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Abstract

Erdős proved that for every infinite X ⊆ Rd there is Y ⊆ X with |Y | = |X |, such that

all pairs of points from Y have distinct distances, and he gave partial results for general a-ary

volume. In this paper, we search for the strongest possible canonization results for a-ary volume,

making use of general model-theoretic machinery. The main difficulty is for singular cardinals;

to handle this case we prove the following. Suppose T is a stable theory, ∆ is a finite set of

formulas of T , M |= T , and X is an infinite subset of M . Then there is Y ⊆ X with |Y | = |X |

and an equivalence relation E on Y with infinitely many classes, each class infinite, such that

Y is (∆, E)-indiscernible. We also consider the definable version of these problems, for example

we assume X ⊆ Rd is perfect (in the topological sense) and we find some perfect Y ⊆ X with

all distances distinct. Finally we show that Erdős’s theorem requires some use of the axiom of

choice.

1 Introduction

In this paper we use the term 1-ary volume for length, 2-ary volume for area, 3-ary volume for

volume. We may use the term volume when the dimension is understood. Also, the natural number

n is identified with the set {0, . . . , n− 1}.

A set X ⊆ Rd is a-rainbow if all a-sets of points that yield nonzero volumes have distinct

volumes. Let ha,d(n) be the largest integer t such that any set of n points in Rd contains a rainbow

subset of t. This function was studied by Conlon et. al [2] which also includes references to past

work.

In this paper, we are interested in the case where the cardinality of the set of points is some

κ with ℵ0 ≤ κ ≤ 2ℵ0 . Erdős was the first to consider this in [3]. Using different terminology, he

proved the following:

Theorem 1.1. If X ⊆ Rd is infinite then there is a 2-rainbow Y ⊆ X with |Y | = |X|.
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The case when |X| is countable can be dealt with quickly using the canonical Ramsey theorem

of Erdős and Rado [4]. Alternatively, it is equivalent to apply Ramsey’s theorem to a coloring

g :
(

X
2a

)

→ c, for c < ω large enough. Namely, given s ∈
(

X
2a

)

, define g(s) so as to encode the set

of all pairs (u, v) from
(

s
a

)

having the same volume. For our purposes, we find this latter approach

more natural, although some of what we do could be phrased in the language of the canonical

Ramsey theorem.

Erdős’s proof of Theorem 1.1 is complicated by the possibility that |X| is singular. He notes

the following holds by an easier proof:

Theorem 1.2. If X ⊆ Rd is infinite with |X| regular, and 2 ≤ a ≤ d+1, then there is an a-rainbow

Y ⊆ X with |Y | = |X|.

Erdős also gives the following example:

Theorem 1.3. If λ ≤ 2ℵ0 is singular then there is X ⊆ Rd of size λ, such that there is no 3-rainbow

Y ⊆ X with |Y | = λ.

Proof. Write cof(κ) = λ. Let (ℓα : α < λ) be λ-many parallel lines in R2. Let (κα : α < λ) be a

cofinal sequence of regular cardinals in κ. Choose Xα ⊆ ℓα of cardinality κα and let X =
⋃

α<λ Xα.

Let Y ⊆ X have cardinality κ. We claim that Y cannot be 3-rainbow. Indeed, write Yα = Y ∩Xα =

Y ∩ ℓα. Then there must be cofinally many α < λ with Yα infinite, as otherwise |Y | ≤ κα + λ < λ

for some α < λ. Thus we can find α < β < λ such that Yα and Yβ are both infinite. Let v0, v1 be

two distinct points in Yα, and let w0, w1 be two distinct points in Yβ. Then the triangles (v0, v1, w0)

and (v0, v1, w1) have the same nonzero area.

We are interested in strengthenings and generalizations of Theorem 1.2 for uncountable sets.

We will give stronger canonization results than just a-rainbow. Namely, say that X is strongly

a-rainbow if all a-subsets of X yield distinct, nonzero volumes, and say that X is strictly a-rainbow

if X is strongly a′-rainbow for all a′ ≤ a, and X is a subset of an a − 1-dimensional hyperplane.

(In particular, all a + 1-subsets of X have volume 0.) As an example, if an,i : n < ω, i < d are

algebraically independent reals, and if we set an = (an,0, . . . , an,d−1) ∈ Rd, then X := {an : n < ω}

is strongly d+1-rainbow, and thus strictly d+1-rainbow. Moreover, if ρ : Rd → Rd′ is any isometric

embedding, then the image of X under ρ is also strictly d+ 1-rainbow.

In Section 2, we begin by reviewing some model-theoretic results of Shelah (Theorems 2.2, 2.3, 2.4),

dealing with the following situation: we are given T stable, M |= T , and X ⊆ M infinite, and we try

to find Y ⊆ X with |Y | = |X| and Y indiscernible. These theorems only deal with the case where

|X| is regular; Theorem 1.3 above shows that obstacles exist for the singular case. The problem is

the presence of an equivalence relation E on X that divides X into fewer than κ-many classes, each

of size less than κ. Theorems 2.5 and 2.6 together demonstrate that this is the only obstruction,

using a weakened notion of indiscernibility with respect to an equivalence relation E. We remark

that the combinatorial argument for Theorem 2.6 has other applications; we give a purely finitary

analogue in Theorem 2.8.

In Section 3, we consider X ⊆ Rd of size κ for some uncountable cardinal κ, and we try to get

Y ⊆ X of size κ which is as nice as possible with respect to a-ary volumes for a ≤ d+ 1, using the
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results of Section 2. We prove in Theorem 3.3 that for every regular cardinal κ ≤ 2ℵ0 , and for every

X ⊆ Rd of size κ, there is some X ′ ⊆ X of size κ and some 2 ≤ a ≤ d + 1 such that X is strictly

a-rainbow. We proceed as follows: given X ⊆ Rd of size κ, we obtain a sufficiently indiscernible

Y ⊆ X using Theorem 2.4, using the stability of (C,+, ·, 0, 1). Then we apply geometric arguments

to argue that Y is strictly a-rainbow for some a. We note that it is possible to prove Theorem 3.3

directly, similarly to Theorem 1.2.

For singular cardinals, we know from Theorem 2.6 that there is some finite list of possible con-

figurations, although we cannot identify it explictly. We are at least able to give some information

about what the configurations look like in Theorem 3.4; in particular, they are all 2-rainbow, and

so we recover Erdős’s Theorem 1.1.

In Section 4, we consider what happens for X ⊆ Rd which is reasonably definable. Our main

result is Theorem 4.3: if P ⊆ Rd is perfect, then there is a perfect Q ⊆ P and some a ≤ d+1 such

that Q is strictly a-rainbow. Our main tool is a Ramsey-theoretic result of Blass [1] concerning

colorings of perfect trees.

In Section 5, we show it is independent of ZF whether or not every uncountable subset of R has

an uncountable 2-rainbow subset.

In this paper we work in ZFC, with the exception of Section 4, which is in ZF + DC.

2 Some remarks on indiscernibles

We first review the notion of local indiscernibility, following Shelah [10]. T will always be a complete

first order theory in a countable language.

Suppose ∆ is a collection of formulas of T , M |= T and A ⊆ M . Given a finite tuple b from

M , define tp∆(b/A) to be the set of all formulas φ(x, a) such that a ∈ A<ω and φ(x, y) ∈ ∆ and

M |= φ(b, a).

Suppose also that I is an index set, and (ai : i ∈ I) is a sequence from Md for some d < ω.

Then:

• We say that (ai : i ∈ I) is ∆-indiscernible over A if: given i0, . . . , in−1 all distinct ele-

ments of I, and given j0, . . . , jn−1 also distinct elements from I, then tp∆(ai0 , . . . , ain−1
/A) =

tp∆(bi0 , . . . , bin−1
). In this case the indexing doesn’t matter and so we also say that {ai : i ∈ I}

is indiscernible over A.

• If I is linearly ordered, then we say that (ai : i ∈ I) is ∆-order-indiscernible over A if: for

every i0 < . . . < in−1, j0 < . . . < jn−1 from X, tp∆(ai0 , . . . , ain−1
/A) = tp∆(bi0 , . . . , bin−1

).

When we do not mention A, we mean A = ∅.

The following is an easy application of Ramsey’s theorem (as recorded for instance in Lemma

2.3 of Chapter I of [10]:

Theorem 2.1. Suppose T is a complete first order theory in a countable language, and ∆ is a

finite collection of formulas of T . Suppose M |= T , and (an : n < ω) is an infinite sequence from

Md. Then there is some infinite subsequence (an : n ∈ I) which is ∆-order indiscernible.
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We will be mainly interested in the case where T is stable. In this case, the following is part of

Theorem 2.13 of Chapter II of [10]:

Theorem 2.2. Suppose T is a stable complete first order theory in a countable language, and ∆

is a finite collection of formulas of T . Suppose M |= T , and (an : n < ω) is an infinite sequence

from Md. Then (an : n < ω) is order-indiscernible if and only if it is indiscernible (in fact this

characterizes stability). Hence, if X ⊆ Md is infinite, then there is an infinite, ∆-indiscernible

Y ⊆ X.

We are interested in generalizations of Theorem 2.2 to the case where X has uncountable

cardinality κ. Shelah has proved several results along these lines for regular cardinals; we give two

versions. The first requires T to be ω-stable, and gets full indiscernibility. See Remark 2 after

Theorem 2.8 from Chapter 1 of [10].

Theorem 2.3. Let T be an ω-stable theory (we can suppose in a countable language). Let κ be

a regular uncountable cardinal and let d < ω. Then whenever M |= T , A ⊆ M has size less than

κ, and X ⊆ Md has size ≥ κ, we can find some finite sequence a ∈ M , and we can find some

stationary type p(x) ∈ Sd(a), such that there is some Y ⊆ X of size κ which is a set of independent

realizations of p(x)|Aa. In particular, Y is indiscernible over A.

Proof. For the reader’s convenience we provide a proof.

We can suppose T = T eq, and thus that we can code finite tuples as single elements. Also

we can suppose that |X| = κ. Enumerate X = (aα : α < κ). For each α < κ, write Xα =

acl (A ∪ {aβ : β < α}), and choose a formula φα(x) over Xα of the same Morley rank as tp(aα/Xα),

and of Morley degree 1. By Fodor’s lemma, we can find S ⊆ κ stationary such that φα(x) =

φβ(x) = φ(x) for all α, β ∈ S. Choose α∗ large enough that φ(x) is over Xα∗ . Write φ(x) = φ(x, a)

for some a ∈ Xα. Let p(x) be the unique type over a containing φ(x, a) and of the same Morley

rank; then for all α∗ ≤ α ∈ S, tp(aα/Xα) is the unique non-forking extension of p(x) to Xα. From

this it follows easily that Y := {aα : α ∈ S\α∗} is as desired.

The second version applies to any stable theory, but only gives local indiscernibility. It is

Theorem 2.19 of Chapter II of [10], and it strictly generalizes the final claim of Theorem 2.2.

Theorem 2.4. Let T be a stable theory and let ∆ be a finite set of formulas. Let κ be a regular

cardinal and let d < ω. Then whenever M |= T , A ⊆ M has size less than κ, and X ⊆ Md has size

≥ κ, then there is some Y ⊆ X of size κ such that Y is ∆-indiscernible over A.

When κ is singular, the näıve generalization of Theorem 2.3 fails, by Theorem 1.3. (In fact, one

can easily modify this example to work in the theory of equality.) The problem here is the presence

of an equivalence relation on X that has fewer than κ classes, with each class of size less than κ,

and the behavior of elements in distinct classes differs from the behavior of elements in the same

class. In fact, we show this is the only obstruction.

We wish to formalize the notion of “indiscernible up to an equivalence relation.” This a special

case of generalized indiscernibles, introduced by Shelah in [10] Section VII.2, and further analyzed

(with slightly varying definitions) in several subsequent papers, e.g. [5]. (In these works, the focus
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is on using these generalized indiscernibles to build Ehrenfeucht-Mostowski models; our interest is

different, in that we want to extract generalized indiscernibles from a given X.)

Suppose T is a complete first order theory, and ∆ is a collection of formulas. Suppose M |= T ,

and A ⊆ M , and X ⊆ Md for some d. Finally suppose E is an equivalence relation on X.

Then X is (∆, E)-indiscernible over A if for every a0, . . . , an−1, b0, . . . , bn−1 sequences from X

with each ai 6= aj and each bi 6= bj, if for every i < j < n, aiEaj if and only if biEbj , then

tp∆(ai : i < n/A) = tp∆(bi : i < n/A). X is E-indiscernible over A if X is (∆, E)-indiscernible over

A, where ∆ is the collection of all formulas of T .

So for instance, if X is ∆-indiscernible, then letting E= be the equivalence relation of identity

on X, we have that X is (∆, E=)-indiscernible; and also X is (∆,X ×X)-indiscernible.

We have the following adaptations of Theorem 2.3 for singular cardinals κ; again, we have two

versions. In the first version, we need T to be ω-stable and we need κ to have uncountable cofinality,

and for this we get full E-indiscernibility. In the second version, we just need T to be stable and

κ can be arbitrary, but for this we just get local E-indiscernibility.

Theorem 2.5. Let T be an ω-stable theory, and let κ be a singular cardinal of cofinality λ > ℵ0,

and let d < ω. Then whenever M |= T , A ⊆ M has size less than cof(κ), and X ⊆ Md has size

≥ κ, there is some Y ⊆ X of size κ and some equivalence relation E on Y , such that E has at most

λ-many equivalence classes, with each equivalence class infinite, and such that Y is E-indiscernible

over A.

Proof. We can suppose T = T eq, and thus that d = 1.

Write X as the disjoint union of Xα : α < λ, where each |Xα| = κα < κ is a successor cardinal

bigger than |A|, and κα < κβ whenever α < β. By applying Theorem 2.3 to each Xα and then

pruning, we can suppose there is some aα ∈ M and some stationary p(x) ∈ S1(aα), such that Yα

is an independent set of realizations of p(x)|
(

A ∪
⋃

β<αXβ

)

. Define the equivalence relation E on

X by: aEb iff a, b are in the same Xα.

For each α < λ, choose φα(x, a) ∈ pα(x) of the same Morley rank as p(x), and of Morley degree

1. By further pruning, we can suppose φα(x, y) = φβ(x, y) for all α, β < λ.

Apply Theorem 2.3 and prune to get some a∗ and some stationary type q(x) ∈ S1(a∗), such

that {aα : α < λ} is an independent set of realizations of q(x)|Aa∗.

We claim now that X is E-indiscernible. To check this, it is convenient to discard all but

countably many elements of each Xα. Thus enumerate each Xα = {bαn : n < ω}. Now each

(bαn : n < ω) is a Morley sequence in pα(x)|
(

A, aα,
⋃

β<αXβ

)

, and (aα : α < λ) is a Morley sequence

in q(x)|Aa∗. It follows by typical nonforking arguments that for each α, Xα is indiscernible over

A∪
⋃

β 6=α Xβ; also, for each permutation σ of λ, the permutation σ∗ of X defined by σ∗(b
α
n) = b

σ(α)
n

is partial elementary over A. From these two facts it is easy to check that X is E-indiscernible.

Before the following theorem, we need some notation. Given X a set and r < ω,
(

X
r

)

denotes

the r-element subsets of X. When X is a set of ordinals, each s ∈
(

X
r

)

has a canonical increasing

enumeration; thus we can identify
(

X
r

)

⊆ Xr.

Theorem 2.6. Let T be a stable theory, and let ∆ be a finite collection of formulas of T . Let κ

be a singular cardinal, and let d < ω. Then whenever M |= T , A ⊆ M has size less than cof(κ),
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and X ⊆ Md has size ≥ κ, there is some Y ⊆ X of size κ and some equivalence relation E

on Y , such that E has ℵ0-many classes, with each equivalence class infinite, and such that Y is

(∆, E)-indiscernible over A.

Proof. Again, we can suppose T = T eq and d = 1. Let r be the maximum of the arities of formulas

of ∆.

Write λ = cof(κ) and write X as the disjoint union of Xα : α < λ, where each |Xα| = κα < κ

is a successor cardinal bigger than |A|, and κα < κα′ whenever k < k′.

Then by many applications of Theorem 2.3, we can find distinct aiα,j : α < λ, i, j < r such that

each aiα,j ∈ Xα, and we can find Y i
α : α < ω, i ≤ r, such that:

• Each Y i+1
α ⊆ Y i

α ⊆ Xα;

• Each Y i
α has size κk;

• Each aiα,j ∈ Y i
α\Y

i+1
α ;

• Each Y i
α is indiscernible over A ∪

⋃

β<α Y
i
β ∪ {ai

′

β,j : β < λ, i′ < i, j < r}.

For each α < λ, let bα = (aiα,j : i, j < r). By applying Theorem 2.4, we can suppose that

(bα : α < λ) is ∆-indiscernible over A. Given an injective s : r → λ, let ps(xi,j : i, j < r) =

tp∆(a
r−1−i
s(i),j : i, j < r). This is a ∆-type of a finite tuple over the empty set; in particular it

is equivalent to a formula, but it is more convenient to write it as a type. Note that by ∆-

indiscernibility, for all s, s′, ps(xi,j : i, j < r) = ps′(xi,j : i, j < r), so we can drop the subscripts

and refer to just p(xi,j : i, j < r).

For each α, write Yα = Y r
α and write Y =

⋃

α Yα. We claim that Y is (∆, E ↾Y )-indiscernible.

Note that for all s ∈
(

ω
r

)

and for all distinct as(i),j : i, j < r, with as(i),j ∈ Ys(i), we have that

M |= p(as(i),j : i, j < r). This is because, starting from (as(r−1),j : j < r) and moving downwards,

we can shift each (as(i),j : j < r) to (ar−1−i
s(i),j : j < r); when moving (as(i),j : j < r) to (ar−1−i

s(i),j : j < r)

we are using the indiscernibility hypothesis on Y r−1−i
s(i) .

We now need to take care of the fact that we are only looking at the increasing enumeration of

s in the above.

Choose distinct (aα,j : α < λ, j < r) with each aα,j ∈ Yk. Write aα = (aα,j : j < r). By the

preceding, we have that (aα : α < λ) is order-∆-indiscernible; but by Theorem 2.2, this implies

that (aα : α < λ) is fully indiscernible. In particular, given any injective sequence s : r → λ,

and given distinct as(i),j : i, j < r, with as(i),j ∈ Ys(i), we have that M |= p(as(i),j : i, j < r)

(since we could have chosen (aα : α < λ) to cover range(s)). From this it follows easily that Y is

(∆, E ↾Y )-indiscernible.

The following theorem is an easy consequence of Theorems 2.4 and 2.6.

Theorem 2.7. Suppose T is stable, M |= T , ∆ is a finite set of formulas, d < ω, and κ is an

infinite cardinal. Then there is a finite list (Ci : i < i∗) such that: each Ci ⊆ Md has size κ, and for

every X ⊆ Md of size κ, there is some Y ⊆ X of size κ and some i < i∗ such that tp∆(Ci) = tp∆(Y )

(i.e. there is a bijection f : Ci → Y that preserves ∆-formulas). If κ is regular, then each Ci is

6



∆-indiscernible; otherwise, each Ci is (∆, Ei)-indiscernible for some equivalence relation Ei on Ci

with infinitely many classes, each class infinite.

We give a purely finitary analogue of Theorem 2.6. First, given n, r, c < ω, an equivalence

relation E on n and a function f :
(

n
r

)

→ c, say that X ⊆ n is E-homogeneous for f if for all

s, t ∈
(

X
r

)

, if s(i)Es(j) iff t(i)Et(j) for all i, j < r, then f(s) = f(t). Also, given A ⊆ Y ⊆ n, say

that A is convex in Y if whenever n0 < n1 < n2 < n, if n0, n2 ∈ A and n1 ∈ Y then n1 ∈ A.

Theorem 2.8 also follows from the Claim (proved below) and the fact that convexly ordered

equivalence relations form a Ramsey class, see [8]. On the other hand, the given proof of The-

orem 2.8 extends easily to handle infinite cardinals, using the Erdős -Rado theorem in place of

Ramsey’s theorem.

Theorem 2.8. Suppose K,L, r, c < ω are given. Then there are K∗, L∗ < ω large enough so that

whenever n ≥ K∗ ·L∗, and whenever E is an equivalence relation on n with at least K∗ many classes,

of size at least L∗, and whenever f :
(

n
r

)

→ c, there is some X ⊆ n which is E-homogeneous for f

such that E ↾X has at least K many classes, each convex in X and of size at least L.

First, we want the following claim.

Claim. Suppose K,L < ω are given. Then there are K∗, L∗ < ω large enough so that whenever

n ≥ K∗ · L∗, and whenever E is an equivalence relation on n with at least K∗ many classes, each

of size at least L∗, there is some X ⊆ n such that E ↾X has at least K many classes, each convex

in X and of size at least L.

Proof. Choose K∗ such that K∗ → (K)22. Choose L∗ such that L∗ → (L2)2(2K∗)!
.

Suppose E is given. We can suppose E is an equivalence relation on n with exactly K∗-many

classes, each of size exactly L∗; so n = K∗L∗. Let (Xk : k < K∗) list the equivalence classes

of E in some order. For each k < K∗, ℓ < L∗, let Xk(ℓ) denote the ℓ’th element of Xk (listed

in increasing order). Define a map f :
(

L∗

2

)

→ (2K∗)!, where f(ℓ0, ℓ1) codes the ordering of the

elements (Xk(ℓi) : k < K∗, i < 2). Choose I ⊆ L∗ of size L2 which is homogeneous for f .

Then we have the following: suppose k0, k1 < K∗. Then one of the following holds, after possibly

switching k0 and k1: either Xk0(ℓ0) < Xk1(ℓ1) for all ℓ0, ℓ1 ∈ I; or else Xk0(ℓ0) < Xk1(ℓ0) < Xk0(ℓ1)

for all ℓ0 < ℓ1 both in I. Define g :
(

K∗

2

)

→ 2 so that g({k0, k1}) says which of these cases {k0, k1}

is in (say 0 for the first case, 1 for the second case). Choose J ⊆ K∗ homogeneous for g of size K.

Let X = {Xk(ℓ) : k ∈ J, ℓ ∈ I}.

If J is homogeneous of color 0, then the classes on X ↾E are already convex in X and so we

are done. Otherwise, given equivalence classes Y, Y ′ of E ↾X , say that Y <∗ Y
′ if Y (ℓ) < Y ′(ℓ) for

some or any ℓ < L2; let (Yk : k < K) list the equivalence classes of E ↾X in <∗-increasing order.

Note that for all ℓ0 < ℓ1 < L2, and for all k0 < k1 < K, Yk0(ℓ0) < Yk1(ℓ0) < Yk0(ℓ1) < Yk1(ℓ1). Let

Zk = {Yk(Lk), . . . , Yk(L(k + 1)− 1)}. Then clearly Z =
⋃

k<K Zk works.

Thus, to prove Theorem 2.8, it suffices to restrict to equivalence relations E such that each class

is convex in n. Note then that whenever X ⊆ n, each class of E ↾X will be convex in X.

We will need some notation. Given a function f :
(

n
r

)

→ c, and given a set of parameters

A ⊆ n, say that X ⊆ n is homogeneous for f over A if for every s ∈
(

A
<r

)

, the induced function
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fs :
(

n
r−|s|

)

→ c is constant on X. For the purposes of this theorem, say that n → (m)rc,p if:

whenever f :
(

n
r

)

→ c, and whenever A ⊆ n has size at most p, there is X ⊆ n of size m which is

homogeneous for f over A. Easily, if n → (m)rc′ , where c′ = cp
r2r , then n → (m)rc,p.

We now are ready to prove Theorem 2.8.

Proof. We follow the proof of Theorem 2.5. Choose K∗ so that K∗ → (K + r)rc′ , where c′ = cr
2r

.

Choose numbers (Li
k : k < K∗,−1 ≤ i ≤ r) such that:

• For all 0 ≤ i ≤ r and for all k < K∗, L
i−1
k → (Li

k)
r
c,c′ , where c′ = i · r ·K∗ +

∑

k′<k L
i
k′ .

• Each Lr
k = L.

Set L∗ = L−1
0 (which we can suppose is the maximum of (L−1

k : k < K∗)). Then we claim this

works.

Indeed, suppose E is an equivalence relation on N with at least K∗ many classes, each convex

of size at least L∗, and suppose f :
(

n
r

)

→ c. Let Xk : k < k∗ list in increasing order the first

K∗-many classes of E. By choice of (Li
k : −1 ≤ i ≤ r, k < K∗), we can find Y i

k : 0 ≤ i ≤ r, k < K∗

and distinct aik,j : 0 ≤ i, j < r, k < K∗ such that:

• For each 0 ≤ i < r and k < K∗, Y
i+1
k ⊆ Y i

k ⊆ Xk;

• For each 0 ≤ i ≤ r and k < K∗, |Y
i
k | = Li

k;

• For each 0 ≤ i < r, k < K∗ and j < r, aik,j ∈ Y i
k\Y

i+1
k ;

• Suppose 0 ≤ i ≤ r, k < K∗; set A =
⋃

k′<k Y
i
k′ ∪ {ai

′

k′,j′ : 0 ≤ i′ < i, k′ < K∗, j
′ < r}. Then Y i

k

is homogeneous for f over A.

Given a = (ai : i ∈ I) an injective sequence from n, by tp(s) we mean the function
(

I
r

)

→ c

induced from f :
({ai:i∈I}

r

)

→ c.

Write c′ = cr
2r

(as in the definition of K∗) and choose g :
(

K∗

r

)

→ c′ so that for all s ∈
(

K∗

r

)

,

g(s) codes tp(ar−1−i
s(i),j : i, j < r). By choice of K∗, we can find I ′ ⊆ K∗ of size K + r, which is

homogeneous for g. Let I be the first K-many elements of I ′. Write Y =
⋃

k∈I Y
r
k . Then we claim

Y is E-homogeneous for f .

Indeed, suppose s, t ∈
(

Y
r

)

, such that for all i, j < r, s(i)Es(j) iff t(i)Et(j). We want to show

that f(s) = f(t). Write s as the disjoint union of its equivalence classes listed in increasing order:

s =
⋃

i<i∗
si, and similarly t =

⋃

i<i∗
ti. Note each |si| = |ti| = ri, say. For each i < i∗, let ki ∈ I

be such that si ⊆ Y r
ki
, and let k′i ∈ I be such that ti ⊆ Y r

k′
i

.

Let s′i = {ai∗−1−i
ki,j

: j < ri} and let t′i = {ai∗−1−1
k′
i
,j

: j < ri}. Let s
′ =

⋃

i<i∗
s′i and let t′ =

⋃

i<i∗
t′i.

Note that by choice of I and I ′, we have that f(s′) = f(t′). (We can choose u ∈
(

I′

r

)

such that

{ki : i < i∗} are the first i∗-many elements of u, and v ∈
(

I′

r

)

such that {k′i : i < i∗} are the first

i∗-many elements of v. Then apply the definition of g.) So by symmetry, it suffices to show that

f(s) = f(s′).

Starting with i = i∗ − 1, shift each si to s′i; at each step, we do not change the value of f by

our homogeneity assumption on Y i∗−1−i
ki

.
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3 Getting Large Strictly Rainbow Sets

In this section, we are interested in applying the machinery of the previous section to analyze a-

ary-volumes of subsets of R. Recall that we are interested in the following kind of problem: given

X ⊆ Rd infinite and given a ≤ d + 1, can we find Y ⊆ X with |Y | = |X|, such that all distinct

a-element sets from Y give distinct volumes?

The most natural structure to work in for this would be (R,+, ·, 0, 1), but the first-order theory

of this structure is unstable. Thus we view R ⊆ C and work in the larger field (C,+, ·, 0, 1) instead;

it is well known that its first order theory, ACF0, is ω-stable. We could alternatively look under

the hood of Theorem 2.4 and note that it applies to Th(R,+, ·, 0, 1) provided ∆ is taken to be a

set of quantifier-free formulas, but this really amounts to the same thing.

First we need to show that the relevant notions of a-ary volumes are definable in C.

Definition 3.1. Let a ≤ d + 1 < ω. Note that for (v0, . . . , va−1) ∈ (Rd)a+1, the a − 1-ary volume

of (v0, . . . , va−1) is 1
C
|qa(v0, . . . , va−1)| for some constant C and some polynomial qa(v0, . . . , va−1)

(namely the Cayley-Menger determinant). Thus (v0, . . . , va−1) has a−1-ary volume 0 iff qa(v0, . . . , va−1) =

0. Let pa(v0, . . . , va−1, w0, . . . , wa−1) be the polynomial in 2da variables given by (qa(v0, . . . , va−1)−

qa(w0, . . . , wa−1))(qa(v0, . . . , va−1) + qa(w0, . . . , wa−1)). Note that for (v0, . . . , va−1), (w0, . . . , wa−1)

from (Rd)a, we have that their a−1-ary volumes are the same if and only if pa(v0, . . . , va−1, w0, . . . , wa−1) =

0.

Let ∆d be the finite collection of formulas of ACF0 of the form: qa(v) = 0, or pa(v,w) = 0, for

a ≤ d+ 1.

Thus, Theorem 2.7 gives, for each infinite cardinal κ, a finite basis of all possible ∆d-configurations,

and we wish to understand the ones that can be embedded in Rd. In the case where κ is regular,

we succeed completely with Theorem 3.3. First we need the following lemma.

Lemma 3.2. Let d be given. Suppose X ⊆ Rd is infinite, and when viewed as a subset of Cd, is

∆d-indiscernible. Then X is strictly a-rainbow for some 2 ≤ a ≤ d+ 1.

Proof. Let a be largest so that for some or any v0, . . . , va−1 ∈ X, we have that qa(v0, . . . , va−1) 6= 0.

Then clearly X is a subset of the a − 1-dimensional hyperplane spanned by any a elements from

X, and for every 2 ≤ a′ ≤ a, every a′-subset of X has nondegenerate volume, so it suffices to

show that X is a′ rainbow for all 2 ≤ a′ ≤ a. Suppose not; say (v0, . . . , va′−1) and (w0, . . . , wa′−1)

are from
(

X
a′

)

of the same volume, that is qa′(v0, . . . , va′ − 1) = ±qa′(w0, . . . , wa′−1). We can

suppose there is ℓ < a′ − 1 such that vi = wi for all i < ℓ, and vi 6= wj for any i, j ≥ ℓ.

By a′ − ℓ-many applications of indiscernibility of X, we can suppose ℓ = a′ − 2, or in other

words: for all v0, . . . , va′−1, va′ from X distinct, qa′(v0, . . . , va′−2, va′−1) = ±qa′(v0, . . . , va′−2, va′).

Let v0, . . . , va′−2, wn : n < ω be distinct elements from X. For each n < ω let Vn ⊆ Cd be the

set of all v such that qa′(v0, . . . , va′−2, v) = ±qa′(v0, . . . , va′−2, wn′) for all n′ < n. Clearly this is a

descending sequence of prevarieties, and moreover for each n, wn ∈ An\An+1 so it is strict. This

contradicts Hilbert’s Basis theorem.

Theorem 3.3. Suppose κ ≤ 2ℵ0 is a regular cardinal, and X ⊆ Rd has |X| = κ. Then there is

Y ⊆ X of size κ, and some 2 ≤ a ≤ d+ 1, such that Y is strictly a-rainbow.
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Proof. By Theorem 2.4 we can choose Y ⊆ X of size κ such that Y is ∆d-indiscernible; then we

conclude by Lemma 3.2.

For singular cardinals we do not have such an explicit conclusion, although we can say something

about what the configurations look like:

Theorem 3.4. Suppose X ⊆ Rd, and E is an equivalence relation on X with infinitely many

classes, each class infinite. Suppose that considered as a subset of Cd, we have that X is (∆d, E)-

indiscernible. Then there is 2 ≤ a∗ ≤ d+1 such that each E-equivalence class is strictly a∗-rainbow,

and X is strongly a-rainbow for all a ≤ a∗.

Proof. There is some 2 ≤ a∗d + 1 such that each E-equivalence class is strictly a∗-rainbow, by

Lemma 3.2 and (∆d, E)-indiscernibility, so we just need to show that X is strongly a-rainbow for

all a ≤ a∗.

Suppose not; say a ≤ a∗ and u0, . . . , ua−1, v0, . . . , va−1 are a-tuples from X with the same

volume (possibly 0). We can suppose ua−1 6= vi for any i < a. We claim we can arrange that

ui = vi for all i < a − 1, and that ua−1Eva−1. Indeed, choose w0, . . . , wa−1 distinct elements

of X such that wi = ui for all i < a − 1, and wa−1 is some new element with wa−1Eua−1. By

(∆, E)-indiscernibility, v has the same volume as both u and w, so the latter two have the same

volume. So replace v by w.

Let I ⊆ a be the set of all i < a with uiEua. Then clearly for any w0 . . . wa−1, if wi = ui for

all i < a with i 6∈ I, and if wiEui for all i ∈ I, then u and w have the same volume. Moreover this

holds whenever we replace u0, . . . , ua−1 by u′0, . . . , u
′
a−1, where u′iEu′j iff uiEuj . By reordering we

can suppose I = {k, k+1, . . . , a− 1}, for some k < a. Now k > 0, since otherwise u, v are a subset

of a single equivalence class, and so this contradicts the choice of a∗.

For the contradiction, we suppose we have arranged to have {ui/E : i < a} of minimum size.

Choose elements uℓi : i < a, ℓ < ω as follows: having defined uℓi for each ℓ < ℓ∗, let u
ℓ∗
i : i < k be

some new elements such that uℓ∗i Euℓ∗j iff uiEuj , and for i < k, uℓ∗i is not E-related to any previous

uℓj or any uj .

For each ℓ < ω let Aℓ ⊆ C2·d·(a−k) be the pre-variety of all (vk, . . . , va−1, wk, . . . , wa−1) such that

for all ℓ′ < ℓ, pa(u
ℓ′

0 , . . . , u
ℓ′

k−1, vk, . . . , va−1, u
ℓ′

0 , . . . , u
ℓ′

k−1, wk, . . . , wa−1) = 0 (for tuples in Rd·(a−k)

recall this is equivalent to saying that uℓ
′

0 , . . . , u
ℓ′

k−1, vk, . . . , va−1 and

uℓ
′

0 , . . . , u
ℓ′

k−1, wk, . . . , wa−1 have the same volume).

This is a descending chain of pre-varieties; but it must also be strict: for let ℓ < ω, and let

vk, . . . , va−1, wk, . . . , wa−1 be new elements with each vi, wjEuℓ0. Since {ui/E : i < a} was chosen

of minimal size we must have that (vk, . . . , va−1, wk, . . . , wa−1) ∈ Aℓ\Aℓ+1. But this contradicts

Hilbert’s Basis theorem.

Note that as a special case we have recovered Erdős’s Theorem 1.1: whenever X ⊆ Rd is infinite,

there is a 2-rainbow Y ⊆ X with |Y | = |X|. This is because we must have a∗ ≥ 2.

4 Perfect subsets of Rd have rainbow perfect subsets

This section is in ZF+DC.
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In this section we show that if X ⊆ Rd is perfect, then there is some perfect Y ⊆ X which is

strictly a-rainbow for some a ≤ d+ 1. Since Y is perfect we get |Y | = |X|.

Definition 4.1. We make several definitions.

1. Suppose P is a Polish space. A coloring f : P → [c] has the Baire property if, for all i ∈ [i],

f−1(i) has the Baire property.

2. If x, y ∈ 2ω then ∆(x, y) = min{i : x(i) 6= y(i)}.

3. if u ∈
(2ω

a

)

, writing u = {x1, . . . , xa} in lexicographically increasing order (as always), then

say that u is skew if for all 1 ≤ i < j < a, ∆(xi, xi+1) 6= ∆(xj , xj+1). Let
(2ω

a

)

skew be the set

of all u ∈
(2ω

a

)

which are skew.

4. We define f∗ :
(2ω

a

)

skew → LO([a−1]) as follows, where LO([a−1]) is the set of linear orders

of a− 1 (of which there are (a− 1)!). Namely let f∗(x0, . . . , xa−1) be the linear ordering < of

a − 1 given by: i < j iff ∆(xi, xi+1) < ∆(xj, xj+1). Here we are writing u = {x0, . . . , xa−1}

in increasing lexicographic order.

5. A perfect subtree of 2<ω is a subtree T of 2<ω (nonempty and closed under initial segments)

such that for every s ∈ T there are t0, t1 ∈ T with s ⊂ t0, t1 and such that t0 and t1 are

incompatible. Note that the set of branches [T ] through T is a perfect subset of 2ω, and this

characterizes the perfect subsets of 2ω. Perfect subsets of 2ω are also called Cantor sets. We

say that a Cantor set C is skew if for all x 6= y, x′ 6= y′ elements from C, if ∆(x, y) = ∆(x′, y′)

then {x, y} = {x′, y′}. In particular
(

C
a

)

⊆
(2ω

a

)

skew for each a.

The following is due to Blass [1].

Theorem 4.2. Suppose a, c are natural numbers and f :
(2ω

a

)

→ [c] has the Baire property. Then

there exists a skew Cantor set C ⊆ 2ω so that for all u, v ∈
(

C
a

)

, if f∗(u) = f∗(v) then f(u) = f(v).

Thus f ↾(C
a
) takes on only (a− 1)! values, and in fact there are only c(a−1)! possibilities for f ↾(C

a
).

A set X ⊆ Rd has the perfect set property if X is either countable or else has a perfect subset.

This is a regularity property of subsets of Rd, and so holds for all reasonably definable subsets. For

instance, every analytic set has the perfect set property: see Theorem 12.2 of [7]. Also, assuming

sufficient large cardinals (for instance, infinitely many Woodin cardinals with a measurable cardinal

above), all projective subsets of Rd have this property; see Theorem 32.14 of [7].

Moreover, if we let PSP denote the assertion that every subset of Rd has the perfect set property,

then ZF + DC + PSP is consistent relative to an inaccessible cardinal (this is part of Solovay’s

theorem, see Theorem 11.11 of [7]).

Theorem 4.3. Suppose P ⊆ Rd is perfect. Then there is a perfect set Q ⊆ X and some 2 ≤ a ≤

d+ 1 such that Q is strictly a-rainbow.

Proof. It is not hard to find a continuous injection ρ : 2ω → P , such that the image of ρ is closed.

Note that if C ⊆ 2ω is a Cantor set then ρ[C] is perfect.
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Define f :
(2ω

2a

)

→ [c] (for c large) so that f(u) codes the following information: for each a′ ≤ a,

and for each I, J ∈
(2a
a′

)

, whether or not the volume of ρ[uI ] is equal to 0, and whether or not the

volume of ρ[uI ] is equal to the volume of ρ[uJ ]. Clearly we can choose f to have the Baire property

(in fact, its graph will be Borel).

Let C ⊆ 2ω be a skew Cantor set as in Theorem 4.2. It suffices to show that there some a ≤ d+1

such that ρ[C] is strictly a-rainbow.

Suppose for some a ≤ d + 1 and for some x0 <lex . . . <lex xa−1 from C, the volume of

(ρ(x0), . . . , ρ(xa−1)) is equal to 0. Choose n large enough so that n > ∆(xi, xi+1) for all i < a− 1.

Then whenever x ↾n= ρ(x0) ↾n, we get that the volume of (ρ(x), ρ(x1), . . . , ρ(xa−1)) is equal to 0.

Hence {ρ(x) : x ∈ C, x ↾n= x0 ↾n} is contained in an a−2-dimensional hyperplane; hence whenever

u = {yi : i ≤ a} ∈
(

C
a

)

is such that each yi ↾n= ρ(x0) ↾n, we get that ρ[u] has volume 0. Since every

element of
(

C
a

)

has the same type as some such u, we get that for all u ∈
(

C
a

)

, ρ[u] has volume 0,

and so ρ[C] is contained in an a− 2-dimensional hyperplane.

Let a be largest so that this fails; thus ρ[C] is a subset of an a− 1-dimensional hyperplane, but

for each a′ ≤ a and for each u ∈
(

C
a

)

, ρ[u] has nonzero volume. We claim that for each a′ ≤ a, ρ[C]

is a′-rainbow (and hence strongly a’-rainbow).

Suppose not, say a′ ≤ a and x0 <lex . . . <lex xa′−1 and y0 <lex . . . <lex ya′−1 witness this, so

{xi : i < a′} 6= {yi : i < a′} and yet their images under ρ have the same a′ − 1-ary volume. Let

N be large enough such that N > ∆(xi, xj) and N > ∆(yi, yj) for all i < j < a′, and whenever

xi 6= yj then N > ∆(xi, yj). Now choose i∗ < a′ such that xi∗ 6∈ {yi : i < a′}; then for any x with

x ↾N= xi∗ ↾N we have that the a′-ary volume of ρ[x0, . . . , xi∗−1, xi∗ , xi∗+1, . . . , xa′−1] is equal to the

a′ − 1-ary volume of ρ[x0, . . . , xi∗−1, x, xi∗+1, . . . , xa′−1], both being equal to the a′ − 1-ary volume

of y0, . . . , ya′−1.

Given z with f∗(z) = f∗(x), let Nz be the maximum of ∆(zi, zj) + 1 : i < j < a′. Let the cone

above z, Cz, be all z such that z ↾Nz
= zi∗ ↾Nz

. Then for any z ∈ Cz, ρ[z] has the same a′-ary volume

as ρ[z\{zi∗} ∪ {z}].

Recall that qa′(v0, . . . , va′−1, w0, . . . , wa′−1) is a polynomial (each vi, wj is a tuple of d-variables)

such that given α0, . . . , αa′−1, β0, . . . , βa′−1 from Rd, α and β have the same a′ − 1-ary volume iff

qa′(α, β) = 0; given tuples α, β from Cd, then we define them to have the same a′ − 1-ary volume

if qa′(α, β) = 0.

Inductively choose xn : n < ω so that each xn = xn0 <lex . . . <lex xna′−1 has f∗(x
n) = f∗(x), and

each xn+1 ⊆ Cxn . For each n, let Vn be the set of all α ∈ Cd such that for each m ≤ n, the a′−1-ary

volume of ρ[xm] is equal to the a′ − 1-ary volume of ρ[xm\{xmi∗}] ∪ {α}. This is a descending chain

of prevarieties, so to get a contradiction it suffices to show that Vn+1 ( Vn. But choose i 6= i∗; then

xn+1
i ∈ Vn, but ρ[x

n+1\{xn+1
i∗

}]∪ {ρ(xn+1
i )} is a degenerate simplex, so has a′ − 1-ary volume zero,

so ρ(xn+1
i ) 6∈ Vn+1.

From Theorem 4.3 and the comments proceeding it we obtain the following:

Corollary 4.4.

1. Suppose X ⊆ Rd is analytic and uncountable. Then there is a perfect set Q ⊆ X and some

2 ≤ a ≤ d+ 1 such that Q is strictly a-rainbow.
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2. Assume sufficient large cardinals. Suppose X ⊆ Rd is projective and uncountable. Then there

is a perfect set Q ⊆ X and some 2 ≤ a ≤ d+ 1 such that Q is strictly a-rainbow.

3. Assume PSP. Suppose X ⊆ Rd is uncountable. Then there is a perfect set Q ⊆ X and some

2 ≤ a ≤ d+ 1 such that Q is strictly a-rainbow.

5 A model of set theory where an uncountable set of reals has no

uncountable 2-rainbow subset

In this section we prove it is consistent with ZF that there is an uncountable set of reals without an

uncountable 2-rainbow subset. Thus some amount of choice is necessary. The proof is a standard

symmetric models argument; for a source on this, see [6], Chapter 15.

We attempted to prove consistency over ZF +DC, but could not, so we leave the following as

an open question:

Question. Is it consistent with ZF + DC that there is an uncountable set of reals without an

uncountable 2-rainbow subset?

Theorem 5.1. Suppose V |= ZFC. Then there is a symmetric submodel M of a forcing extension

V[G] of V, such that M |= ZF+ there is an uncountable set of reals with no uncountable 2-rainbow

subset.

Proof. We identify x ∈ 2ω with the element of [0, 1] with binary expansion given by x. (The

collisions do not matter.)

Let P be the forcing notion of all finite partial functions from ω × ω → 2. Then forcing by P

adds a Cohen-generic ḟ ∈ (2ω×ω).

For each n < ω, let ȧn be a P -name for {m < ω : ḟ(n,m) = 1}, so each 0P  ȧn ⊆ ω. For

each s ⊂ ω finite let ȧn,s be a P -name for ȧn∆s (the symmetric difference). Let Ȧ be a P -name

for {ȧn,s : n < ω, s ⊂ ω finite}.

Let G be the group of all permutations σ of ω×ω×2 such that: there is a permutation σ0 of ω,

such that for all (n,m, i), σ(n,m, i) = (σ0(n),m, j) for some j (thus we have a map σ 7→ σ0). Each

σ ∈ G induces an automorphism of P and hence of its Boolean completion B, which we identify

with σ. Let F be the filter of subgroups on G, generated by Fix(ȧn) for each n < ω, along with

Fix(Ȧ). Note that σ ∈ Fix(ȧn) iff σ ↾{n}×ω×2 is the identity, and σ ∈ Fix(Ȧ) iff for each n < ω,

there are only finitely many m with σ(n,m, 0) 6= (σ0(n),m, 0).

Let V[G] be a forcing extension by P , and let M be the symmetric submodel determined by

F ,G, that is M is the set of all ȧV[G], for ȧ a P -name such that Fix(ȧ) ∈ F (as computed in V), and

moreover this holds hereditarily. M is a model of ZF ; see Chapter 15 of [6]. Now ȦV[G] ∈ M since

Fix(Ȧ) ∈ F by construction and this also holds for each ȧ ∈ Ȧ. We claim that M, ȦV[G] works.

It is well known that ȦV[G] is uncountable in V[G]: if we look at the larger model N :=

V({ȧ
V[G]
n : n ∈ ω) then this is the standard example, due to Cohen, of a model of ZF where choice

fails; {ȧ
V[G]
n : n ∈ ω} is an uncountable set and in fact it has no countable subset. See Chapter 14

of [6]. So the larger set Ȧ must still be uncountable in the smaller model M .
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Suppose towards a contradiction that in M , ȦV[G] had an uncountable 2-rainbow subset. Then

we can choose some hereditarily F-symmetric P -name Ḃ and some p ∈ P such that p forces: Ḃ is

an uncountable 2-rainbow subset of Ȧ. We can choose N large enough so that dom(p) ⊂ N × ω

and, for every σ ∈ G, if σ ↾N×ω×2 is the identity and if σ ∈ Fix(Ȧ), then σ(Ḃ) = Ḃ.

For each n < ω and s ⊂ ω finite let Qn be the set of all q ≤ p such that q forces: Ḃ ∩ {ȧn,s :

s ⊂ ω finite} 6= ∅.

We claim that each Qn is nonempty, i.e. p does not force that Ḃ∩{ȧn,s : s ⊂ ω finite} is empty.

For suppose it did; then for every n′ ≥ N , p forces that Ḃ ∩ {ȧn′,s : s ⊂ ω finite} is empty (by

considering σ ∈ G that fix the second and third coordinates and interchange n, n′). But then p

would force that Ḃ ⊆ {ȧn,s : n < N, s ⊂ ω finite}, a countable set.

We claim that for each n ≥ N , and for each q ∈ Qn, we have that q ↾N×ω×2∈ Qn. Indeed,

given some q′ such that q′ ↾N×ω×2= q ↾N×ω×2 it is not hard to find some σ ∈ Fix(Ȧ) with σ0
the identity and with σ ↾N×ω×2 the identity, and with σ(q) compatible with q′. Since σ fixes

Ḃ ∩ {ȧn,s : s ⊂ ω finite}, and since q forces this set to be nonempty, σ(q) does as well; hence so

does σ(q) ∪ q′. We have shown that Qn is dense below q ↾N×ω; hence q ↾N×ω∈ Qn.

Thus we can choose q ∈ QN with support contained in N × ω. (By symmetry again, we see

that actually q ∈ Qn for all n ≥ N , from which it follows that p ∈ Qn for all n, but we won’t need

this.) For each s ⊂ ω finite let RN,s be the set of all r ≤ q such that r forces ȧN,s ∈ Ḃ. For each

s ⊂ ω finite let σs ∈ G be the permutation defined by: σs(n′,m, i) = (n′,m, i) unless n′ = n and

m ∈ s, in which case σs(n′,m, i) = (n′,m, 1 − i). Note that if r ∈ RN,s then for all t ⊂ ω finite,

σt(r) ∈ RN,t△s (because σt(ȧN,s) = ȧN,t△s).

Thus, since some RN,s must be nonempty, we get that they all must be nonempty. Choose

r ∈ RN,∅. Write r = r0 ⊔ r1 where r1 = r ↾{N}×ω×2. Choose N ′ large enough so that dom(r1) ⊆

{N} ×N ′ × 2. Then for every s ⊂ ω finite with s ∩N ′ = ∅, we have that σs(r) = r ∈ RN,s. Thus

for every s ⊂ ω finite with s ∩N ′ = ∅, we have that r  ȧN,s ∈ Ḃ. But this is a contradiction: let

s0 = ∅, let s1 = {N ′}, let t0 = {N ′ +1}, let t1 = {N ′, N ′ +1}. r forces that each si, tj ∈ Ḃ, but 0P
forces that the distance from ȧN,s0 to ȧN,s1 is 1

2N′+1
, as is the distance from ȧN,t0 to ȧN,t1 .
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