Skip to main content
Log in

Continuous triangular norm based fuzzy topology

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

For each continuous t-norm &, a class of fuzzy topological spaces, called &-topological spaces, is introduced. The motivation stems from the idea that to each many-valued logic there may correspond a theory of many-valued topology, in particular, each continuous t-norm may lead to a theory of fuzzy topology. It is shown that for each continuous t-norm &, the subcategory consisting of &-topological spaces is simultaneously reflective and coreflective in the category of fuzzy topological spaces, hence gives rise to an autonomous theory of fuzzy topology. Topologizing a fuzzy pre-ordered set with the fuzzy Scott topology yields a functor from the category of fuzzy pre-ordered sets and maps that preserve suprema of flat ideals to the category of &-topological spaces. It is proved that this functor is a full one if and only if the t-norm & is Archimedean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  2. Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric space: completion, topology, and powerdomains via the Yoneda embedding. Theor. Comput. Sci. 193, 1–51 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, P., Lai, H., Zhang, D.: Coreflective hull of finite strong \(L\)-topological spaces. Fuzzy Sets Syst. 182, 79–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 4, 106–112 (2000)

    Article  Google Scholar 

  5. Cintula, P., Hájek, P.: Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst. 161, 311–346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Flagg, R.C., Sünderhauf, P.: The essence of ideal completion in quantitative form. Theor. Comput. Sci. 278, 141–158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flagg, R.C., Sünderhauf, P., Wagner, K.R.: A logical approach to quantitative domain theory. Topology Atlas Preprint No. 23 (1996). http://at.yorku.ca/e/a/p/p/23.htm

  8. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  9. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  10. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  11. Hájek, P.: What is mathematical fuzzy logic. Fuzzy Sets Syst. 157, 597–603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Höhle, U.: Probabilistische Topologien. Manuscr. Math. 26, 223–245 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Höhle, U.: Characterization of \(L\)-topologies by \(L\)-valued neighborhoods. In: Höhle, U., Rodabaugh, S. (eds.) Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, pp. 389–432. Springer, Berlin (1999)

    Chapter  Google Scholar 

  14. Höhle, U., S̆ostak, A.P.: Axiomatic foundation of fixed-basis fuzzy topology. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, pp. 123–272. Springer, Berlin (1999)

    Chapter  Google Scholar 

  15. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Notes Series, vol. 64. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  17. Lai, H., Zhang, D.: Fuzzy preorder and fuzzy topology. Fuzzy Sets Syst. 157, 1865–1885 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai, H., Zhang, D.: Complete and directed complete \(\Omega \)-categories. Theor. Comput. Sci. 388, 1–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai, H., Zhang, D.: Closedness of the category of liminf complete fuzzy orders. Fuzzy Sets Syst. 282, 86–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lai, H., Zhang, D.: Fuzzy topological spaces with conical neighborhood systems. Fuzzy Sets Syst. 330, 87–104 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai, H., Zhang, D., Zhang, G.: A comparative study of ideals in fuzzy orders. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.11.019

    Google Scholar 

  22. Lai, H., Zhang, D., Zhang, G.: Flat ideals in the unit interval with the canonical fuzzy order. J. Sichuan Univ. (Nat. Sci. Ed.) 55, 905–911 (2018)

    MATH  Google Scholar 

  23. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matématico e Fisico di Milano 43, 135–166 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, W., Lai, H., Zhang, D.: Yoneda completeness and flat completeness of ordered fuzzy sets. Fuzzy Sets Syst. 313, 1–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lowen, R.: Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56, 623–633 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lowen, R., Wuyts, P.: Stable subconstructs in FTS I. J. Fuzzy Math. 1, 475–489 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Lowen, R., Wuyts, P.: Stable subconstructs in FTS II. Fuzzy Sets Syst. 76, 169–189 (1995)

    Article  MATH  Google Scholar 

  28. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novák, V., De Baets, B.: EQ-algebras. Fuzzy Sets Syst. 160, 2956–2978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takeuti, G., Titani, S.: Fuzzy logic and fuzzy set theory. Arch. Math. Log. 32, 1–32 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, Y., Lai, H., Zhang, D.: Quantale-valued preorders: globalization and cocompleteness. Fuzzy Sets Syst. 256, 236–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vickers, S.: Localic completion of generalized metric spaces. Theory Appl. Categ. 14, 328–356 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Wagner, K.R.: Liminf convergence in \(\Omega \)-categories. Theor. Comput. Sci. 184, 61–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, W.: A categorical isomorphism between injective fuzzy \(T_0\)-spaces and fuzzy continuous lattices. IEEE Trans. Fuzzy Syst. 24, 131–139 (2016)

    Article  Google Scholar 

  35. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, D.: An enriched category approach to many valued topology. Fuzzy Sets Syst. 158, 349–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank sincerely Dr. Hongliang Lai for stimulating discussion during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (No. 11871358).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, G. Continuous triangular norm based fuzzy topology. Arch. Math. Logic 58, 915–942 (2019). https://doi.org/10.1007/s00153-019-00670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00670-1

Mathematics Subject Classification

Keywords

Navigation