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DETERMINACY SEPARATIONS FOR CLASS GAMES

SHERWOOD HACHTMAN

Abstract. We show, assuming weak large cardinals, that in the context of games

played in a proper class of moves, clopen determinacy is strictly weaker than open deter-

minacy. The proof amounts to an analysis of a certain level of L that exists under large

cardinal assumptions weaker than an inaccessible. Our argument is sufficiently general to

give a family of determinacy separation results applying in any setting where the universal

class is sufficiently closed; e.g., in third, seventh, or (ω + 2)th order arithmetic. We also

prove bounds on the strength of Borel determinacy for proper class games. These results

answer questions of Gitman and Hamkins.

§1. Introduction. One theme in the study of infinite games is their close
connection to principles of transfinite recursion. At the lowest level, this is em-
bodied in Steel’s seminal result [12] that open and clopen determinacy for games
on ω are both equivalent to the axiom ATR0 of arithmetic transfinite recursion.
In contrast, Schweber [11] has shown that in the third order setting, clopen de-
terminacy for games with moves in R is equivalent to transfinite recursion along
wellfounded relations on R (modulo some choice); but these principles do not
imply open determinacy for games with moves in R. Recently we presented in
[5] an alternate proof of Schweber’s separation result using inner models in place
of forcing.
The main result of this paper is a similar determinacy separation in the context

of proper class games within some second or higher order set theory, such as von
Neumann-Bernays-Gödel set theory, NBG. Games of this kind were defined and
investigated by Gitman and Hamkins [3]. There they proved clopen determinacy
is equivalent to a transfinite recursion principle allowing the iteration of first-
order definitions along proper class wellorders; they conclude with a number
of open questions, including that of whether open and clopen determinacy are
equivalent for games with a proper class of moves.
We show here that a translation of our analysis in [5] can be employed to

prove that clopen determinacy for class games does not imply open determi-
nacy for class games. Indeed, our presentation uniformly separates open and
clopen determinacy, not just for games on reals or on class trees in NBG, but
in many settings of typed higher order arithmetic, provided the next-to-largest
type is sufficiently closed to allow coding of functions. This answers Gitman
and Hamkin’s question in the negative, as well as reproving our generalization of
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Schweber’s separation result to n-th order arithmetic, for all n ≥ 3 (and indeed,
to (α+ 2)th order arithmetic for ordinals α).
In the paper’s final section, we discuss the strength of determinacy for class

games with payoff in levels of the Borel hierarchy in the setting of Morse-Kelley
set theory, MK. In particular, we show (again under mild large cardinals) Borel
determinacy for proper class games is not provable in MK. This is a class games
analogue of H. Friedman’s famous result [2] from the study of second order
arithmetic.
We largely wish to avoid the formalisms of the typed set theories our results

concern, and do so by focusing on a purely set-theoretic analysis of Gödel’s L
carried out in ZFC. The main prerequisite, then, is familiarity with constructibil-
ity and Condensation arguments; though it will be mentioned, the reader need
not be familiar with Jensen’s fine structure theory to understand this paper.

§2. Background and definitions.

2.1. Games on trees. Let X be a set. X<ω denotes the set of finite se-
quences of elements of X ; XY denotes the set of functions f : Y → X ; hence
Xω is the set of ω-sequences of elements of X . By tree on X , we mean a subset
T ⊆ X<ω closed under taking initial segments. A tree is illfounded if there exists
an infinite branch through T , that is, an x ∈ ωX such that 〈x(0), . . . , x(n)〉 ∈ T
for all n; otherwise T is wellfounded.
We regard games as being played on trees. If T is a tree on X , two players, I

and II, play a game on T by alternating choosing elements of X , e.g.

I x0 x2 . . . x2n
II x1 . . . x2n+1

,

subject to the rule that 〈x0, . . . , xi〉 ∈ T at all positions of the game. The first
player who disobeys this requirement (by being forced to make a move from a
terminal node of T , for example) loses the game.
We understand a strategy to be a special kind of function, with domain a subset

of T and codomain X , which instructs one of the two players how to move at all
positions reachable according to the strategy at which it is that player’s turn.
Formally, however, we here regard strategies as subtrees of T of a special form,
e.g. a strategy for Player I is a tree S ⊆ T so that whenever s ∈ S has even
length, there is exactly one x ∈ X so that s⌢〈x〉 ∈ S; and if s has odd length,
then s⌢〈x〉 ∈ S iff s⌢〈x〉 ∈ T , for all x ∈ X . So construed, strategies in games
on T may be regarded as subsets of T ; in the event that X is closed under taking
finite sequences, strategies in games on X are themselves subsets of X .
Clopen determinacy for games on X , denoted ∆X

1 -DET, is the assertion that
whenever T is a wellfounded tree on X , one of the players has a winning strategy
in the game on T (i.e., a strategy that never instructs that player to leave T ).
Open determinacy for games on X , denoted ΣX1 -DET, is the assertion that for
all trees T on X , either Player I (Open) has a strategy in T that contains no
infinite plays (equivalently, is a wellfounded subtree of T ), or Player II (Closed)
has a strategy in T that avoids terminal nodes.

2.2. Models that rank their wellfounded trees. All of the separation
results of this paper are witnessed in levels of Gödel’s constructible universe L.
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We prefer here to work with Jensen’s J-hierarchy (see [7], [10]), though standard
remarks about the harmlessness of ignoring the difference between Jα and Lα
apply; in particular, Jα = Lα when ω · α = α. The main fine structural feature
we need is acceptability, namely, whenever ρ ≤ α and there is a subset of ρ in
Jα \Jα+1, there is a surjection h : ρ→ Jα in Jα+1. Note: We adopt the indexing
of the Jα’s whereby ON∩Jα = ω · α for ordinals α.
It is a theorem of ZFC that a tree T is wellfounded if and only if there is

a function ρ : T → ON such that whenever s, t ∈ T with s ( t, we have
ρ(s) > ρ(t). For any wellfounded tree, there is a unique such function which
takes the minimal possible values, that is, ρ(s) = sups(t∈T (ρ(t)+1); we say this
ρ is the ranking function of T , and assert the existence of a ranking function by
saying T is ranked. We remark in passing that the existence of ranking functions
for wellfounded trees is not provable in weak theories such as KP (though cf.
Theorem 2.3 and Remark 4.2, below).

Definition 2.1. Let ψ(v) be a Π1 formula in the language of set theory with
one free variable. We let θψ be the least ordinal θ (if there is one) so that Jθ
satisfies: “There is a largest cardinal, κ, and:

• ψ(κ) holds;
• κ is regular and uncountable;
• Every wellfounded tree on κ is ranked.”

In our main application, ψ(κ) will express “κ is inaccessible”. Wherever pos-
sible, we drop ψ from the notation for simplicity, referring simply to θ. We
describe how varying ψ obtains various separation results in §4.
Note that by Condensation, θ, if it exists, is countable. Note also that since

κ is the largest cardinal of Jθ, any tree in Jθ may be regarded as a tree on κ by
taking its image under an appropriate bijection. Furthermore, countable closure
of κ in Jθ guarantees that if T ∈ Jθ is an illfounded tree on κ, then there is an
infinite branch through T which belongs to Jκ; thus the wellfoundedness of trees
in Jθ is Σ0 in parameters.

Lemma 2.2. θ is closed under ordinal successor, addition, multiplication, and
exponentiation. In particular, ω · θ = θ, and so Lθ = Jθ.

Proof. Recall ([10], Lemma 1.5) that each Jα is a model of Σ0-Comprehension;
also, clearly κ<ω ∈ Jκ+1 ⊆ Jθ. Suppose κ < α < ω · θ. By definition of Jθ there
is a bijection hα : κ→ α which belongs to Jθ. Define

Tα := {s ∈ κ<ω | s(0) = 0 and hα ◦ s(i) > hα ◦ s(j) for all 0 < i < j < |s|}.

The tree Tα is clearly wellfounded, and has rank at least α+1; hence α+1 < ω ·θ.
For ordinal addition, if α, β < ω · θ then defining Tα, Tβ as above,

Tα+β = {s⌢t | s ∈ Tβ, t ∈ Tα}

is wellfounded with rank α+ β.
The remaining closure properties are proved similarly, defining trees with suit-

ably large ranks; we leave these as an exercise. ⊣

Although Lθ possesses some fairly useful closure properties, we now show that
it fails to satisfy even weak fragments of Replacement. In what follows, Σn(X)
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formulas are Σn formulas with parameters from X (so Σ1({κ}) formulas have at
most parameter κ). Recall a transitive set M is admissible if (M,∈) is a model
of Kripke-Platek set theory, KP (see [1]); levels Jα of L are admissible if and
only if they satisfy Σ1-Replacement (see [7], Lemma 2.11). ∆1-Comprehension
is a consequence of KP ([1], Theorem 4.5).

Theorem 2.3. Lθ is not admissible. Indeed, we have

1. There is a cofinal map F : ω → θ that is Σ1({κ})-definable over Lθ;
2. The Σ1({κ})-theory of Lθ is not an element of Lθ;
3. There is an a ⊆ ω that is ∆1({κ})-definable over Lθ, but not in Lθ.

Proof. Let F (0) = κ, and inductively let F (n + 1) be the least α such
that every wellfounded tree T on κ belonging to JF (n)+1 has a rank function
belonging to Jα. Note that this F is well-defined: Given β with κ < β < θ, the
set W = {T ∈ Jβ | T is wellfounded} is an element of Jθ by Σ0-Comprehension,
and since W has size κ we may regard the direct sum of these,

⊕

T∈W

T = {〈T 〉⌢s | s ∈ T ∈W},

as a tree on κ; this is wellfounded, and by the definition of Lθ, must be ranked
in Lθ, hence in some Jα with α < θ.
The map F is easily seen to be increasing, and is defined via a Σ1({κ})-

recursion over Lθ, so is itself ∆1({κ})-definable.
Now let λ = supF”ω. Then Jλ satisfies that every wellfounded tree on κ is

ranked, and so we must have λ = θ, by the minimality condition in the definition
of θ. This proves (1); since there is a Σ1-definable cofinal map F : ω → θ, we
have that Lθ is not admissible.
Now if H is the Σ1 Skolem hull in Lθ of {κ}, we have that H must contain

the range of F , and in particular ON∩H is unbounded in θ; and κ clearly is
a regular cardinal in H , is the largest cardinal there, and H |= ψ(κ). Since
H ∼= Jα for some α ≤ θ by Condensation, we must have α = θ by the minimality
in our definition of θ. It follows that H = Lθ; that is, the Σ1-projectum of Lθ in
parameter {κ} is ω. In particular, the Σ1({κ}) theory of Lθ does not belong to
Lθ (e.g. by acceptability, if this theory did belong to Lθ, then it would belong
to Lκ, and taking a transitive collapse there of the atomic diagram coded by the
theory would yield the contradiction Lθ ∈ Lκ). This shows (2).
(3) now follows from (1) and (2): Fix an enumeration 〈ϕi(v)〉i∈ω of Σ1 formulae

with one free variable. Since F is ∆1({κ})-definable, so is the set

a = {2i3n | JF (n) |= ϕi(κ)}.

The Σ1({κ})-theory of Lθ is Σ0
1(a); hence a /∈ Lθ, proving (3). ⊣

§3. Determinacy separations in the Lθ’s. In this section, we fix a suitable
Π1 formula ψ(u) and suppose θ = θψ and κ are as in Definition 2.1.

Theorem 3.1. Lθ is a model of ∆κ
1 -DET.

The proof is the usual transfinite inductive construction; the point is the in-
duction only needs to go up to the rank of the tree T , and Lθ is sufficiently
closed to carry this out.
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Proof of Theorem 3.1. Fix a tree T ∈ Lθ on κ that is clopen. There is a
rank function ρ for T in Lθ, so suppose ρ(〈〉) = µ < θ. By induction on the rank
of nodes in T , we define a map σ : T → {0, 1}, required to satisfy

σ(s) = 0 ⇐⇒ (∃ξ ∈ κ)s⌢〈ξ〉 ∈ T and σ(s⌢〈ξ〉) = 1.

So in particular, σ(s) = 0 for all terminal nodes of T , and σ(s) is uniquely defined
whenever it has been defined on all extensions of s in T ; so the map σ is uniquely
determined. This σ easily defines a winning strategy for the player (“Us”) whose
turn it is at s, whenever σ(s) = 0: Let Us play the least ξ so that σ(s⌢〈ξ〉) = 1.
Then the opponent (“Them”) will only be able to play to nodes assigned 0, and
Us’s favorable position is preserved; this continues until Us makes a move to a
terminal node, at which point Them loses.
Since a winning strategy in T is Σ0-definable from {T, σ, κ}, it will be enough

to show σ ∈ Lθ. Suppose T ∈ Jβ, where β < θ.
Let us say a partial map τ : T ⇀ {0, 1} is a partial winning strategy if

• τ(s) = 0 → (∃ξ < κ)τ(s⌢〈ξ〉) = 1;
• τ(s) = 1 → (∀ξ < κ)s⌢〈ξ〉 ∈ T → τ(s⌢〈ξ〉) = 0.

In particular, if τ(s) = 1 then τ is defined at all one-step extensions of s in T .
Notice that by wellfoundedness of T , any two partial winning strategies must

agree on the intersection of their domains. We argue by induction on α ≤ µ that
there is a partial winning strategy σα ∈ Jβ+α+1 so that {s ∈ T | ρ(s) < α} ⊆
dom(σα); in particular, σ = σµ ∈ Jβ+µ+1 ⊂ Lθ (as β+µ+1 < θ by Lemma 2.2),
as needed.
The claim is clear for σ0 = ∅. Given σα, we may let σα+1(s) be defined iff for

all ξ with s⌢〈ξ〉 ∈ T , σα(s
⌢〈ξ〉) is defined; and then set σα+1(s) = 0 iff for some

such ξ, σα(s
⌢〈ξ〉) = 1. This is clearly definable from σα, and inductively, takes

values on all nodes s with ρ(s) ≤ α, so takes care of the successor case.
So let λ ≤ µ be limit and suppose we have the claim for α < λ. Put

σλ =
⋃

{τ ∈ Jβ+λ | τ is a partial winning strategy}.

It is easy to see that σλ, so defined, is a partial winning strategy, and by inductive
hypothesis, takes values at all nodes s with ρ(s) < λ. It is definable over Jβ+λ,
so belongs to Jβ+λ+1. This completes the proof. ⊣

The next theorem is the heart of the paper.

Theorem 3.2. Lθ is not a model of Σκ1 -DET.

Proof. Note that if Lθ satisfies the determinacy of the open game played on
a tree T , then the witnessing strategy being winning is upwards absolute to V
(recall T ⊆ κ<ω is a countable tree in V ): A winning strategy for Open is a
tree with no infinite branches, and since Lθ ranks its wellfounded trees, such a
strategy must really have no infinite branch in V ; on the other hand, a winning
strategy for Closed is just a strategy with no terminal nodes, and this is clearly
absolute.
So it will be sufficient to exhibit a game tree T on κ—equivalently, on Lκ—

which is winning for Closed in V , but for which no true winning strategy can
belong to Lθ. The game we define is one in which any winning strategy for
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Closed must compute the Σ1({κ}) theory of Lθ; by (2) of Theorem 2.3, there
can be no winning strategy for Closed in Lθ.
Let us describe in outline the game and the proof that it has the desired

properties. In the first round, Open chooses a natural number, i, corresponding
to the index of some Σ1({κ}) formula, ϕi(κ), in our fixed enumeration. Closed
must choose a truth value j ∈ {0, 1} for this ϕi(κ). In the remaining ω moves
of the game, Closed must plays ordinals α0, α1, . . . corresponding to levels Jαn
that in some sense resemble Lθ while agreeing with the value j played for ϕi(κ);
meanwhile, Open is allowed to play arbitrary sets x0, x1, . . . from our universe
of sets Lκ, which Closed is obligated to capture by the models Lαk . Closed
must also ensure these levels cohere, by providing Σ0-preserving embeddings
πi,i+1 : Lαi → Lαi+1

.
Now, Closed can win the game in V , simply by always playing the correct truth

value of ϕi(κ) in Lθ, then by playing αi corresponding to transitive collapses of
sufficiently large hulls of initial segments of Lθ. But any true winning strategy
in this game must play the correct truth values of ϕi(κ): Using the countability
of Lκ in V , we can, playing as Open, list all sets in Lκ. If Closed lasts infinitely
many plays, then we may take the direct limit along the embeddings 〈πn〉n∈ω ;
we argue that this direct limit must be isomorphic to Lθ, so that the truth value
j asserted by Closed must have agreed with the real truth value of ϕi(κ) in Lθ.
We proceed to the formal argument. Let the game tree T consist of finite

plays of the following form:

Open i ∈ ω x0 x1 . . .
Closed j ∈ {0, 1}, α0 π0, α1 π1, α2 . . .

xn, αn, πn ∈ Lκ

The Closed player must maintain the following conditions, for all n ∈ ω:

• Each Jαn satisfies: “there is a largest cardinal κn, which is regular, and
ψ(κn) holds”;

• Jαn |= ϕi(κn) iff j = 0;
• xn ∈ Jκn+1

, for all n;
• πn : Jαn → Jαn+1

is Σ0-preserving, crit(πn) = κn, and πn(κn) = κn+1;
• For any tree S ∈ Jαn on κn, πn(S) is either ranked or illfounded in Jαn+1

(cf. Definition 2.1). The game tree T is easily seen to be definable over Lκ, so
belongs to Lθ.

Lemma 3.3. Closed has (in V ) a winning strategy for the game on T .

Proof of Lemma 3.3. We describe how Closed ought to play to win the
game in T . For notational convenience, fix a sequence 〈i, x0, x1, . . .〉 potentially
played by Open; the replies by Closed will always depend only on the moves
made so far. Let j = 0 iff Lθ |= ϕi(κ), and fix τ0 < θ sufficiently large that
Jτ0 |= ϕi(κ) iff j = 0; since ϕi is Σ1, such an ordinal exists.
Having fixed τ0, let 〈τn〉n∈ω be an increasing sequence of ordinals cofinal in θ

so that for all n, every tree on κ in Lτn that is wellfounded is ranked in Lτn+1
;

note that such a sequence exists, by the same argument that the F in (1) of
Theorem 2.3 is well-defined.



DETERMINACY SEPARATIONS FOR CLASS GAMES 7

We now define an increasing ω-sequence of sets H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊂ Lθ,
with each Hn ∈ Lθ, by induction. Let H−1 = ∅, and for each n < ω, let Hn

satisfy

• |Hn| < κ in Lθ,
• Hn ≺ Jτn ,
• Hn−1 ∪ {x0, . . . , xn−1} ⊆ Hn,
• Hn ∩ κ ∈ κ.

The fact that κ is regular and uncountable inside Lθ allows us to obtain each Hn

in the standard way, by interleaving Skolem hulls and transitive closures below
κ for ω-many steps; and then each Hn, being inductively defined from finitely
elements of Lθ, is in Lθ. Note that the third point entails Hn ∩ Lκ = Lκn for
some κn < κ.
Now for n < ω, let αn be the unique ordinal so that Jαn

∼= Hn, which exists
by Condensation. Furthermore, the fact that |Hn| < κ in Lθ guarantees αn < κ;
and letting en : Jαn → Hn ≺ Jτn be the anticollapse embedding, we have
crit(en) = κn. We then set, for n < ω,

πn = e−1
n+1 ◦ en.

It is now easily verified that 〈αn, πn〉n∈ω satisfies the requirements of the game
on T for Closed; Σ0-preservation of the maps πn is immediate from elementarity
of the embeddings and the fact that for all n, Jτn and Jτn+1

, hence Hn and
Hn+1, have the same Σ0(Hn)-theory. ⊣

Lemma 3.4. Suppose σ is a winning strategy for Closed in T . Then for all i,
σ(〈i〉) = 0 iff Lθ |= ϕi(κ).

Proof of Lemma 3.4. Let σ be winning for Closed, and let i ∈ ω be arbi-
trary. Working in V , let 〈xn〉n∈ω be an enumeration of Lκ. Then σ produces
the sequence 〈αn, πn〉n∈ω in response to play of 〈i〉⌢〈xn〉n∈ω by Open. We may
compose the maps πn to obtain a commuting system of maps πm,n : Lαm → Lαn
for m < n, resulting in a directed system

〈Lαn , πn,m | n < m < ω〉.

Let (N, ε) be the direct limit obtained, and for all n let πn,∞ : Lαn → N be the
direct limit embedding. Note that each πn,∞ is Σ0-preserving. As per usual, we
identify the wellfounded part of the model N with its transitive collapse. Let
κ∞ = π0(κ0).

Claim 3.5. κ∞ = κ.

Proof of Claim 3.5. First observe that the rule stipulating πn(κn) = κn+1

guarantees κ∞ = πn,∞(κn) for all n, and therefore crit(πn,∞) = κn for all n.
Now, suppose ξ < κ. Then there is some n so that xn = ξ, and so ξ < κn+1; since
crit(πn+1) = crit(πn+1,∞) = κn+1, we have πn+1,∞(ξ) = ξ < κ∞. So κ ⊆ κ∞.
Now suppose ξ ε κ∞ in N . Then by definition of direct limit, we have some n

and ξ̄ ∈ Lαn so that πn,∞(ξ̄) = ξ. But then clearly ξ̄ < κn = crit(πn,∞), so that
ξ̄ = ξ, and hence κ∞ ≤ κ as needed. ⊣
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Let us denote the wellfounded ordinal height of N , ON∩N , by wfo(N). Note
that this makes sense whether or not N is illfounded. An elementary argument
using the Σ0 definition of ordinal multiplication shows ω · wfo(N) = wfo(N).

Claim 3.6. Jwfo(N) ⊆ N .

Proof of Claim 3.6. Let (∃u)Φ(u, v, w), where Φ is a Σ0 formula, be the
uniform Σ1 definition of the graph of the function α 7→ Jα. It is immediate from
the Σ0-preservation of the maps πn,∞ and the definition of direct limit that for
all N -ordinals α, there is a unique Nα ε N so that N |= (∃u)Φ(u, α,Nα).
We argue by induction that for α < wfo(N) we have Nα = Jα. This is clear

for successors, using the fact that Jα+1 is the rudimentary closure of Jα ∪ {Jα},
since rudimentary functions are Σ0-definable.
For limit λ, let n be sufficiently large that there is λ̄ ∈ Jαn with πn,∞(λ̄) = λ.

Then by Σ0-preservation of πn, we must have πn,∞(Jλ̄) = Nλ, and so

N |= Nλ =
⋃

{z ∈ Nλ | (∃x ∈ Nλ)Φ(x, α, z)}

Thus by inductive hypothesis, we must have Nλ =
⋃
α<λ Jα = Jλ. ⊣

Claim 3.7. θ ≤ wfo(N).

Proof of Claim 3.7. We have already shown κ ∈ wfo(N). Suppose towards
a contradiction that wfo(N) < θ. By minimality of θ, there must be a tree
S ∈ Jwfo(N) on κ that is wellfounded, but has rank greater than Jwfo(N). By the

previous claim, this S belongs to N . Let n be sufficiently large that S = πn,∞(S̄)
for some tree on κn in Jαn . Then by the rules of the game tree T , there is a
ranking function ρ̄ for πn(S̄) ∈ Jαn+1

. By Σ0-preservation of the direct limit

map, we have S = πn,∞(S̄) is ranked by the map ρ = πn+1,∞(ρ̄) in N . Now let
x ∈ S be a node with ρ(s) = wfo(N). Then wfo(N) = ρ”Ts, which must belong
to N by Σ0 elementarity; but this contradicts the definition of wfo(N) as the
least ordinal not in N . ⊣

Claim 3.8. wfo(N) ≤ θ.

Proof of Claim 3.8. Otherwise, we would have θ = πn,∞(θ̄) for some n
and θ̄ < αn. But then Lθ ⊆ N combined with Σ0-elementarity implies Lθ̄
satisfies the defining properties of Lθ, i.e. Lθ̄ |= “κn is the largest cardinal, is
uncountable, ψ(κn) holds, and all wellfounded trees on κn are ranked”. But
θ̄ < θ, contradicting minimality. ⊣

The only remaining possibility is wfo(N) = θ.

Claim 3.9. N is wellfounded.

Proof of Claim 3.9. Suppose towards a contradiction that N is illfounded.
By the previous two claims, wfo(N) = θ. Fix a nonstandard ordinal b ε N .
Working in (Lb)

N , consider the map F : ω → θ defined in the proof of The-
orem 2.3. Recall F was cofinal in θ and ∆1({κ})-definable over Lθ; moreover,
since (Lb)

N is an end-extension of Lθ, this map is computed correctly in (Lb)
N ,

and so F ε (Lb+1)
N . But then θ = supF”ω ε N , a contradiction. ⊣
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So N is wellfounded. But it is easy to argue that N is a model of (∀x)(∃β)x ∈
Jβ , from which we conclude that N = Lθ by the proof of Claim 3.6. Now notice
that since Jθ is obtained as the direct limit of the Jαn under Σ0-preserving
embeddings, and since all of the Jαn agree as to the truth value of the Σ1

statements ϕi(κn), we have that j = 0 iff N = Jθ |= ϕi(κ). ⊣

This completes the proof of Lemma 3.4, and by the remarks preceding, we have
proved Theorem 3.2. ⊣

§4. Separation results in typed theories. The previous section proved
separation results in the context of weak fragments of set theory with a largest
cardinal κ. We now carry these over to the setting of set theories with proper
classes.
We regard these theories as formulated in a language with two typed variables.

For background on von Neumann-Bernays-Gödel set theory (NBG), the reader
may consult Mendelson’s text [9]; Jech’s book [6] has a listing of the axioms.
Our models of NBG will have the form (V,∈, C), so that V is the universe of
sets and C is the collection of subclasses of V . The theory of games on proper
class-sized trees is developed in NBG in the natural way; see [3] for details.

Theorem 4.1. Assume there is a wellfounded model of ZF−+“(∃κ)κ is inac-
cessible”. Then there is a model of NBG in which clopen determinacy for proper
class games holds, while open determinacy for class games fails.

Obviously there are weaker assumptions which suffice, but this is at least a
natural one.

Proof. Let ψ be the formula

(∀α < κ)(∃µ < κ)α < µ ∧ Lκ |= µ is a cardinal.

This is a Π1 formula in parameter κ, and clearly ifM |= ZF
−+“λ is inaccessible”,

we have M |= ψ(λ). Condensation arguments imply that θψ (Definition 2.1)
exists; as before, let κ be the largest cardinal of Lθ = Lθψ . Since Lθψ contains
no bounded subsets of κ not in Lκ, we have that κ is inaccessible in Lθ.
We have an obvious way of regarding Lθ as a model of NBG. Namely, let

Cθ = P(Lκ) ∩ Lθ, and put Mθ = (Lκ,∈, Cθ). The proper classes of Mθ are
precisely the elements of Cθ \ Lκ. Closure of Lθ under Σ0-Comprehension in
parameters ensures that Mθ satisfies the Class Comprehension schema (since
quantification over sets in Mθ is equivalent to bounded quantification by Lκ).
Note also that any two proper classes of Mθ are in bijection, and Mθ satisfies
the existence of a universal choice function.
Combining Theorems 3.1 and 3.2, we are done. ⊣

Remark 4.2. Working in appropriate strengthenings of NBG, one can develop
a theory of L for proper class wellorders of order-type larger than ON, thus
obtaining what Gitman and Hamkins call a “meta-L structure” LΘ, where Θ
is the supremum of the order-types of proper class well-orders of ON. These
authors ask [3] whether clopen determinacy for class games in NBG is enough to
prove admissibility of this meta-L structure.
We see the answer is no: While theMθ of Theorem 4.1 satisfies clopen determi-

nacy for class games, its meta-L is precisely Lθ, which is inadmissible. However,
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we prove in forthcoming work that clopen determinacy for class games implies
the existence of admissible models of “there is an inaccessible cardinal”, so that
consistency strength-wise, the determinacy assumption is the stronger theory.

Taking ψ(u) to be the formula “all sets in Lu are countable in Lu”, we similarly
obtain the main result of Schweber’s [11] (see that paper for background on the
weak base theory RCA

3
0 for third order arithmetic):

Theorem 4.3. (ω,R∩Lθ, ωR∩Lθ∩Lθ) is a model of RCA3
0 satisfying ∆R

1 -DET,
but not ΣR

1 -DET.

Various other results may be formulated for languages with at least two “top
types” beyond 0, e.g. by letting ψ have the intended meaning “κ = ω5” (7 types)
or “κ = ωω+1” (ω + 2 types), to give those examples mentioned in the abstract.
We just point out that the structures Lθψ always satisfy Σ0-Comprehension, and
so satisfy full Comprehension for formulas whose quantifiers range over objects
of all but the largest type; thus these structures ought to convert to models of
any reasonable base theory in higher order arithmetic.

§5. On Borel class determinacy in Morse-Kelley set theory. Through-
out this section, we let the stratified Borel hierarchy 〈Σ0

α〉α<ω1
of subsets of Xω,

for various sets X , be defined in the natural way, by letting Σ0
1 be the class of

complements of sets of the form [T ] in Xω for trees T on X , and iterating under
countable union and complement.
We answer one further question of Gitman and Hamkins [3], as to whether

Borel determinacy for proper class games is provable in the stronger set theory
Morse-Kelley, or MK (about which see e.g. [9]). As one might expect, the answer
is no: We demonstrate the existence of a proper class game with a Σ0

4 winning
condition which is not provably determined in MK, in close analogy with H.
Friedman’s important result [2] in the context of second order arithmetic.
Thankfully we need not delve into a proof of Friedman’s theorem here, and

may take the following strengthening due to Martin [8] as a black box (we present
a complete proof of the lightface case in [4], pp. 18-19). Here ZF− is ZF with the
Axiom of Power Set dropped.

Theorem 5.1 (Friedman, Martin). Let z be a real, and suppose β is minimal
so that Lβ [z] is a model of ZF− + V=L[z]; then there is a Σ0

4(z) game for which
no winning strategy belongs to Lβ[z].

Theorem 5.2. Suppose there is a transitive set model of ZF
− + (∃κ)“κ is

inaccessible”. Then there is a sequence of class trees, 〈Ti,j,k〉i,j,k∈ω, definable by
a quantifier-free formula with no parameters, so that

⋃
i∈ω

⋂
j∈ω

⋃
k∈ω[Ti,j,k] is

the payoff class of a game whose determinacy cannot be proved in MK.

Proof. Let κ be the least so that some β > κ exists such that Lβ |= ZF
−+“κ

is inaccessible.” As before, the theorem is proved by reinterpreting this set
model as a two-sorted model M = (Lκ,∈,P(Lκ) ∩ Lβ). Note that this time,
we have that the full Class Comprehension schema (allowing formulae with class
quantifiers) holds in M , because Lβ is a model of the stronger theory ZF

−.
The result is more or less immediate from the following:
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Theorem 5.3 (Martin). Let β > κ be the least ordinal above κ so that Lβ |=
ZF

−. Then there is a Σ0
4 game on κ<ω which has no winning strategy in Lβ.

This is Exercise 1.4.5 in Martin’s unpublished determinacy manuscript [8]. For
the reader’s convenience, we offer our solution.

Proof of Theorem 5.3. Regard conditions in the collapse poset Coll(ω, α)
as finite sequences p : n → α. For G Coll(ω, α)-generic, we let zG denote the
collapse real coded by G; more generally, any h : ω → ON induces a prewellorder
zh of |p| ∈ ω.
For the rest of the proof, fix G Coll(ω, κ)-generic over Lβ. Then Lβ[G] is

the minimal transitive model of ZF− containing the real zG. By Theorem 5.1,
Σ0

4(zG) determinacy fails in Lβ[G]. So let

AG := {x ∈ ωω | ∃i∀j∃k∀nϕ(i, j, k, x↾n, zG↾n)},

where ϕ is a recursive condition, be a Σ0
4(zG) set witnessing this failure.

Working in Lβ, define a game on κ<ω × ω (easily converted to one on κ via
tuple coding) as follows: Moves in the game are pairs 〈p, x〉 where p ∈ Coll(ω, κ)
and x ∈ ω. The players must maintain pn+1 � pn for all i. Player I wins if the
infinite play 〈h, x〉 := 〈

⋃
n pn, 〈xn〉n∈ω〉 satisfies

∃i∀j∃k∀nϕ(i, j, k, x↾n, zh↾n).

This clearly defines a Σ0
4 subset of κω.

We claim there is no winning strategy in this game in Lβ. Suppose without
loss of generality that σ is a winning strategy for Player I. We will obtain a
contradiction by converting this winning strategy to one in Lβ [G] = Lβ[zG] that
wins the game on ω with payoff AG.

Claim 5.4. Suppose s = 〈p0, x0, . . . pn, xn〉 is a position reachable by σ where
Player I has moved last, and k ∈ ω; then the set

D〈s,x〉 = {q | (∃p)σ(〈p0, x0, . . . , pn, xn, p, xn+1〉) = 〈q, l〉 for some l ∈ ω}

is dense in Coll(ω, κ) below pn.

Proof. This is immediate: any pair 〈p, k〉 with p � pn constitutes a legal
move for Player II, and σ must reply with q ≤ p. ⊣

Now in Lβ [G], it is now easy to describe a strategy for Player I to win the
game with payoff AG: copy the moves in the game on ω to one in the game on
κ<ω × ω, and use Claim 5.4 to attribute moves p2n+1 to Player II.
In more detail, assume inductively that we have reached a position 〈x0, . . . , x2n〉

in the game on ω, so that some position s = 〈xi, pi〉i<2n+1 in the larger game is
according to σ, and p2n ∈ G. We respond to Player II’s next move x2n+1 using
the Claim to find p2n+1 ∈ D〈s,x2n+1〉∩G; then σ makes a reply p2n+2, x2n+2 with
p2n+2 ∈ G, and the construction continues.
Thus any play x ∈ ωω according to the strategy we have described may be

copied to a play 〈G, x〉 compatible with σ. Since σ is a winning strategy for
Player I, we must have x ∈ AG. But the strategy we have described is clearly
definable in Lβ[G], which completes the contradiction. ⊣
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We finish by defining S to be the class of sequences of pairs recording, in
an increasing fashion, a potential result of a partial play in the game from the
previous proof (recall κ = ONM ), and setting

Ti,j,k = {s ∈ S | (∀n < |s|)ϕ(i, j, k, sn(0), sn(1))}.

This completes the proof of Theorem 5.2. ⊣

Thus Borel class games need not be determined in MK. We can say a bit more:
Friedman’s level-by-level analysis of the strength of Borel determinacy beyond
Σ0

4 likewise may be applied to the setting of proper class games, by starting
with a model with an inaccessible κ in which Vκ+α exists and collapsing κ to be
countable. We have:

Theorem 5.5. Work in ZFC, and assume there is an inaccessible cardinal.
Let α < ω1. Then there is a transitive model M of ZF−+“There is an inacces-
sible cardinal κ such that Vκ+α exists, and Σ0

1+α+3 determinacy for games on κ
fails.”

Regarding (VMκ ,∈,P(VMκ ) ∩ M) as an MK-model, we obtain the expected
hierarchy of strength:

Theorem 5.6. Over MK, Σ0
α determinacy for class games does not imply Σ0

β

determinacy for class games, whenever α < β.

Sharper results are possible. In the case of Σ0
1+α+3 games on ω, the author

has obtained equivalences between determinacy principles and the existence of
countable wellfounded models of fragments of set theory; this was the setting in
which the relevance of the models Lθ was first made apparent. For example,

Theorem 5.7 ([4]). In Π1
1-CA0, Σ

0
4 determinacy (for games on ω) is equiva-

lent to the existence of a θ so that Lθ |= “ω1 exists, and all wellfounded trees on
ω1 are ranked.”

The results of this section suggest that these proofs may be uniformly translat-
able from the setting of second order arithmetic to that of Morse-Kelley set the-
ory; once the theory of “meta-L” has been developed for proper class wellorders
of ordertype Γ > ON so that LΓ makes sense, it is only necessary to check that
the arguments in the style of Friedman and Martin in [4] go through. We believe
the following (appropriately formalized) is provable in MK:

Conjecture 5.8. The determinacy of all Borel proper class games is equiva-
lent to the existence, for each class A and countable ordinal α, of a class coding
a model LΘ[A] |= ZF

− + “VON+α exists.”
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