This is a preprint of an article that appeared in the Archive for Mathematical Logic, DOI: 10.1007/s00153-019-00664-z
An author approved manuscript incorporating the referee's suggested changes, and a copy of the corrigendum on the last page can be found on the authors' websites.

Using Ramsey's Theorem Once

Jeffry L. Hirst* Carl Mummert ${ }^{\dagger}$

June 1, 2017

Abstract

We show that $\mathrm{RT}(2,4)$ cannot be proved with one typical application of $\mathrm{RT}(2,2)$ in an intuitionistic extension of RCA_{0} to higher types, but that this does not remain true when the law of the excluded middle is added. The argument uses Kohlenbach's axiomatization of higher order reverse mathematics, results related to modified reducibility, and a formalization of Weihrauch reducibility. Keywords: Ramsey; Weihrauch; uniform reduction; higher order; reverse mathematics; proof mining MSC Subject Class (2000): 03B30; 03F35; 03F50; 03D30; 03F60

One of the questions motivating the exploration of uniform reductions in the article of Dorais, Dzhafarov, Hirst, Mileti, and Shafer [4] was: Is it possible to prove Ramsey's theorem for pairs and four colors from a single use of Ramsey's theorem for pairs and two colors? Not surprisingly, the answer depends on the base system chosen, as shown in $\$ 3$ below. Our approach utilizes a formalization of Weihrauch reducibility described by Hirst at Dagstuhl Seminar 15392 [1], based on higher order reverse mathematics as axiomatized by Kohlenbach [9]. This choice of formalization, along with

[^0]the choice of different base systems, yields results that differ from those in recent closely related work of Kuyper [10]. We discuss these differences at the end of Section 2,

1 Formal Weihrauch reduction

The counting of theorem applications in later sections relies in part on the close connection between proofs in some systems of arithmetic and Weihrauch reduction. This relationship is also central to the arguments of Kuyper [10] Rather than formalizing Weihrauch reduction by means of indices (as in [10), we work in extensions of reverse mathematics axiom systems [11] to higher types, first formulated by Kohlenbach [9]. These systems have variables for numbers (type 0 objects), functions from numbers to numbers (type 1 objects encoding sets of numbers), and for functions from type 1 functions to numbers, type 1 functions to type 1 functions, and so on. In Kohlenbach's terminology, $\mathrm{RCA}_{0}^{\omega}$ consists of $\widehat{\mathrm{E}-\mathrm{HA}}_{\uparrow}^{\omega}$ plus the law of the excluded middle and QF-AC ${ }^{1,0}$, a restricted choice scheme. The system $\widehat{\mathrm{E}-\mathrm{HA}}^{\omega}$ is an axiomatization of intuitionistic Heyting arithmetic in all finite types, with restricted induction and primitive recursion. For full details, see Kohlenbach [8, §3.4]. The choice scheme QF-AC ${ }^{1,0}$ asserts

$$
\forall x \exists n A(x, n) \rightarrow \exists \varphi \forall x A(x, \varphi(x))
$$

for A quantifier free, where x is a set variable, n is a number variable, and φ is a variable for functions mapping sets to numbers. To make the typography more compact, we will use letters between i and n to denote number variables, letters following s in the alphabet as set variables, and greek letters for various functionals. We also use $i \mathrm{RCA}_{0}^{\omega}$ to denote the intuitionistic system arising from omitting the law of the excluded middle from $\mathrm{RCA}_{0}^{\omega}$. A concise outline of the axioms for $\mathrm{RCA}_{0}^{\omega}$ can be found in the article of Hirst and Mummert [6].

Weihrauch reducibility is a computability theoretic approach to measuring relative uniform strength. See Brattka and Gherardi [2] for an extensive survey. We adopt the notion of reduction of problems, as used by Dorais [3] and Dorais et al. 4]. A problem P is a formula of the form $\forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$, asserting that whenever x is an instance of the problem then there is a solution y for x. Suppose $\mathrm{P}: \forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$ and Q: $\forall u\left(q_{1}(u) \rightarrow \exists v q_{2}(u, v)\right)$ are problems. We say Q is Weihrauch re-
ducible to P , and write $\mathrm{Q} \leq_{W} \mathrm{P}$, if there are computable functions φ and ψ such that the following hold:

- If u is an instance of \mathbf{Q} then $\varphi(u)$ is an instance of P , that is:

$$
q_{1}(u) \rightarrow p_{1}(\varphi(u))
$$

- If y is a solution of $\varphi(u)$, then $\psi(u, y)$ is a solution of \mathbf{Q}, that is:

$$
p_{2}(\varphi(u), y) \rightarrow q_{2}(u, \psi(u, y))
$$

Consequently, in the language of $\mathrm{RCA}_{0}^{\omega}$ we can formalize $\mathrm{Q} \leq_{W} \mathrm{P}$ as:

$$
\exists \varphi \exists \psi \forall u\left(q_{1}(u) \rightarrow\left(p_{1}(\varphi(u)) \wedge \forall y\left[p_{2}(\varphi(u), y) \rightarrow q_{2}(u, \psi(u, y))\right]\right)\right)
$$

We will be working in subsystems of higher order reverse mathematics, so we use $\mathrm{Q} \leq_{W} \mathrm{P}$ as an abbreviation for the formula above, despite the fact that the leading quantifiers in the formula are not explicitly restricted to computable functionals. When working in $i \mathrm{RCA}_{0}^{\omega}$, for many choices of Q and P this is a faithful translation, as shown by Corollary 5. However, in the classical setting, $\mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$ may not imply $\mathrm{Q} \leq_{W} \mathrm{P}$, as shown by the example following Corollary 5 .

2 Counting theorem applications

In this section, we show that formalized Weihrauch reducibility is closely related to the structure of some intuitionistic proofs.

Definition 1. Suppose \mathcal{T} is a theory and $\mathrm{P}: \forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$ and $\mathrm{Q}: \forall u\left(q_{1}(u) \rightarrow \exists v q_{2}(u, v)\right)$ are problems. We say \mathcal{T} proves Q with one typical use of P if the following two sentences hold:
(1) For a variable u there is a term x_{u} such that using only axioms of \mathcal{T} and the assumption $q_{1}(u)$, and with no applications of generalization to u or any variables appearing free in x_{u}, there is a deduction of $p_{1}\left(x_{u}\right)$.
(2) For a previously unused constant symbol y_{0}, there is a term $v_{x_{u}, y_{0}}$ such that using only axioms of \mathcal{T} and the assumption $p_{2}\left(x_{u}, y_{0}\right)$, and with no applications of generalization to u or any variable appearing free in x_{u} or $v_{x_{u}, y_{0}}$, there is a deduction of $q_{2}\left(u, v_{x_{u}, y_{0}}\right)$.

Informally, this definition says that given an instance of the problem Q, there is an instance x_{u} of the problem P such that if there is a solution y_{0} to x_{u} then there is a solution $v_{x_{u}, y_{0}}$ to Q . The restrictions on generalization insure the validity of applications of the deduction theorem in the proof of the following lemma.

Lemma 2. Suppose \mathcal{T} is a theory that includes intuitionistic predicate calculus, $\mathrm{P}: \forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$ and $\mathrm{Q}: \forall u\left(q_{1}(u) \rightarrow \exists v q_{2}(u, v)\right)$ are problems, and \mathcal{T} proves Q with one typical use of P . Then \mathcal{T} proves:

$$
\forall u \exists x \forall y \exists v\left(q_{1}(u) \rightarrow\left(p_{1}(x) \wedge\left(p_{2}(x, y) \rightarrow q_{2}(u, v)\right)\right)\right)
$$

Proof. Given a proof of Q in \mathcal{T} with one typical use of P , build a new proof as follows. Assume $q_{1}(u)$ as a hypothesis and, applying sentence (1) of Definition 1, emulate the given proof to construct a term x_{u} with $p_{1}\left(x_{u}\right)$. Let y_{0} be a new constant symbol and assume $p_{2}\left(x_{u}, y_{0}\right)$ as a hypothesis. By sentence (2) of Definition [1, we can find a term $v_{x_{u}, y_{0}}$ and prove $q_{2}\left(u, v_{x_{u}, y_{0}}\right)$. One application of the deduction theorem yields $p_{2}\left(x_{u}, y_{0}\right) \rightarrow q_{2}\left(u, v_{x_{u}, y_{0}}\right)$. By \wedge-introduction [7, §19, Ax. 3] followed by the deduction theorem, we have:

$$
q_{1}(u) \rightarrow\left(p_{1}\left(x_{u}\right) \wedge\left(p_{2}\left(x_{u}, y_{0}\right) \rightarrow q_{2}\left(u, v_{x_{u}, y_{0}}\right)\right)\right)
$$

Note that x_{u} depends only on u and $v_{x_{u}, y_{0}}$ depends only on y_{0} and x_{u}. Alternating applications of \exists-introduction [7, §32, fla. 68] and \forall-introduction [7, §32, fla. 64] yield

$$
\forall u \exists x \forall y \exists v\left(q_{1}(u) \rightarrow\left(p_{1}(x) \wedge\left(p_{2}(x, y) \rightarrow q_{2}(u, v)\right)\right)\right)
$$

as desired.
A formula is \exists-free if it is built from prime (that is, atomic) formulas using only universal quantification and the connectives \wedge and \rightarrow. Here, the symbol \perp is considered prime, and $\neg A$ is an abbreviation of $A \rightarrow \perp$, so \exists-free formulas may include both \perp and \neg. Troelstra's [12] collection Γ_{1} consists of those formulas defined inductively by the following:

- All prime formulas are elements of Γ_{1}.
- If A and B are in Γ_{1}, then so are $A \wedge B, A \vee B, \forall x A$, and $\exists x A$.
- If A is \exists-free and B is in Γ_{1} then $\exists x A \rightarrow B$ is in Γ_{1}, where $\exists x$ may represent a block of existential quantifiers.

Theorem 3. Suppose P: $\forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$ and $\mathrm{Q}: \forall u\left(q_{1}(u) \rightarrow \exists v q_{2}(u, v)\right)$ are problems and the formula $q_{1}(u) \rightarrow\left(p_{1}(x) \wedge\left[p_{2}(x, y) \rightarrow q_{2}(u, v)\right]\right)$, abbreviated as $R(x, y, u, v)$, is in Γ_{1}. Then $i \mathrm{RCA}_{0}^{\omega} \vdash \forall u \exists x \forall y \exists v R(x, y, u, v)$ if and only if $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$.

Proof. To prove the implication from left to right, suppose P, Q, and R are as hypothesized, and $i \mathrm{RCA}_{0}^{\omega} \vdash \forall u \exists x \forall y \exists v R(x, y, u, v)$. The proof of Lemma 3.9 of Hirst and Mummert [6] also holds for $i \mathrm{RCA}_{0}^{\omega}$, so by two applications of that lemma, there are terms x_{u} and $v_{x_{u}, y}$ such that $i \mathrm{RCA}_{0}^{\omega} \vdash \forall u \forall y R\left(x_{u}, y, u, v_{x_{u}, y}\right)$. $i \mathrm{RCA}_{0}^{\omega}$ proves existence of functionals $\varphi(u)=x_{u}$ and $\psi(u, y)=v_{x_{u}, y}$, so $i \mathrm{RCA}_{0}^{\omega}$ proves:

$$
\forall u \forall y\left(q_{1}(u) \rightarrow\left(p_{1}(\varphi(u)) \wedge\left[p_{2}(\varphi(u), y) \rightarrow q_{2}(u, \psi(u, y))\right]\right)\right)
$$

which is equivalent to $\mathrm{Q} \leq_{W} \mathrm{P}$ by intuitionistic predicate calculus via [7, §35, fla. 95], [7, §35, fla. 89], and ヨ-introduction [7, §32, fla. 68].

Note that the proof of Lemma 3.9 of [6] is based on versions of the soundness theorem for modified realizability, which appears as Theorem 5.8 of Kohlenbach [8] and Theorem 3.4.5 of Troelstra [12], and conversion lemmas for modified reducibility, Lemma 5.20 of Kohlenbach [8] and Lemma 3.6.5 of Troelstra [12]. The conversion lemmas are restricted to formulas in Γ_{1}, necessitating the inclusion of this restriction as a hypothesis for this argument.

To prove the converse, suppose $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$. Thus, by our formalization adopted in section $\S 1, i \mathrm{RCA}_{0}^{\omega}$ proves the existence of functionals φ and ψ satisfying

$$
\forall u\left(q_{1}(u) \rightarrow\left(p_{1}(\varphi(u)) \wedge \forall y\left[p_{2}(\varphi(u), y) \rightarrow q_{2}(u, \psi(u, y))\right]\right)\right)
$$

By intuitionistic predicate calculus [7, §35, fla. 89] and [7, §35, fla. 95], we can move the universal quantifier on y to the front of the formula. Applying appropriate quantifier elimination followed by quantifier introduction yields $\forall u \exists x \forall y \exists v R(x, y, u, v)$.

As a corollary, we can show a close relationship between intuitionistic proofs and formal Weihrauch reducibility in intuitionistic systems.

Corollary 4. Suppose P, Q and R satisfy the hypotheses in Theorem 3. Then $i \mathrm{RCA}_{0}^{\omega}$ proves Q with one typical use of P if and only if $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$.

Proof. The forward implication follows immediately from Lemma 2 and Theorem 3. To prove the converse, suppose $i \mathrm{RCA}_{0}^{\omega}$ proves the existence of functions φ and ψ witnessing $\mathrm{Q} \leq_{W} \mathrm{P}$. Then $\varphi(u)$ satisfies sentence (1) of Definition 1, so $p_{1}(\varphi(u))$. Assume the single use of P given by $p_{2}\left(\varphi(u), y_{0}\right)$. Because $\mathrm{Q} \leq_{W} \mathrm{P}$, we have $q_{2}\left(u, \psi\left(u, y_{0}\right)\right)$, completing a proof satisfying sentence (2) of Definition 1 .

Theorem 3 also allows us to show that formal Weihrauch reducibility proved in $i \mathrm{RCA}_{0}^{\omega}$ is often a faithful representation of actual Weihrauch reducibility.

Corollary 5. Suppose P, Q and R satisfy the hypotheses in Theorem [3. If $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$, then $\mathrm{Q} \leq_{W} \mathrm{P}$.

Proof. For P, Q and R as hypothesized, if $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$ then by Theorem 3, $i \mathrm{RCA}_{0}^{\omega} \vdash \forall u \exists x \forall y \exists v R(x, y, u, v)$. As in the proof of Theorem 3, this means there are terms x_{u} and $v_{x_{u}, y}$ in the language of $i \mathrm{RCA}_{0}^{\omega}$ such that $i \operatorname{RCA}_{0}^{\omega} \vdash \forall u \forall y R\left(x_{u}, y, u, v_{x_{u}, y}\right)$. Thus in any model of $i \mathrm{RCA}_{0}^{\omega}$ based on ω and the power set of ω, where the basic arithmetic function symbols and the combinators have their usual interpretations, the interpretations of the functionals $\lambda u . x_{u}$ and $\lambda\left(x_{u}, y\right) \cdot v_{x_{u}, y}$ (that is, φ and ψ as in the proof of Theorem 3) will be computable functionals witnessing $\mathrm{Q} \leq_{W} \mathrm{P}$.

Corollary 5 does not hold if $i \mathrm{RCA}_{0}^{\omega}$ is replaced by $\mathrm{RCA}_{0}^{\omega}$. For example, suppose P is the trivial problem defined by using $0=0$ for both p_{1} and p_{2}. Thus every set is an acceptable input for P , and every set is a solution of P for any input. To define the problem Q , let T be an infinite computable binary tree (all nodes labeled 0 or 1) with no infinite computable path. Viewing an input u as a function from \mathbb{N} to \mathbb{N}, we may interpret u as a sequence of zeros and ones by identifying $u(n)$ with 0 if $u(n)=0$ and identifying $u(n)$ with 1 if $u(n) \neq 0$. Let q_{1} be $0=0$ so every input is acceptable for Q . Let $q_{2}(u, v)$ say that either $v(0)=0$ and $p(n)=v(n+1)$ is an infinite path in T, or $v(0)>0$ and $\langle u(0), \ldots u(v(0))\rangle \notin T$. Since T is Δ_{1}^{0} definable, $q_{2}(u, v)$ can be written as a Π_{1}^{0} formula.

Working in $\mathrm{RCA}_{0}^{\omega}$, we will prove that $\exists \psi \forall u q_{2}(u, \psi(u))$. By the law of the excluded middle, either T has an infinite path or it doesn't, so either $\exists p \forall n\langle p(0), \ldots p(n)\rangle \in T$ or $\forall p \exists n\langle p(0), \ldots p(n)\rangle \notin T$. In the first case, choose an infinite path p_{0} and define ψ to be the constant functional that maps each input to the sequence 0 followed by p_{0}. In the second case, let ψ map each
u to the function that always takes the value $1+\mu m(\langle u(0), \ldots u(m)\rangle \notin T)$, so for each u and $n, \psi(u)(n)$ is a positive witness that u is not an infinite path. In either case, $\forall u q_{2}(u, \psi(u))$, as desired. Consequently, the identity functional φ trivially witnesses

$$
\forall u\left(0=0 \rightarrow\left(0=0 \wedge \forall y\left(0=0 \rightarrow q_{2}(u, \psi(u))\right)\right)\right),
$$

so $\mathrm{RCA}_{0}^{\omega}$ proves that $\mathrm{Q} \leq_{W} \mathrm{P}$.
Turning to the computability theoretic framework, we will show that Q is not Weihrauch reducible to to P. To see this, suppose by way of contradiction that φ and ψ are computable functionals witnessing $\mathrm{Q} \leq_{W} \mathrm{P}$. Because P is trivial, \emptyset (the constant 0 function) is a solution of $\varphi(u)$, so for all $u, \psi(u, \emptyset)$ is a solution of Q. By König's Lemma, let u_{0} be an infinite path through T. Because there is no witness that u_{0} is not an infinite path, we must have $\psi\left(u_{0}, \emptyset\right)(0)=0$. The functional ψ is computable, so for some finite k, if u is any extension of $\left\langle u_{0}(0), \ldots u_{0}(k)\right\rangle$, then $\psi(u, \emptyset)(0)=0$. Choose a computable sequence s_{0} such that s_{0} extends $\left\langle u_{0}(0), \ldots u_{0}(k)\right\rangle$. Then $\psi\left(s_{0}, \emptyset\right)$ is a solution of \mathbf{Q} and $\psi\left(s_{0}, \emptyset\right)(0)=0$, so v_{0} defined by $v_{0}(n)=\psi\left(s_{0}, \emptyset\right)(n+1)$ is an infinite path through T. But v_{0} is computable, contradicting the choice of T and completing the example.

We close this section by comparing Corollary 4 with Theorem 7.1 of Kuyper [10. The results are similar in that each states the equivalence of the existence of a formalized Weihrauch reduction with the existence of a restricted resource proof of a related formula. Neither result implies the other, however. On one hand, Kuyper's results assume Markov's Principle in the base system, while ours do not. On the other hand, the class of pairs of problems P and Q such that $i \mathrm{RCA}_{0}^{\omega}$ proves Q with one typical use of P is a proper subclass of those for which $\left(E L_{0}+M P\right)^{\exists \alpha a}$ proves $\mathrm{P}^{\prime} \rightarrow \mathrm{Q}^{\prime}$ (in the sense of Kuyper [10]). This is an immediate consequence of Corollary 4, Theorem 7.1 of Kuyper [10], and the following theorem.

Theorem 6. Suppose P, Q and R satisfy the hypotheses of Theorem (3) If $i \mathrm{RCA}_{0}^{\omega} \vdash \mathrm{Q} \leq_{W} \mathrm{P}$, then there are standard natural number indices e_{0} and e_{1} such that RCA_{0} proves that e_{0} and e_{1} witness that Q Weihrauch reduces to P as formalized in Theorem 7.1 of Kuyper [10]. The converse of this implication fails.

Proof. Suppose P, Q and R satisfy the hypotheses of Theorem 3, Note that the formalization of $\mathrm{Q} \leq_{W} \mathrm{P}$ in $i \mathrm{RCA}_{0}^{\omega}$ is in Γ_{1}. By the intuitionistic analog
of Lemma 3.9 of Hirst and Mummert [6], there are terms in the language of $i \mathrm{RCA}_{0}^{\omega}$ corresponding to the functionals witnessing $\mathrm{Q} \leq_{W} \mathrm{P}$. The desired indices can be calculated from these terms.

To prove that the converse fails, let \mathbf{P} be the trivial problem $\forall x(0=0 \rightarrow$ $\exists y(0=0))$ and let Q be the problem

$$
\forall u(0=0 \rightarrow \exists v(\forall n u(n)=0 \vee \exists n u(n) \neq 0))
$$

Note that P, Q, and the associated formula R satisfy the hypotheses of Theorem 3. In $i \mathrm{RCA}_{0}^{\omega}, \mathrm{Q} \leq_{W} \mathrm{P}$ implies $\left.\forall u(\forall n u(n)=0 \vee \exists n u(n) \neq 0)\right)$. Because this conclusion (a form of the Lesser Principle of Omniscience) is not intuitionistically valid, $i \mathrm{RCA}_{0}^{\omega}$ does not prove $\mathrm{Q} \leq_{W} \mathrm{P}$. On the other hand, for any indices e_{0} and e_{1}, the classical system RCA_{0} proves
$\forall u(0=0 \rightarrow(0=0 \rightarrow(0=0 \wedge \forall y(0=0 \rightarrow(\forall n u(n)=0 \vee \exists n u(n) \neq 0)))))$,
so for any choice of indices, RCA_{0} proves that Q Weihrauch reduces to P in the sense of Theorem 7.1 of Kuyper [10.

In light of the preceding example, it would be nice to know if this distinction between the formalizations of Weihrauch reducibility holds for more combinatorially interesting choices of P and Q. That is, can we find natural choices of P and Q such that Q is not a theorem of $R C A_{0}, R C A_{0}$ proves Q assuming $\mathrm{P},\left(\mathrm{EL}_{0}+\mathrm{MP}\right)^{\exists a a}$ proves $\mathrm{P}^{\prime} \rightarrow \mathrm{Q}^{\prime}$, and $i \mathrm{RCA}_{0}^{\omega}$ cannot prove Q with one typical use of P ?

Unlike our results, the results of Kuyper [10] are not restricted to formulas in Γ_{1}, in part due to his utilization of the Kuroda negative translation. We wonder whether similar methods can extend the results of this paper and our previous results [6] to a wider class of formulas.

3 Ramsey's theorem

We can use the preceding results to address our question about proofs of Ramsey's theorem. Let RT $(2,4)$ denote the following formulation of Ramsey's theorem for pairs and four colors: If $f:[\mathbb{N}]^{2} \rightarrow 4$, then there is an infinite $x \subset \mathbb{N}$ and an $i<4$ such that $f\left([x]^{2}\right)=i$. The set x is called monochromatic. Similarly, RT $(2,2)$ denotes Ramsey's theorem for pairs and two colors.

For any k, we can formalize $\mathrm{RT}(2, k)$ as a particularly simple Π_{2}^{1} formula. In the higher order axiom systems described by Kohlenbach [9, all higher order objects are functions, with subsets of \mathbb{N} being encoded by characteristic functions or by enumerations. Pairs of natural numbers can be encoded by a single natural number, so any function from \mathbb{N} into \mathbb{N} (that is, any type 1 object) can be viewed as a function from $[\mathbb{N}]^{2}$ into \mathbb{N}. By composition with a truncation function t_{n} defined by $t_{n}(m)=m$ if $m<n$ and $t_{n}(m)=0$ otherwise, we may view any type 1 function as a map from $[\mathbb{N}]^{2}$ into n. Using these notions, we can formalize $\mathrm{RT}(2,4)$ as

$$
\forall f \exists x \forall m\left(x(m)<x\left(m^{\prime}\right) \wedge \forall 0<i<j<m\left(t_{4}(f(x(i), x(j)))=x(0)\right)\right) .
$$

Formalized in this fashion, $\mathrm{RT}(2,4)$ is in Γ_{1} and its matrix (the portion beginning with $\forall m)$ is \exists-free. If we like, we could write it as $\forall f(0=0 \rightarrow \exists x(\ldots))$ to coincide with the $\forall x\left(p_{1} \rightarrow \exists y p_{2}\right)$ problem format. Using this formulation for $\mathrm{P}: \mathrm{RT}(2,2)$ and $\mathrm{Q}: \operatorname{RT}(2,4)$, the predicate R as in the statement of Theorem 3 is in Γ_{1}.

Consider the following well-known proof of $\mathrm{RT}(2,4)$ from two applications of $\operatorname{RT}(2,2)$. Given $f:[\mathbb{N}]^{2} \rightarrow 4$, define $g_{1}:[\mathbb{N}]^{2} \rightarrow 2$ by setting $g_{1}(n, m)=1$ if $f(n, m)>1$ and $g_{1}(n, m)=0$ otherwise. Applying RT(2,2), let $x=$ $\left\{x_{0}, x_{1}, \ldots\right\}$ be an infinite monochromatic set for g_{1}. Note that $f\left([x]^{2}\right)$ is either contained in $\{0,1\}$ or contained in $\{2,3\}$. Define $g_{2}:[\mathbb{N}]^{2} \rightarrow 2$ by $g_{2}(n, m)=1$ if $f\left(x_{n}, x_{m}\right)$ is odd and $g_{2}(n, m)=0$ otherwise. Applying $\mathrm{RT}(2,2)$ a second time, let y be an infinite monochromatic set for g_{2}. Then $z=\left\{x_{m} \mid m \in y\right\}$ is an infinite monochromatic set for f, completing the proof of $\mathrm{RT}(2,4)$. This proof that $\mathrm{RT}(2,2)$ implies $\mathrm{RT}(2,4)$ can be carried out in $i \mathrm{RCA}_{0}^{\omega}$. However, our work from previous sections shows that the second use of $\mathrm{RT}(2,2)$ cannot be eliminated.

Theorem 7. $i \mathrm{RCA}_{0}^{\omega}$ cannot prove $\mathrm{RT}(2,4)$ with one typical use of $\mathrm{RT}(2,2)$.
Proof. As noted in the second paragraph of this section, for our formulation of RT(2,2) and RT(2,4), P, Q, and R satisfy the hypotheses of Theorem 3. By Corollary 3.4 of Dorais et al. [4], $\mathrm{RT}(2,4) \not \leq_{W} \mathrm{RT}(2,2)$. By Corollary [5, $i \mathrm{RCA}_{0}^{\omega} \nvdash \mathrm{RT}(2,4) \leq_{W} \mathrm{RT}(2,2)$. By Corollary 4, $i \mathrm{RCA}_{0}^{\omega}$ does not prove $\mathrm{RT}(2,4)$ with one typical use of $\mathrm{RT}(2,2)$.

Theorem 3.3 of Hirschfeldt and Jockusch [5] asserts that if $j, k, n \in \omega$ satisfy the inequalities $n \geq 1$ and $k>j \geq 2$, then $\mathrm{RT}(n, k) \not \mathbb{Z}_{W} \mathrm{RT}(n, j)$. They
note that this result was also proved independently by Patey and by Brattka and Rakotoniaina. Substituting this result for the use of Corollary 3.4 in the proof of Theorem 7 yields the following extension.
Corollary 8. If $j, k, n \in \omega$ satisfy $n \geq 1$ and $k>j \geq 2$, then $i \mathrm{RCA}_{0}^{\omega}$ cannot prove $\mathrm{RT}(n, k)$ with one typical use of $\mathrm{R} \mathrm{T}(n, j)$.

Returning to our original discussion of Ramsey's theorem pairs, we next show that $\mathrm{RT}(2,4)$ can be proved with one typical use of $\mathrm{RT}(2,2)$ in systems such as $R C A_{0}$ that include the law of the excluded middle. This somewhat counterintuitive result relies on the following definition.
Definition 9. $\left(\mathrm{RCA}_{0}\right)$ Suppose $f:[\mathbb{N}]^{2} \rightarrow 4$. A set x is 2-mono for f if there is a set $\{i, j\} \subset\{0,1,2,3\}$ such that $f\left([x]^{2}\right) \subset\{i, j\}$.
Theorem 10. RCA_{0} can prove $\mathrm{RT}(2,4)$ with one typical use of $\mathrm{RT}(2,2)$.
Proof. The following proof can be can be carried out in RCA_{0}.
Suppose $f:[\mathbb{N}]^{2} \rightarrow 4$. Either there is an infinite $x \subset \mathbb{N}$ that is 2-mono for f or there is no such set. If there is such a set, define $j=0$, let x be an increasing enumeration of such a set, and suppose $f\left([x]^{2}\right) \subset\left\{a_{0}, a_{1}\right\}$. If there is no such set, define $j=1$ and let x be an increasing enumeration of \mathbb{N}. Define $g:[\mathbb{N}]^{2} \rightarrow 2$ by the following:

$$
g(m, n)= \begin{cases}0 & \text { if } j=0 \text { and } f(x(m), x(n))=a_{0} \\ 1 & \text { if } j=0 \text { and } f(x(m), x(n))=a_{1} \\ 0 & \text { if } j=1 \text { and } f(x(m), x(n)) \leq 1 \\ 1 & \text { if } j=1 \text { and } f(x(m), x(n)) \geq 2\end{cases}
$$

By one typical application of $\operatorname{RT}(2,2)$, let y be an infinite monochromatic set for g. If $j=1$, then y is an infinite 2 -mono set for f, contradicting the definition of j. Thus $j=0$, and the set $z=\{x(m) \mid m \in y\}$ is an infinite monochromatic set for f.

Using similar but more complicated constructions, for each standard integer k one can show that $\mathrm{RT}(2, k)$ can be proved with a single application of $\mathrm{RT}(2,2)$ in the classical system RCA_{0}. For example, given $f:[\mathbb{N}]^{2} \rightarrow 8$ either \mathbb{N} contains no infinite 4-mono set, or there is an infinite 4-mono set with no infinite 2-mono subset, or there is an infinite 2-mono set. Define g based on these possibilities and proceed as above. Furthermore, examination of the proof of Theorem 10 reveals no actual use of the exponent. Consequently, we can extend Theorem 10 as follows.

Corollary 11. Let n and k be positive elements of ω. RCA_{0} can prove $\mathrm{R} \mathrm{T}(n, k)$ with one typical use of $\mathrm{RT}(n, 2)$.

This kind of nonconstructive argument leveraging a single typical use of an axiom is not limited to Ramsey's theorem. For example, for each $n \in \omega$, RCA_{0} can prove "every set has an nth Turing jump" with a single typical use of "every set has a Turing jump". Many more examples come to mind, where a single typical use can be used to iterate a principle any finite number of times.

The relationship between Weihrauch reducibility and proofs in intuitionistic systems played an important role in obtaining the results of this section. We did not discover the proof described in Theorem 10 until our work on Corollary 4 indicated the significance of the law of the excluded middle in this setting.

Bibliography

[1] Vasco Brattka, Akitoshi Kawamura, Alberto Marcone, and Arno Pauly, Measuring the Complexity of Computational Content (Dagstuhl Seminar 15392), Dagstuhl Reports 5 (2016), no. 9, 77-104, DOI http://dx.doi.org/10.4230/DagRep.5.9.77.
[2] Vasco Brattka and Guido Gherardi, Effective choice and boundedness principles in computable analysis, Bulletin of Symbolic Logic 1 (2011), no. 1, 73-117, DOI 10.2178/bsl/1294186663.
[3] François G. Dorais, Classical consequences of continuous choice principles from intuitionistic analysis, Notre Dame J. Form. Log. 55 (2014), no. 1, 25-39, DOI 10.1215/00294527-2377860. MR3161410
[4] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer, On uniform relationships between combinatorial problems, Trans. AMS 368 (2014), 1321-1359, DOI 10.1090/tran/6465.
[5] Denis R. Hirschfeldt and Carl G. Jockusch, On notions of computabilitytheoretic reduction between Π_{2}^{1} principles, J. Math. Log. 16 (2016), no. 1, 1650002, 59, DOI 10.1142/S0219061316500021. MR3518779
[6] Jeffry L. Hirst and Carl Mummert, Reverse mathematics and uniformity in proofs without excluded middle, Notre Dame J. Form. Log. 52 (2011), no. 2, 149-162, DOI 10.1215/00294527-1306163. MR2794648
[7] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR0051790
[8] Ulrich Kohlenbach, Applied proof theory: proof interpretations and their use in mathematics, Springer Monographs in Mathematics, SpringerVerlag, Berlin, 2008. MR2445721
[9] _ Higher order reverse mathematics, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281-295. MR2185441
[10] Rutger Kuyper, On Weihrauch reducibility and intuitionistic reverse mathematics. Preprint, arXiv:1511.05189v1.
[11] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. MR2517689 (2010e:03073)
[12] A. S. Troelstra, Metamathematical investigation of intuitionistic arithmetic and analysis, Lect. Notes in Math., vol. 344, Springer, Berlin, 1973.

Corrigendum: Using Ramseys theorem once
 Jeffry L. Hirst Carl Mummert

June 23, 2020

In [1], the first definition should be as follows:
Definition 1. Suppose \mathcal{T} is a theory extending intuitionistic predicate calculus and $\mathrm{P}: \forall x\left(p_{1}(x) \rightarrow \exists y p_{2}(x, y)\right)$ and $\mathrm{Q}: \forall u\left(q_{1}(u) \rightarrow \exists v q_{2}(u, v)\right)$ are problems. We say \mathcal{T} proves Q with one typical use of P if the following two sentences hold:
(1) For a variable u there is a term x_{u} such that using only axioms of \mathcal{T} and the assumption $q_{1}(u)$, and holding the free variables of $q_{1}(u)$ constant, there is a deduction of $p_{1}\left(x_{u}\right)$.
(2) For a previously unused variable y, there is a term $v_{x_{u}, y}$ such that using only axioms of \mathcal{T}, lines from the proof in sentence (1), and the assumptions $q_{1}(u)$ and $p_{2}\left(x_{u}, y\right)$, while holding the free variables of $q_{1}(u)$ and $p_{2}\left(x_{u}, y\right)$ constant, there is a deduction of $q_{2}\left(u, v_{x_{u}, y}\right)$.

The revised definition applies to theories extending intuitionistic predicate calculus, matching the formulation of Lemma 1, which immediately follows the definition in the article. The restrictions on holding variables constant are exactly those needed for the applications of the deduction theorem in the proof of Lemma 1. Essentially, Definition 1 divides a proof into two parts, before and after a single application of P. The second portion of the proof may make use of the lines from the first portion as noted in the second sentence of the revised definition. This modification is useful in the proof of Theorem 4, the last theorem of the article.

Bibliography

[1] Jeffry L. Hirst and Carl Mummert, Using Ramsey's theorem once, Arch. Math. Logic 58 (2019), no. 7-8, 857-866, DOI 10.1007/s00153-019-00664-z. MR4003638

[^0]: *Department of Mathematical Sciences, Appalachian State University, Walker Hall, Boone, NC 28608. Email: hirstjl@appstate.edu
 ${ }^{\dagger}$ Department of Mathematics, Marshall University, 1 John Marshall Drive, Huntington, WV 25755. Email: mummertc@marshall.edu

