
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
3
3
8
8
2

|

d
o
w
n
l
o
a
d
e
d
:

2
6
.
4
.
2
0
2
4

A flexible type system for the small Veblen
ordinal

Florian Ranzi∗ Thomas Strahm∗∗

October 21, 2018

Abstract
We introduce and analyze two theories for typed (accessible part) inductive definitions
and establish their proof-theoretic ordinal to be the small Veblen ordinal ϑΩω. We inves-
tigate on the one hand the applicative theory FIT of functions, (accessible part) inductive
definitions, and types. It includes a simple type structure and is a natural generalization
of S. Feferman’s system QL(F0-IRN). On the other hand, we investigate the arithmetical
theory TID of typed (accessible part) inductive definitions, a natural subsystem of ID1,
and carry out a wellordering proof within TID that makes use of fundamental sequences
for ordinal notations in an ordinal notation system based on the finitary Veblen functions.
The essential properties for describing the ordinal notation system are worked out.
Keywords: Proof theory, inductive definitions, applicative theories, small Veblen ordinal,
finitary Veblen functions, metapredicativity, higher types, subsystems of second-order
arithmetic.

1. Introduction

In [Fef92], S. Feferman introduced a two-sorted quantificational logic and showed that it has
the same strength as (Skolem’s system of) primitive recursive arithmetic. The characteristics
of this two-sorted quantificational logic are that it is an applicative theory augmented by type
variables as the second sort and with a refined notion of comprehension terms, so-called type
and function terms. In particular, this theory embodies a rule (F0-IRN) that is called the
function-induction rule on N (where N is interpreted as the type for the natural numbers).
It was shown to be closed under a strengthening of this rule to finitary inductively generated
types I, called (F0-IRI).
This kind of theory strongly influenced the shape of our applicative theory FIT that we

are going to introduce in this article. Our motivation to examine the theory in [Fef92] was
to find a natural theory for carrying out metapredicative1 wellordering proofs in the spirit of
∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern,
Switzerland. Research supported by the Swiss National Science Foundation.

∗∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern,
Switzerland. Email: strahm@inf.unibe.ch. Homepage: http://www.inf.unibe.ch/ s̃trahm.

1The notion metapredicativity is meant in general for the approach to use proof-theoretic methods from the
realm of predicative proof-theory instead of impredicative methods. In particular for wellordering proofs,
we aim to avoid the use of so-called collapsing functions. We refer to [Str99] or [JKSS99]. For further
reading on metapredicativity, we refer to [Jäg05] and [JS05].

1

higher type functionals for ordinals. It seemed to provide a suitable environment for doing
so. But soon, we realized that aside from this, the theory gave rise to the question of what
consequence a function-induction rule for infinitary inductively generated types would have
on the one side and to the idea of implementing the wellordering proofs through accessible
part inductive definitions on the other side (having in mind our desire for metapredicative
wellordering proofs). Hence, we tackle this question on infinitary inductively generated types
only for inductively generated types that correspond to the (inductively defined) accessible
part IP,Q for a (binary) relation Q on a domain P. In fact, our methods implicitly suggest that
we get the same result for the variant where we allow for general inductively generated types.

FIT stands for “theory for function(al)s, non-iterated inductive definitions, and types (of level
1)”, and it represents the first step for a generalization of the theory in [Fef92] which turns out
to have the small Veblen ordinal as measure for its proof-theoretic strength, i.e., ϑΩω when
using the terminology of [RW93]. Theories that have ϑΩω as proof-theoretic strength are for
instance Π1

2-BI0 from [RW93] or more recently RCA0 + (Π1
1(Π0

3)-CA0)− from [VRW17]. While
these theories are analyzed by impredicative proof-theoretic methods, our treatment of FIT uses
metapredicative methods for the lower bound. For the upper bound, we use an embedding into
Π1

3-RFN0 and get a desired upper bound result in the realm of metapredicative proof-theory
due to D. Probst’s modular ordinal analysis from [Pro17] that determines by metapredicative
methods the proof-theoretic ordinal of various theories with strength below (and reaching to)
the Bachmann-Howard ordinal ϑεΩ+1. One of these theories is Π1

3-RFN0 (which is denoted by
p3(ACA0) in [Pro17]) and determined to have the proof-theoretic strength of the small Veblen
ordinal. Furthermore, we mention the system KPi0+(Π3-Ref) from [JS05] which is also related
to Π1

3-RFN0. In particular, [JS05] explains how the proof-theoretic strength of KPi0 +(Π3-Ref)
can be determined to be ϑΩω by metapredicative methods.

Results on the Theory FIT

We now explain the methods used in this article for the ordinal analysis of FIT. First, we
shall consider a canonical implementation of FIT as a subsystem of ID1 (while the latter is an
arithmetical first-order theory for non-iterated general inductive definitions, see [BFPS81]) in
which metapredicative wellordering proofs can be carried out in a perspicuous way and where
the interpretation back into FIT is straight-forward. This subsystem of ID1 is called TID for
“theory of typed (accessible part) inductive definitions (of level 1)” and essentially arises from
ID1 by restricting to accessible part inductive definitions and adapting the closure axioms, its
induction scheme on the natural numbers, and its generalized induction scheme (ID) to (the
translation of) the function types of FIT, akin to the restriction of ID1 to the theory ID∗1�
from [Pro06].
For the (proof-theoretic) upper bound of FIT (and hence for TID), we shall embed it into

the system Π1
3-RFN0 of second-order arithmetic for Π1

3 ω-model reflection. In order to obtain
the desired upper bound ϑΩω, we shall use the results from [RW93] by impredicative methods,
noting that the (meta)predicative treatment from [Pro17] has not been published yet. Figure 1
depicts the abovementioned approaches accordingly. Furthermore, we give in the conclusion of
this article (Section 8) some remarks on the canonical generalization of TID to a theory TIDf

for general typed inductive definitions with the full range of positive arithmetical operator
forms, leading to the same proof-theoretic strength of TID and TIDf . We refer here also
to [Ran15] for an extension TID+

1 of TID with proof-theoretic ordinal ϑΩΩ, i.e., the large
Veblen ordinal.

2

FIT

motivation
++

embedding
(Section 7)

��

oo embedding
(by Section 4)

TID

wellordering proof
(by Section 6)

��

Π1
3-RFN0

embedding
(by [JS99])

// Π1
2-BI0 upper bound

(by [RW93])
//
�� ��ϑΩω

Figure 1: Strategy to determine the proof-theoretic ordinal ϑΩω of FIT

2. General Notational Framework

We work with three conceptually different kinds of logical frameworks: In Section 3 with
the two-sorted theory FIT (with language LFIT) that is an applicative theory enhanced by
a type system; in Section 4 with the first-order theory TID (with language LTID) that is an
extension of Peano arithmetic PA (with language LPA) by new predicates; and in Section 7
with subsystems of second order arithmetic (with language L2

PA). Hence, we work with up to
two sorts of (countably many) variables and use

a, b, c, d, u, v, w, x, y, z

as syntactic variables for the first sort,

U, V,W,X, Y, Z

as syntactic variables for the second sort, and

=,¬,→,∨,∧,∃, ∀

as basic logical symbols.
Assume for now that the notion of L terms and L formulas has been already introduced

for L being one of the languages LFIT, LTID, LPA, or L2
PA. IF L is clear from the context,

we may drop the reference to L by just using the notions term and formula. We use s, t, r
as syntactic variables for L terms and A,B,C,D,E, F as syntactic variables to denote L
formulas. Literals are atomic L formulas or their negated version. Introducing an L formula
as A(a) means A denotes this formula and that the variable a may occur freely in A. FV(A)
denotes the set of free variables of the first sort of A. We shall use the following notational
conventions that a, b, c, d, u, v, w denote free variables of the first sort within an L formula and
that k, l,m, n, p, q denote variables in our meta-theory, i.e., as ranging there over the natural
numbers. Parentheses may be used to make expressions unambiguous or more readable. We
prefer infix notation rather than prefix notation when dealing with binary function and relation
symbols. For →, we follow the usual convention of right-associativity, e.g., A → B → C
denotes A→ (B → C). We write A↔ B to denote (A→ B) ∧ (B → A). Moreover, ∧ binds
stronger than →.

3

Vector Notations

If ∗ denotes one of the syntactic variables that will be introduced in this article, then we allow
the usual annotations such as ∗′, ∗̃, or subscripts ∗i (for i ∈ N, i.e., for natural numbers i).
For subscripts, we also use the vector notation ~∗ to denote lists of the form ∗1, . . . , ∗n for

some n ∈ N. Moreover, when working with ordinal notations based on the finitary Veblen
functions, the following notation will come in handy. We write

∗̄(n)

for n ∈ N to denote the list ∗1, . . . , ∗n, and we may write ∗̄(k) for any k ∈ N in order to denote
∗1, . . . , ∗min(k,n). In rare cases we write for specific constants c (e.g., for 0) the expression c̄(n)

to denote the list c, . . . , c of length n, and hence we read ~c analogously. If n = 0, then ∗̄(n)

and ~∗ denote the empty list.
Applications of all these notations will be obvious, following common conventions—for in-

stance ∀x̄(3)A shall abbreviate ∀x1∀x2∀x3A as usual, and ∀~xA is just A if ~x is the empty list.
Also when writing f t̄(n) for a list of terms t̄(n) and an n-ary function symbol f , it is usually
meant to abbreviate ft1 . . . tn rather than ft1, . . . , tn.

Class Terms and Substitution

L class terms are objects of the form

Λa.A

for any L formula A and we use A,B, C,D as syntactic variables for L class terms. Sometimes,
class terms are also called comprehension terms, and we do not use the more common notations
{a : A} or λa.A because these notions are already reserved in our setting of the applicative
theory FIT.
Substitution of a variable a in an L formula A by an L term t is denoted by A(t/a) and

Aa(t), or just by A(t) in case A has been introduced in the form A(a), and as usual we assume
(if necessary) an appropriate renaming of bound variables in A to avoid a clash of bound
variables. Then for A being Λa.A, we set

A(t) := t ∈ A := A(t/a)

for any L term t and write ambiguouslyA ∈ L to stress thatA is an L class term. Moreover, we
also extend this to lists of variables ~a = a1, . . . , an and have objects of the form Λa1. . . .Λan.A
or Λ~a.A for short with (Λ~a.A)(~t) := A(~t/~a) for terms ~t = t1, . . . , tn and where A(~t/~a) is
obtained by simultaneously replacing in A all free occurrences of the variables ~a by ~t, while
renaming bound variables may be necessary to avoid a clash of variables. Analogously for
k < n, we use (Λā(n).A)(t̄(k)) to denote Λak+1. . . .Λan.(A(t̄(k)/ā(k))) while tacitly assuming a
reasonable variable-renaming to avoid clashes of variables.
In case that L also embodies variables X,Y, Z of the second sort, we mean by substitution

of a variable X in an L formula A by an L class term B the expression A(B/X) which is
obtained from A by substituting any atomic formula Xt with B(t) while a renaming of bound
variables may be necessary as usual. If A has been introduced in the form A(X), we may also
just write A(B) for A(B/X).

4

In case R is a unary relation symbol in L or a second sort variable, we also define A(R/X) :=
A(B/X) for B := Λa.Ra. Furthermore, if A is an L class term Λa.A, then we set A(B/X) :=
Λa.A(B/X). Accordingly, we let substitution for number variables be defined by Az(t) :=
A(t/z) := Λa.A(t/z) assuming a renaming of the variable a in case of clashes of variables.

3. The Theory FIT for Functions, Inductive Definitions, and
Types

We introduce a basic language that is needed for the applicative part of FIT before defining
the full language LFIT in Subsection 3.1.

Definition 3.1. The following basic language of FIT is based on a first sort of variables called
individual variables and a second sort variables called type variables.

(a) Constants of the first sort:

k, s, p, p0, p1, 0, sN, pN, dN, denoting the usual applicative constants.

(b) Constants of the second sort:

N,N,U, for the natural numbers, its complement, and a symbol without further inter-
pretation but needed for proof-theoretic investigations.

(c) Relation symbols of the first sort:

=, ↓, denoting equality and definedness for individual terms2.

(d) Further symbols:

·,∈, denoting a binary function symbol for first sort term application and a binary
relation symbol between individual terms and types3.

Definition 3.2. Individual terms s, t, r are defined inductively from individual variables and
constants by use of the binary function symbol · as usual.

Definition 3.3. The following notions and abbreviations will serve as basic applicative tools.

(a) t′ := sNt and 1 := 0′.

(b) st1 . . . tn or also s(t1, . . . , tn) denotes term application on n inputs and is defined recur-
sively on n ≥ 0 as s for n = 0 and (s · t1)t2 . . . tn otherwise.

(c) 〈s0, . . . , sn−1〉FIT denotes general n-tupling and is defined recursively on n ≥ 0 as 0 if
n = 0 and ps0〈s1, . . . , sn−1〉FIT otherwise. Write also 〈s0, . . . , sn−1〉 if the meaning is
clear from the context (e.g., in the proof of Lemma 4.23).

(d) (s)FITn denotes n-th projection and is defined recursively on n ≥ 0 as p0s if n = 0 and
(p1s)

FIT
n−1 otherwise. Write also (s)n if the meaning is clear from the context.

(e) λx.t denotes lambda abstraction of a variable x on a term t and is defined in the usual
way by making use of the combinators s and k, while λx.t does not contain the variable x.
In general, λ~x.t for a list of variables ~x = x1, . . . , xn denotes recursively λx1.(λx2 . . . xn.t)
if n > 0 and t otherwise. See [Ran15, Definition 5.3.(e)] for details.

2Individual terms will be defined in Definition 3.2
3Types will be defined in Definition 3.4.

5

3.1. Syntax of FIT

Definition 3.4. The language LFIT is defined simultaneously and inductively with the notions
for formulas (For), positive formulas (For+), types (Ty), restricted types (Ty�), and terms of
the second sort :

(a) LFIT extends the basic language from Definition 3.1 by the following new (syntactically
different) kinds of terms of the second sort while demanding A ∈ For+ and P,Q ∈ Ty�:

{x : A} and IP,Q

(b) For denotes the collection of formulas A,B,C,D, which consists of the expressions

t ∈ P t ∈ U t↓ s = t

¬A A→ B A ∨B A ∧B ∃xA ∀xA ∃XA ∀XA

and we demand here P ∈ Ty. We sometimes write A ∈ LFIT ambiguously for A ∈ For.

(c) For+ denotes the collection of positive (elementary) formulas, i.e., A ∈ For such that

• quantifications of type variables do not occur and

• expressions of the form t ∈ P for types P ∈ Ty occur at most positively.4

(d) Ty denotes the collection of types P,Q,R (also called positive types), i.e., expressions

X,Y, Z, . . . (i.e., type variables)

N N {x : A} IP,Q

while demanding A ∈ For+ and P,Q ∈ Ty�. Note that U itself is not treated as a type.

(e) Ty� denotes the collection of restricted types, i.e., types such that

• no type variables and

• no expressions of the form IP,Q occur

Definition 3.5. Let � be a new distinguished symbol in our meta-language. The collection
FT of function types F,G,H denotes objects in the meta-language that are defined inductively
to consist of expressions of the form

(P1 � (. . . (Pn−1 � Pn) . . .))

for any P1, . . . ,Pn ∈ Ty. We let� be right-associative and we write just P1 � . . .Pn−1 � Pn.

Remark 3.6. Note that function types are defined as objects in the meta-language. Within
LFIT formulas, these new expressions will only occur in combination with terms in the form
t ∈ P � F, i.e., as abbreviations for proper LFIT formulas as in Notation 3.8. For remarks
on how to make function types first-class members of LFIT, see [Ran15, Remark 5.10.(b)]
and [Fef92]. Further, we do not need U to be a type because t ∈ U can be obtained from
{x : x ∈ U} and (CA+) in FIT (see Definition 3.10).

4Positive is meant in the usual way: t ∈ P is called positive in A ∈ For if it does not occur in negated form
¬(t ∈ P) in A′, while A′ shall be the translation of A where first each subformula of the form B1 → B2 is
transformed to ¬B1 ∨ B2 and where we then move the negation symbol ¬ next to atomic formulas, while
making use of De Morgan’s laws and the law of double negation.

6

Definition 3.7. The notion of FV(A) is extended to the notion of atomic formulas t ∈ P for
P ∈ Ty recursively in the canonical way as the union of the expressions involved. In particular,
IP′,Q′ is FV(P′) ∪ FV(Q′). With this extension explained, the substitution of individual and
type variables is defined as in Section 2.

Notation 3.8. We have the following abbreviations for some formulas and types:

• s ' t is (s↓ ∨ t↓)→ s = t.

• s 6= t is s↓ ∧ t↓ ∧ ¬(s = t).

• t ∈ P� F is recursively ∀x(x ∈ P→ tx ∈ F).

• Nn+1 � F is recursively N� (Nn � F) where N0 � F is F.

• t 6∈ F is ¬(t ∈ F).

• (∃x ∈ F)B is ∃x(x ∈ F ∧B).

• (∀x ∈ F)B is ∀x(x ∈ F→ B).

• ClP,Q(A) is ∀x(
(
x ∈ P ∧ (∀y ∈ P)(〈y, x〉 ∈ Q→ A(y))

)
→ A(x)).

We assume as usual for such notational abbreviations that x, y are supposed to not occur
in A, P, and Q. This shall hold analogously for similar such abbreviations for formulas.

• A(F/X) for the formula obtained by substituting any occurrence of t ∈ X in A by t ∈ F.

3.2. The Theory FIT

Definition 3.9. The logic of FIT is a two-sorted logic whose first-order part (i.e., for individual
variables) is based on the classical logic of partial terms LPT due to Beeson [Bee85]:

• Propositional axioms and rules. The usual propositional axioms and rules, based
on some sound Hilbert calculus for classical propositional logic.

• Quantificational logic for the first sort. For A being an LFIT formula and t an
individual term, we have

(∀xA ∧ t↓)→ A(t/x) (A(t/x) ∧ t↓)→ ∃xA

and for A,B being LFIT formulas and x 6∈ FV(A), we have the following figures:

A→ B
A→ ∀xB

B → A
∃xB → A

• Quantificational logic for the second sort. For A,B being LFIT formulas and P a
type, we have

∀XA→ A(P/X) A(P/X)→ ∃XA

and for A,B being LFIT formulas and X not occurring free in A, we have the following
figures:

A→ B
A→ ∀XB

B → A
∃XB → A

7

• Equality axioms.

x = x (x1 = y1 ∧ . . . ∧ xn = yn ∧A)→ (. . . (A(y1/x1)) . . . (yn/xn))

• Definedness axioms. For constants c of the first sort of LFIT, types P, and individual
terms t, we have

c↓ ∧ x↓ (st)↓ → (s↓ ∧ t↓) s = t→ (s↓ ∧ t↓) t ∈ P→ t↓ t ∈ U→ t↓

Writing ` A for any LFIT formula A denotes the derivability of A in the logic of FIT.

Definition 3.10. FIT is the two-sorted applicative theory based on the logic of partial terms
LPT (and on [Fef92]). Its non-logical axioms are as follows:
I. Applicative axioms.
I.1. Partial combinatory algebra.

kxy = x sxy↓ ∧ sxyz ' (xz)(yz)

I.2. Pairing and projection.

p0(pxy) = x ∧ p1(pxy) = y

I.3. Definition by numerical cases.

x ∈ N ∧ y ∈ N ∧ x = y → dNz1z2xy = z1 x ∈ N ∧ y ∈ N ∧ x 6= y → dNz1z2xy = z2

I.4. Axioms about N and N.

0 ∈ N ∧ (x ∈ N→ x′ ∈ N) x ∈ N→ (x′ 6= 0 ∧ pN(x′) = x)

(x ∈ N ∧ x 6= 0)→ (pNx ∈ N ∧ (pNx)′ = x) x ∈ N↔ x 6∈ N

II. Induction on N for F ∈ FT.

(FT-Ind) t0 ∈ F ∧ (∀x ∈ N)(tx ∈ F→ tx′ ∈ F)→ t ∈ (N� F)

III. Positive comprehension for A ∈ For+.

(CA+) y ∈ {x : A} ↔ A(y/x)

IV. Axioms about IP,Q for F ∈ FT and P,Q ∈ Ty�.

(FT-Cl) ClP,Q(Λz.z ∈ IP,Q) (FT-ID) ClP,Q(Λz.tz ∈ F)→ t ∈ (IP,Q � F)

Writing FIT ` A for any LFIT formula A denotes the derivability of A from these axioms in
the logic of FIT given in Definition 3.9.

Lemma 3.11.

(a) Lambda abstraction: For all LFIT terms t, s and ~s = s1, . . . , sn, and all individual vari-
ables y and ~x = x1, . . . , xn with y 6∈ {x1, . . . , xn}, we have the following:

1. FIT ` (λ~x.t)↓ ∧ (λ~x.t)~x ' t.

8

2. FIT ` (s1↓ ∧ . . . ∧ sn↓)→ (λ~x.t)~s ' t(~s/~x).

3. FIT ` (λ~x.t)(s/y)x ' (λ~x.t(s/y))x.

(b) Fixed-point: There exists a closed term fix such that FIT ` fixy↓ ∧ fixyx ' y(fixy)x holds
for all number variables x, y.

(c) Pairs and tupling: For all LFIT variables x0, . . . , xn and each 0 ≤ i ≤ n, we have
FIT ` (s0↓ ∧ . . . ∧ sn↓)→ (〈s0, . . . , sn〉)i = si.

Proof. The applicative part of FIT corresponds to the standard axioms and constants that
appear in applicative theories. For details on (a) and (b), see for instance [Fef79]. In particular
for (c), we remark that this follows easily from the axioms of FIT, in particular by making use
of I.2. from Definition 3.10 and the definedness axioms.

3.3. Informal Interpretation of FIT

Since FIT directly evolved from Feferman’s theory QL(F0-IRN), we refer for a thorough moti-
vation and informal interpretation of FIT to [Fef92, Sections 2 and 5]. Moreover, the special
constant U can be interpreted as a subset of the natural numbers, having no further interpre-
tation. It is needed for proof-theoretic investigations.
Regarding the definition of axiom (FT-ID), we can motivate this as an induction principle

with respect to the totality notion of a (type 1) function, while noting hereby the restriction
F ∈ FT in the definition of (FT-ID). The restriction P,Q ∈ Ty� can be seen as accounting for
non-iterated inductive definitions.

4. The Theory TID for Typed Inductive Definitions

FIT is a natural theory for specifying the behaviour of an applicative term t by use of types,
say by a function type P1 � . . . � Pn+1 that consists of types. For checking this behaviour,
we have the axiom schemes (FT-Ind) and (FT-ID) at hand. The latter allows the discussion
of the behaviour of an operation t that acts on the inductively defined accessible part of a
given binary relation (e.g., if P1 is IP,Q in the example above). This gives an idea for the
following definition of the theory TID for typed inductive definitions as a subtheory of ID1.
Before turning to the definition of TID, we introduce basic notions that we are going to use
in combination with arithmetical theories.

Definition 4.1. LPA is the first-order language of Peano arithmetic with just one sort of
variables x, referred to as (number) variables, a unary relation symbol U (without further
interpretation and that is needed for proof-theoretic investigations), a symbol = for equality,
function symbols for all primitive recursive functions (and we denote by PRn the collection
of those function symbols that have arity n ∈ N). Moreover, LPA contains for each function
symbol f ∈ PRn with n 6= 0 also relation symbols Rf of arity n. Let PR :=

⋃
n∈N PRn and

see [Ran15, Definition 1.1.] for more details.
The relation symbols Rf in LPA are needed for technical reasons to ease the embedding

from TID into FIT in Section 4.2 (cf., Remark 4.20).

Definition 4.2. The language L2
PA denotes the language of second-order arithmetic, i.e., the

extension of LPA by a second sort of variables X, referred to as set variables or just sets.

9

Definition 4.3. The usual operations on the natural numbers are denoted as follows: S is
the successor function, 0N is the zero constant, +N is the binary function symbol for addition,
<N is the binary less-than relation. Then, 1N, 2N, . . . abbreviate S0N,S(S0N), . . . as usual. If
the meaning becomes clear from the context, we may drop the subscript N. Moreover, s ≤ t
is used in the obvious way to denote s < t ∨ s = t.
〈t1, . . . , tk〉 denotes for any k ∈ N and terms t1, . . . , tk the result of 〈〉k(t1, . . . , tk), while
〈〉k shall be the k-ary function symbol in LPA corresponding to one of the the usual primitive
recursive injective functions Nk → N for mapping finite lists of natural numbers of length k
into the natural numbers.
Usual primitive recursive functions for projection (m,n) 7→ (m)n, list construction (m,n) 7→

cons(m,n), list concatenation (m,n) 7→ m ∗ n, and for computing the length n 7→ lh(n)
of a list shall be used ambiguously to denote the application of its corresponding function
symbol in LPA to terms. In particular, we have: 〈n1, . . . , nk〉 = 0 if and only if k = 0.
If n 6= 0 holds, then there is exactly one k 6= 0 and natural numbers n1, . . . , nk such that
n = 〈n1, . . . , nk〉 holds. For each i < lh(n), we have (n)i < n. For each 0 ≤ i ≤ k, we have
(〈n0, . . . , nk〉)i = ni. We have also lh(〈n1, . . . , nk〉) = k, cons(n, 〈n1, . . . , nk〉) = 〈n, n1, . . . , nk〉,
and 〈n1, . . . , nk〉 ∗ 〈m1, . . . ,ml〉 = 〈n1, . . . , nk,m1, . . . ,ml〉.

Convention 4.4. L will denote in the following either L2
PA or any extension of LPA by new

relation symbols. We will introduce common notions for such languages L.

Definition 4.5. L terms s, t, r are defined as usual inductively from function symbols and
number variables. Since in this section L extends LPA only by relation symbols or variables
of the second sort, all such terms are LPA terms. A constant is a nullary function symbol.
If f is an n-ary function symbol of LPA and ~t = t1, . . . , tn is a list of terms, then we set
f(~t) := f(t1, . . . , tn) := f~t := ft1 . . . tn and this holds analogously for lists introduced by the
t̄(n) notation. For closed terms t, we mean by tN the numerical value of t, i.e., the canonical
valuation of t in the standard model N.

Definition 4.6. L formulas are defined inductively as usual by use of parentheses and the
basic logical symbols and we write ambiguously A ∈ L to stress that A is an L formula. For
terms s, t, we may sometimes write s 6= t for ¬(s = t). Atomic L formulas are equations s = t
and formulas Rt1 . . . tn, while R ∈ L is an n-ary relation symbol and t1, . . . , tn are terms.
For the case that L is L2

PA, then also Xt is an atomic formula for any set variable X and
term t. L2

PA formulas further allow for quantification over set variables and we call an L2
PA

formula arithmetical if it does not contain such a quantification (but set variables may still
occur).
For n-ary relation symbols or set variables R of L, a formula A is positive in R if it occurs

only positively in the usual sense, i.e., no atomic formula of the form R(t1, . . . , tn) occurs
negated in the formula which is obtained from A by translating first each subformula of the
form B1 → B2 to ¬B1∨B2 and where we then move every negation symbol ¬ towards atomic
formulas, while making use of De Morgan’s laws and the law of double negation.5

Definition 4.7.

(a) For any language L that is L2
PA or (possibly) extends LPA by new relation or function

symbols, a standard derivability notion ` shall be given that is based on a Hilbert-style

5Compare this definition of positive formula with the definition of For+ in the setting of FIT.

10

deduction system for classical logic with equality axioms (in the first sort). In particular
for L2

PA, we assume besides modus ponens the usual axioms and rules for quantification
over set variables.

(b) We write ` A for any A ∈ L to denote the derivability of A in this logic. Moreover, if
T is a theory (i.e., a collection of non-logical axioms) with language LT, then writing
T ` A for any A ∈ LT denotes the derivability of A from the axioms of T and this logic.
For any set of formulas Γ, we write ` Γ and T ` Γ in order to denote that ` A and T ` A
hold, respectively, for each A ∈ Γ.

Notation 4.8. For an n-ary relation symbol R with n ≥ 1 and ~t = t1 . . . tn, we write R(~t)
for Rt1 . . . tn. and if n = 1, we also introduce the following notation: t ∈ R := Rt and
t 6∈ R := ¬Rt. Then (∀x ∈ R)A and (∃x ∈ R)A stand for ∀x(R(x) → A) and ∃x(R(x) ∧ A),
respectively. These conventions shall hold analogously also for set variables X. If C is a binary
relation symbol, we use expressions (∀xC t)A and (∃xC t)A to abbreviate ∀x(xC t→ A) and
∃x(xC t ∧A), respectively.

Definition 4.9. The first-order theory PA is based on the language LPA and its non-logical
axioms are the usual axioms of Peano arithmetic with complete induction, while for each
relation symbol Rf that stems from a function symbol f of arity n ≥ 1, we have for ~x =
x1, . . . , xn the axiom ∀~x(Rf~x↔ f~x = 0). There is no non-logical axiom for the unary relation
symbol U (besides in an instance of complete induction).

Definition 4.10. (Arithmetical) operator forms are objects of the form

ΛX.A

for L2
PA class terms of the form A = Λx.A such that A is an arithmetical formula with X

being the only set variable that may occur in it (compare also with Section 2) and x is the
only free number variable that may occur in it.6 Note that the unary relation symbol U may
occur in A. We use A,B,C,D as syntactic variables for operator forms. For each L class
terms B, we set (ΛX.A)(B) := A(B/X) while note that the expression A(B/X) may yield an
L formula here. We write A(R) to denote A(Λx.Rx) when R is a unary relation symbol in L
or a set variable. Positive operator forms are operator forms A := ΛX.Λx.A where X occurs
only positively in A.

Notation 4.11. We have the following abbreviations for some formulas and operator forms:

• ClA(A) := ∀x(A(A, x)→ A(x)) for each operator form A and L class term A.

and for a binary relation symbol C in LPA and any class term A, we also have

• AccC := ΛX.Λx.∀y C x(Xy),

• ProgC(A) := ClC(A) := ClAccC(A),

• TIC := ΛX.Λx.(ProgC(X)→ ∀y C x(Xy)), and

Note that we shall usually write ProgC instead of ClC. If C is clear from the context, we may
just write Acc, Cl, Prog, and TI instead of AccC, ClC, ProgC, and TIC, respectively.

6Recall that A := ΛX.Λx.A is intended to define an operator ΦA : P(N)→ P(N) where A(X,x) corresponds
to “x ∈ ΦA(X)” for some interpretation X ⊆ N and x ∈ N of x and X.

11

4.1. The Accessible Part Theory TID

Definition 4.12.

(a) For each operator form A, let PA denote a new unary relation symbol not in LPA. Then,
PC abbreviates PAccC for any binary relation symbol C in LPA.

(b) LTID := LPA ∪ {PC : C is a binary relation symbol in LPA} defines the language of TID.

Definition 4.13. Pos0 denotes the collection of formulas A ∈ LTID such that PC occurs at
most positively in A for any binary relation symbol C in LPA. Then define Pos1(a) for any
number variable a as the collection of LTID formulas A such that one of the following cases
holds:

• A ∈ Pos0 or

• A = ∀~x(B1 → B2) for a 6∈ FV(B1) and B1, B2 ∈ Pos0,

while ~x is a (possibly empty) list of variables. This is motivated by FT from the setting of FIT.
We write Λa.A ∈ Pos1 in order to denote A ∈ Pos1(a).7 Let Neg0 := {A ∈ LTID : ¬A ∈ Pos0}.

Remark 4.14. The variable condition a 6∈ FV(B1) in the definition of Pos1(a) is not necessary
(see [Ran15, Section 8.3]). We keep it for a more direct relationship between TID and FIT.

Definition 4.15. TID arises from the axioms of PA without complete induction by adding
the following axioms and axiom schemes for binary relation symbols C ∈ LPA and B ∈ Pos1:

(Ind) B(0) ∧ ∀x(B(x)→ B(Sx))→ ∀xB(x)

(Cl) ProgC(PC)

(TID) ProgC(B)→ ∀x(PCx→ B(x))

where (Cl) is called closure and (TID) is called typed inductive definition.

Remark 4.16. From (Cl) and (TID), we get a fixed-point principle

(FP) ∀x(PCx↔ AccC(PC, x))

for each binary relation symbol C in LPA. We write (Cl) ambiguously for (FP).

Remark 4.17. Instead of (Ind), we have also a course-of-value variant of complete induction
∀x(∀x0 <N xB(x0)→ B(x))→ ∀xB(x) at hand for all B ∈ Pos1 which we shall tacitly use.

4.2. Embedding TID into FIT

Theorem 4.18. For each n-ary function symbol f ∈ LPA, there is a closed LFIT term prf
such that the following holds:

(a) FIT proves the reformulation of every defining equation of f from PA with respect to prf ,
while interpreting number variables x as individual variables x with x ∈ N.

(b) FIT ` prf ∈ Nn � N.
7As an example, let A := ∀y(PCy → ∀x C a(PCfxy)) for some binary function symbol f in LPA and a a
number variable. Then we have A ∈ Pos1(a) and Λa.A ∈ Pos1.

12

Proof. prf can be obtained by making use of fix from Lemma 3.11.(b) and the induction
principle (FT-Ind). See [Ran15, Section 6.2] for more details.

Definition 4.19. Based on prf from Theorem 4.18, we define for each LPA term t the trans-
lation t• to an LFIT term recursively on the build-up of t: x if t is a variable x, prc if t is a
constant c, and prf t

•
1 . . . t

•
n if t is ft1 . . . tn with f ∈ PRn and n ≥ 1.

The translation on terms is now extended to LTID formulas A. We define the LFIT formula
A• recursively on the build-up of an LTID formula A (and where QC := {〈x, y〉 : (xC y)•}):

(s = t)• := (s• = t•) (Rf t1 . . . tn)• := (prf t
•
1 . . . t

•
n = 0)

(Ut)• := t• ∈ U (PCt)
• := t• ∈ IN,QC

(¬B)• := ¬(B•) (B ◦ C)• := B• ◦ C• (for ◦ ∈ {∨,∧,→})
(∀xB)• := ∀x(x ∈ N ∨B•) (∃xB)• := ∃x(x ∈ N ∧B•)

The expression {〈x, y〉 : (xC y)•} for QC abbreviates the expression {z : z = 〈(z)0, (z)1〉∧ (xC
y)•((z)0/x, (z)1)/y}, i.e., {z : z = 〈(z)0, (z)1〉 ∧Rf (z)0(z)1} where f is such that C is Rf .

Remark 4.20.

(a) Note that we defined A• in case of A being ∀xB in such a way that we can show
that A ∈ For+ implies A• ∈ Pos0 in Lemma 4.21. If we would have defined it to be
∀x(x ∈ N→ B•), then apparently N would occur negatively in A•.

(b) It can be readily checked that A• is indeed a LFIT formula. Moreover, A and A• have
the same free variables. In particular, note that (xC y)•((z)0/x, (z)1)/y} contains only
z as a free variable.

(c) We will use the expression QC without further mentioning in order to denote the type
that we introduced in the definition of (PCt)

•. Recall also that (xCy)• equals prfxy = 0
for some binary function symbol f ∈ LPA because the binary relation symbol C ∈ LPA
is of the form Rf for such an f .

Lemma 4.21.

(a) For each A ∈ Pos0 there exists some A′ ∈ For+ such that FV(A•) = FV(A′) and
FIT ` A• ↔ A′ hold.

(b) For each A ∈ Neg0 there exists some A′ ∈ For+ such that FV(A•) = FV(A′) and
FIT ` A• ↔ ¬A′ hold.

Proof. By simultaneous induction on the build-up of A.

Definition 4.22. For every A ∈ LTID, we define A•N as A• if FV(A) = ∅ and otherwise as
x1 ∈ N→ . . .→ xn ∈ N→ A•, given FV(A) = {x1, . . . , xn} for some n 6= 0.

Lemma 4.23. For each B ∈ Pos1(a), there is an LFIT-term t and a function type F ∈ FT
such that FIT ` ∀x(tx ∈ F↔ B•(x/a)) holds.

Proof. We distinguish the following cases on B ∈ Pos1(a):
1. If B ∈ Pos0, then Lemma 4.21 provides some B′ ∈ For+ such that FIT ` B• ↔ B′ holds,
so for F := {a : B′} we have F ∈ FT. Moreover, with t := λx.x, we get the claim.

13

2. If B is of the form ∀~y(B1 → B2) with a 6∈ FV(B1), ~y = y1, . . . , yn, and B1, B2 ∈ Pos0, we
first get B′1, B′2 ∈ For+ from Lemma 4.21 such that B•i ↔ B′i and FV(B•i) = FV(B′i) holds
for i = 1, 2. Then we set Q1 := {z : z = 〈(z)0, . . . , (z)n−1〉 ∧ B′1((z)0/y1, . . . , (z)n−1/yn)},
Q2 := {z : z = 〈(z)0, . . . , (z)n〉 ∧ B′2((z)n/a, (z)0/y1, . . . , (z)n−1/yn)}, F := Q1 � Q2, and
t := λx, z.〈x, (z)0, . . . , (z)n−1〉. Obviously F ∈ FT holds and then similar as in [Fef92, 6.3],
we have over FIT and for any x that tx ∈ F is equivalent to ∀z(z ∈ Q1 → txz ∈ Q2) which is
equivalent to ∀~y(B•1 → tx〈y1, . . . , yn〉 ∈ Q2) which is equivalent to ∀~y(B•1 → 〈x, y1, . . . , yn〉 ∈
Q2) which is equivalent to ∀~y(B•1 → B•2(x/a)) which is equivalent to B•(x/a). Hence, we
get the claim. Note that n = 0 is possible, so ∀~y(B•1 → tx〈y1, . . . , yn〉 ∈ Q2) denotes then
B•1 → (tx〈〉 ∈ Q2).

Theorem 4.24. If A is an instance of (Ind), (Cl), or (TID), then we have FIT ` A•.

Proof. Let A be an instance of (Ind), (Cl), or (TID). We have to show FIT ` A•.
1. For (Cl): If A = ProgC(PC) holds for some C, then we have that A• is logically equivalent
over FIT to ClN,QC(Λz.z ∈ IN,QC), and this is an instance of (FT-Cl). We have over FIT:(

ProgC(PC)
)•

↔
(
∀x(AccC(PC, x)→ PCx)

)•
↔ ∀x(x ∈ N ∨

(
(AccC(PC, x))• → x ∈ IN,QC

)
)

↔ ∀x(x ∈ N ∨
(
∀y(y ∈ N ∨

(
(y C x)• → y ∈ IN,QC

)
)→ x ∈ IN,QC

)
)

↔ ∀x(x ∈ N ∨
(
∀y(y ∈ N ∨

(
〈y, x〉 ∈ QC → y ∈ IN,QC

)
)→ x ∈ IN,QC

)
)

↔ (∀x ∈ N)((∀y ∈ N)(〈y, x〉 ∈ QC → y ∈ IN,QC)→ x ∈ IN,QC)

↔ ClN,QC(Λz.z ∈ IN,QC)

2. For (Ind) and (TID): Let B ∈ Pos1(a) be arbitrary. By Lemma 4.23 some LFIT-term t and
function type F ∈ FT exist such that we have

FIT ` ∀x(tx ∈ F↔ B•(x/a)) (1)

2.1. If A = B(0) ∧ ∀x(B(x) → B(Sx)) → ∀xB(x) holds for B = Λa.B: We note that for
B1 := B(a/Sa) one can prove (by induction on the build-up of B) that B•1 is B•(a/sNa).
So, with B(Sx)• being (B(a/Sx))• this becomes (B1(x))•, i.e., we get B•1(a/x) and hence
(B•(a/sNa))(a/x). So, we obtain that B(Sx)• is B•(a/sNx), while note that for any B′ ∈ LTID,
we have that B′ and B′• share the same first-order variables. For proving A•, we can therefore
assume that

B•(0/a) (2)

∀x(x ∈ N ∨ (B•(x/a)→ B•(sNx/a))) (3)

holds, and we have to show ∀x(x ∈ N ∨ B•(x/a)), while this is equivalent to t ∈ N � F due
to (1). Now we can directly apply (FT-Ind) because (2) is equivalent to t0 ∈ F and (3) is
equivalent to (∀x ∈ N)(tx ∈ F→ t(sN) ∈ F).
2.2. If A = ProgC(B) → ∀x(PCx → B(x)) holds for B = Λa.B: With

(
ProgC(B)

)• being
(∀x ∈ N)(∀y ∈ N)

(
〈y, x〉 ∈ QC →

(
B(y)

)• → (
B(x)

)•), we get that FIT proves the following:(
ProgC(B)

)• ↔ (∀x ∈ N)(∀y ∈ N)(〈y, x〉 ∈ QC → ty ∈ F→ tx ∈ F)

↔ ClN,QC(Λz.tz ∈ F)

}
(4)

14

This accumulates in the provability of A•. Namely, assume (ProgC(B))• and get t ∈ (IN,QC �
F) from (4) and (FT-ID), hence (1) yields that ∀x(x ∈ IN,QC → tx ∈ F) is equivalent to
∀x(x ∈ IN,QC → B•(x/a)). The latter implies (∀x ∈ N)(x ∈ IN,QC → B•(x/a)), so we are done
because (∀x(PCx→ B(x)))• is (∀x ∈ N)(x ∈ IN,QC → B•(x/a)).

Corollary 4.25. TID ` A implies FIT ` A•N for each A ∈ LTID.

Proof. The claim follows essentially from Theorems 4.18 and 4.24. In particular, we remark
that for FIT the propositional logical rules and axioms and the quantificational logic for indi-
vidual variables correspond (under the translation of Definition 4.19) to first-order predicate
logic in the setting of TID.

5. Ordinals

The lower bounds for the proof-theoretic ordinal of both FIT and TID are determined in
Section 6 via wellordering proofs within TID and using an ordinal notation system (OT,≺).
For carrying out these wellordering proofs in all details, we would need to provide a full
definition of (OT,≺) and verify that all needed properties are provable within TID. Due
to constraints on the length of this article, though, we refer the interested reader to [Ran15,
Chapter 3] for further details and provide in the appendix hints on the definition and properties
of (OT,≺).
The ordinal notation system (OT,≺) is based on a framework for representing ordinals that

we shall introduce in this section. We shift to the literature most of the preparatory work that
is needed to formulate the ordinals that are involved here and explain only as much as to make
this article sufficiently self-contained and provide a structural impression on which properties
we demand from (OT,≺). In particular, we use [Sch54] and the treatment of Klammersymbols
(that extends the concept of finitary Veblen functions to the transfinite) as the main source
for the finitary Veblen functions because it is the most elaborated source for representation
and recursion properties.

5.1. Ordinal Notations

Working in the broad set-theoretic framework of Zermelo–Fraenkel set theory ZFC with the
axiom of choice, let On denote the class of ordinals and use α, β, γ, δ, . . . (i.e., small Greek
letters in general) to denote elements of On. By Lim, we denote the class of limit ordinals,
while ω denotes the first limit ordinal. Moreover, we write 0 for ∅, α <On β (or just α < β)
for α ∈ β, and α ≤On β (or just α ≤ β) for α ⊆ β. For α > 0, we let Ωα denote ℵα, i.e.,
{Ωα : α ∈ On} is the class of all uncountable initial ordinals, and we write Ω for Ω1 and Ω0

for 0. Over ZFC, we have that Ωα+1 is regular. A normal function is a (with respect to
<) strictly increasing continuous function f : On → On. Demanding a knowledge about this
broad set-theoretic framework, we use common notions and well-known properties of those
tacitly, e.g.,

• the notion of club classes C with C ⊆ On and its correspondence to normal functions8,

• the existence of the derivative fix(f) := {α ∈ On: f(α) = α} of a normal function f ,
being a club class itself,

8Each club class C induces a normal function enumC that enumerates the elements of C in increasing order.

15

• basic ordinal arithmetic for α, β ∈ On with (ordinal) addition α +On β (or just α + β),
(ordinal) multiplication α ·On β (or just α · β or αβ), and (ordinal) exponentiation
expOn(α, β) (or just αβ),

• the usual representation of natural numbers as von Neumann ordinals (0)On := ∅ and
(n+ 1)On := {(n)On}∪ (n)On for each n ∈ N within On, while we identify (n)On with n.

See [Buc16] for more details on the relationship between different approaches to ordinal
notations. It shall be clear from the context whether < means <N or <On (and similar for the
other mentioned expressions).

Definition 5.1. Let P := {ωη : η ∈ On} denote the class of additive principal numbers.

Remark 5.2. For α ∈ P and β, γ < α, we have β + γ < α and β + α = α.

The finitary Veblen functions

Definition 5.3. The n+ 1-ary Veblen function ϕn+1 : Onn+1 → On is obtained for each
n ∈ N from the ω-exponential function and the binary Veblen function ϕ2 by generalizing its
definition principle, i.e., we let ϕ1(γ) := ωγ for each γ ∈ On and define ϕn+2 for n ≥ 0 as
follows:

• ϕn+2(0, ᾱ(n), γ) := ϕn+1(ᾱ(n), γ).

• If α1, αk > 0 holds for some 1 ≤ k ≤ n + 1 with αk+1 = · · · = αn+1 = 0, then
ϕn+2(ᾱ(n+1), γ) denotes the γ-th common fixed-point of the functions

ξ 7→ ϕn+2(ᾱ(k−1), β, ξ, 0̄(n−k+1))

that are defined on On and for each β < αk.

Definition 5.4. The small Veblen ordinal is the least ordinal α > 0 not expressible from
ordinals smaller than α and by means of ordinal addition and the finitary Veblen functions.

Notation 5.5. We often write ϕ instead of ϕn+1 if the arity n+ 1 is clear from the context.

Remark 5.6. We have Γ0 = ϕ(1, 0, 0) (the Feferman-Schütte ordinal) and ε0 = ϕ(0, 1, 0) =
ϕ(1, 0).

Lemma 5.7. Let k, l ∈ N and α1, . . . , αk ∈ On be given with α1 6= 0 and αk 6= 0. Then
β < αk and ξ = ϕ(ᾱ(k), 0̄(l+1)) imply ϕ(ᾱ(k−1), β, 0̄(i), ξ, 0̄(j)) = ξ for every β, ξ and i, j ∈ N
with i+ j = l.

Proof. This follows easily from Definition 5.3.

Klammersymbols

The following introduction to Klammersymbols and related results are included here because
Klammersymbols provide the most elaborated source to derive the major properties of the
finitary Veblen functions.

16

Definition 5.8. Following [Sch54], we introduce Schütte’s Klammersymbols9 which are a
generalization of the finitary Veblen functions to the transfinite by allowing arguments to be
indexed by ordinals. A Klammersymbol K is an expression of the form(α1 ... αn+1

β1 ... βn+1

)
for α1, . . . , αn+1, β1, . . . , βn+1 ∈ On and with the condition

0 ≤ β1 < β2 < · · · < βn+1 (5)

We use K as a syntactic variable to denote a Klammersymbol. Two Klammersymbols K1 and
K2 are defined to be equal, denoted K1 = K2, in case K1 and K2 can be transformed into the
same Klammersymbol by adding or dropping of columns of the form 0

β . We write K1 6= K1

in case that K1 and K2 are not equal.
Given a normal function f : On→ On such that f(0) > 0, the value fK of a Klammersymbol

K (under f) is defined as follows:

1. If K is
(γ

0

)
, then fK is f(γ).

2. If K is
(γ α1 ... αn+1

0 β1 ... βn+1

)
and αi = 0 for some i ∈ {1, . . . , n+ 1}, then fK is fK ′ where K ′

is obtained from K by deleting the column 0
βi .

3. If K is
(γ α1 ... αn+1

0 β1 ... βn+1

)
and αi 6= 0 for all i ∈ {1, . . . , n+ 1}, then fK is the γ-th common

solution η for the following equations and for all α′ < α1 and β′ < β1:

f
(η α′ α2 ... αn+1

β′ β1 β2 ... βn+1

)
= η

In case of n = 0, we read f
(η α′ α2 ... αn+1

β′ β1 β2 ... βn+1

)
as f

(η α′

β′ β1

)
.

Definition 5.9. The large Veblen ordinal is the least ordinal α > 0 not expressible from
ordinals smaller than α and by means of ordinal addition and the use of the value of Klam-
mersymbols under the ω-exponential function ϕ1.10

Remark 5.10. For all Klammersymbols K1 and K2, there are ordinals γ1, . . . , γn+1 with γ1 <
· · · < γn+1 and ordinals α1, . . . , αn+1, β1, . . . , βn+1 such that K1 =

(α1 ... αn+1
γ1 ... γn+1

)
and K2 =(

β1 ... βn+1
γ1 ... γn+1

)
, simply by adding or removing of columns of the form 0

γi where necessary.

Definition 5.11. A lexicographic order < on Klammersymbols is defined for Klammersymbols
K1 and K2 with K1 6= K2 as follows:

1. If K1 =
(α1 ... αn+1
γ1 ... γn+1

)
and K2 =

(
β1 ... βn+1
γ1 ... γn+1

)
and i ∈ {1, . . . , n + 1} is the largest index

with αi 6= βi, then we have K1 < K2 in case of αi < βi and K2 < K1 otherwise.

2. If K1 = K ′1, K2 = K ′2, and K1 < K2, then also K ′1 < K ′2.

Proposition 5.12. Let f : On → On, ξ 7→ ωξ. Then ξ 7→ f
(

1
ξ

)
is a normal function. In

particular, we have f
(

1
λ

)
= supξ<λ f

(
1
ξ

)
for each λ ∈ Lim.

9Klammer is the German word for bracket, so Klammersymbols can be read as “bracket symbols”.
10In Section 8, the conclusion of this article, we shall mention a theory TID+

1 which has the large Veblen
ordinal as its proof-theoretic ordinal.

17

Proof. See [Sch54, (4.1)–(4.3)].

Proposition 5.13. Let f : On → On, ξ 7→ ωξ and K :=
(α1 ... αn+1
γ1 ... γn+1

)
be a Klammersymbol.

For each Klammersymbol K ′ with K < K ′, the following holds:

(a) fK = fK ′ holds if and only if k ∈ {1, . . . , n+ 1} exists such that αk = fK ′ and the
following holds:

• αi = 0 for each i with 1 ≤ i < k, and

• αi < fK ′ for each i with k < i ≤ n+ 1.

(b) fK < fK ′ holds if αi < fK ′ holds for all i ∈ {1, . . . , n+ 1}.

(c) fK ′ < fK holds if

• either fK ′ < αk holds for some k ∈ {1, . . . , n+ 1}, or
• n ≥ 1 and j, k ∈ {1, . . . , n+ 1} exist such that j < k, αj 6= 0, and αk = fK ′.

Proof. See (7.1)–(7.4) in [Sch54]. Note that the negation of the condition given in (a) yields
the conditions stated in (b) and (c). For this, note in particular that αk = fK ′ implies αk 6= 0
and hence if αi = 0 holds for each i with 1 ≤ i < k and the condition of (a) does not hold,
then k < n + 1 holds and i exists with αi ≥ fK ′ and k < i ≤ n + 1, leading to one of the
conditions in (c).

Lemma 5.14. Let f : On→ On, ξ 7→ ωξ. Then we have

ϕ(α1, . . . , αn+1) = f
(αn+1 αn ... α1

0 1 ... n

)
where 0, 1, . . . , n in the Klammersymbol’s second row denote finite ordinals.

Proof. If n = 0 or α1 = · · · = αn+1 = 0 holds, then the claim is clear. Otherwise, assume
n 6= 0 and without loss of generality that α1 6= 0 holds. Further, let k ∈ {1, . . . , n} with
αk 6= 0 and αk+1 = · · · = αn = 0. The claim now follows by transfinite induction on αk since
ϕ(ᾱ(n+1)) is the αn+1-th common fixed point of the functions

ξ 7→ ϕ(ᾱ(k−1), β, ξ, 0̄(n−k))

given for each β < αk. Now, we get

ϕ(ᾱ(k−1), β, ξ, 0̄(n−k)) = f
(0 ... 0 ξ β αk−1 ... α1

0 ... n−(k+1) n−k n−(k−1) n−(k−2) ... n

)
= f

(ξ β αk−1 ... α1

n−k n−(k−1) n−(k−2) ... n

)
from the induction hypothesis and for each ξ ∈ On. Hence the claim follows from Definition 5.8
and Lemma 5.7.

Corollary 5.15. Let n ≥ 1 and ordinals α1, . . . , αn be given, then we have the following:

(a) αi ≤ ϕ(ᾱ(n)) for all i ∈ {1, . . . , n}.

(b) If αk 6= 0 for some k ∈ {1, . . . , n}, then αi < ϕ(ᾱ(n)) holds for all i ∈ {1, . . . , k − 1}.

Proof. This follows from (3.3) and (6.1) in [Sch54] by making use of Lemma 5.14.

18

Corollary 5.16. Let n ≥ 1 and ordinals α1, . . . , αn, β1, . . . , βn be given. Then ϕ(ᾱ(n)) <
ϕ(β̄(n)) holds if and only if some r ∈ {1, . . . , n} exists such that αr 6= βr holds with αi = βi
for all i ∈ {1, . . . , r − 1}, and such that one of the following holds:

1. αr < βr and αi < ϕ(β̄(n)) for all i ∈ {r + 1, . . . , n}, or

2. βr < αr and

• either ϕ(ᾱ(n)) < βk holds for some k ∈ {1, . . . , n}, or
• ϕ(ᾱ(n)) = βk and βi 6= 0 for some i, k ∈ {1, . . . , n} with k < i.

Proof. This follows immediately from Proposition 5.13 and Lemma 5.14. For the first case
αr < βr, note that αi < ϕ(β̄(n)) holds anyway for i ∈ {1, . . . , r} by Corollary 5.15: On the
one hand, we have βr ≤ ϕ(β̄(n)) and so αr < ϕ(β̄(n)), and on the other hand, αr < βr also
implies βr 6= 0 which by Corollary 5.15.(b) gives αi = βi < ϕ(β̄(n)) for i ∈ {1, . . . , r − 1}.

Definition 5.17. Let n ≥ 1.

(a) NFϕn(ᾱ(n)) holds if and only if we have αi < ϕ(ᾱ(n)) for each 1 ≤ i ≤ n. We read
NFϕn(ᾱ(n)) as “α1, . . . , αn is in normal form with respect to ϕn”.

(b) β =NF ϕ(ᾱ(n)) denotes β = ϕ(ᾱ(n)) and NFϕn(ᾱ(n)).

Remark 5.18. The following lemma describes an important recursion property that is needed
for the definition of the ordinal notation system (OT,≺) in [Ran15, Chapter 3]. It explains
how to obtain an expression ϕn(β̄(n)) with NFϕn(β̄(n)), i.e., such that βi 6= ϕn(β̄(n)) holds for
each 1 ≤ i ≤ n.

Lemma 5.19. Let n ≥ 1, k ∈ {1, . . . , n}, and ordinals β1, . . . , βn, α1, . . . , αn be given with
βk =NF ϕ(ᾱ(n)) and βk+1 = · · · = βn = 0. Then NFϕn(β̄(n)) holds if and only if αr 6= βr holds
for some r ∈ {1, . . . , k} with αi = βi for all i ∈ {1, . . . , r − 1} and one of the following holds:

1. αr < βr, or

2. βr < αr and for some i ∈ {1, . . . , k − 1}, we have βk ≤ βi.
We then get i ∈ {r + 1, . . . , k − 1}.

Proof. Note that we have βk 6= 0 due to ϕ(ᾱ(n)) 6= 0 and our assumption βk =NF ϕ(ᾱ(n)), and
hence by Corollary 5.15 and NFϕn(ā(n)), we have

αi < βk ≤ ϕ(β̄(n)) (6)

for all i ∈ {1, . . . , n} and also βi < ϕ(β̄(n)) for all i ∈ {1, . . . , k−1}. Furthermore, there has to
be some r ∈ {1, . . . , k} such that αr 6= βr and αi = βi holds for all i ∈ {1, . . . , r− 1} since we
have αk < βk. Recalling the assumption βk+1 = · · · = βn = 0, we thus have that NFϕn(β̄(n))
holds if and only if βk < ϕ(β̄(n)) holds, i.e., ϕ(ᾱ(n)) < ϕ(β̄(n)). Due to Corollary 5.16, it
suffices to treat the following three situations:
1. Case αr < βr: We have αi < ϕ(β̄(n)) for each i ∈ {r + 1, . . . , n} due to (6) and can use
Corollary 5.16 directly to finish the proof for this case.
2. Case βr < αr and ϕ(ᾱ(n)) < βi for some i ∈ {1, . . . , n}: Since βl = 0 holds for all l > k
and βk = ϕ(ᾱ(n)), this case is equivalent to βr < αr and βk < βi for some i ∈ {1, . . . , k − 1}.
Furthermore, we have i ∈ {r + 1, . . . , k − 1} due to βi = αi < βk for i < r and βr < αr < βk.

19

3. Case βr < αr and ϕ(ᾱ(n)) = βi holds with βj 6= 0 for some i, j ∈ {1, . . . , n} with i < j:
Since βl = 0 holds for all l > k, we have that i < k holds. With this and since ϕ(ᾱ(n)) = βk 6= 0
holds, we can always choose j = k and get that the current case is equivalent to βr < αr and
βk = βi for some i ∈ {1, . . . , k − 1}. Furthermore, we have i ∈ {r + 1, . . . , k − 1} due to
βi = αi < βk for i < r and βr < αr < βk.

Remark 5.20. In order to simplify the formulation and proof of Lemma 5.19, we took the lists
of ordinals α1, . . . , αn and β1, . . . , βn to have the same length n ≥ 2. Clearly, the lemma holds
analogously for lists of ordinals with different length ≥ 2 (just add ordinals of the form 0 to
the front of the shorter list to make them the same length).

The ϑ-function

See [RW93] and [Buc16] for details on the definition and properties of the function ϑ : On→
On. We state only the notation Ω(n, x) that is defined for each x ∈ On and each n ∈ N by

Ω(0, x) := Ω · x Ω(1, x) := Ωx Ω(n+ 1, x) := ΩΩ(n,x)

and cite the following properties in order to relate the ϑ-function to the setting of Klammer-
symbols when we present results from the literature in Section 7. By using the Buchholz
ψ-functions from [BS88] or the Feferman-Aczel θ-functions from [Bri75], we also have the
following correspondence ϑΩω = ψ0ΩΩω

= θΩω0. See also the last paragraph in [Rat92].

Proposition 5.21. Let f : On→ On, ξ 7→ ωξ.

(a) f
(

1
ω

)
denotes the small Veblen ordinal.

(b) f
(

1
ω

)
= ϑΩω and ϕ(ω, 0) = f

(
ω
1

)
= ϑ(Ω · ω).

Proof. (a) follows essentially from Definition 5.4, Lemma 5.14, and Proposition 5.13. (b) is
due to [Sch92], see also [Buc16] or [Ran15, Chapter 2].

5.2. Fundamental Sequences and Ordinal Notations

As described in the appendix of this article (see Section A) and carried out in [Ran15, Chapter
3] with proofs and descriptions in detail, it is possible to define a primitive recursive ordinal
notation system (OT,≺) for the small Veblen ordinal that is based on the finitary Veblen
functions (e.g., by using codes of the form φā(n+1)) and whose basic properties (such as being
a linear ordering) can be formalized and verified within TID. Moreover, it is possible to define
a sensible semantics for ordinal notations a ∈ OT by means of a function o: OT → On such
that in particular o(φā(n+1)) = ϕ(o(a1), . . . , o(an+1)) holds for φā(n+1) ∈ OT. See [Ran15,
Definition 3.20] for all details.
Given this interpretation, we can define primitive recursive functions on the natural numbers

N such as ϕ̃, ω̃, ·̃, +̃ that act as proof-theoretic counterparts to the set-theoretic functions ϕ,
ω, ·, + on the ordinals On. They simulate the ordinal arithmetic on the codes based on OT.
For instance for ϕ or to be more precise for ϕn+1 and n ∈ N, we have that

• ϕn+1 : Onn+1 → On is the n+ 1-ary ordinal-theoretic Veblen function.

20

• φ : N → N is a unary primitive recursive function whose purpose is to produce Gödel
numbers φ(x) for (codes of) lists of notations x = 〈a1, . . . , an+1〉 with a1, . . . , an+1 ∈ OT.
When formally defining OT, only certain codes φ(x) are allowed to be in OT. We
write φa1 . . . an+1 to denote φ(〈a1, . . . , an+1〉). See the appendix for more details and
see [Ran15] for a full definition and more explanations.

• ϕ̃n+1 : Nn+1 → N is a primitive recursive function that simulates certain behaviors of
the order-theoretic function ϕ and where we have o(ϕ̃(ā(n+1))) = ϕ(o(a1), . . . , o(an+1))
for each a1, . . . , an+1 ∈ OT.

Given such a setup, fundamental sequences a[x] for ordinal notations a ∈ OT and natural
numbers x ∈ N can be defined with the following properties (see also Definition A.1 in the
appendix). The notions Suc and Lim in Proposition 5.22 below are primitive recursively
defined from OT and consist of successor codes and limit codes, respectively.
More precisely, the fundamental sequences’ definition as given in Definition A.1 in the

appendix can be motivated from the set-theoretic perspective of Subsection 5.1. As a conse-
quence, the following interplay of the finitary Veblen functions with the given fundamental
sequences can be intuitively understood without relying on the intrinsic properties of the
ordinal notation system (OT,≺).

Proposition 5.22 ([Ran15, Section 3.4]).

(a) TID ` ∀d, x(d ∈ Suc→ d[x] ≺ d).

(b) TID ` ∀d, x(d ∈ Lim→ (0 ≺ d[x] ∧ d[x] ≺ d[x+N 1] ∧ d[x] ≺ d)).

(c) TID ` ∀d, d0(d ∈ Lim ∧ d0 ≺ d→ ∃x(d0 ≺ d[x])).

Proposition 5.23 ([Ran15, Section 3.4]). Assume that d0 ≺ ϕ̃(ā(m+1), 0̄(k), b) holds for given
ā(m), b, d0 ∈ OT and k,m ∈ N. Then TID proves the following:

(a) b ∈ Lim→ ∃x(d0 ≺ ϕ̃(ā(m+1), 0̄(k), b[x])).

(b) (b 6∈ Lim ∧ a1 = 0 ∧ . . . ∧ am+1 = 0)→ ∃x(d0 ≺ ω̃b[x] ·̃ (x+N 1)).

(c) (b = 0 ∧ am+1 ∈ Lim)→ ∃x(d0 ≺ ϕ̃(ā(m), am+1[x], 0̄(k+1))).

Lemma 5.24 ([Ran15, Section 3.2]). For a, b, a1, . . . , an+1, c ∈ OT and n,m ∈ N, we have
within TID:

(a) If a � c and c ≺ a +̃ b hold, then c = a +̃ d holds for some d ∈ OT with d ≺ b.

(b) ϕ̃(x̄(n+1)) ∈ OT and x1, . . . , xn+1 ∈ OT are equivalent for each x1, . . . , xn+1 ∈ N.

(c) x +̃ y ∈ OT and x, y ∈ OT are equivalent for each x, y ∈ N.

(d) If a1 6= 0 and am+1 6∈ {0} ∪ {φā(n+1) : a1 6= 0 & a1, . . . , an+1 ∈ N} hold, then
ϕ̃(ā(m+1), 0̄(k)) = φā(m+1)0̄(k) holds.

However, having a more accessible approach to the wellordering proofs by using fundamental
sequences instead of working directly with the underlying ordinal notation system has the
cost that one has to verify the fundamental sequences’ adequate behaviour in the background
(compare [Ran15, Sections 3.4 and 11.1.2]).

21

6. Lower Bound ϑΩω for FIT and TID

In this section, we obtain a lower bound for the proof-theoretic ordinal of the theory TID
by means of wellordering proofs. Hence, together with the embedding of TID into FIT from
Subsection 4.2, we automatically get a lower bound for FIT as well. We rely for the following
proofs on the availability of fundamental sequences for the underlying ordinal notation system
(OT,≺) as described in Subsection 5.2. This allows us to shift the dependence on the specific
implementation of (OT,≺) to the properties of the fundamental sequences.
Alternatively, we could implement the following proofs directly within the setting of the

ordinal notation system (OT,≺), avoiding the introduction of fundamental sequences but for
the cost of then having the ordinal notation system (OT,≺) appear more prominently in the
wellordering proofs. In this case, it would be technically more sensible to work with fixed-point
free variants ϕn+1 of the finitary Veblen functions and base (OT,≺) on those (see also [Sch54,
§3]). We did not choose this approach for the sake of a better motivation and understanding of
the main methods of the wellordering proof. For this section, we fix the following conventions:

(a) We work within TID and presume knowledge on the ordinal notation system (OT,≺)
that is mentioned in the appendix and given in [Ran15, Chapter 3].

(b) The notion ordinal denotes terms that are given according to the ordinal notation system
(OT,≺). Small Greek letters α, β, γ, δ, . . . denote explicit terms for ordinal notations in
the sense of OT and which are given externally in the meta-theory. Furthermore, we shall
simplify the rigid notation that appears in the appendix and Subsection 5.2 by dropping
the tilde in the expressions such as ϕ̃, ω̃, +̃ and writing instead ϕ, ω,+, respectively.

(c) P , Acc, Prog, and TI shall denote P≺, Acc≺, Prog≺, and TI≺, respectively.

Proposition 6.1.

(a) TID ` ∀x(x 6∈ OT→ Px).

(b) TID ` ∀x(Px→ TI(A, x)) for all A ∈ LPA.

(c) TID ` TI(A, α) holds for each α ≺ ω and A ∈ LTID.

Proof (Sketch). (a) holds immediately by (Cl), using that a 6∈ OT implies b 6≺ a for all b.
For (b), assume Pa, Prog(A), and b ≺ a. We get Pb by (FP) from Remark 4.16, and since
A ∈ Pos1 holds, we then get A(b) by (TID). For (c), note that we can show TI(A, nk) for all
k ∈ N by (meta-)induction on k, while we set n0 := 0 and nm+1 := nm +̃ 1̃ for each m ∈ N.

Remark 6.2. Dropping the restriction on the induction formula used in (Ind) yields TID `
TI(A, α) for each α ≺ ε0 and A ∈ LTID. This is since TID would extend PA in this case with
complete induction for the full language LTID, and we could then follow the usual wellordering
proofs for PA, adapting them to the representation of ordinals below ε0 as given here.

Remark 6.3. Due to Proposition 6.1.(a), we can assume from now on without loss of generality
that a ∈ OT holds whenever we try to show Pa for some a within TID. In particular, if we
aim to prove P (a + b) or Pϕ(ā(n)) for some a, b, a1, . . . , an (with n ≥ 1), we tacitly assume
that a + b ∈ OT and ϕ(ā(n)) ∈ OT hold, respectively. Due to Lemma 5.24, we also get
a, b, a1, . . . , an ∈ OT. Since x ≺ y implies x, y ∈ OT for all x, y by the definition of ≺,
statements such as c ≺ a+ b or c ≺ ϕ(ā(n)) imply a+ b ∈ OT and ϕ(ā(n)) ∈ OT, respectively.

22

Lemma 6.4. TID ` ∀x, y(Px ∧ Py → P (x+ y)).

Proof. Assume a1, a2 with Pa1 and Pa2, so we have to show P (a1 +a2). By showing Prog(B)
for B := Λb.P (a1 + b), we can use (TID) together with Pa2 to get the claim. Now, Prog(B)
is ∀z(Acc(B, z) → B(z)), so assume c and Acc(B, c), i.e., ∀z ≺ c(P (a1 + z)). Due to (Cl), it
suffices to show (∀z ≺ a1 + c)(Pz). Let now d ≺ a1 + c. We have either d ≺ a1 and can use
(FP) on assumption Pa1 to get Pd, or otherwise, we have a1 � d ≺ a1 + c by Lemma 5.24. In
the latter case, we have d = a1 + c0 for some c0 ≺ c, so our assumptions yield the claim.

6.1. The Simple Case for the Binary Veblen Function

We treat the case for the binary Veblen function separately in order to give a more transpar-
ent proof that avoids the technicalities that appear in the treatment of the general case in
Subsection 6.2 (such as the use of auxiliary class terms of the form Partkn for 1 ≤ k ≤ n).

Lemma 6.5. TID ` ∀x, y(Px ∧ Py → Pϕ(x, y)).

Proof. Note that P0 and hence P1 hold due to (Cl). Now, we assume a1, a2 with Pa1, Pa2.
We use the class term B := Λa.∀y(Py → Pϕ(a, y)) with B ∈ Pos1 and show Prog(B).
Then we can use (TID) with Pa1 and Pa2. Now, in order to bring the proof of this lemma
closer to the proof of Theorem 6.12 that deals with the general case of a finitary Veblen
function, we note that Prog(B) is ∀z(∀x ≺ z(B(x)) → B(z)) Now, using the class term
A1

2 := Λa.∀y(Py → ∀x ≺ a(Pϕ(x, y))) and that A1
2(a) is logically equivalent to ∀x ≺ a(B(x)),

we get that Prog(B) is logically equivalent to ∀z(A1
2(z) → B(z)) So, in order ot show the

latter, assume a with

A1
2(a) (7)

and show B(a), while for proving B(a), assume b with Pb and show Pϕ(a, b). Once more,
we can use (TID), namely with A2

2 := Λd.Pϕ(a, d) on assumption Pb since A2
2 ∈ Pos1 holds,

while we have to show Prog(A2
2).11 Now, for proving Prog(A2

2), we assume d and z with

∀z0 ≺ d(A2
2(z0))

(
i.e., ∀z0 ≺ d(Pϕ(a, z0))

)
(8)

and z ≺ ϕ(a, d), having to show Pz. This yields Pϕ(a, d) by (Cl) because z is arbitrary. We
consider now the following case distinction.
1. If d ∈ Lim: We get that z ≺ ϕ(a, d[x]) holds for some x by Proposition 5.23. Since we
have d[x] ≺ d by Proposition 5.22, we get Pϕ(a, d[x]) by (8), implying Pz by (FP).
2. If d 6∈ Lim:
2.1. If a = 0: Since d 6∈ Lim holds, we get z ≺ t(x) for some x by Proposition 5.23, where
we let t(x) := ωd[x] · (x+N 1) We show ∀x(P (t(x))) by induction on x and note that (Ind) is
applicable here because of Λx.P (t(x)) ∈ Pos1. For x = 0, we can argue as for the case d ∈ Lim
and get P (ωd[0]). For x = x0 +N 1, the claim follows from P (t(0)), the induction hypothesis,
and Lemma 6.4, noting that d[0] = d[x0] holds by definition and because of d 6∈ Lim.
11Noting our current assumption (7) and our current goal, we remark that we actually show

A1
2(a)→ Prog(A2

2)

which is a special case of Theorem 6.10, and also note that A1
2 ∈ Pos1 holds with A1

2 6∈ Pos0, while we have
A2

2 ∈ Pos0.

23

2.2. If a ∈ Lim and d = 0: We have by Proposition 5.23 that z ≺ ϕ(a[x], 0) holds for some x.
Since we have a[x] ≺ a by Proposition 5.22, we get Pϕ(a[x], 0) with (7).
2.3. Otherwise, i.e., either d = 0 with a ∈ Suc or d ∈ Suc with a 6= 0: Letting t := ϕ(a, d), we
have by Proposition 5.22 some x such that z ≺ t[x] holds. Proving ∀x(P (t[x])) by induction
on x suffices now. Note again that (Ind) is applicable due to Λx.P (t[x]) ∈ Pos1, and also note
for the following computations of t[x] according to Definition A.1 in the appendix that we have
ϕ(a, d) = φad by Lemma 5.24, bearing in mind that φ is from the ordinal notation system
(OT,≺).
2.3.1. If x = 0: If d = 0 holds, then we have t[0] = 1 and are done since we have P1. If
d ∈ Suc holds with d = d0 + 1, then we have t[0] = ϕ(a, d0) + 1, and since d0 ≺ d holds, we
get P (t[0]) from (8) and Lemma 6.4 by using P1.
2.3.2. If x = x0 +N 1: We have t[x0 +N 1] = ϕ(a[x0], t[x0]), so the claim follows with a[x0] ≺ a
from Proposition 5.22, the induction hypothesis P (t[x0]), and (7).

Corollary 6.6. TID ` Pϕ(α, 0) holds for each α ≺ ω.

Proof. The claim is a direct consequence of Lemma 6.5. Note that Pα for α ≺ ω follows from
Proposition 6.1.(c): TI(Λa.Pa, α) and (Cl) imply ∀x ≺ α(Px), hence Pα by (FP).

Remark 6.7. We proved Lemma 6.5 by applying (TID) to a class term B in Pos1 that is not
in Pos0. Though, in order to show Prog(B) in the proof of Lemma 6.5, we can work with a
(weaker) subtheory TID0 of TID that is obtained from TID by restricting (the instances of) the
axiom schemes (TID) and (Ind) to class terms that are in Pos0 (rather than Pos1), see [Ran15,
Chapter 8] for details. This theory TID0 is the restriction of the theory ID∗1� to accessible part
positive operator forms, i.e., to the language LTID, while ID∗1� is a subtheory of ID1 for positive
induction and with the same restriction for complete induction. The proof-theoretic ordinal
of ID∗1� is ϕ(ω, 0), see for instance [Pro06]. Note furthermore that the proof of Theorem 6.10
below does not invoke (TID), so this result holds also for the restriction TID0.

6.2. The General Case for the Finitary Veblen Functions

Definition 6.8. For k, n ∈ N with 1 ≤ k < n, we define

Partkn := Λā(k).∀y(Py → ∀x ≺ ak(Pϕ(ā(k−1), x, y, 0̄(n−k−1))))

Hypkn := Λā(k).Part1
n(a1) ∧ . . . ∧ Partkn(ā(k))

Hyp0
n := (0 = 0)

Lemma 6.9. For k, n ∈ N and variables a1, . . . , an−1, the following holds:

(a) (Λa.P (ϕ(ā(n−1), a))) ∈ Pos0 for 1 ≤ n.

(b) (Λa.Partkn(ā(k−1), a)) ∈ Pos1 for 1 ≤ k < n.

Proof. (a) is obvious. For (b), note in the definition of Partkn(ā(k−1), a) that Py and ∀x(x ≺
a → Pϕ(ā(k−1), x, y, 0̄(n−k−1))) are in Pos0. Furthermore, Py does not contain a as a free
variable, so we get indeed that ∀y(Py → ∀x ≺ a(Pϕ(ā(k−1), x, y, 0̄(n−k−1)))) is in Pos1(a).

Theorem 6.10. TID ` ∀ā(n−1)(Hypn−1
n (ā(n−1))→ Prog(Λa.Pϕ(ā(n−1), a))) holds for n ≥ 1.

24

Proof. Assume n ≥ 1 and ā(n−1) with Hypn−1
n (ā(n−1)). For showing Prog(Λa.Pϕ(ā(n−1), a)),

assume a and d such that d ≺ ϕ(ā(n−1), a) and

∀x ≺ a(Pϕ(ā(n−1), x)) (9)

hold and show Pd. This would yield Pϕ(ā(n−1), a) by (Cl) because d is arbitrary.
1. If n = 1 or a1 = . . . = an−1 = 0 hold: As in Lemma 6.5 due to ϕ(ā(n−1), a) = ϕ(a) = ωa.
2. Otherwise: We can assume now that some 1 ≤ l ≤ n − 1 exists with al 6= 0 and al+1 =
. . . = an−1 = 0, i.e., that we have ϕ(ā(n−1), a) = ϕ(ā(l), 0̄(n−l−1), a) with al 6= 0. Furthermore,
our assumption Hypn−1

n (ā(n−1)) yields

Part1
n(a1) ∧ . . . ∧ Partn−1

n (ā(n−1)) (10)

Consider now the following case distinction and note that P0 and hence P1 hold due to (Cl).
2.1. If a ∈ Lim: We get that d ≺ ϕ(ā(n−1), a[x]) holds for some x by Proposition 5.23 and as-
sumption d ≺ ϕ(ā(n−1), a). Since we have a[x] ≺ a by Proposition 5.22, we get Pϕ(ā(n−1), a[x])
by (9) which implies Pd by (FP).
2.2. If a 6∈ Lim:
2.2.1. If al ∈ Lim and a = 0: By Proposition 5.23, we have z ≺ ϕ(ā(l−1), al[x], 0̄(n−l)) for
some x. We get Pϕ(ā(l−1), al[x], 0̄(n−l)) with Partln(ā(l)) from (10) because we have al[x] ≺ al
by Proposition 5.22.
2.2.2. Otherwise, i.e., either a = 0 with al ∈ Suc or a ∈ Suc with al 6= 0: In this situation,
Lemma 5.24 implies ϕ(ā(l), 0̄(n−l)) = φap . . . al0̄

(n−l−1)a for some 1 ≤ p ≤ l where a1, . . . , ap =
0 holds. For the computation of t[x], see Definition A.1 in the appendix and bear in mind
that φ is from the ordinal notation system (OT,≺). In order to simplify notation and without
loss of generality, we shall assume p = 1, noting that the following argument works for the
general case as well. Letting t := φā(l)0̄(n−l−1)a we have by Proposition 5.22 some x such that
z ≺ t[x] holds. Proving ∀x(P (t[x])) by induction on x suffices now. (Ind) is applicable because
Λx.P (t[x]) ∈ Pos1 holds.
2.2.2.1. If x = 0: For a = 0, we have t[0] = 1 and are done since we have P1. If a ∈ Suc
holds with a = a0 + 1, then we have t[0] = ϕ(ā(n−1), a0) + 1 due to the form of t and the
definition of t[0]. Since a0 ≺ a holds, we get P (t[0]) from (9) and Lemma 6.4 by using P1.
2.2.2.2. If x = x0 +N 1: We get t[x0 +N 1] = ϕ(ā(l−1), al[x0], t[x0], 0̄(n−l)), so the claim follows
with al[x0] ≺ al from Proposition 5.22, the induction hypothesis P (t[x0]), and Partln(ā(l))
from (10).

Corollary 6.11. TID ` ∀ā(n)(Hypn−1
n (ā(n−1)) ∧ Pan → Pϕ(ā(n))) for n ∈ N with n ≥ 1.

Proof. Immediate from Theorem 6.10 by using (TID) and Lemma 6.9.(a).

Theorem 6.12. TID ` ∀ā(k−1)(Hypk−1
n (ā(k−1))→ Prog(Λa.Partkn(ā(k−1), a))) for 1 ≤ k < n.

Proof. We fix n ≥ 1 and argue by induction on n− k for 1 ≤ k < n. Let ā(k−1) be given with
Hypk−1

n (ā(k−1)), while note that this just gives us the formula 0 = 0 in case of k = 1. Assume
now a, ak, ak+1 with

∀x ≺ a(Partkn(ā(k−1), x)) ∧ Pak+1 ∧ ak ≺ a (11)

25

in order to show Prog(Λa.Partkn(ā(k−1), a)). In case we have k 6= n− 1, further let aj := 0 for
each k + 1 < j ≤ n. We have to show P (ϕ(ā(k+1), 0̄(n−k−1))), i.e.,

P (ϕ(ā(n))) (∗)

For this, we show by a side induction on i that 1 ≤ i < n implies Hypin(ā(i)). Then for
i := n− 1, we get (∗) by Corollary 6.11 since we have Pan by (11) or (if k = n− 1) by P0.
For the remaining claim, note that Partkn(ā(k−1), ak) holds by (11) and so Hypkn(ā(k)) by

definition, using assumption Hypk−1
n (ā(k−1)). We use this argument in case of 1 ≤ i ≤ k. If

we have k < i < n, then we can use the side induction hypothesis and get Hypi−1
n (ā(i−1)). So,

the main induction hypothesis yields Prog(Λa.Partin(ā(i−1), a)) and hence we get ∀a(Pa →
Partin(ā(i−1), a)) by (TID), while noting Lemma 6.9.(b). Now, Partin(ā(i)) follows from Pak+1

in (11) in case of i = k+1 and otherwise from P0. Hence, we get Hypin(ā(i)) by Hypi−1
n (ā(i−1)).

Corollary 6.13. TID ` ∀ā(k)(Hypk−1
n (ā(k−1)) ∧ Pak → Hypkn(ā(k))) holds for all k, n ∈ N

with 1 ≤ k < n.

Proof. From Hypk−1
n (ā(k−1)) ∧ Pak, we get Partkn(ā(k)) by Theorem 6.12 and (TID), while

noting Lemma 6.9.(b). Hence, we get Hypkn(ā(k)).

Theorem 6.14. TID ` ∀ā(n)(
∧n
i=1 Pai → Pϕ(ā(n))) holds for each n ≥ 1.

Proof. Let n ≥ 1 and assume ā(n) with
∧n
i=1 Pai. We now show by induction on k ∈ N

that 0 ≤ k < n implies Hypkn(ā(k)) ∧
∧n
i=k+1 Pai. Then the claim Pϕ(ā(n)) follows from

this and Corollary 6.11 with k := n − 1. So assume 0 ≤ k < n. If k = 0, we trivially
get Hyp0

n(ā(0)) ∧
∧n
i=1 Pai due to the definition of Hyp0

n and our assumption
∧n
i=1 Pai. If

0 < k ≤ n, the induction hypothesis yields Hypk−1
n (ā(k−1)) ∧

∧n
i=k Pai and hence the claim

Hypkn(ā(k)) ∧
∧n
i=k+1 Pai due to Corollary 6.13.

Corollary 6.15 (Lower bound of TID). TID ` TI(A, α) holds for each A ∈ LPA and α ∈ OT.

Proof. By induction on the build-up of α ∈ OT as described in the appendix. We can use
Lemma 6.4 and Theorem 6.14 together with Proposition 6.1.(b).

7. Upper Bound ϑΩω for FIT and TID

For determining the upper bound of FIT, we apply one result from [JS99] that relates over
ACA0 the scheme (Π1

3-RFN) of ω-model reflection for Π1
3 formulas to the scheme (Π1

2-BI) of bar
induction for Π1

2 formulas, and one result of [RW93] that determines the proof-theoretic ordinal
of Π1

2-BI0 to be the small Veblen ordinal ϑΩω. Then an embedding of FIT into the second
order theory Π1

3-RFN0 of ω-model reflection for Π1
3 formulas suffices to get the desired upper

bound result for FIT. Moreover and due to Section 4.2, this also provides an upper bound
for TID. In particular, we shall exploit the Π1

1 definability of a least fixed-point. A similar
approach has been taken in [AR10] and [Pro06] for the treatment of the theories Π1

2-RFN0

and ID∗1 (a subsystem of ID1 that allows only positive induction for the predicates PA that
are assigned to each positive operator form A). Below, we shall provide an upper bound for
FIT by embedding it directly into Π1

3-RFN0. We remark that if we were to investigate only
the subtheory TID of ID1, we could have embedded it directly into Π1

3-RFN0 (rather than

26

taking the detour via FIT as Figure 1 from Section 1 suggests). Furthermore, we recall that
D. Probst’s modular ordinal analysis from [Pro17] determines the proof-theoretic ordinal of
Π1

3-RFN0 to be the small Veblen ordinal by metapredicative methods.

7.1. Subsystems of Second Order Arithmetic

We shall introduce here subsystems of second order arithmetic, and we formulate them in
the language L2

PA that we defined in Section 4. In particular, recall that L2
PA formulas allow

for quantification over set variables X. The following definitions are taken to some extent
from [JS99] and [Sim09], respectively, and we refer to these sources for more details on sub-
systems of second order arithmetic and in particular to the underlying two-sorted logic.

Definition 7.1. We use the following standard abbreviations

(X)t := Λa.〈t, a〉 ∈ X
(QY ∈̇ X)A := (Qy)A((X)y/Y) (where Q ∈ {∀, ∃})

Y ∈̇ X := (∃Z ∈̇ X)(Z = Y) (i.e., Y ∈̇ X is ∃z((X)z = Y))

By AX or also X |= A, we denote the (canonical) relativization of a formula A to a set variable
X, which is defined inductively as follows: If A is an atomic formula, then AX := A. If A
is ¬A0, then AX := ¬(AX0). If A is A0 ◦ A1 with ◦ ∈ {∨,∧,→}, then AX := AX0 ◦ AX1 . If
A is (Qx)A0 with Q ∈ {∃,∀}, then AX := (Qx)AX0 . If A is (QX)A0 with Q ∈ {∃,∀}, then
AX := (QY ∈̇ X)AX0 .
As usual, we assume tacitly a renaming of bound variables in order to avoid a clash of

variables. Note that set variables occur at most free in AX , i.e., AX is arithmetical.

Definition 7.2. A ∈ Π1
0 and A ∈ Σ1

0 denotes that A is arithmetical, i.e., A is a Π1
0 (or also

Σ1
0) formula, i.e., a L2

PA formula without quantifications over set variables. A ∈ Π1
n denotes

that A is a Π1
n+1 formulas, i.e., a formula which is of the form ∀X1∃X2 . . . (Qn+1Xn+1)B for

some B ∈ Π1
0, and where Qn+1 is ∃ for even n and Qn+1 is ∀ otherwise. A ∈ Σ1

n denotes that
A is a Σ1

n+1 formulas, i.e., of the form ∃XB with B ∈ Π1
n.

Definition 7.3. ACA0 is the two-sorted theory based on L2
PA and the axioms of PA without

complete induction, where the equality axioms (for the first sort) hold for the language L2
PA.

Moreover, ACA0 consists of set induction, i.e., ∀X((0 ∈ X ∧∀x(x ∈ X → Sx ∈ X))→ ∀x(x ∈
X)), and of arithmetical comprehension (ACA), i.e., ∃X∀x(x ∈ X ↔ A) for each A ∈ Π1

0 that
does not contain X.

Proposition 7.4. ACA0 is finitely axiomatizable by a Π1
2-sentence FACA.

Proof. See for instance [Sim09, Lemma VIII.1.5].

Definition 7.5. We define the following theories and principles:

• Σ1
1-AC0 is ACA0 extended by the principle of Σ1

1 axiom of choice (Σ1
1-AC), i.e., ∀x∃XA→

∃Y ∀x(A((Y)x/X)) for each A ∈ Σ1
1.

• Π1
n-RFN0 is ACA0 extended by the principle of Π1

n ω-model reflection for n ∈ N, i.e, for
each A ∈ Π1

n with at most U1, . . . , Uk occurring as free set variables in A (and where
FACA is taken from Proposition 7.4), the principle is the formula ∀U1, . . . , Uk(A →
∃X(AX ∧ FXACA ∧ U1 ∈̇ X ∧ . . . ∧ Uk ∈̇ X)).

For the principles (Π1
n-BI0) of Π1

n bar induction and (Σ1
1-DC) of Σ1

1 axiom of dependent choice
and their corresponding theories Π1

n-BI0 and Σ1
1-DC0, see the references made in Subsection 7.2.

27

7.2. Upper Bound Results from the Literature

Theorem 7.6. |Π1
n+2-BI

0
| = ϑΩ(n+ 1, ω) holds for all n ∈ N.

Proof. See [RW93, Theorem 10.2.].

Theorem 7.7. (Π1
n+1-BI) and (Π1

n+2-RFN) are equivalent over ACA0 for all n ∈ N.

Proof. See [JS99, Main Theorem].

Theorem 7.8. Over ACA0, we have

(a) (Π1
n-RFN) implies (Π1

k-RFN) for k ≤ n.

(b) (Π1
2-RFN) is equivalent to (Σ1

1-DC).

(c) (Σ1
1-DC) implies (Σ1

1-AC).

Proof. See [Sim09, Theorem VIII.5.12, Lemma VII.6.6].

Corollary 7.9. (Π1
n+2-RFN) implies (Σ1

1-AC) over ACA0 for all n ∈ N.

Proof. By Theorem 7.8.

Theorem 7.10. |Σ1
1-DC0| = ϕ(ω, 0).

Proof. See the last paragraph in [Can86].

Corollary 7.11. |Π1
n+2-RFN

0
| = ϑΩ(n, ω) holds for all n ∈ N.

Proof. For n ≥ 1, this is immediate from Theorem 7.6 and Theorem 7.7. For n = 0, use Theo-
rems 7.10 and 7.8.(b) and that ϑΩ(0, ω) = ϑ(Ω·ω) = ϕ(ω, 0) holds by Proposition 5.21.(b).

7.3. Some Syntactical Properties of L2
PA Formulas

Definition 7.12. Let T be some theory of L2
PA as introduced in Subsection 7.1. A ∈ Π1

n(T)
denotes that A is an Π1

n formula over T, i.e., A ∈ L2
PA such that A is provably equivalent over

T to some formula A′ ∈ Π1
n.

Remark 7.13. In case that A ∈ Π1
n(T) is given for some theory T of L2

PA and we consider some
A′ ∈ Π1

n that is provably equivalent over T to A, then we can assume that A and A′ have the
same free variables, and we shall tacitly do so from now on. Moreover, if T1,T2 are theories
of L2

PA as introduced in Subsection 7.1 such that T2 comprises T1, then obviously A ∈ Πn(T1)
implies A ∈ Πn(T2).

Proposition 7.14. Let k, n ∈ N and T ∈ {ACA0,Σ
1
1-AC0}. Then we have the following.

(a) If A ∈ Π1
k(T) holds with k < n, then we have A ∈ Π1

n(T) and ¬A ∈ Π1
n(T).

(b) Π1
n(T) is closed under conjunction, disjunction, and universal quantification for number

variables, i.e., we have that A,B ∈ Π1
n(T) implies A ◦ B ∈ Π1

n(T) for ◦ ∈ {∧,∨} and
that A ∈ Π1

n(T) implies ∀xA ∈ Π1
n(T).

(c) Π1
n+1(T) is closed under universal quantification for set variables, i.e., we have that

A ∈ Π1
n+1(T) implies ∀XA ∈ Π1

n+1(T).

28

Proof. Straightforward by using essentially (ACA), see [Ran15, Proposition 7.36].

Corollary 7.15. Let k, n ∈ N and T ∈ {ACA0,Σ
1
1-AC0}. Given A0, . . . , Ak ∈ Π1

n(T) and
B ∈ Π1

n+1(T), we have ∀~x(A0 → . . .→ Ak → B) ∈ Π1
n+1(T).

Proof. Immediate by Proposition 7.14 and induction on k ∈ N, while noting that Ak ∈ Π1
n(T)

implies ¬Ak ∈ Π1
n+1(T), and that Ak → B is equivalent to ¬Ak ∨B.

7.4. Embedding FIT into Π1
3-RFN0

In order to interpret within Π1
3-RFN0 the applicative part of FIT, i.e., I. in Definition 3.10,

we shall first implement the so-called canonical model PR for this applicative part. It is
built upon ordinary recursion theory and by using indices of partial recursive functions for
interpreting the function symbol · of LFIT. A thorough introduction to this construction and
a more detailed treatment of the following (in a slightly different setting) will be elaborated
in [FJS]. Without going into detail, we let T be the ternary, primitive recursive relation T
according to Kleene’s Normal Form Theorem, and let U be the corresponding unary primitive
recursive (result-extracting) function. Reading {e} as the partial recursive function indexed by
the number e, we write {e}(n1, . . . , nk) ' m to denote ∃x(T(e, 〈n1, . . . , nk〉, x)∧U(x) = m) for
e, k,m, n1, . . . , nk ∈ N. Furthermore, let Π1

1(x, y) with x 6= y denote a universal Π1
1 formula for

Π1
1 formulas that have one free variable, i.e., we have Π1

1(x, y) ∈ Π1
1 and for each L2

PA formula
A ∈ Π1

1 with FV(A) = {y}, we have that ∃x∀y(Π1
1(x, y)↔ A) holds over ACA0.12

Definition 7.16. In the abovementioned setting, we let T and U also denote the correspond-
ing relation and function symbols in LPA, and then we set ({a}(b) ' c) := ∃x(T(a, b, x) ∧
U(x) = c). Next, we assume an assignment of the constants k, s of LFIT to numerals k?, s?

that have corresponding properties over ACA0 as described by the axiom group I.1. in defini-
tion 3.10. For the remaining constants p, p0, p1, 0, sN, pN, dN of LFIT, we set p? to be the numeral
of the (primitive recursive) function (m,n) 7→ 〈m,n〉; p?i to be the numeral of m 7→ (m)i for
i = 0, 1; 0? to be 0; s?N to be the numeral of m 7→ m+ 1; p?N to be the numeral of m 7→ m .− 1
(i.e., the modified subtraction function such that m .−N n = 0 holds if m <N n); and d?N to be
the numeral of the case distinction function, mapping (k, l,m) to l if k = 0, otherwise to m.
The translation V?

t (x) of a LFIT term t into the language of LPA (expressing that the value
of t equals x) is defined for variables x 6∈ FV(t) as follows: t = x if t is a variable, t? = x if
t is a constant, and ∃y, z(V?

r(y) ∧ V?
s(z) ∧ {y}(z) ' x) if t is rs. For each LFIT formula A,

we let the L2
PA formula A? be defined recursively on the build-up of A as follows for every

x 6∈ FV(A):

(s = t)? := ∃x(V?
s(x) ∧V?

t (x)) (t ∈ N)? := ∃x(V?
t (x))

(t ∈ U)? := ∃x(V?
t (x) ∧ x ∈ U) (t ∈ N)? := V?

t (0) ∧ ¬V?
t (0)

(t ∈ X)? := ∃x(V?
t (x) ∧ x ∈ X) ({x : B+})? := ∃x(V?

t (x) ∧B?(z/x))

(¬B)? := ¬(B?) (B ◦ C)? := B? ◦ C?

(QzB)? := QzB? (QXB)? := Qz(B?
(
(Λa.Π1

1(z, a))/X
)
)

for B+ ∈ For+, ◦ ∈ {∧,∨,→} and Q ∈ {∀,∃}. For the case that A is t ∈ IP,Q, we introduce
first the following positive operator form (for any P,Q ∈ Ty�)

Acc?P,Q := ΛXΛx.(x ∈ P)? ∧ ∀y((y ∈ P)? → (〈y, x〉 ∈ Q)? → y ∈ X)

12Bear in mind that this universal Π1
1 formula shall include the unary relation symbol U of LPA as a parameter.

29

and note that P,Q do not contain expressions of the form IP′,Q′ . Eventually, we set(
t ∈ IP,Q

)?
:= ∀X(∀x(Acc?P,Q(X,x)→ x ∈ X)→ (t ∈ X)?) (?-IP,Q)

Furthermore, we tacitly assume in the definition of the translation A? as usual a renaming
of bound variables in order to avoid a clash of variables. Note also that the translation is
meant to interpret type variables as Π1

1 definable sets and that IP,Q ∈ Ty implies that P,Q do
not contain type variables (since P,Q ∈ Ty�).

Lemma 7.17. Let A ∈ LFIT, then A? and A have the same free variables.

Proof. This is clear from the definition of A?. We note that it is due to this lemma that we
defined (t ∈ N)? as V?

t (0) ∧ ¬V?
t (0) instead as ¬(0 = 0).

Remark 7.18. For any F ∈ FT, consider the L2
PA class term A := Λz.(tz ∈ F)?. In order

to make later arguments more readable, we shall make the translation of the LFIT formula
ClP,Q(Λz.tz ∈ F) more explicit (cf., Notation 3.8):(

ClP,Q(Λz.tz ∈ F)
)? is ∀x(Acc?P,Q(A, x)→ A(x)) (?-ClP,Q)

We defined ClP,Q(Λz.tz ∈ F) in Section 3 in order to have the above representation that allows
to use Acc?P,Q in a intuitive way.

Lemma 7.19. Let n ≥ 0. For each LFIT term t and each LPA term r, the following holds.

(a) V?
t (x) ∈ Π1

0.

(b) (t ∈ X)? ∈ Π1
0 and P ∈ Ty� imply (t ∈ P)? ∈ Π1

0.

(c) B ∈ Π1
n(T) implies Acc?P,Q(B, r) ∈ Π1

n(T) for T ∈ {ACA0,Σ
1
1-AC0}, B := Λa.B(a) with

B ∈ L2
PA, and P,Q ∈ Ty�. In particular, we have Acc?P,Q(B, r) ∈ Π1

0 in case of B ∈ Π1
0.

(d) From P,Q ∈ Ty�, we get that ClP,Q(X)? ∈ Π1
0 and (t ∈ IP,Q)? ∈ Π1

1 hold.

(e) A ∈ For+ implies A ∈ Π1
1(Σ1

1-AC0).

(f) F ∈ FT implies (t ∈ F)? ∈ Π1
2(Σ1

1-AC0).

Proof. For (a): This follows easily after inspecting the definition of V?
t (x). For (b): (t ∈

X)? ∈ Π1
0 follows from (a). Given P ∈ Ty�, we first note that then by definition, it can

only be the case that P is N, N, or {x : A} for some A ∈ For+ such that A does not contain
any IP′,Q′ expression or type variable. By (a) and Definition 7.16, one can easily verify that
(t ∈ P)? ∈ Π1

0 holds.
For (c): Acc?P,Q(B, r) translates to the formula (r ∈ P)? ∧ ∀y((y ∈ P)? → (〈y, x〉 ∈

Q)?(r/x) → y ∈ B) and then the claim follows from Proposition 7.14 and (b), using the
assumption B ∈ Π1

n(T) and that P,Q ∈ Ty� holds.
For (d): We have Acc?P,Q(X,x) ∈ Π1

0 by the second claim of (c), and further with (b) and
after inspecting (?-IP,Q) on page 30 and (?-ClP,Q) on page 30, the claim becomes clear.
For (e): We prove here a more general statement

A ∈ For+ =⇒ A? ∈ Π1
1(Σ1

1-AC0)

¬A ∈ For+ =⇒ ¬A? ∈ Π1
1(Σ1

1-AC0)

}
(∗)

and by induction on the build-up of the LFIT formula A. Now, let A ∈ For+ or ¬A ∈ For+ be
given. Note that A cannot be of the form ∀XA0 or ∃XA0 because of the definition of For+.

30

1. Base case: If A is of the form t ∈ U, t↓, or s = t, we have A? ∈ Π1
0 and are done.

2. Step case t ∈ P: If A is t ∈ P with P ∈ Ty, then A ∈ For+ must hold. Because of (b), we
also only need to consider the case where P 6∈ Ty� and P is not a type variable. Hence, P is
either of the form IP′,Q′ with P′,Q′ ∈ Ty� or P is of the form {z : B} for some B ∈ For+.
In the first case, we get A? ∈ Π1

1(Σ1
1-AC0) from (d). For the second case, recall that

(t ∈ {z : B})? equals ∃x(V?
t (x) ∧ B?(x/z)) and note that by the induction hypothesis for (∗)

with B(x/z), we get A0(U, x) ∈ Π1
0 for some set variable U such that B?(x/z) is equivalent

to ∀XA0(X,x) over Σ1
1-AC0. Hence (t ∈ {z : B})? is equivalent to ∃x∀X(V?

t (x) ∧A0(X,x)).
Now it remains only to show that ∃x∀X(V?

t (x) ∧A0(X,x)) is equivalent to ∀XA′0(X) over
Σ1

1-AC0 for A′0(W) := ∃x(V?
t (x) ∧ A0((W)x, x)), while noting ∀XA′0(X) ∈ Π1

1. One direction
of the equivalence holds already over ACA0: In order to show A0((X)y, y) for some y for any
given set X, take x that is given in ∃x∀X(V?

t (x) ∧A0(X,x)). Then use (ACA) to get Z such
that z ∈ Z ↔ z ∈ (X)x holds, then we get V?

t (x) ∧ A0(Z, x), i.e., V?
t (x) ∧ A0((X)x, x). For

the converse direction, we can work with the contraposition and apply (Σ1
1-AC).

3. Otherwise: The remaining cases follow from standard arguments involving Σ1
1-AC0, the

induction hypothesis, and Proposition 7.14. We refer to [Ran15, Lemma 7.41] for details.
For (f): We prove this for F ∈ FT with F = P0 � . . .� Pn by induction on n ∈ N: If n = 0

holds, then we have F ∈ Ty and (t ∈ F) ∈ For+, so we can use (e). If n > 0 holds, then let
F′ := P1 � . . . � Pn. Now, (t ∈ F)? translates to ∀x((x ∈ P)? → (tx ∈ F′)?). By (e) and
the induction hypothesis, we get (x ∈ P)? ∈ Π1

1(Σ1
1-AC0) and (tx ∈ F′)? ∈ Π1

2(Σ1
1-AC0). By

Corollary 7.15, we get (t ∈ F)? ∈ Π1
2(Σ1

1-AC0).

Theorem 7.20. Π1
3-RFN0 proves A? for every instance A of (FT-ID).

Proof. Let A be an instance of (FT-ID), say ClP,Q(Λz.tz ∈ F)→ t ∈ (IP,Q � F) with F ∈ FT.
Similar as in (?-ClP,Q) on page 30, we have with A := Λz.(tz ∈ F)? that A? translates to
∀x(Acc?P,Q(A, x) → A(x)) → ∀x((x ∈ IP,Q)? → A(x)) and therefore we assume (with a slight
renaming of bound variables to make the following more readable) that ∀y(Acc?P,Q(A, y) →
A(y)) holds. Due to Lemma 7.19.(f), we know that a formula B ∈ Π1

2 exists such that
Σ1

1-AC0 ` B ↔ A(y) holds. For B := Λy.B, we get from Corollary 7.15 and Lemma 7.19.(c)
a formula C ∈ Π1

3 such that

ACA0 ` C ↔ ∀y(Acc?P,Q(B, y)→ B(y)) (12)

holds. Note that this holds over ACA0 since we work with B ∈ Π1
2 instead of (ty ∈ F)?.

Moreover, we have over Σ1
1-AC0 that our assumption ∀y(Acc?P,Q(A, y) → A(y)) is equivalent

to ∀y(Acc?P,Q(B, y) → B(y)) and we proceed now by assuming that the conclusion in A? is
false and will derive a contradiction from this. So, let a0 be such that

(x ∈ IP,Q)?(a0/x) ∧ ¬A(a0) (13)

holds and note that the formula ¬A(a0) (which is ¬(tz ∈ F)?(a0/z)) is equivalent over Σ1
1-AC0

to ¬B(a0/y). Note that ¬B(a0/y) is equivalent to a Π1
3 formula, and since we have C ∈ Π1

3,
there exists by Proposition 7.14 some D ∈ Π1

3 that is provably equivalent over ACA0 to
C ∧ ¬B(a0/y). Then due to Corollary 7.9, we can work with Π1

3-RFN0 to apply (Π1
3-RFN) to

D and thus obtain an ω-model M of ACA0 such that ¬BM (a0/y) and ∀y(Acc?P,Q(B, y)M →
B(y)M) hold. For the latter, the relativization toM holds essentially because of the equivalence

31

in (12) being provable over ACA0. Further, this formula unfolds by Definition 7.1 and the
build-up of Acc?P,Q(B, y) to

∀y(Acc?P,Q(Λy.BM , y)→ BM) (14)

Since BM is arithmetical, (ACA) provides a set X0 such that we have

∀y(y ∈ X0 ↔ BM) ∧ ∀y(Acc?P,Q(X0, y)→ y ∈ X0) (15)

Now, after recalling (?-IP,Q) on page 30, we can instantiate (x ∈ IP,Q)?(a0/x) from (13) withX0

and then use (15) to obtain (x ∈ X0)?(a0/x), i.e., ∃z(V?
x(z) ∧ z ∈ X0)(a0/x). This formula is

equivalent to a0 ∈ X0 since V?
x(z) is just x = z. But then we get BM (a0/y) by (15) which is a

contradiction to ¬BM (a0/y) that we previously obtained. So, we have proven the lemma.

Remark 7.21. In the previous proof, we consider (14) as the pivotal property for the used proof
method because it allowed to internalize an argument within the ω-modelM . In particular, we
needed that the positive operator form Acc?P,Q has the property described by Lemma 7.19.(c)
with T being ACA0. A conceptually similar proof in the setting of Π1

2-RFN0 and using similar
standard results from the area of subsystems of second order arithmetic can be found in [AR10],
treating the embedding of the theory ID∗1 of positive induction into Π1

2-RFN0.
Now, turning to the question if our proof method would also work for arbitrary positive

operator forms A, we point out that a direct embedding of TID into Π1
3-RFN0 can be carried out

almost literally as the embedding of FIT into Π1
3-RFN0. More precisely, the previous lemmas

can be reformulated in a very similar way so that they work for TID as well. The pivotal
property to make the proof work would again correspond to (14) and essentially because Acc
in the setting of TID has a similar bounded complexity as Acc?P,Q here. The latter means that
for (12) in the proof of Theorem 7.20, we used that we had the property Acc?P,Q(Λy.B, x) ∈
Π1

2(ACA0) at hand for B ∈ Π1
2, namely as provided by Lemma 7.19.(c).

Continuing from the perspective of TID, we shall consider for a moment its natural gener-
alization TIDf (where f stands for full) that allows for arbitrary arithmetical operator forms
A. So, having A instead of Acc?P,Q or Acc in (12), it would not always be possible to obtain
a property such as A(B, x) ∈ Π1

2(ACA0), nor can we expect that G′ ∈ Π1
2 exists that is equiv-

alent over Σ1
1-AC0 or Π1

3-RFN0 to A(B, x). Comparing this with the mentioned embedding
of ID∗1 into Π1

2-RFN0 from [AR10], we note that essentially only Π1
1 formulas B needed to be

considered there, and since a formula such as A(Λz.B, t) can be proven to be equivalent over
Σ1

1-AC0 to a Π1
1 formula G′, one can continue the proof with this G′.

For an embedding of TIDf into Π1
3-RFN0 where we cannot control anymore the syntactical

complexity of the positive operator forms A, we apparently cannot directly apply the method
of this section. As described in the conclusion of this article (see Section 8), we remark here
that the desired upper bound for TIDf can be obtained by turning to the setting of set-theory.

Theorem 7.22. Over Π1
3-RFN0, the following holds.

(a) A? holds for every formula A from axiom group I. of FIT.

(b) A? holds for every instance A of the N-induction scheme (FT-Ind) of FIT.

(c) A? holds for every instance A of the comprehension scheme (CA+) of FIT.

(d) A? holds for every instance A of the closure axiom (FT-Cl) of FIT.

32

Proof. For (a): Note that according to Definition 7.16, the type N has no special role in the
translation A? of any of the formulas A given in the axiom group I. of FIT. As mentioned
in Definition 7.16, we assume a standard interpretation of the constants k and s with the
properties that we need for such a translation to be adequate. It is well-known that the
combinators are available as partial recursive functions in the sense given here. Moreover, it is
also more or less obvious that the interpretation of the remaining constants has the properties
needed to make the translation of the remaining formulas in axiom group I. go through.
For (b): Over ACA0, we have that (Π1

3-RFN) implies transfinite induction for Π1
2 formu-

las, and thus complete induction along the natural numbers for Π1
2 formulas. For this, see

in [Sim09] Theorem VIII.5.12 and in particular Exercise VIII.5.15, while noting there that
Σ1

4-RFN0 is equivalent to Π1
3-RFN0. Now, let A be an instance t0 ∈ F ∧ (∀x ∈ N)(tx ∈ F →

tx′ ∈ F) → t ∈ (N � F) of the N-induction scheme (FT-Ind) of FIT, where F ∈ FT holds.
By setting B := Λz.(tz ∈ F)?, we have that A? is equivalent over ACA0 to B(0) ∧ ∀x(B(x)→
B(x + 1)) → ∀x(∃y(V?

x(y)) → B(x)) since B(x + 1) is equivalent to (t(sNx) ∈ F)?. For
the latter, note that (t(sNx) ∈ F)? is ∃y(V?

t(sNx)(y) ∧ (y ∈ F)?) and that this is equivalent
to ∃y, z1, z2(V?

t (z1) ∧ {s?N}(x) ' z2 ∧ {z1}(z2) ' y ∧ (y ∈ F)?) which again simplifies to
∃y, z1(V?

t (z1) ∧ {z1}(x + 1) ' y ∧ (y ∈ F)?) and this is equivalent to B(x + 1). Now arguing
over Π1

3-RFN0, we have that B(0) ∧ ∀x(B(x)→ B(x+ 1))→ ∀x(∃y(V?
x(y))→ B(x)) is equiv-

alent to an instance of complete induction along the natural numbers for a Π1
2 formula (use

Lemma 7.19.(f)) and hence we are done.
For (c): If A is an instance y ∈ {x : B} ↔ B(y/x) of (CA+) with B ∈ For+, then A? yields
∃x(V?

y(x) ∧B?)↔ (B(y/x))?, being equivalent to the tautology (B(y/x))? ↔ (B(y/x))?.
For (d): Let A := ClP,Q(Λz.z ∈ IP,Q) be an instance of (FT-Cl). Following (?-ClP,Q) on

page 30 and in order to show A?, assume for A := Λz.(z ∈ IP,Q)? that we have Acc?P,Q(A, z0)
for some z0, and we aim to prove A(z0), i.e., (∀X(∀x(Acc?P,Q(X,x) → x ∈ X) → (z ∈
X)?))(z0/z) and in order to prove this, we shall prove z0 ∈ X0, assuming X0 such that
∀x(Acc?P,Q(X0, x) → x ∈ X0) holds. From the latter and the definition of (z ∈ IP,Q)?, we
get ∀z((z ∈ IP,Q)? → z ∈ X0), i.e., we have ∀z(A(z) → z ∈ X0). With this, we get
Acc?P,Q(A, z0) → Acc?P,Q(X0, z0) through the positivity of the operator form Acc?P,Q. Now,
Acc?P,Q(X0, z0) follows from assumption Acc?P,Q(A, z0) and then the remaining goal z0 ∈ X0

follows from assumption ∀x(Acc?P,Q(X0, x)→ x ∈ X0).

Corollary 7.23. FIT ` A implies Π1
3-RFN0 ` A? for all A ∈ LFIT.

Proof. By Theorems 7.20 and 7.22, one only has to show that the logical part of FIT embeds
into Π1

3-RFN0, i.e., that LPT ` A implies Π1
3-RFN0 ` A?. The proof is by induction on the

definition of the derivability notion LPT ` A that may have been chosen in Definition 3.9 with
respect to any sound Hilbert calculus. See [Ran15, Corollary 7.45] for details.

8. Conclusion and Further Remarks

Recapitulating the results of this article, we obtained theories FIT and TID that both have the
small Veblen ordinal ϑΩω as their proof-theoretic ordinal, while FIT is a natural extension of
Feferman’s two-sorted theory QL(F0-IRN) from [Fef92] and TID becomes from this perspective
a natural subsystem of ID1. Moreover, we used techniques from the realm of predicative proof-
theory in order to obtain a wellordering proof for TID (and hence for FIT).

33

With regard to the upper-bound results, we embedded FIT into the subsystem Π1
3-RFN0 of

second order arithmetic, while exploiting the Π1
1 definability of a least fixed point in such a

setting. This method can be used almost literally for embedding TID directly into Π1
3-RFN0

(see [Ran15, Chapter 9] for this). This approach seems to fail though if we extend TID to a
theory TIDf for general typed inductive definitions with the full range of positive arithmetical
operator forms (as described in Remark 7.21). A way to avoid this obstacle is to shift the
setting to set-theory rather than subsystems of second order arithmetic, namely by exploiting
the Σ1 definability of a least fixed point. Working then in KPω−+Π2-Found from [Rat92] (i.e.,
Kripke-Platek set-theory with a restricted axiom scheme for foundation) shall suffice to get an
analog result as for FIT which we can apply to the theory TIDf . Summing up, what we gain
from these embeddings is that extending TID to the theory TIDf retains the proof-theoretic
upper bound ϑΩω because KPω−+Π2-Found has by [Rat92] the same proof-theoretic strength
as Π1

2-BI0. Since TID trivially embeds into TIDf and as depicted in Figure 2, we get that TIDf

has the same proof-theoretic strength as TID (in a similar way as ID1 and its restriction
ID1(Acc) to accessible part arithmetical operator forms correspond, see also [BFPS81]).

TID

wellordering proof
(lower bound)

��

generalization
**

embedding
(upper bound)

// TIDf

embedding
(upper bound)

���� ��ϑΩω KPω− + Π2-Found[Rat92]
(upper bound)

oo

Figure 2: Generalization of TID to the full theory TIDf

We finish with some remarks and conjectures on how to extend the proof-methods from
Sections 6 and 7 in order to analyze stronger systems: First, the collections of formulas Pos0

and Pos1 suggest already a generalization to collections Posn for any n ≥ 2 in the sense that
the correspondence of Pos1 to function types of the form P1 � . . .� Pk for each k ∈ N (i.e.,
“ level-1-functional types”) passes over to Pos2 being in correspondence to level-2-functional
types F1 � . . . � Fk for each k ∈ N, and similar for n > 2. Such theories are essentially
considered in [Ran15] and named TIDn. Moreover, intermediate systems TID+

n are considered
that are located between TIDn and TIDn+1, and which arise essentially by adding a rule of
inference (TID+) of the form

PCt
(TID+)

ProgC(B)→ B(t)

for arbitrary B ∈ LTID and for each binary relation symbol C ∈ LPA and each term t. As shown
in [Ran15], TID+

1 has the strength of the large Veblen ordinal ϑΩΩ and (TID+) corresponds to
a variant of a bar rule. This and the results of [Pro17] suggest that by adding the usual bar
rule (BR) to the theory Π1

3-RFN0 with strength of the small Veblen ordinal ϑΩω, we obtain a
theory Π1

3-RFN0 + (BR) with strength of the large Veblen ordinal ϑΩΩ.
Concerning the wellordering proof for TID+

1 in [Ran15, Chapter 11], we remark here that it
is based on the methods from Section 6 by using Klammersymbols instead of finitary Veblen

34

functions and by internalizing the arity of the finitary Veblen functions within the theory.
More precisely and as an informal and intuitive explanation why Corollary 6.15 is the best we
can expect from TID, we mention that the method used in the proof of Theorem 6.12 relied on
an external representation of the finite list of arguments that the finitary Veblen function is
applied to. In particular, induction in the meta-theory has been applied to cope with arbitrary
but finite lists of arguments. The proof of Theorem 6.12 is designed for the theory TID, and in
order to use it to get beyond the small Veblen ordinal, for instance by working with infinitary
Veblen functions or Klammersymbols, the first step is to internalize the proof and deal with
non-standard argument positions (for which we do not have a denotation in the meta-theory).
For more details and further remarks on the other theories, we refer to [Ran15]. The

use of a higher-type functional for iterating the fixed-point construction on Klammersymbols
allows to extend the ordinal notation system. Endowed with stronger induction principles
that become available in the theories TIDn and TID+

n , this may lead towards higher ordinals
via wellordering proofs based on the accessible part of the primitive recursive ordering of the
new ordinal notation system.

A. Appendix: The Ordinal Notation System (OT,≺)

For carrying out the wellordering proofs in TID, we fix a primitive recursive notation system
(OT,≺) for ordinals below the small Veblen ordinal, based on codes of natural numbers. For
a full definition and proofs, see [Ran15, Chapter 3]. (OT,≺) is based on Lemma 5.19 (i.e.,
essentially on (7.1)–(7.4) in [Sch54]) and its representation is inspired by [Buc05].
We point out that the definition and properties of (OT,≺) can be formalized and established

within PA and hence within TID. Due to constraints on the length of this article, we hide these
things and establish here only the minimal technical information needed in order to be able
to carry out the wellordering proofs in Section 6 in a formally satisfying way. In particular,
we provide Section 5 as the set-theoretic intuition for those proofs and we refer to [Ran15] for
the full definition of (OT,≺), i.e., its formalization within LPA, the (technically cumbersome)
encoding and verification within PA of crucial primitive recursive properties (e.g., that (OT,≺)
is a strict total order), and the set-theoretic interpretation of (OT,≺) by means of a function
o: OT→ On as described in Section 5.2.
This appendix contains the formal definition and central properties of fundamental sequences

for ordinal notations because the proofs of Section 6 are centrally based on these. In order to
be able to parse this definition, we stress that OT consists of the following codes for ordinals:

• 0 for the zero ordinal;

• φā(n+1) denoting a code for the intended application of the finitary Veblen function ϕ
to given a1, . . . , an+1 ∈ OT with a1 6= 0 and where a1, . . . , an+1 suffice certain (normal-
form) conditions that are motivated by Lemma 5.19;

• a ⊕ b denoting a code for the intended sum of ordinals in Cantor normal form, where
essentially a is of the form φā(n+1) and b 6= 0.

Suc and Lim denote primitive recursive sets of codes for successor ordinals and limit ordinals,
respectively. As already mentioned in Section 5.2, ordinal arithmetic is simulated on such
ordinal notations by making use of primitive recursive operations: We have +̃ : OT×OT→ OT
and ϕ̃n+1 : OTn+1 → OT that correspond to +On : On × On → On and ϕn+1 : Onn+1 → On

35

from Section 5. We just write ϕ̃ instead of ϕ̃n+1 if the arity is clear from the context. Further,
let 1̃ := φ0 and ω̃a := ϕ̃(a) for each a ∈ OT. Also, we have ·̃ : OT× N→ OT to denote finite
addition (encoded via ⊕) of the same ordinal notation, i.e., a ·̃0 := 0 and a ·̃(x+N1) := a⊕(a ·̃x)
for all a ∈ OT and x ∈ N.

Definition A.1. Fundamental sequences for ordinal notations d ∈ OT are defined within PA
by means of a binary primitive recursive function L whose defining equations are described as
follows, where a, x range over natural numbers and where we write a[x] to denote L(a, x).

• If d = 0 or d 6∈ OT, then d[x] := 0

• If d ∈ Suc with d = d0 +̃ 1̃, then d[x] := d0

• If d ∈ Lim and d = a⊕ b with a ∈ OT and b ∈ Lim, then d[x] := a +̃ b[x]

• If d ∈ Lim and d = φa with a 6= 0, then d[x] :=

{
ω̃a0 ·̃ (x+N 1) if a = a0 +̃ 1̃

ω̃a[x] otherwise

• If d ∈ Lim with d = φā(m)b0̄(k)c for some ā(m), b, c ∈ OT with b 6= 0 and m, k ∈ N, then

d[0] :=


ϕ̃(ā(m), b, 0̄(k), c[0]) if c ∈ Lim

ϕ̃(ā(m), b[0], 0̄(k+1)) if c = 0 and b ∈ Lim

1̃ if c = 0 and b ∈ Suc

ϕ̃(ā(m), b, 0̄(k), c[0]) +̃ 1̃ otherwise (if c ∈ Suc)

d[x+N 1] :=


ϕ̃(ā(m), b, 0̄(k), c[x+N 1]) if c ∈ Lim

ϕ̃(ā(m), b[x+N 1], 0̄(k+1)) if c = 0 and b ∈ Lim

ϕ̃(ā(m), b[x], d[x], 0̄(k)) otherwise (if c ∈ Suc or (c = 0 and b ∈ Suc))

References

[AR10] Bahareh Afshari and Michael Rathjen. A note on the theory of positive induction,
ID∗1. Archive for Mathematical Logic, 49:275–281, 2010. 10.1007/s00153-009-0168-9.

[Bee85] Michael J. Beeson. Foundations of Constructive Mathematics: Metamathematical
studies. Springer Verlag, Berlin, Heidelberg, New York, 1985.

[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg. Iterated
Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies,
volume 897 of Lecture Notes in Mathematics. Springer Verlag, Berlin, Heidelberg,
New York, 1981.

[Bri75] Jane Bridge. A simplification of the Bachmann method for generating large count-
able ordinals. The Journal of Symbolic Logic, 40(2):171–185, 1975.

[BS88] Wilfried Buchholz and Kurt Schütte. Proof Theory of Impredicative Subsystems of
Analysis, volume 2 of Studies in Proof Theory Monographs. Bibliopolis, Napoli,
1988.

36

[Buc05] Wilfried Buchholz. Prädikative Beweistheorie (Predicative proof theory). Lecture
notes, University of Munich, 2004–2005.

[Buc16] Wilfried Buchholz. A survey on ordinal notations around the Bachmann-Howard
ordinal. In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors, Advances
in Proof Theory, pages 1–29. Birkhaeuser, Springer Basel, 2016.

[Can86] Andrea Cantini. On the relation between choice and comprehension principles in
second order arithmetic. The Journal of Symbolic Logic, 51(2):360–373, 1986.

[Fef79] Solomon Feferman. Constructive theories of functions and classes. In Dirk van Dalen
Maurice Boffa and Kenneth Mcaloon, editors, Logic Colloquium ’78 Proceedings of
the colloquium held in Mons, volume 97 of Studies in Logic and the Foundations of
Mathematics, pages 159–224. Elsevier, 1979.

[Fef92] Solomon Feferman. Logics for termination and correctness of functional programs,
II. Logics of strength PRA. In Peter Aczel, Harold Simmons, and Stanley S. Wainer,
editors, Proof Theory, pages 195–225. Cambridge University Press, 1992.

[FJS] Solomon Feferman, Gerhard Jäger, and Thomas Strahm. Foundations of Explicit
Mathematics. Book in preparation.

[Jäg05] Gerhard Jäger. Metapredicative and explicit Mahlo: a proof-theoretic perspective.
In Rene Cori, Alexander Razborov, Stevo Todorcevic, and Carol Wood, editors,
Proceedings of Logic Colloquium ’00, volume 19 of Association of Symbolic Logic
Lecture Notes in Logic, pages 272–293. AK Peters, 2005.

[JKSS99] Gerhard Jäger, Reinhard Kahle, Anton Setzer, and Thomas Strahm. The proof-
theoretic analysis of transfinitely iterated fixed point theories. The Journal of
Symbolic Logic, 64(1):53–67, 1999.

[JS99] Gerhard Jäger and Thomas Strahm. Bar induction and ω model reflection. Annals
of Pure and Applied Logic, 97(1–3):221–230, 1999.

[JS05] Gerhard Jäger and Thomas Strahm. Reflections on reflections in explicit mathe-
matics. Annals of Pure and Applied Logic, 136(1–2):116–133, 2005. Festschrift on
the occasion of Wolfram Pohlers’ 60th birthday.

[Pro06] Dieter Probst. The proof-theoretic analysis of transfinitely iterated quasi least fixed
points. The Journal of Symbolic Logic, 71(3):721–746, 2006.

[Pro17] Dieter Probst. Modular Ordinal Analysis of Subsystems of Second-Order Arithmetic
of Strength up to the Bachmann-Howard Ordinal. Habilitation, Universität Bern,
2017. Submitted.

[Ran15] Florian Ranzi. From a Flexible Type System to Metapredicative Wellordering Proofs.
PhD thesis, Universität Bern, 2015. http://www.iam.unibe.ch/ltgpub/2015/
ran15.pdf or http://dx.doi.org/10.7892/boris.75102.

[Rat92] Michael Rathjen. Fragments of Kripke–Platek set theory with infinity. In P. Aczel,
H. Simmons, and S.S. Wainer, editors, Proof Theory. A selection of papers from the

37

Leeds Proof Theory Programme 1990, pages 251–273. Cambridge University Press,
1992.

[RW93] Michael Rathjen and Andreas Weiermann. Proof-theoretic investigations on
Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49–88, 1993.

[Sch54] Kurt Schütte. Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funk-
tionen. Mathematische Annalen, 127:15–32, 1954. 10.1007/BF01361109.

[Sch92] Kurt Schütte. Beziehungen des Ordinalzahlensystems OT(ϑ) zur Veblen-Hierarchie.
Unpublished notes, 1992.

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge Univer-
sity Press, second edition, 2009. Cambridge Books Online.

[Str99] Thomas Strahm. First steps into metapredicativity in explicit mathematics. In
S. Barry Cooper and John K. Truss, editors, Sets and Proofs, volume 258 of London
Mathematical Society Lecture Notes, pages 383–402. Cambridge University Press,
1999.

[VRW17] Jeroen Van der Meeren, Michael Rathjen, and Andreas Weiermann. An order-
theoretic characterization of the Howard-Bachmann-hierarchy. Archive for Mathe-
matical Logic, 56(1–2):79–118, February 2017.

38

	1

