 1 we start enumerating C1 as the cut of x1, and so on.
However, we also search at the same time for algebraic relations in F among
these elements. If we ever see that x0 is algebraic over Q, then we drop x0 and
perform a “left-shift” as follows. For the element xi1 currently guiding C1, find
a rational q1 such that xi1 + q1 lies in C0 as currently defined, and let xi1 + q1
guide C0 from now on. Likewise, for the xi2 currently guiding C2, find q2 ∈ Q

with xi2 + q2 in the current interval defined by C1, and let xi2 + q2 guide C1

from now on, and so on. For the greatest Cs currently being enumerated, take
the next available xi and start using it (plus a rational) to guide Cs from now
on.

Likewise, whenever the element xij currently guiding Cj is found to be alge-
braic over Q(x0, . . . , xij−1), we perform a left-shift for all the cuts Cj , Cj+1, . . .,
without disturbing C0, . . . , Cj−1. Since F has infinite transcendence degree,
this ensures that C0 will eventually be the cut of an element which differs by a
rational from the first xi0 transcendental over Q. Likewise, C1 will be guided
by the first xi1 transcendental over Q(xi0 ), and so on for each Cj . This proves
(3).

To prove (3) =⇒ (1), we use the d-computable enumeration of the cuts for
a transcendence basis for F to build a d-computable ordered field Q(x0, x1, . . .),
with one xi for each cut in the enumeration. The field arithmetic is that of a
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purely transcendental extension, and the order is decidable from the enumer-
ation of the cuts. Then Madison’s theorem from [12] yields a d-computable
presentation of the real closure of this field, namely F .

We show (2) =⇒ (3) by the same basic process as for (1) =⇒ (3).
The d

′-decidability of algebraic dependence on the d-computable enumeration
of cuts allows d to approximate the characteristic function of a transcendence
basis. Sometimes a right-shift is necessary, by analogy to the left-shifts described
above. If the approximation says that the first cut is algebraic, but then changes
its mind, then C0 must start its enumeration of the first cut (up to a rational
difference) all over again, moving all other cuts one step to the right. However,
the process still succeeds, yielding a d-computable enumeration of the cuts in a
transcendence basis for F .

Theorem 4.1 provides a degree-theoretic criterion sufficient for membership
in Spec(F ), though not always necessary.

Corollary 4.2 Let F be an a-computable archimedean real closed field, such
that every x ∈ F is c-computable. Then every degree d ≥ c with d

′ ≥ a
′ ∪ c

′′

lies in Spec(F ).

Proof. Given any natural number x (which we regard as an element of the a-
computable presentation F ) and any i, j ∈ ω, a d

′-oracle can decide whether

(WC
i ,WC

j ) is a strict Dedekind cut in Q

& (∀q ∈ Q)(∀s)[(q ∈ WC
i,s → q < x) & (q ∈ WC

j,s → x < q)]

& (x is transcendental over Q(0, . . . , x− 1) in F .)

(The first condition is Πc
2. The second is Πa

1 , using the < relation in F , and
so is the third.) So we have a d-computable approximation to this property,
uniformly for all x, i, and j. Of course, for each i and j, at most one x can
make the property true. So we use a d-computable finite injury procedure,
building a cut in Q to approximate (WC

i ,WC
j ) as long as it appears that some

specific x makes the property true for this (potential) cut, and doing a left-shift
or a right-shift, as in Theorem 4.1, if the approximation ever changes its mind
for this particular (i, j, x). This yields a d-computable list of all the cuts in a
transcendence basis for F , so d ∈ Spec(F ) by Theorem 4.1.

Between the two criteria given by this theorem for membership in Spec(F ),
condition (3) seems by far the cleaner and more useful. We include condition
(2) because it suggests the dual requirements in presenting F : enumerating
the cuts, and computing the field operations. We now give an example which,
in concert with Theorem 3.1, shows how each of these dual requirements can
take precedence. Both examples have the same spectrum. However, the new
example is a real closed field RS which satisfies the first part of (2) with d = 0,
but not the second. Roughly speaking, in this field, it is the field arithmetic
which prohibits the existence of a computable copy. In Theorem 3.1, in contrast,
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with the field Rc of c-computable real numbers, the field arithmetic causes no
problems: the ability to give a Friedberg enumeration of the cuts realized in Rc

was sufficient for a degree to lie in its spectrum.

Theorem 4.3 For every S ∈ Σ0
2, there is a countable archimedean real closed

field RS with a computable Friedberg enumeration of the cuts realized in RS ,
such that Spec(RS) = {deg(D) : S ≤T D′}.

When S has degree 0′′, this spectrum has already been realized by the field R0

of all computable real numbers (see Theorem 3.1). The point of this theorem is
that, unlike R0, RS has a computable enumeration of its cuts; the complexity
of Spec(RS) stems entirely from the difficulty of the field operations in RS .

Proof. Fix a computable 1-reduction f from S to the Σ0
2-complete set Fin. First

we will uniformly enumerate Dedekind cuts {(ae,s, be,s) : i ∈ ω} such that, for
each e, ae = lims ae,s is algebraic over Q if and only if e ∈ S (that is, just if
Wf(e) is finite). Moreover, if e /∈ S, then ae will be transcendental over the
subfield Q(a0, . . . , ae−1).

Let p0, p1, . . . list all nonzero polynomials in Z[X ]. At stage 0 of the con-
struction, we choose each interval Ie,0 = (ae,0, be,0) = (e, e+1), and fix the least
index ne,0 such that pne,0

(X) has a root in Ie,0.
At stage s+1, for each e, we check whether Wf(e),s+1 = Wf(e),s. If so, then

we take Ie,s+1 to be a subinterval of Ie,s as follows. Suppose Ie,s = (qe,s, q
′
e,s),

with qe,s, q
′
e,s ∈ Q. Define Ie,s+1 = (qe,s+1, q

′
e,s+1), with qe,s, q

′
e,s ∈ Q satisfying

qe,s < qe,s+1 < q′e,s+1 < q′e,s and (∃a) (qe,s+1 < a < q′e,s & pne,s
(a) = 0). We

keep ne,s+1 = ne,s.
If Wf(e),s+1 6= Wf(e),s, then suppose Ie,s = (qe,s, q

′
e,s), with qe,s, q

′
e,s ∈ Q.

Define Ie,s+1 = (qe,s+1, q
′
e,s+1), with qe,s, q

′
e,s ∈ Q satisfying

• qe,s < qe,s+1 < q′e,s+1 < q′e,s,

• (∀a) (qe,s+1 < a < q′e,s → pne,s
(a) 6= 0), and

• for each of the first s nonzero polynomials r ∈ Z[X0, . . . , Xe−1, X ] and each
x0 ∈ (a0,s, b0,s), . . . , xe−1 ∈ (ae−1,s, be−1,s) no root of r(x0, . . . , xe−1, X)
lies in Ie,s+1.

(This might not be possible at this stage, but it is decidable whether it is
possible or not. If for some r it is impossible, then we ignore that r at this
stage. Eventually the preceding intervals (ai,s, bi,s) will contract enough that it
will be possible.) We define ne,s+1 to be the least index such that the polynomial
pne,s+1

(X) does have a root in Ie,s+1.
This defines the entire sequence of cuts {(ai,s, bi,s) : i ∈ ω}, all with distinct

limits. Let RS be the real closed field generated by the elements ae realized by
these cuts. We can extend this sequence to an effective Friedberg enumeration
of all cuts realized in RS . Let R be the algebraic dependence relation on the
cuts in this enumeration.
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It is clear from this construction that f(e) ∈ Fin if and only if the element
ae = lims ae,s of RS is algebraic over Q. Thus S ≤1 R. Conversely, since every
e /∈ Fin has a cut Ie = lims Ie,s trancendental over all the cuts Ij with j < e,
we can decide R from an S-oracle; hence R ≡T S.

But now, suppose that E is a copy of RS of Turing degree d. Then, with a
d
′-oracle, we can take an arbitrary e and find the element ze of E which realizes

the same cut in E that ae realizes: the cuts in E are d-computably enumerable,
and the enumeration of the cuts Ie was 0-computable, so a (d∪ 0)′-oracle is all
that is needed. Then we determine (still using d

′) whether ze is transcendental
over Q in E. Therefore, d′ computes S.

Conversely, if d′ computes S, then d satisfies item (2) of Theorem 4.1, using
our computable enumeration of the cuts in RS , so d ∈ Spec(RS).

In addition to showing the relevance of the field operations to the spectrum,
Theorem 4.3 establishes that the jump-preimage {d : d′ ≥ deg(S)} can be a
spectrum even when deg(S) is not a second jump, i.e., when S 6≥T ∅′′. The
fields Rc, with their spectra {d : d′ ≥T c

′′}, did not accomplish this.

Corollary 4.4 For every nonlow ∆0
2 set U , there exists a U -computable archi-

medean real closed subfield of R0 which has no computable presentation.

Proof. Apply Theorem 4.3 to U ′.

5 New Spectra of Real Closed Fields

It is clear that, if an archimedean real closed field F contains an element whose
Dedekind cut has Turing degree c, then the spectrum of F is contained within
the upper cone above c. So far, the converse has also been true: among the
archimedean real closed fields F that we have seen so far, each one whose spec-
trum lies within the upper cone above any degree c contains an element whose
Dedekind cut has that degree. This converse does not hold in general, but a
theorem of Knight [10, Thm. 1.4] shows that, whenever the spectrum of a real
closed field F lies in the upper cone above deg(C), there exists some finite tuple
~a from F such that both C and its complement C are e-reducible to the exis-
tential theory of (F,~a). (This result was proven independently by Soskov, in
addition to the proof by Knight in [10].) Since the theory of real closed fields is
decidable, the Σ1-theory of (F,~a) is enumerable from the join of the Dedekind
cuts of the elements ~a, and so C is computable in this join. We record this
property here.

Proposition 5.1 (following Knight and Soskov) Let F be an archimedean
real closed field. Then for every set C with Spec(F ) ⊆ {d : deg(C) ≤T d}, there
exists a finite tuple ~a of elements of F such that the join of the Dedekind cuts
of the elements ~a computes C.

The fact that no fixed finite number of elements suffices is shown by a finitary
forcing argument: one builds the real closure of a field Q(x1, . . . , xn), using
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Friedberg-Muchnik requirements to ensure that these xi have cuts of pairwise-
incomparable degree, mixed with requirements that, if the cut of an element y
computes the cut of any xi, then y lies in the real closure of Q(xi). (If y is not
algebraic over Q(xi), then we can adjust the cut of y by adjusting that of some
other xj , so as to satisfy this requirement.)

Separately one can also build the real closure F of a field Q(x0, x1, . . .) such
that the cut of xi+1 is never computable from the join of the cuts of x0, . . . , xi,
and thereby show that there need not be any greatest degree c among those
whose upper cone contains Spec(F ).

So far a stronger condition than Proposition 5.1 has also held of our ex-
amples. Each F so far has the property of first-jump equivalence among those
degrees computing all cuts realized in F : if d0 and d1 both compute all these
cuts and d

′
0 = d

′
1, then d0 ∈ Spec(F ) if and only d1 ∈ Spec(F ). Now we show

that more spectra than just these are possible. By working with subfields F of
R0, we ensure that the requirement of computing all the cuts in F is trivial.

Theorem 5.2 For every c.e. set L >T ∅, there exists an L-computable real
closed subfield F of R0 with no computable copy. In particular, this holds when L
is low and noncomputable, in which case first-jump equivalence fails for Spec(F ).

Proof. Fix computable enumerations of L =
⋃

s Ls, of Q = {q0, q1, . . .}, and of
Z[X0, X1, . . .] = {0}∪{p0, p1, . . .}, allowing nonzero polynomials with arbitrarily
many variables among our pi. Also fix the usual computable numbering of ω2

and let
D〈j,k〉 = (Wj ,Wk)

be the 〈j, k〉-th pair of c.e. subsets of Q.
Clearly it is a Π0

2 property for i ∈ Ded, that is, for Di to be a Dedekind
cut. Indeed, it is Π0

2-complete: for a 1-reduction from Inf to Ded, just map
each index e to a pair 〈g(e), k〉 such that, whenever We receives a new element,
Wg(e) enumerates the next available rational number <

√
2, while Wk contains

exactly those rationals >
√
2. (It makes no difference here whether we consider

right-leaning, left-leaning, or strict cuts.) The property Di0 = Di1 is also Π0
2-

complete. Each computable sequence S of Dedekind cuts can now be given as
〈Df(n)〉n∈ω by a computable function f . We will enumerate these sequences
effectively as Se = 〈Dϕe(n) : (∀m ≤ n) ϕe(m)↓〉, Of course, Se may be a finite
sequence of cuts, but the set

S = {e : e ∈ Tot & Se consists of algebraically independent Dedekind cuts}

is still Π0
2. By Theorem 4.1, we may think of S as a listing of all computably

presentable real closed subfields of R0 of infinite transcendence degree, and use
a “chip function” such that e ∈ S if and only if e receives infinitely many chips.
We write S = {e0 < e1 < e2 < · · · }, knowing this listing to be noneffective.

We now approximate, computably, a specific sequence of Dedekind cuts Cm

by recursion on m, writing xm for the real number filling the cut Cm. The goal
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is to satisfy two types of requirements, for all m and i.

N〈m,i〉 : If y1, . . . , yn fill the first n cuts of Sem , pi(y1, . . . , yn, xm) 6= 0.

Pi : pi(x0, . . . , xn) 6= 0.

(In each case, n is determined simply by the number of variables in pi.) The
P-requirements will make the set {xm : m ∈ ω} algebraically independent, while
the N -requirements collectively will show that each xm is transcendental over
the set of real numbers realizing cuts in Sem . Satisfying all these requirements
therefore will mean that {xm : m ∈ ω} is a transcendence basis for a real closed
field with no computable presentation, as no Sem is a transcendence basis for
the same field. We will then build an L-computable enumeration of these cuts
and appeal to Theorem 4.1 to prove Theorem 5.2.

Since the field R0 has no computable presentation, Theorems 4.1 and 3.1
show that no sequence Se can give a basis for R0, and indeed R0 must have
infinite transcendence degree over each Sem . Therefore, if ϕe is total and has
image ⊆ Ded, then there must be some computable real number x independent
from {x0, . . . , xe−1} which is filled by no cut in Se, so it is reasonable to hope
to satisfy these requirements. To do so, we will use the following simple lemma,
saying that as the cuts for x1, . . . , xn close in on their values, we will eventually
be able to define the cut of x0.

Lemma 5.3 Let p ∈ Z[X0, . . . , Xm] be a nonzero polynomial, and fix an alge-
braically independent set {x0, . . . , xm−1}. Then for every am < bm in Q, there
exist rational numbers ai < xi and bi > xi (for all i < m) and a < b ∈ Q with
(a, b) ⊆ (am, bm) such that the image of

(a0, b0)× · · · × (am−1, bm−1)× (a, b)

under p does not contain 0.

Proof. If not, then by continuity of p we would have p(x0, x1, . . . , xm) = 0 for
all xm ∈ (am, bm), so p(x0, . . . , xm−1, Xm) would be the zero polynomial. But,
writing p =

∑
iX

i
m·pi(X0, . . . , Xm−1), we would then have pi(x0, . . . , xm−1) = 0

for every i. With {x0, . . . , xm−1} independent, this forces p = 0.

We now give a computable procedure to approximate the cuts Cn which
satisfy our requirements. This uses our uniform Π0

2-guessing procedure for S,
along with permitting below the set L. The construction takes place on the tree
T = ω<ω, and the true path will be the function m 7→ em. We begin by setting
am,0 = 0 and bm,0 = 1 for all m, so that Am,0 = (−∞, 0] and Bm,0 = [1,+∞),
and Cm,0 = (Am,0, Bm,0) is our first approximation to the cut Cm. We adopt
the convention that every requirement is both eligible and active at stage 0.

At stage s+1, we have at most s+1 substages, starting with the substage for
the root node λ, which is eligible at every stage. The procedure for an eligible
node σm,s+1 = (e0,s+1, . . . , em,s+1) with m ≤ s at stage s+1 is as follows. Write
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e = em,s+1, and let s′ be the last stage at which either this node or any node
to its left was active. Consider the requirements

N〈m,0〉 ≺ P0 ≺ N〈m,1〉 ≺ P1 ≺ · · · .

A requirement N〈m,i〉 on this list is currently satisfied if either ϕe,s(n)↑ for some
n < m, or else (writing 〈jn, kn〉 = ϕe(n)) the image of

(max(Wj0,s),min(Wk0,s))× · · · × (max(Wjm−1,s),min(Wkm−1,s))× (am,s, bm,s)

under pi does not contain 0. (These intervals are the ones defined so far by Se =
Sem,s+1

, the computable sequence of cuts over which xm is supposed to be made
transcendental.) Likewise, Pi is currently satisfied if either pi /∈ Z[X0, . . . , Xm]
or pi ∈ Z[X0, . . . , Xm−1] or the image of

(a0,s+1, b0,s+1)× · · · × (am−1,s+1, bm−1,s+1)× (am,s′ , bm,s′)

under pi does not contain 0.
If any of the first s requirements on this list is not currently satisfied, then we

attempt to satisfy the least such N〈m,i〉 or Pi, by searching for rational numbers
a < b among {q0, . . . , qs} such that:

• am,s′ ≤ a and b ≤ bm,s′ ; and

• for the smallest l ∈ Ls+1 − Ls′ , and for all qi with i < l,

(qi < am,s =⇒ qi < a) & (bm,s < qi =⇒ b < qi)

(so every qi which is moved by the N〈m,i〉-action below is permitted by L
to be moved); and

• we satisfy the requirement in question: either the image of pi on

(max(Wj0,s),min(Wk0,s))× · · · × (max(Wjm−1,s),min(Wkm−1,s))× (a, b)

does not contain 0 (so we satisfy N〈m,i〉); or else the image of pi on

(a0,s+1, b0,s+1)× · · · × (am−1,s+1, bm−1,s+1)× (a, b)

under pi does not contain 0 (so we we satisfy Pi).

For the first such requirement and the least witnesses 〈a, b〉, we define am,s+1 = a
and bm,s+1 = b. In this case, σm,s+1 is active at this stage, on behalf of e:
assuming m < s, we make the node σm,s+1̂ e eligible at the next substage,
where e is the least number > em−1,s+1 which has received a chip since the last
stage at which σm,s+1 was active. In case either am,s+1 < am,s or bm,s+1 > bm,s,
then we say that Cm was redefined at this stage; otherwise Cm was only refined
here, possibly trivially. If no such a and b exist for any of the first s requirements,
then we keep am,s+1 = am,s′ and bm,s+1 = bm,s′ and end the stage right here.
In this case σm,s+1 was only eligible at this stage, not active, and none of its

13



successors was eligible. Finally, if m = s, then no successor is eligible and the
stage ends here, even if σm,s+1 was active.

This completes the construction, and we define F to be the real closed field
generated by the real numbers xm filling the cuts Cm for each m. (Of course, it
remains to prove that the Cm really are Dedekind cuts, and are computable.)
Since the approximations to these cuts were redefined only when L permit-
ted such redefinition, the usual permitting argument shows that F will be L-
computable, once we have seen it to be a real closed field.

Lemma 5.4 For every m, the node σm = (e0, . . . , em) (from the listing S =
{e0 < e1 < e2 < · · · } defined above) is the leftmost node at level m to be active
at infinitely many stages, and Cm is the Dedekind cut of a real number xm which
is transcendental both over {x0, . . . , xm−1} and over all the real numbers realized
by cuts in Sem .

Proof. By induction on m, we may assume that there are infinitely many stages
at which σm−1 is active. By our chip procedure, there must be a stage s0 such
that no node σ to the left of σm is eligible after stage s0. However, em itself
receives infinitely many chips, so σm must be eligible at infinitely many stages.

Now we claim that every requirement in the sequence

N〈m,0〉 ≺ P0 ≺ N〈m,1〉 ≺ P1 ≺ · · ·

will eventually be satisfied. (In the language above, it will be currently satisfied
at cofinitely many stages.) If not, then there is a least requirement R for which
it fails. Moreover, in this case σm never acts at any stage after all of the higher-
priority requirements than R are satisfied, since thereafter the construction will
always identify R as the next one needing satisfaction and will not consider
anything of lower priority. In particular, at all stages when σm is eligible, the
value s′ in the construction will be the same. Cm will continue to be refined
and even redefined at stages when nodes to the right of σm act, but none of
those nodes is allowed to move the interval of Cm outside the interval chosen
by σm. So, from the point of view of σm, no subsequent redefinition of the cut
takes place.

Suppose Pi is this least requirement R. Now (C0, . . . , Cm−1) must be a
sequence of algebraically independent Dedekind cuts in S, by inductive hy-
pothesis, and so we do eventually reach stages with all of (a0,s+1, b0,s+1)× · · ·×
(am−1,s+1, bm−1,s+1) defined. Moreover, each of these intervals must continue
to shrink down to radius 0 as we go through the construction. Lemma 5.3
shows that eventually an (a, b) must appear which would satisfy Pi and will
also satisfy (a, b) ⊆ (am,s′ , bm,s′) for the stage s′ (which is fixed for all these
s, as noted above). Moreover, every subinterval (a′, b′) ⊆ (a, b) would have
these same properties. However, the construction never acts to use any of these
subintervals, so each of them must violate the L-permitting condition. We claim
that this gives us a way to compute L. We can be sure that, whenever we see
a new subinterval (a, b) of (am,s′ , bm,s′) appear which could be used to satisfy
Pi at a stage s, L will not permit this satisfaction, and so Ls↾ j = L↾ j, where
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j is least such that qj ∈ (a, b). Since infinitely many j lie in (am,s′ , bm,s′), and
since each of them has j minimal within some small (a, b), this yields a method
of deciding membership in L, contrary to our hypothesis that L >T ∅. There-
fore, eventually one of these subintervals (a, b) must be acted on by σm, and
thereafter Pi will always be satisfied, since σm never acts again on behaf of any
higher-priority requirement.

An argument in the exact same style applies if some requirement N〈m,i〉
is this least R. Now the intervals (ai,s+1, bi,s+1) are replaced by intervals
(max(Wj,s),min(Wk,s)) given by Sem , but since em ∈ S, we know that these
intervals must also form Dedekind cuts (Wj ,Wk), and the rest of the argument
is exactly the same. It now follows that Cm satisfies every requirement on our
list. This proves that Cm really is a Dedekind cut, as follows. For every rational
q, the requirement Pi corresponding to the polynomial pi = Xm − q is satis-
fied, putting q on one side or the other of Cm. (This shows that the intervals
am,s, bm,s) really do shrink to 0 as s → ∞, as was mentioned above.)

These Pi collectively also show that σm acts at infinitely many stages. In
turn, the L-permitting now ensures the convergence of our Dedekind cuts Cm:
no rational qj can move out of either side of the cut Cm at any stage after the
first stage s at which σm is active and Ls ↾ j = L↾ j. Thus our induction is
finished.

Lemma 5.4 is all we need to see that the real closure F of the ordered field
Q(x0, x1, . . .) is L-computable. Since each xm is transcendental over Sem , no
computable real closed field can be isomorphic to F , by Theorem 4.1. It remains
to show that every cut Cm is computable, so that F ⊆ R0.

To compute Cm, we need two finite pieces of information. These are the
string σm (equivalently, the first (m + 1) elements of S) and the least stage
s0 after which no σ to the left of σm ever acts again. Since these data cannot
be computed uniformly in m, our proof here does not show the field F to be
computable; we are only proving that each individual cut Cm is computable
(and therefore that all cuts realized in F are computable, since each of them is
the cut of a real number algebraic over a finite subset of {x0, x1, . . .}).

Given σm and s0, we run the procedure above for building all the cuts
C0, C1, . . .. (This procedure is effective, of course, although it does not build
computable enumerations of the cuts, due to its occasional redefinitions of var-
ious cuts. It is also uniform in the enumeration of L.) Once we have passed
stage s0, we watch for stages s at which σm is active. Lemma 5.4 showed that
there are infinitely many of these stages, and at each one, the current values
(am,s, bm,s) of the end points of the interval Cm,s are correct: all subsequent
actions, either by σm or by nodes to its right, respect the end points from the
previous stage at which σm acted, and no σ to the left of σm will ever interfere,
since they never act again. Thus, we have an effective enumeration of each side
of Cm, and so indeed F is a subfield of R0 as required.

The proof of Theorem 5.2 relativizes to an arbitrary degree c, yielding an
immediate generalization.
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Corollary 5.5 For every pair of Turing degrees c <T d with d c.e. in c, there
is a real closed subfield F ⊆ Rc whose spectrum contains d but not c. (We can
also ensure that F contains an element whose Dedekind cut has degree c.)

Proof. The relativization to c works with no trouble. To ensure the last con-
dition, we begin the construction by adjoining to F a single real number of
degree c: fix an appropriate i and j with WC

i ≡T C, and include a real with
cut (WC

i ,WC
j ), with higher priority than any requirement.

Theorem 5.2 leaves the situation for real closed subfields of R0 essentially
where linear orders were after the work of Jockusch and Soare in [8]: each
individual c.e. degree except 0 lies in the spectrum of some such structure with
no computable copy. For linear orders, Downey and Seetapun independently
extended this result (in unpublished work) to all nonzero ∆0

2-degrees, and then
a result in [13] showed that there was a single linear order whose spectrum
contains all nonzero ∆0

2-degrees, but not 0. It remains open whether a linear
order can have precisely the nonzero degrees in its spectrum.

For real closed subfields of R0, one might try to extend the above construc-
tion to ∆0

2 sets L, but the method of ∆0
2-permitting does not lend itself readily

to the construction of computable Dedekind cuts. In Theorem 5.2, we were able
to compute the cuts in F , given finitely much information, because the sequence
of cuts at stages where σm was active provides a computable enumeration. With
∆0

2-permitting, one would potentially have to go back and forth between differ-
ent approximations to the cuts, even from one σm-stage to the next, and so it
seems that the argument for computability of the cuts would no longer hold.
We regard this, and also the analogue of the result from [13], as challenging
questions. Notice that, while one can ask the same questions about spectra of
real closed fields in general, every archimedean real closed field with all nonzero
c.e. degrees (or just a single minimal pair) in its spectrum would have to be a
subfield of R0. So the question about subfields of R0 is the essence of the more
general question about all archimedean real closed fields.

6 Nonarchimedean Real Closed Fields

An ordered field F is nonarchimedean if it contains an element x such that, for
every n ∈ Z, we have n < x (with Z denoting the prime subring of F ). Such an
element x is said to be positive infinite. More generally, x is infinite if either x or
−x is positive infinite, so the finite elements are those x such that, for some n,
−n < x < n in F . An element is infinitesimal if its reciprocal is infinite; 0 itself
is usually also considered infinitesimal. The finite elements form a local subring
R of F , with maximal ideal m containing precisely the infinitesimal elements,
and the archimedean ordered field R/m is called the residue field F0 of F .

Every element of R realizes a Dedekind cut in the prime subfield Q of F .
Two distinct elements can realize the same cut, in which case they differ by an
infinitesimal. Each subfield of R is the residue field of many distinct ordered
fields. If the residue field is algebraic over Q, then it is natural to think of the
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algebraic closure of Q within F as the (canonical) residue field of F . However,
if R contains an element t transcendental over Q, then there is no canonical
subfield of R isomorphic to the residue field: the Dedekind cut of t will be
realized by many elements of R, and there is no natural way to choose just one
of them to lie in a canonical subfield of R. If F is countable with domain ω, then
one might want to choose the least element of ω which realizes this cut, and
likewise for each other cut. However, there is no reason to expect the set of those
elements to form a subfield. Moreover, from the point of view of computability,
it is only a Π0

1 property for two elements to realize the same Dedekind cut, and
so, even if these least elements realizing cuts did form a subfield, that subfield
would not have a natural presentation computable relative to the larger field F .
Our main theorem in this section, Theorem 6.2, strengthens this result by giving
a computable nonarchimedean real closed field for which the residue field has
no computable presentation at all. Before that, in Theorem 6.1, we investigate
one special case in which the residue field must have a computable presentation.

The positive infinite elements of a nonarchimedean real closed field F are
partitioned into the positive infinite multiplicative classes, with two elements
x and y lying in the same class if and only if there exists some n ∈ N for
which y < xn and x < yn. The order on the field gives a linear order L on
these positive infinite multiplicative classes, which we call the derived linear
order of F . One way to describe the field F then is to enhance the language of
fields with constants cx for each element x of the residue field and dA for each
positive infinite multiplicative class A, and to build a theory TF which includes
the axioms of RCF, the atomic diagram of the residue field (F0, {cx : x ∈ F0})
and the atomic diagram of L on the elements dA (that is, for every n > 1,
include either n < dA < dnA < dB or n < dB < dnB < dA, depending on whether
A < B in L, so that dA and dB will be positive infinite elements from distinct
positive infinite classes). Of course, the relation x < y here abbreviates the
statement that (x− y) has no square root.

The prime model of the theory TF is not necessarily F itself, although F is
a model of TF . To define the elements cx in F , noneffectively, we go through
the elements x of F0. For each one in turn, the value of cx in F is determined if
x is algebraic over the previous ones; if it is transcendental, then we can choose
cx to be any element of F from the residue class of x in F0. The element dA in
F may be any element from the class A.

The prime model of TF will be a real closed field whose residue field is
isomorphic to F0 and whose derived linear order is isomorphic to L, and in
which each of the positive infinite classes A contains only elements built from
the dA and its predecessors by the field operations and the operations for taking
real closures. Such a real closed field is therefore called a prime-nonstandard
field. In Section 7 we describe how a real closed field can fail to be prime-
nonstandard. For other questions about these fields, we refer the reader to [16],
which in turn uses unpublished work of Marker.

Theorem 6.1 Fix any nonempty linear order L which has a left end point, and
any archimedean real closed field F0. Let F be the prime-nonstandard real closed
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field built from L and F0. Then the spectrum of F contains exactly those Turing
degrees d ∈ Spec(F0) such that d′ ∈ Spec(L).

Proof. Both containments were proven in [16] for the case where F0 is the real
closure of Q: in this case, every degree lies in Spec(F0) and can enumerate the
cuts realized in F0 and decide dependence there, and so that proof showed that
Spec(F ) = {d : d′ ∈ Spec(L)}. This established the corollary that, for every
linear order, the preimage of its spectrum under the jump operation is itself
the spectrum of a real closed field. Part of that proof works equally well here
for arbitrary F0: given a degree d ∈ Spec(F0) with d

′ ∈ Spec(L), one builds
a d-computable copy of F in exactly the same manner, using a d-computable
approximation of L. At stage 0, for each a ∈ L, we add one positive infinite
element da to the field. At certain stages the approximation may change its
mind and decides that, instead of having a < b, it wants b < a. In this case,
supposing that a has higher priority than b, we make da and db lie in the same
positive infinite class (by making db = dna for some large n) add a new element
to the field, redefine db to be this new element, and place the new db to the
left of da in the field. Each da is redefined only finitely often by this finite-
injury process, so we have produced a copy of F . This establishes the reverse
containment.

The forward containment, that every d ∈ Spec(F ) has d ∈ Spec(F0) and
d
′ ∈ Spec(L), becomes apparent once one realizes that when L has a left end

point, the set of positive infinite elements in a d-computable copy of F must be
d-decidable. Indeed, fixing an element y0 in the leftmost positive infinite mul-
tiplicative class in a copy of F , we can enumerate the set of all positive infinite
elements in this copy: they are those x such that (∃n ∈ N) y0 < xn. However,
the positive finite elements are those x > 0 for which (∃n ∈ N) x < n, and so the
finiteness of positive elements (hence of all elements) is d-decidable. This also
gives decidability of the set of infinitesimals in F . So, from any d-computable
copy of F , both the subring of finite elements and the ideal (within this subring)
of infinitesimals are d-decidable, and their quotient is a d-computable copy of
F0.

To see that d′ ∈ Spec(L), notice that L is interpretable in F by computable
infinitary Σ2 formulas. The domain of the interpretation is the set of positive in-
finite elements of F , modulo the relation of lying in the same multiplicative class,
and the linear order on this domain is lifted directly from F . A d

′-oracle there-
fore allows us to recognize a positive infinite element of F , to decide whether
two such elements lie in the same multiplicative class, and (if not) to decide
which one belongs to the larger class. Since the multiplicative classes of positive
infinite elements form a copy of L, this yields a d

′-computable presentation of
L, completing the proof.

In contrast to Theorem 6.1, the following is an example of a computable
nonarchimedean real closed field F in which the derived linear order L has no
left end point (and F is the prime-nonstandard real closed field built from L
and the residue field F0). The theorem shows that the conclusion of Theorem
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6.1 need not hold in this case. For its proof, it is important to note that we
continue here our convention of using right-leaning Dedekind cuts. (Later in
this section, we will have to revise this convention.)

Theorem 6.2 There exists a computable nonarchimedean real closed field F
whose residue field F0 is not computably presentable. Indeed, the spectrum of
F0 contains precisely the high Turing degrees.

Proof. The construction of F takes place on a tree T , using an ordinary 0′′

argument. First, we line up our candidates against which to diagonalize. For
each e, let Pe be the requirement that We is infinite if and only if the element
ye (chosen from a sequence y0, y1, . . . of elements in our field F ) realizes the
same cut in F as some rational number. Understand that ye itself will not be
rational: the question is whether there is a rational from which ye differs by an
infinitesimal. For any degree d ∈ Spec(F0), a d

′-oracle will allow us to identify
the element of (a d-computable copy of) F0 realizing the same Dedekind cut as
ye, and then to decide whether this element of F0 is rational in F0. Thus the
d
′-oracle will decide the Π0

2-complete set Inf, proving the theorem.
In the tree T , all nodes at level e will be Pe-nodes, devoted to satisfying

Pe, and the node on the true path at this level will succeed in satisyfing it.
Each node α ∈ T will have two immediate successors, labeled ∞ and fin, with
∞ ≺ fin, representing the two outcomes e ∈ Inf and e ∈ Fin. As usual, one
node at each level ≤ s will be eligible at each stage s + 1; these nodes will all
be comparable in T , and all nodes to their right in T will be initialized at this
stage. The true path P will contain the leftmost node (under ≺) at each level
which is eligible at infinitely many stages.

The strategy by which a Pe-node α attempts to satisfy Pe will involve choos-
ing an element xα,s at each stage s. This element will sit in between the in-
finitesimals and the standard (i.e., noninfinitesimal) positive elements, without
yet having been definitively assigned to either. At some stage s we may make
xα,s standard, by having some positive (standard) integer n in F turn out to
have 1

n
< xα,s; in this case we will choose a new element xα,s+1 < xα,s which is

in the new “gap” between infinitesimal and positive standard elements. If there
is some stage s0 after which this never happens again (for this e and α), then
xα = xα,s0 = lims xα,s will be infinitesimal. It will be a convenient feature of
this construction that, for all stages s and all α, β ∈ T , we will have xα,s < xβ,s

in F if and only if α ≺ β in T . It follows that the same will hold of xα and
xβ whenever these limits exist. (To be clear: when α ⊂ β, we define β ≺ α if
α̂∞ ⊆ β, and α ≺ β if α̂fin ⊆ β.)

The use of xα,s is as follows. The node α will have in mind a particular
element yα of F , which α describes during the construction by enumerating a
cut in R to be filled by yα. At each stage s + 1, α will intend for yα to fill
the cut of some rational number bα,s. The real intention, however, is that the
cut of yα should be the cut of a rational if We turns out to be finite, but not
otherwise. We will have xα,s = bα,s−yα, so the uncertainty about whether xα,s

is infinitesimal will mirror the uncertainty whether yα lies in the cut of bα,s. At
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stage s + 1, if We,s receives a new element, then we make the cut of yα in F
at this stage no longer contain bα,s; instead, we redefine bα,s+1 6= bα,s to be a
distinct rational number, within the (new, narrower) cut of yα. This ensures
that yα and bα,s realize distinct cuts.

One possible outcome here is that bα = lims bα,s exists: this occurs if We

is finite, and in this case yα lies in the cut of bα, so Pe is satisfied. (This is
the outcome fin of the node α.) Otherwise, we eliminate all rational numbers
from realizing the same cut as yα, thus showing that the cut realized by yα
is irrational, so again Pe is satisfied. (This is the outcome ∞ of the node
α.) In either case, yα itself is definitely not rational; in fact it will always
be transcendental over Q. Thus, the outcome ∞ corresponds to every xα,s

eventually being declared standard in F (so that bα,s and yα do not realize the
same cut). The outcome fin corresponds to yα staying in the same cut as the
limit bα, in which case their difference equals the limit xα, which exists and is
infinitesimal.

Of course, when an element xα,s is made standard at stage s+1, so is every
element > xα,s then in F (except those which are positive and infinite). So we
will choose our elements xα,s (for various α) with this in mind, according to
the guesses by each node α about whether each node β ⊂ α will act infinitely
often or only finitely often. Of course, α wants its own xα,s always to have the
option of either becoming standard or staying infinitesimal. If α thinks that
β will act infinitely often, then α picks xα,s < xβ,s, so that xβ,s can be made
standard without injuring α’s strategy. (Moreover, in this case, xα,s can always
be made standard without injuring β’s strategy: just wait until the next stage
at which xβ,s is made standard, and make xα,s standard at the same stage.) On
the other hand, if α thinks that β will act only finitely often – and therefore,
possibly, never again – then it chooses xα,s > xβ,s, so that xα,s can be made
standard whenever needed without injuring the strategy of the higher-priority
node β.

At stage 0 we initialize all nodes, which means that we set all values that vary
over stages (that is, all values except the yα) to be undefined. We make the first
three elements of F serve as the integers 0, 1, and 2. We fix the fourth element
of F to serve as yλ, where λ is the root node of T , with aλ,0 = 1 < yλ < bλ,0 = 2
in F . (As usual, aλ,s and bλ,s denote the left and right end points of the stage-s
approximation to the Dedekind cut of yλ, and likewise for other nodes.) The
set of all yα (for all α ∈ T that are ever eligible) will remain algebraically
independent over Q at all stages.

At stage s+1, we first add one more element to F , according to a systematic
method of making F a real closed ordered field. The new element may be a sum,
product, or reciprocal of current elements, or a root of a polynomial over current
elements. (What we have built at each stage will always be just a finite fragment
of F , necessarily not closed under the field operations.) For these purposes, the
set of elements yα is treated as algebraically independent over Q, and each bα,s
currently defined is treated as infinitesimally greater than the corresponding yα.

Notice that placing this new element within the current ordering of F may
require us to make a decision about where some yα sits inside its current interval
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in F . This occurs if the new element is a rational q with aα,s < q < bα,s, of
course, but it also occurs if we add some high power yjα to F , for instance: the
placement of yjα in the rationals implicitly defines the placement of yα among
the j-th roots of rationals. In general, if the new element is dependent on yα
(for one or more nodes α), then this may happen. The assumption that each
yα is infinitesimally less than bα,s allows us to determine the ordering on F .
Moreover, we treat each element xα,s as lying in its own (positive infinitesimal)
multiplicative class: no new power of xα,s will be smaller than any xβ,s with
β ≺ α.

The key here is that multiplicative-class nonequivalence and infinitesimality
(and also independence) are undefinable by finitary formulas in the language of
ordered fields, meaning that no finite number of steps taken here can actually
force any difference xα,s to be infinitesimal, nor force any elements xα,s and
xβ,s to lie in distinct multiplicative classes. (Nor can finitely many steps make
any yα actually transcendental, although in fact the elements yα will all remain
independent over Q at the end of the construction.)

Next, still at stage s + 1, we proceed through the following steps for each
eligible node α at the level e < s in T . The root node λ is eligible at the
beginning of the process.

• If yα is undefined, then we adjoin two new large consecutive positive inte-
gers aα,s+1 < bα,s+1 to F , along with a new element yα which is defined
to lie between these integers and to be transcendental over the fragment
of F defined so far. (This value yα will never change during the rest of
the construction, even if α is initialized.) We make α̂fin eligible at this
stage.

• If yα is defined but α has been initialized since the last stage at which it
was eligible, then we define the elements aα,s+1 to be the greatest rational
in (the current finite fragment of) F with aα,s+1 < yα, and adjoin a new
rational bα,s+1 to F , between yα and the least element of F greater than
aα,s+1. We also adjoin to F the new element xα,s+1 = bα,s+1 − yα (since
this difference is not yet defined), placing it so that, in the order on F , we
have 0 < xα,s+1 < 1

n
for all positive integers n already in F , and

xα,s+1 < xβ,s+1 ⇐⇒ α ≺ β

for all β with xβ,s defined. Notice that, although this bα,s+1 is the right
end point of the current cut of yα in F . this does not preclude yα from
realizing the same Dedekind cut in F as bα,s+1, since the difference xα,s+1

between them could be infinitesimal. We make α̂fin eligible at this
stage.

• Otherwise, let s′ < s be the most recent stage at which α was eligible. If
We,s = We,s′ , then we deem α inactive at stage s + 1 and make α̂fin
eligible. If We,s 6= We,s′ , then we deem α to be active at this stage,
meaning that we will include α in the action taken as we complete stage
s+1, after all substages are finished. In this case, α̂∞ becomes eligible.
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After completing this step for the eligible node at level s − 1, we let As

be the set of those α which are active at this stage. Recall that by definition
xα,s = bα,s − yα in F . By induction, we know, for all α, β ∈ T , that xα,s < xβ,s

in F if and only if α ≺ β. We add to F a new (finite) large positive integer n,
placed in the order so that, for all β ∈ T ,

1

n
< xβ,s ⇐⇒ (∃α � β)α ∈ As.

The ordering ≺ on T , along with the inductive assumption above, makes this
consistent with RCF. Now that we have xα,s >

1
n
for these α, we immediately

(for each of these α) choose one new rational number bα,s+1 from the interval
(aα, bα,s) in F . In particular, we go through the As in order under ⊆, starting
with the shortest α there. For each α in its turn, having determined the appro-
priate interval, we choose the new bα,s+1 to be the first rational we find in that
interval, under some fixed ordering of Q. We then choose each aα,s+1 between
aα,s and bα,s+1 in such a way that none of the first s cuts in an enumeration of
the Dedekind cuts in the real closure of Q(yβ,s+1 : β̂∞ ⊆ α) lies in the open
interval (aα,s+1, bα,s+1). This interval is the next step in our computation of
the Dedekind cut of yα: we now define yα to lie in this interval, and think of it
as (without formally defining it to be) infinitesimally close to bα,s+1. The new
element xα,s+1 = bα,s+1− yα is also defined right now for each α ∈ As: it is less
than those positive elements of F that are already standard, but greater than
all positive elements of F which have not yet been made standard, and these
new elements xα,s+1 lie in distinct positive-infinitesimal multiplicative classes,
ordered so as to obey the rule that xα,s+1 < xβ,s+1 in F iff α ≺ β in T .

Of course, for every α ∈ As and every β ≻ α on T , this process also makes
xβ,s > 1

n
. All such β are initialized at this stage, and are said to have been

injured by this process. (Notice that, if As = ∅, then each eligible node at
this stage is the rightmost node at its level, and so no initialization takes place
anywhere.) On the other hand, those β ∈ T such that (∀α ∈ As)β 6� α must
have xβ,s <

1
n
, by our placement of n (or else xβ,s and bβ,s are undefined), and so

those xβ,s are not forced into the standard part of F by this step, although they
could yet become standard at a future stage. For those β, we keep xβ,s+1 = xβ,s

and bβ,s+1 = bβ,s, but choose aα,s+1 to be the greatest rational in Fs lying in
the interval [aα,s, bα,s). (This ensures that we do build Dedekind cuts even for
those yβ with β to the left of the true path.)

This completes the stage s+1, and we define F to be structure built over all
stages by this construction. Since every step is consistent with the theory RCF,
the initial steps taken at all stages collectively ensure that F is a computable
real closed field, although not archimedean. It is clear that the true path P
through the tree T exists (since at each stage s, some node at each level < s
was eligible), and that in fact the path P is exactly the set Fin.

For each node α ⊂ P , say of length e, there is a stage s0 after which α is
never again initialized. From then on, each time α is eligible, we check whether
We has changed since the last time. If this only happens finitely often, then
bα = lims bα,s exists, and yα lies in the same Dedekind cut as bα, since for

22



every rational q < bα subsequently entering F , we made yα > q. So in this
case ye = yα satisfies Pe. On the other hand, if We is infinite, then bα,s was
redefined at infinitely many stages s. Each time, the new bα,s was the first
available rational satisfying the order requirements. It follows that yα cannot
realize the same cut as any rational in F , and so again Pe is satisfied by ye = yα.
Thus the sequence y0, y1, . . . defined here is the sequence we described at the
start. (It is not a computable sequence, since it is defined using the true path
P , but it will serve our purposes below.)

Now suppose that a degree d can compute a copy E0 of F0, the residue field
of F . Then, with a d

′ oracle, we could identify the unique element z0 of E0

which realizes the same Dedekind cut that y0 = yλ realizes in F (where λ is the
root of T ). Moreover, since d can enumerate the rationals in E0, the d

′ oracle
lets us decide whether z0 is rational in E0, and hence whether y0 realizes a cut
in F whose right half has a least element. (That is, we have decided whether
the cut of y0 is the cut of some rational.) The element y0 of F is irrational there
in any case, indeed transcendental, but its cut realizes a rational number if and
only if W0 was finite, so we have decided finiteness of W0.

Having done so, we know which of the two level-1 nodes in T lies on the true
path. Let α1 be this node, and set y1 = yα1

∈ F . Then by the same process, we
can use our d′-oracle to decide whether or not W1 is finite, and we can continue
recursively and decide the Π0

2-complete set Inf using just the d
′ oracle. Thus,

every degree d ∈ Spec(F0) must be high.
Conversely, if d is high, then d satisfies the demands of Theorem 4.1 for

lying in the spectrum of F0. In particular, F0 is algebraic over the set of all
elements yα = lims yα,s (since whenever a node α was initialized, its old yα,s
became rational), and hence we have a transcendence basis consisting of those
yα which do not lie in the cut of an algebraic number. (To be clear: F0 consists
of classes of standard elements of F , modulo infinitesimals, and the collection of
classes of such yα forms a transcendence basis for F0.) So we wish to enumerate
the cuts of those yα for which αˆ∞ is on the true path P ; all other nodes α
either were initialized infinitely often, or had αˆfin ⊂ P , or were eligible only
finitely often, and in the latter two cases yα wound up in the cut of an algebraic
number. But since d

′ ≥ 0′′, a d-oracle can approximate the true path. Let
α0, α1, . . . list all nodes on the tree T . When d first thinks that α0ˆ∞ ⊂ P
and that α0 is never initialized after stage s, it begins enumerating a cut C0 for
yα0,s. If the d-approximation later changes its mind, it stops using this cut for
α0 and instead uses it for the yαn,t currently being enumerated by C1, adjusting
yαn,t by adding a rational as needed to make it lie in the cut C0 as enumerated
up till now. (C1 in turn takes over the yαm,t currently being enumerated by
C2, plus a rational, and so on.) If, still later on, the d-approximation decides
that α0ˆ∞ is on P after all, it switches C0 to enumerate the cut of the new
yα0,s, plus a rational, and moves the current yαn,t back to C1, with all later
cuts shifting similarly. Since the d-approximation actually does converge to the
characteristic function of P , we wind up with an enumeration of cuts in which
each cut contains some (yα+qα) for some αˆ∞ ⊂ P and some qα ∈ Q, and every
αˆ∞ ⊂ P has its yα in exactly one of these cuts, up to a rational difference.
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Thus we have satisfied Condition (3) of Theorem 4.1, so d ∈ Spec(F0), and
Spec(F0) contains precisely the high degrees.

Corollary 6.3 The spectrum of a prime-nonstandard real closed field F is not
determined by the spectra of its residue field F0 and its derived linear order L.

Proof. Theorem 6.2 yields a computable F for which Spec(F0) contains exactly
the high degrees. Let L be the derived linear order for this F (which in fact
is the order ω∗ of the negative integers), and use the construction from [16] to
build another real closed field E with the same derived order, but with the field
R0 of computable real numbers as its residue field. Now Spec(R0) = Spec(F0),
and the derived orders are isomorphic, but we claim that E has no computable
presentation (and hence that Spec(E) 6= Spec(F )).

Being nonarchimedean, E does not quite allow us to enumerate its right-
leaning cuts, for the same reason that F did not (in Theorem 6.2). However, we
can use a presentation of E to enumerate all non-strict Dedekind cuts of real
numbers in [0, 1] realized in the residue field R0: for each y ∈ E with 0 ≤ y ≤ 1
in E, build both the left-leaning cut ((−∞, y], (y,+∞)) of y and the right-
leaning cut ((−∞, y), [y,+∞)) of y in Q. Notice that if y = q + ε for a rational
q and positive infinitesimal ε, then both of these equal the left-leaning cut of q;
whereas if y = q− ε, then both equal q’s right-leaning cut. So we have satisfied
precisely the first item in Proposition 2.5, and therefore the presentation of E
must be of high degree.

We salvage the following result about residue fields, which, in light of The-
orem 6.2, is the best possible statement of its form.

Proposition 6.4 If F is a real closed field of Turing degree c, then its residue
field F0 has a presentation in every degree d ≥ c with d

′ ≥ c
′′.

Proof. Let d be such a degree. Since c can enumerate the Dedekind cuts realized
in F0 (by waiting until an element of x ∈ F satisfies (∃n ∈ N) − n < x < n,
and then enumerating the cut of x), so can d. Moreover, since c

′′ can decide
whether the real number realized by one of these cuts is transcendental over the
reals realized by the preceding cuts, it can decide the dependence relation on
these cuts, and therefore so can d

′. Thus d satisfies Condition (2) of Theorem
4.1 for lying in Spec(F0).

Theorem 6.2 recalls the related result [11, Theorem 4.2]. There, Knight and
Lange built a computable real closed field F for which no residue field section
can be a Σ0

2 subset of F . (A residue field section of F is an archimedean real
closed subfield of F containing exactly one element from each Dedekind cut
realized by a finite element of F . They had previously shown that such an
F must have a Π0

2 residue field section.) We see no direct proof of either of
Theorem 6.2 or [11, Theorem 4.2] from the other. However, although the two
constructions were developed independently, they bear a close resemblance, and
any further work extending either of them might well yield results extending
the other as well.
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7 Further Results and Questions

Real closed fields in general, and even archimedean ones, do realize many more
spectra than linear orders: every upper cone, say above c, is the spectrum of
the real closure of Q(x), where x is a real number of Turing degree c, and every
c
′ is the jump degree of Rc. We do not yet know of any spectrum of a structure

which cannot be realized as the spectrum of a real closed field. However, we
conjecture that spectra such as the set of all non-lown degrees may be beyond
the reach of real closed fields, especially archimedean ones.

It should be noted that the method used so far to show completeness for
spectra of various classes of structures (as described in Section 1) will not suffice
for real closed fields. This method can be described as the construction of a
computable functor with a computable inverse, usually between an arbitrary
graph and a member of the desired class; see [14] for details and definitions,
and [5] for an alternative version using effective interpretations of one structure
in another. However, such transformations preserve many other properties.
In particular, they preserve the automorphism group: if we have computable
functors (as in [5, Defn. 1.8]) between A and B, then the automorphism groups
of these structures must be isomorphic. However, since a real closed field F
always has an underlying linear order < (definable in the field, whether or not
< is included in the signature), a non-trivial automorphism h of F must be a
non-trivial automorphism of this order, and therefore can never have hn(x) = x:
if x < h(x), then x < h(x) < h(h(x)) < · · · , and similarly if h(x) < x. On the
other hand, many graphs have non-identity automorphisms of finite order, and
so each such graph cannot be computably bi-transformable with any real closed
field. Thus, if a method is to be found for showing that every spectrum of a
graph is the spectrum of a real closed field, it will have to be a new method,
preserving spectra while failing to preserve other standard computable-model-
theoretic properties.

The situation is made more murky by the existence of non-archimedean real
closed fields which fail to be prime, in the sense described in Section 6 (page 17).
For a simple example, start with the real closure of Q as the residue field and
the derived linear order L with just one element: we get a prime-nonstandard
real closed field F from these. Fix a positive infinite element x ∈ F , and now

adjoin an element y = x
√
2 to F . That is, y should be transcendental over F

and satisfy
xq < y ⇐⇒ q <

√
2,

with the obvious extension of this < to all other elements of F . This F is
non-prime, in the sense that it is not the prime model of the theory which
includes RCF along with the existence of one positive infinite element (i.e,
the theory saying that this L embeds into the derived linear order). In fact,
this F still has a computable presentation, but more complicated non-prime
nonstandard real closed fields, with elements of the form xa for noncomputable
real numbers a, may realize new spectra. Section 6 represents some early steps
towards addressing the question of spectra of nonarchimedean real closed fields,
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but it seems clear that much more remains to be done.

References

[1] R. Downey, N. Greenberg, & J.S. Miller; Generic Muchnik reducibility and
presentations of fields, Israel Journal of Mathematics 216 (2016), 371-387.

[2] R.G. Downey & C.G. Jockusch, Jr.; Every low Boolean algebra is isomor-
phic to a recursive one, Proceedings of the American Mathematical Society
122 (1994), 871–880.

[3] R.M. Friedberg; Three theorems on recursive enumeration. I. Decomposi-
tion. II. Maximal set. III. Enumeration without duplication, J. Symb. Logic
23 (1958) 3, 309–316.

[4] A. Frolov, V. Harizanov, I. Kalimullin, O. Kudinov, & R. Miller; Degree
spectra of highn and non-lown degrees, Journal of Logic and Computation
22 (2012) 4, 755–777.

[5] M. Harrson-Trainor, A. Melnikov, R. Miller, & A. Montalbán; Computable
functors and effective interpretability, J. Symb. Logic 82 (2017) 1, 77–97.

[6] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, & A.M. Slinko; Degree spec-
tra and computable dimensions in algebraic structures, Ann. Pure Appl.
Logic 115 (2002), 71–113.

[7] C.G. Jockusch; Degrees in which the recursive sets are uniformly recursive,
Canadian Journal of Mathematics 24 (1972), 1092–1099.

[8] C.G. Jockusch & R.I. Soare; Degrees of orderings not isomorphic to recur-
sive linear orderings, Annals of Pure and Applied Logic 52 (1991), 39-64.

[9] M. Korovina & O. Kudinov; Spectrum of the computable real numbers,
Algebra and Logic 55 (2017) 6, 485–500.

[10] J.F. Knight; Degrees coded in jumps of orderings, J. Symb. Logic 51 (1986),
1034–1042.

[11] J.F. Knight & K. Lange; Complexity of structures associated with real
closed fields, Proceedings of the London Mathematical Society, Third Series
107 1 (2013), 177–197.

[12] E.W. Madison; A note on computable real fields, J. Symb. Logic 35 (1970)
2, 239–241.

[13] R.G. Miller; The ∆0
2-spectrum of a linear order, J. Symb. Logic 66 (2001),

470–486.

[14] R. Miller, B. Poonen, H. Schoutens, & A. Shlapentokh; A computable
functor from graphs to fields, to appear in the Journal of Symbolic Logic.

26



[15] A. Montalbán; Computability-theoretic classifications for classes of struc-
tures, Proceedings of ICM 2014 (2014) 2, 79–101.
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